1 //===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the interfaces that Sparc uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "SparcISelLowering.h"
16 #include "MCTargetDesc/SparcMCExpr.h"
17 #include "SparcMachineFunctionInfo.h"
18 #include "SparcRegisterInfo.h"
19 #include "SparcTargetMachine.h"
20 #include "SparcTargetObjectFile.h"
21 #include "llvm/ADT/StringSwitch.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/KnownBits.h"
34 using namespace llvm;
35
36
37 //===----------------------------------------------------------------------===//
38 // Calling Convention Implementation
39 //===----------------------------------------------------------------------===//
40
CC_Sparc_Assign_SRet(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)41 static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT,
42 MVT &LocVT, CCValAssign::LocInfo &LocInfo,
43 ISD::ArgFlagsTy &ArgFlags, CCState &State)
44 {
45 assert (ArgFlags.isSRet());
46
47 // Assign SRet argument.
48 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
49 0,
50 LocVT, LocInfo));
51 return true;
52 }
53
CC_Sparc_Assign_Split_64(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)54 static bool CC_Sparc_Assign_Split_64(unsigned &ValNo, MVT &ValVT,
55 MVT &LocVT, CCValAssign::LocInfo &LocInfo,
56 ISD::ArgFlagsTy &ArgFlags, CCState &State)
57 {
58 static const MCPhysReg RegList[] = {
59 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
60 };
61 // Try to get first reg.
62 if (unsigned Reg = State.AllocateReg(RegList)) {
63 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
64 } else {
65 // Assign whole thing in stack.
66 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
67 State.AllocateStack(8,4),
68 LocVT, LocInfo));
69 return true;
70 }
71
72 // Try to get second reg.
73 if (unsigned Reg = State.AllocateReg(RegList))
74 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
75 else
76 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
77 State.AllocateStack(4,4),
78 LocVT, LocInfo));
79 return true;
80 }
81
CC_Sparc_Assign_Ret_Split_64(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)82 static bool CC_Sparc_Assign_Ret_Split_64(unsigned &ValNo, MVT &ValVT,
83 MVT &LocVT, CCValAssign::LocInfo &LocInfo,
84 ISD::ArgFlagsTy &ArgFlags, CCState &State)
85 {
86 static const MCPhysReg RegList[] = {
87 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
88 };
89
90 // Try to get first reg.
91 if (unsigned Reg = State.AllocateReg(RegList))
92 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
93 else
94 return false;
95
96 // Try to get second reg.
97 if (unsigned Reg = State.AllocateReg(RegList))
98 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
99 else
100 return false;
101
102 return true;
103 }
104
105 // Allocate a full-sized argument for the 64-bit ABI.
CC_Sparc64_Full(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)106 static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT,
107 MVT &LocVT, CCValAssign::LocInfo &LocInfo,
108 ISD::ArgFlagsTy &ArgFlags, CCState &State) {
109 assert((LocVT == MVT::f32 || LocVT == MVT::f128
110 || LocVT.getSizeInBits() == 64) &&
111 "Can't handle non-64 bits locations");
112
113 // Stack space is allocated for all arguments starting from [%fp+BIAS+128].
114 unsigned size = (LocVT == MVT::f128) ? 16 : 8;
115 unsigned alignment = (LocVT == MVT::f128) ? 16 : 8;
116 unsigned Offset = State.AllocateStack(size, alignment);
117 unsigned Reg = 0;
118
119 if (LocVT == MVT::i64 && Offset < 6*8)
120 // Promote integers to %i0-%i5.
121 Reg = SP::I0 + Offset/8;
122 else if (LocVT == MVT::f64 && Offset < 16*8)
123 // Promote doubles to %d0-%d30. (Which LLVM calls D0-D15).
124 Reg = SP::D0 + Offset/8;
125 else if (LocVT == MVT::f32 && Offset < 16*8)
126 // Promote floats to %f1, %f3, ...
127 Reg = SP::F1 + Offset/4;
128 else if (LocVT == MVT::f128 && Offset < 16*8)
129 // Promote long doubles to %q0-%q28. (Which LLVM calls Q0-Q7).
130 Reg = SP::Q0 + Offset/16;
131
132 // Promote to register when possible, otherwise use the stack slot.
133 if (Reg) {
134 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
135 return true;
136 }
137
138 // This argument goes on the stack in an 8-byte slot.
139 // When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to
140 // the right-aligned float. The first 4 bytes of the stack slot are undefined.
141 if (LocVT == MVT::f32)
142 Offset += 4;
143
144 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
145 return true;
146 }
147
148 // Allocate a half-sized argument for the 64-bit ABI.
149 //
150 // This is used when passing { float, int } structs by value in registers.
CC_Sparc64_Half(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)151 static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT,
152 MVT &LocVT, CCValAssign::LocInfo &LocInfo,
153 ISD::ArgFlagsTy &ArgFlags, CCState &State) {
154 assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations");
155 unsigned Offset = State.AllocateStack(4, 4);
156
157 if (LocVT == MVT::f32 && Offset < 16*8) {
158 // Promote floats to %f0-%f31.
159 State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4,
160 LocVT, LocInfo));
161 return true;
162 }
163
164 if (LocVT == MVT::i32 && Offset < 6*8) {
165 // Promote integers to %i0-%i5, using half the register.
166 unsigned Reg = SP::I0 + Offset/8;
167 LocVT = MVT::i64;
168 LocInfo = CCValAssign::AExt;
169
170 // Set the Custom bit if this i32 goes in the high bits of a register.
171 if (Offset % 8 == 0)
172 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg,
173 LocVT, LocInfo));
174 else
175 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
176 return true;
177 }
178
179 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
180 return true;
181 }
182
183 #include "SparcGenCallingConv.inc"
184
185 // The calling conventions in SparcCallingConv.td are described in terms of the
186 // callee's register window. This function translates registers to the
187 // corresponding caller window %o register.
toCallerWindow(unsigned Reg)188 static unsigned toCallerWindow(unsigned Reg) {
189 static_assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7,
190 "Unexpected enum");
191 if (Reg >= SP::I0 && Reg <= SP::I7)
192 return Reg - SP::I0 + SP::O0;
193 return Reg;
194 }
195
196 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const197 SparcTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
198 bool IsVarArg,
199 const SmallVectorImpl<ISD::OutputArg> &Outs,
200 const SmallVectorImpl<SDValue> &OutVals,
201 const SDLoc &DL, SelectionDAG &DAG) const {
202 if (Subtarget->is64Bit())
203 return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG);
204 return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG);
205 }
206
207 SDValue
LowerReturn_32(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const208 SparcTargetLowering::LowerReturn_32(SDValue Chain, CallingConv::ID CallConv,
209 bool IsVarArg,
210 const SmallVectorImpl<ISD::OutputArg> &Outs,
211 const SmallVectorImpl<SDValue> &OutVals,
212 const SDLoc &DL, SelectionDAG &DAG) const {
213 MachineFunction &MF = DAG.getMachineFunction();
214
215 // CCValAssign - represent the assignment of the return value to locations.
216 SmallVector<CCValAssign, 16> RVLocs;
217
218 // CCState - Info about the registers and stack slot.
219 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
220 *DAG.getContext());
221
222 // Analyze return values.
223 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32);
224
225 SDValue Flag;
226 SmallVector<SDValue, 4> RetOps(1, Chain);
227 // Make room for the return address offset.
228 RetOps.push_back(SDValue());
229
230 // Copy the result values into the output registers.
231 for (unsigned i = 0, realRVLocIdx = 0;
232 i != RVLocs.size();
233 ++i, ++realRVLocIdx) {
234 CCValAssign &VA = RVLocs[i];
235 assert(VA.isRegLoc() && "Can only return in registers!");
236
237 SDValue Arg = OutVals[realRVLocIdx];
238
239 if (VA.needsCustom()) {
240 assert(VA.getLocVT() == MVT::v2i32);
241 // Legalize ret v2i32 -> ret 2 x i32 (Basically: do what would
242 // happen by default if this wasn't a legal type)
243
244 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
245 Arg,
246 DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout())));
247 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
248 Arg,
249 DAG.getConstant(1, DL, getVectorIdxTy(DAG.getDataLayout())));
250
251 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part0, Flag);
252 Flag = Chain.getValue(1);
253 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
254 VA = RVLocs[++i]; // skip ahead to next loc
255 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part1,
256 Flag);
257 } else
258 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
259
260 // Guarantee that all emitted copies are stuck together with flags.
261 Flag = Chain.getValue(1);
262 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
263 }
264
265 unsigned RetAddrOffset = 8; // Call Inst + Delay Slot
266 // If the function returns a struct, copy the SRetReturnReg to I0
267 if (MF.getFunction().hasStructRetAttr()) {
268 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
269 unsigned Reg = SFI->getSRetReturnReg();
270 if (!Reg)
271 llvm_unreachable("sret virtual register not created in the entry block");
272 auto PtrVT = getPointerTy(DAG.getDataLayout());
273 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, PtrVT);
274 Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Flag);
275 Flag = Chain.getValue(1);
276 RetOps.push_back(DAG.getRegister(SP::I0, PtrVT));
277 RetAddrOffset = 12; // CallInst + Delay Slot + Unimp
278 }
279
280 RetOps[0] = Chain; // Update chain.
281 RetOps[1] = DAG.getConstant(RetAddrOffset, DL, MVT::i32);
282
283 // Add the flag if we have it.
284 if (Flag.getNode())
285 RetOps.push_back(Flag);
286
287 return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps);
288 }
289
290 // Lower return values for the 64-bit ABI.
291 // Return values are passed the exactly the same way as function arguments.
292 SDValue
LowerReturn_64(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const293 SparcTargetLowering::LowerReturn_64(SDValue Chain, CallingConv::ID CallConv,
294 bool IsVarArg,
295 const SmallVectorImpl<ISD::OutputArg> &Outs,
296 const SmallVectorImpl<SDValue> &OutVals,
297 const SDLoc &DL, SelectionDAG &DAG) const {
298 // CCValAssign - represent the assignment of the return value to locations.
299 SmallVector<CCValAssign, 16> RVLocs;
300
301 // CCState - Info about the registers and stack slot.
302 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
303 *DAG.getContext());
304
305 // Analyze return values.
306 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc64);
307
308 SDValue Flag;
309 SmallVector<SDValue, 4> RetOps(1, Chain);
310
311 // The second operand on the return instruction is the return address offset.
312 // The return address is always %i7+8 with the 64-bit ABI.
313 RetOps.push_back(DAG.getConstant(8, DL, MVT::i32));
314
315 // Copy the result values into the output registers.
316 for (unsigned i = 0; i != RVLocs.size(); ++i) {
317 CCValAssign &VA = RVLocs[i];
318 assert(VA.isRegLoc() && "Can only return in registers!");
319 SDValue OutVal = OutVals[i];
320
321 // Integer return values must be sign or zero extended by the callee.
322 switch (VA.getLocInfo()) {
323 case CCValAssign::Full: break;
324 case CCValAssign::SExt:
325 OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal);
326 break;
327 case CCValAssign::ZExt:
328 OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal);
329 break;
330 case CCValAssign::AExt:
331 OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal);
332 break;
333 default:
334 llvm_unreachable("Unknown loc info!");
335 }
336
337 // The custom bit on an i32 return value indicates that it should be passed
338 // in the high bits of the register.
339 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) {
340 OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal,
341 DAG.getConstant(32, DL, MVT::i32));
342
343 // The next value may go in the low bits of the same register.
344 // Handle both at once.
345 if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) {
346 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]);
347 OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV);
348 // Skip the next value, it's already done.
349 ++i;
350 }
351 }
352
353 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag);
354
355 // Guarantee that all emitted copies are stuck together with flags.
356 Flag = Chain.getValue(1);
357 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
358 }
359
360 RetOps[0] = Chain; // Update chain.
361
362 // Add the flag if we have it.
363 if (Flag.getNode())
364 RetOps.push_back(Flag);
365
366 return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps);
367 }
368
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const369 SDValue SparcTargetLowering::LowerFormalArguments(
370 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
371 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
372 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
373 if (Subtarget->is64Bit())
374 return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins,
375 DL, DAG, InVals);
376 return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins,
377 DL, DAG, InVals);
378 }
379
380 /// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are
381 /// passed in either one or two GPRs, including FP values. TODO: we should
382 /// pass FP values in FP registers for fastcc functions.
LowerFormalArguments_32(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const383 SDValue SparcTargetLowering::LowerFormalArguments_32(
384 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
385 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
386 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
387 MachineFunction &MF = DAG.getMachineFunction();
388 MachineRegisterInfo &RegInfo = MF.getRegInfo();
389 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
390
391 // Assign locations to all of the incoming arguments.
392 SmallVector<CCValAssign, 16> ArgLocs;
393 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
394 *DAG.getContext());
395 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32);
396
397 const unsigned StackOffset = 92;
398 bool IsLittleEndian = DAG.getDataLayout().isLittleEndian();
399
400 unsigned InIdx = 0;
401 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++InIdx) {
402 CCValAssign &VA = ArgLocs[i];
403
404 if (Ins[InIdx].Flags.isSRet()) {
405 if (InIdx != 0)
406 report_fatal_error("sparc only supports sret on the first parameter");
407 // Get SRet from [%fp+64].
408 int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, 64, true);
409 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
410 SDValue Arg =
411 DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
412 InVals.push_back(Arg);
413 continue;
414 }
415
416 if (VA.isRegLoc()) {
417 if (VA.needsCustom()) {
418 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32);
419
420 unsigned VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
421 MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi);
422 SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32);
423
424 assert(i+1 < e);
425 CCValAssign &NextVA = ArgLocs[++i];
426
427 SDValue LoVal;
428 if (NextVA.isMemLoc()) {
429 int FrameIdx = MF.getFrameInfo().
430 CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true);
431 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
432 LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
433 } else {
434 unsigned loReg = MF.addLiveIn(NextVA.getLocReg(),
435 &SP::IntRegsRegClass);
436 LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32);
437 }
438
439 if (IsLittleEndian)
440 std::swap(LoVal, HiVal);
441
442 SDValue WholeValue =
443 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
444 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), WholeValue);
445 InVals.push_back(WholeValue);
446 continue;
447 }
448 unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
449 MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg);
450 SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
451 if (VA.getLocVT() == MVT::f32)
452 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg);
453 else if (VA.getLocVT() != MVT::i32) {
454 Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg,
455 DAG.getValueType(VA.getLocVT()));
456 Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg);
457 }
458 InVals.push_back(Arg);
459 continue;
460 }
461
462 assert(VA.isMemLoc());
463
464 unsigned Offset = VA.getLocMemOffset()+StackOffset;
465 auto PtrVT = getPointerTy(DAG.getDataLayout());
466
467 if (VA.needsCustom()) {
468 assert(VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::v2i32);
469 // If it is double-word aligned, just load.
470 if (Offset % 8 == 0) {
471 int FI = MF.getFrameInfo().CreateFixedObject(8,
472 Offset,
473 true);
474 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
475 SDValue Load =
476 DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo());
477 InVals.push_back(Load);
478 continue;
479 }
480
481 int FI = MF.getFrameInfo().CreateFixedObject(4,
482 Offset,
483 true);
484 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
485 SDValue HiVal =
486 DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
487 int FI2 = MF.getFrameInfo().CreateFixedObject(4,
488 Offset+4,
489 true);
490 SDValue FIPtr2 = DAG.getFrameIndex(FI2, PtrVT);
491
492 SDValue LoVal =
493 DAG.getLoad(MVT::i32, dl, Chain, FIPtr2, MachinePointerInfo());
494
495 if (IsLittleEndian)
496 std::swap(LoVal, HiVal);
497
498 SDValue WholeValue =
499 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
500 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), WholeValue);
501 InVals.push_back(WholeValue);
502 continue;
503 }
504
505 int FI = MF.getFrameInfo().CreateFixedObject(4,
506 Offset,
507 true);
508 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
509 SDValue Load ;
510 if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) {
511 Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo());
512 } else if (VA.getValVT() == MVT::f128) {
513 report_fatal_error("SPARCv8 does not handle f128 in calls; "
514 "pass indirectly");
515 } else {
516 // We shouldn't see any other value types here.
517 llvm_unreachable("Unexpected ValVT encountered in frame lowering.");
518 }
519 InVals.push_back(Load);
520 }
521
522 if (MF.getFunction().hasStructRetAttr()) {
523 // Copy the SRet Argument to SRetReturnReg.
524 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
525 unsigned Reg = SFI->getSRetReturnReg();
526 if (!Reg) {
527 Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass);
528 SFI->setSRetReturnReg(Reg);
529 }
530 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
531 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
532 }
533
534 // Store remaining ArgRegs to the stack if this is a varargs function.
535 if (isVarArg) {
536 static const MCPhysReg ArgRegs[] = {
537 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
538 };
539 unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs);
540 const MCPhysReg *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6;
541 unsigned ArgOffset = CCInfo.getNextStackOffset();
542 if (NumAllocated == 6)
543 ArgOffset += StackOffset;
544 else {
545 assert(!ArgOffset);
546 ArgOffset = 68+4*NumAllocated;
547 }
548
549 // Remember the vararg offset for the va_start implementation.
550 FuncInfo->setVarArgsFrameOffset(ArgOffset);
551
552 std::vector<SDValue> OutChains;
553
554 for (; CurArgReg != ArgRegEnd; ++CurArgReg) {
555 unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
556 MF.getRegInfo().addLiveIn(*CurArgReg, VReg);
557 SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32);
558
559 int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, ArgOffset,
560 true);
561 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
562
563 OutChains.push_back(
564 DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, MachinePointerInfo()));
565 ArgOffset += 4;
566 }
567
568 if (!OutChains.empty()) {
569 OutChains.push_back(Chain);
570 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
571 }
572 }
573
574 return Chain;
575 }
576
577 // Lower formal arguments for the 64 bit ABI.
LowerFormalArguments_64(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const578 SDValue SparcTargetLowering::LowerFormalArguments_64(
579 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
580 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
581 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
582 MachineFunction &MF = DAG.getMachineFunction();
583
584 // Analyze arguments according to CC_Sparc64.
585 SmallVector<CCValAssign, 16> ArgLocs;
586 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
587 *DAG.getContext());
588 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64);
589
590 // The argument array begins at %fp+BIAS+128, after the register save area.
591 const unsigned ArgArea = 128;
592
593 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
594 CCValAssign &VA = ArgLocs[i];
595 if (VA.isRegLoc()) {
596 // This argument is passed in a register.
597 // All integer register arguments are promoted by the caller to i64.
598
599 // Create a virtual register for the promoted live-in value.
600 unsigned VReg = MF.addLiveIn(VA.getLocReg(),
601 getRegClassFor(VA.getLocVT()));
602 SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT());
603
604 // Get the high bits for i32 struct elements.
605 if (VA.getValVT() == MVT::i32 && VA.needsCustom())
606 Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg,
607 DAG.getConstant(32, DL, MVT::i32));
608
609 // The caller promoted the argument, so insert an Assert?ext SDNode so we
610 // won't promote the value again in this function.
611 switch (VA.getLocInfo()) {
612 case CCValAssign::SExt:
613 Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg,
614 DAG.getValueType(VA.getValVT()));
615 break;
616 case CCValAssign::ZExt:
617 Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg,
618 DAG.getValueType(VA.getValVT()));
619 break;
620 default:
621 break;
622 }
623
624 // Truncate the register down to the argument type.
625 if (VA.isExtInLoc())
626 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
627
628 InVals.push_back(Arg);
629 continue;
630 }
631
632 // The registers are exhausted. This argument was passed on the stack.
633 assert(VA.isMemLoc());
634 // The CC_Sparc64_Full/Half functions compute stack offsets relative to the
635 // beginning of the arguments area at %fp+BIAS+128.
636 unsigned Offset = VA.getLocMemOffset() + ArgArea;
637 unsigned ValSize = VA.getValVT().getSizeInBits() / 8;
638 // Adjust offset for extended arguments, SPARC is big-endian.
639 // The caller will have written the full slot with extended bytes, but we
640 // prefer our own extending loads.
641 if (VA.isExtInLoc())
642 Offset += 8 - ValSize;
643 int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true);
644 InVals.push_back(
645 DAG.getLoad(VA.getValVT(), DL, Chain,
646 DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())),
647 MachinePointerInfo::getFixedStack(MF, FI)));
648 }
649
650 if (!IsVarArg)
651 return Chain;
652
653 // This function takes variable arguments, some of which may have been passed
654 // in registers %i0-%i5. Variable floating point arguments are never passed
655 // in floating point registers. They go on %i0-%i5 or on the stack like
656 // integer arguments.
657 //
658 // The va_start intrinsic needs to know the offset to the first variable
659 // argument.
660 unsigned ArgOffset = CCInfo.getNextStackOffset();
661 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
662 // Skip the 128 bytes of register save area.
663 FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea +
664 Subtarget->getStackPointerBias());
665
666 // Save the variable arguments that were passed in registers.
667 // The caller is required to reserve stack space for 6 arguments regardless
668 // of how many arguments were actually passed.
669 SmallVector<SDValue, 8> OutChains;
670 for (; ArgOffset < 6*8; ArgOffset += 8) {
671 unsigned VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass);
672 SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
673 int FI = MF.getFrameInfo().CreateFixedObject(8, ArgOffset + ArgArea, true);
674 auto PtrVT = getPointerTy(MF.getDataLayout());
675 OutChains.push_back(
676 DAG.getStore(Chain, DL, VArg, DAG.getFrameIndex(FI, PtrVT),
677 MachinePointerInfo::getFixedStack(MF, FI)));
678 }
679
680 if (!OutChains.empty())
681 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
682
683 return Chain;
684 }
685
686 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const687 SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
688 SmallVectorImpl<SDValue> &InVals) const {
689 if (Subtarget->is64Bit())
690 return LowerCall_64(CLI, InVals);
691 return LowerCall_32(CLI, InVals);
692 }
693
hasReturnsTwiceAttr(SelectionDAG & DAG,SDValue Callee,ImmutableCallSite CS)694 static bool hasReturnsTwiceAttr(SelectionDAG &DAG, SDValue Callee,
695 ImmutableCallSite CS) {
696 if (CS)
697 return CS.hasFnAttr(Attribute::ReturnsTwice);
698
699 const Function *CalleeFn = nullptr;
700 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
701 CalleeFn = dyn_cast<Function>(G->getGlobal());
702 } else if (ExternalSymbolSDNode *E =
703 dyn_cast<ExternalSymbolSDNode>(Callee)) {
704 const Function &Fn = DAG.getMachineFunction().getFunction();
705 const Module *M = Fn.getParent();
706 const char *CalleeName = E->getSymbol();
707 CalleeFn = M->getFunction(CalleeName);
708 }
709
710 if (!CalleeFn)
711 return false;
712 return CalleeFn->hasFnAttribute(Attribute::ReturnsTwice);
713 }
714
715 // Lower a call for the 32-bit ABI.
716 SDValue
LowerCall_32(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const717 SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI,
718 SmallVectorImpl<SDValue> &InVals) const {
719 SelectionDAG &DAG = CLI.DAG;
720 SDLoc &dl = CLI.DL;
721 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
722 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
723 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
724 SDValue Chain = CLI.Chain;
725 SDValue Callee = CLI.Callee;
726 bool &isTailCall = CLI.IsTailCall;
727 CallingConv::ID CallConv = CLI.CallConv;
728 bool isVarArg = CLI.IsVarArg;
729
730 // Sparc target does not yet support tail call optimization.
731 isTailCall = false;
732
733 // Analyze operands of the call, assigning locations to each operand.
734 SmallVector<CCValAssign, 16> ArgLocs;
735 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
736 *DAG.getContext());
737 CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32);
738
739 // Get the size of the outgoing arguments stack space requirement.
740 unsigned ArgsSize = CCInfo.getNextStackOffset();
741
742 // Keep stack frames 8-byte aligned.
743 ArgsSize = (ArgsSize+7) & ~7;
744
745 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
746
747 // Create local copies for byval args.
748 SmallVector<SDValue, 8> ByValArgs;
749 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
750 ISD::ArgFlagsTy Flags = Outs[i].Flags;
751 if (!Flags.isByVal())
752 continue;
753
754 SDValue Arg = OutVals[i];
755 unsigned Size = Flags.getByValSize();
756 unsigned Align = Flags.getByValAlign();
757
758 if (Size > 0U) {
759 int FI = MFI.CreateStackObject(Size, Align, false);
760 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
761 SDValue SizeNode = DAG.getConstant(Size, dl, MVT::i32);
762
763 Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Align,
764 false, // isVolatile,
765 (Size <= 32), // AlwaysInline if size <= 32,
766 false, // isTailCall
767 MachinePointerInfo(), MachinePointerInfo());
768 ByValArgs.push_back(FIPtr);
769 }
770 else {
771 SDValue nullVal;
772 ByValArgs.push_back(nullVal);
773 }
774 }
775
776 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, dl);
777
778 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
779 SmallVector<SDValue, 8> MemOpChains;
780
781 const unsigned StackOffset = 92;
782 bool hasStructRetAttr = false;
783 // Walk the register/memloc assignments, inserting copies/loads.
784 for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size();
785 i != e;
786 ++i, ++realArgIdx) {
787 CCValAssign &VA = ArgLocs[i];
788 SDValue Arg = OutVals[realArgIdx];
789
790 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
791
792 // Use local copy if it is a byval arg.
793 if (Flags.isByVal()) {
794 Arg = ByValArgs[byvalArgIdx++];
795 if (!Arg) {
796 continue;
797 }
798 }
799
800 // Promote the value if needed.
801 switch (VA.getLocInfo()) {
802 default: llvm_unreachable("Unknown loc info!");
803 case CCValAssign::Full: break;
804 case CCValAssign::SExt:
805 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
806 break;
807 case CCValAssign::ZExt:
808 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
809 break;
810 case CCValAssign::AExt:
811 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
812 break;
813 case CCValAssign::BCvt:
814 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
815 break;
816 }
817
818 if (Flags.isSRet()) {
819 assert(VA.needsCustom());
820 // store SRet argument in %sp+64
821 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
822 SDValue PtrOff = DAG.getIntPtrConstant(64, dl);
823 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
824 MemOpChains.push_back(
825 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
826 hasStructRetAttr = true;
827 continue;
828 }
829
830 if (VA.needsCustom()) {
831 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32);
832
833 if (VA.isMemLoc()) {
834 unsigned Offset = VA.getLocMemOffset() + StackOffset;
835 // if it is double-word aligned, just store.
836 if (Offset % 8 == 0) {
837 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
838 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
839 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
840 MemOpChains.push_back(
841 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
842 continue;
843 }
844 }
845
846 if (VA.getLocVT() == MVT::f64) {
847 // Move from the float value from float registers into the
848 // integer registers.
849
850 // TODO: The f64 -> v2i32 conversion is super-inefficient for
851 // constants: it sticks them in the constant pool, then loads
852 // to a fp register, then stores to temp memory, then loads to
853 // integer registers.
854 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, Arg);
855 }
856
857 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
858 Arg,
859 DAG.getConstant(0, dl, getVectorIdxTy(DAG.getDataLayout())));
860 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
861 Arg,
862 DAG.getConstant(1, dl, getVectorIdxTy(DAG.getDataLayout())));
863
864 if (VA.isRegLoc()) {
865 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Part0));
866 assert(i+1 != e);
867 CCValAssign &NextVA = ArgLocs[++i];
868 if (NextVA.isRegLoc()) {
869 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Part1));
870 } else {
871 // Store the second part in stack.
872 unsigned Offset = NextVA.getLocMemOffset() + StackOffset;
873 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
874 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
875 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
876 MemOpChains.push_back(
877 DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo()));
878 }
879 } else {
880 unsigned Offset = VA.getLocMemOffset() + StackOffset;
881 // Store the first part.
882 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
883 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
884 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
885 MemOpChains.push_back(
886 DAG.getStore(Chain, dl, Part0, PtrOff, MachinePointerInfo()));
887 // Store the second part.
888 PtrOff = DAG.getIntPtrConstant(Offset + 4, dl);
889 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
890 MemOpChains.push_back(
891 DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo()));
892 }
893 continue;
894 }
895
896 // Arguments that can be passed on register must be kept at
897 // RegsToPass vector
898 if (VA.isRegLoc()) {
899 if (VA.getLocVT() != MVT::f32) {
900 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
901 continue;
902 }
903 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
904 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
905 continue;
906 }
907
908 assert(VA.isMemLoc());
909
910 // Create a store off the stack pointer for this argument.
911 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
912 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + StackOffset,
913 dl);
914 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
915 MemOpChains.push_back(
916 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
917 }
918
919
920 // Emit all stores, make sure the occur before any copies into physregs.
921 if (!MemOpChains.empty())
922 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
923
924 // Build a sequence of copy-to-reg nodes chained together with token
925 // chain and flag operands which copy the outgoing args into registers.
926 // The InFlag in necessary since all emitted instructions must be
927 // stuck together.
928 SDValue InFlag;
929 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
930 unsigned Reg = toCallerWindow(RegsToPass[i].first);
931 Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InFlag);
932 InFlag = Chain.getValue(1);
933 }
934
935 unsigned SRetArgSize = (hasStructRetAttr)? getSRetArgSize(DAG, Callee):0;
936 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CS);
937
938 // If the callee is a GlobalAddress node (quite common, every direct call is)
939 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
940 // Likewise ExternalSymbol -> TargetExternalSymbol.
941 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 : 0;
942 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
943 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32, 0, TF);
944 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
945 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32, TF);
946
947 // Returns a chain & a flag for retval copy to use
948 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
949 SmallVector<SDValue, 8> Ops;
950 Ops.push_back(Chain);
951 Ops.push_back(Callee);
952 if (hasStructRetAttr)
953 Ops.push_back(DAG.getTargetConstant(SRetArgSize, dl, MVT::i32));
954 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
955 Ops.push_back(DAG.getRegister(toCallerWindow(RegsToPass[i].first),
956 RegsToPass[i].second.getValueType()));
957
958 // Add a register mask operand representing the call-preserved registers.
959 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo();
960 const uint32_t *Mask =
961 ((hasReturnsTwice)
962 ? TRI->getRTCallPreservedMask(CallConv)
963 : TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv));
964 assert(Mask && "Missing call preserved mask for calling convention");
965 Ops.push_back(DAG.getRegisterMask(Mask));
966
967 if (InFlag.getNode())
968 Ops.push_back(InFlag);
969
970 Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, Ops);
971 InFlag = Chain.getValue(1);
972
973 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, dl, true),
974 DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
975 InFlag = Chain.getValue(1);
976
977 // Assign locations to each value returned by this call.
978 SmallVector<CCValAssign, 16> RVLocs;
979 CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
980 *DAG.getContext());
981
982 RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32);
983
984 // Copy all of the result registers out of their specified physreg.
985 for (unsigned i = 0; i != RVLocs.size(); ++i) {
986 if (RVLocs[i].getLocVT() == MVT::v2i32) {
987 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2i32);
988 SDValue Lo = DAG.getCopyFromReg(
989 Chain, dl, toCallerWindow(RVLocs[i++].getLocReg()), MVT::i32, InFlag);
990 Chain = Lo.getValue(1);
991 InFlag = Lo.getValue(2);
992 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Lo,
993 DAG.getConstant(0, dl, MVT::i32));
994 SDValue Hi = DAG.getCopyFromReg(
995 Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), MVT::i32, InFlag);
996 Chain = Hi.getValue(1);
997 InFlag = Hi.getValue(2);
998 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Hi,
999 DAG.getConstant(1, dl, MVT::i32));
1000 InVals.push_back(Vec);
1001 } else {
1002 Chain =
1003 DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()),
1004 RVLocs[i].getValVT(), InFlag)
1005 .getValue(1);
1006 InFlag = Chain.getValue(2);
1007 InVals.push_back(Chain.getValue(0));
1008 }
1009 }
1010
1011 return Chain;
1012 }
1013
1014 // FIXME? Maybe this could be a TableGen attribute on some registers and
1015 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,EVT VT,SelectionDAG & DAG) const1016 unsigned SparcTargetLowering::getRegisterByName(const char* RegName, EVT VT,
1017 SelectionDAG &DAG) const {
1018 unsigned Reg = StringSwitch<unsigned>(RegName)
1019 .Case("i0", SP::I0).Case("i1", SP::I1).Case("i2", SP::I2).Case("i3", SP::I3)
1020 .Case("i4", SP::I4).Case("i5", SP::I5).Case("i6", SP::I6).Case("i7", SP::I7)
1021 .Case("o0", SP::O0).Case("o1", SP::O1).Case("o2", SP::O2).Case("o3", SP::O3)
1022 .Case("o4", SP::O4).Case("o5", SP::O5).Case("o6", SP::O6).Case("o7", SP::O7)
1023 .Case("l0", SP::L0).Case("l1", SP::L1).Case("l2", SP::L2).Case("l3", SP::L3)
1024 .Case("l4", SP::L4).Case("l5", SP::L5).Case("l6", SP::L6).Case("l7", SP::L7)
1025 .Case("g0", SP::G0).Case("g1", SP::G1).Case("g2", SP::G2).Case("g3", SP::G3)
1026 .Case("g4", SP::G4).Case("g5", SP::G5).Case("g6", SP::G6).Case("g7", SP::G7)
1027 .Default(0);
1028
1029 if (Reg)
1030 return Reg;
1031
1032 report_fatal_error("Invalid register name global variable");
1033 }
1034
1035 // This functions returns true if CalleeName is a ABI function that returns
1036 // a long double (fp128).
isFP128ABICall(const char * CalleeName)1037 static bool isFP128ABICall(const char *CalleeName)
1038 {
1039 static const char *const ABICalls[] =
1040 { "_Q_add", "_Q_sub", "_Q_mul", "_Q_div",
1041 "_Q_sqrt", "_Q_neg",
1042 "_Q_itoq", "_Q_stoq", "_Q_dtoq", "_Q_utoq",
1043 "_Q_lltoq", "_Q_ulltoq",
1044 nullptr
1045 };
1046 for (const char * const *I = ABICalls; *I != nullptr; ++I)
1047 if (strcmp(CalleeName, *I) == 0)
1048 return true;
1049 return false;
1050 }
1051
1052 unsigned
getSRetArgSize(SelectionDAG & DAG,SDValue Callee) const1053 SparcTargetLowering::getSRetArgSize(SelectionDAG &DAG, SDValue Callee) const
1054 {
1055 const Function *CalleeFn = nullptr;
1056 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1057 CalleeFn = dyn_cast<Function>(G->getGlobal());
1058 } else if (ExternalSymbolSDNode *E =
1059 dyn_cast<ExternalSymbolSDNode>(Callee)) {
1060 const Function &F = DAG.getMachineFunction().getFunction();
1061 const Module *M = F.getParent();
1062 const char *CalleeName = E->getSymbol();
1063 CalleeFn = M->getFunction(CalleeName);
1064 if (!CalleeFn && isFP128ABICall(CalleeName))
1065 return 16; // Return sizeof(fp128)
1066 }
1067
1068 if (!CalleeFn)
1069 return 0;
1070
1071 // It would be nice to check for the sret attribute on CalleeFn here,
1072 // but since it is not part of the function type, any check will misfire.
1073
1074 PointerType *Ty = cast<PointerType>(CalleeFn->arg_begin()->getType());
1075 Type *ElementTy = Ty->getElementType();
1076 return DAG.getDataLayout().getTypeAllocSize(ElementTy);
1077 }
1078
1079
1080 // Fixup floating point arguments in the ... part of a varargs call.
1081 //
1082 // The SPARC v9 ABI requires that floating point arguments are treated the same
1083 // as integers when calling a varargs function. This does not apply to the
1084 // fixed arguments that are part of the function's prototype.
1085 //
1086 // This function post-processes a CCValAssign array created by
1087 // AnalyzeCallOperands().
fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> & ArgLocs,ArrayRef<ISD::OutputArg> Outs)1088 static void fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> &ArgLocs,
1089 ArrayRef<ISD::OutputArg> Outs) {
1090 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1091 const CCValAssign &VA = ArgLocs[i];
1092 MVT ValTy = VA.getLocVT();
1093 // FIXME: What about f32 arguments? C promotes them to f64 when calling
1094 // varargs functions.
1095 if (!VA.isRegLoc() || (ValTy != MVT::f64 && ValTy != MVT::f128))
1096 continue;
1097 // The fixed arguments to a varargs function still go in FP registers.
1098 if (Outs[VA.getValNo()].IsFixed)
1099 continue;
1100
1101 // This floating point argument should be reassigned.
1102 CCValAssign NewVA;
1103
1104 // Determine the offset into the argument array.
1105 unsigned firstReg = (ValTy == MVT::f64) ? SP::D0 : SP::Q0;
1106 unsigned argSize = (ValTy == MVT::f64) ? 8 : 16;
1107 unsigned Offset = argSize * (VA.getLocReg() - firstReg);
1108 assert(Offset < 16*8 && "Offset out of range, bad register enum?");
1109
1110 if (Offset < 6*8) {
1111 // This argument should go in %i0-%i5.
1112 unsigned IReg = SP::I0 + Offset/8;
1113 if (ValTy == MVT::f64)
1114 // Full register, just bitconvert into i64.
1115 NewVA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(),
1116 IReg, MVT::i64, CCValAssign::BCvt);
1117 else {
1118 assert(ValTy == MVT::f128 && "Unexpected type!");
1119 // Full register, just bitconvert into i128 -- We will lower this into
1120 // two i64s in LowerCall_64.
1121 NewVA = CCValAssign::getCustomReg(VA.getValNo(), VA.getValVT(),
1122 IReg, MVT::i128, CCValAssign::BCvt);
1123 }
1124 } else {
1125 // This needs to go to memory, we're out of integer registers.
1126 NewVA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(),
1127 Offset, VA.getLocVT(), VA.getLocInfo());
1128 }
1129 ArgLocs[i] = NewVA;
1130 }
1131 }
1132
1133 // Lower a call for the 64-bit ABI.
1134 SDValue
LowerCall_64(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1135 SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI,
1136 SmallVectorImpl<SDValue> &InVals) const {
1137 SelectionDAG &DAG = CLI.DAG;
1138 SDLoc DL = CLI.DL;
1139 SDValue Chain = CLI.Chain;
1140 auto PtrVT = getPointerTy(DAG.getDataLayout());
1141
1142 // Sparc target does not yet support tail call optimization.
1143 CLI.IsTailCall = false;
1144
1145 // Analyze operands of the call, assigning locations to each operand.
1146 SmallVector<CCValAssign, 16> ArgLocs;
1147 CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs,
1148 *DAG.getContext());
1149 CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64);
1150
1151 // Get the size of the outgoing arguments stack space requirement.
1152 // The stack offset computed by CC_Sparc64 includes all arguments.
1153 // Called functions expect 6 argument words to exist in the stack frame, used
1154 // or not.
1155 unsigned ArgsSize = std::max(6*8u, CCInfo.getNextStackOffset());
1156
1157 // Keep stack frames 16-byte aligned.
1158 ArgsSize = alignTo(ArgsSize, 16);
1159
1160 // Varargs calls require special treatment.
1161 if (CLI.IsVarArg)
1162 fixupVariableFloatArgs(ArgLocs, CLI.Outs);
1163
1164 // Adjust the stack pointer to make room for the arguments.
1165 // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls
1166 // with more than 6 arguments.
1167 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL);
1168
1169 // Collect the set of registers to pass to the function and their values.
1170 // This will be emitted as a sequence of CopyToReg nodes glued to the call
1171 // instruction.
1172 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1173
1174 // Collect chains from all the memory opeations that copy arguments to the
1175 // stack. They must follow the stack pointer adjustment above and precede the
1176 // call instruction itself.
1177 SmallVector<SDValue, 8> MemOpChains;
1178
1179 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1180 const CCValAssign &VA = ArgLocs[i];
1181 SDValue Arg = CLI.OutVals[i];
1182
1183 // Promote the value if needed.
1184 switch (VA.getLocInfo()) {
1185 default:
1186 llvm_unreachable("Unknown location info!");
1187 case CCValAssign::Full:
1188 break;
1189 case CCValAssign::SExt:
1190 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
1191 break;
1192 case CCValAssign::ZExt:
1193 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
1194 break;
1195 case CCValAssign::AExt:
1196 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
1197 break;
1198 case CCValAssign::BCvt:
1199 // fixupVariableFloatArgs() may create bitcasts from f128 to i128. But
1200 // SPARC does not support i128 natively. Lower it into two i64, see below.
1201 if (!VA.needsCustom() || VA.getValVT() != MVT::f128
1202 || VA.getLocVT() != MVT::i128)
1203 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
1204 break;
1205 }
1206
1207 if (VA.isRegLoc()) {
1208 if (VA.needsCustom() && VA.getValVT() == MVT::f128
1209 && VA.getLocVT() == MVT::i128) {
1210 // Store and reload into the integer register reg and reg+1.
1211 unsigned Offset = 8 * (VA.getLocReg() - SP::I0);
1212 unsigned StackOffset = Offset + Subtarget->getStackPointerBias() + 128;
1213 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT);
1214 SDValue HiPtrOff = DAG.getIntPtrConstant(StackOffset, DL);
1215 HiPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, HiPtrOff);
1216 SDValue LoPtrOff = DAG.getIntPtrConstant(StackOffset + 8, DL);
1217 LoPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, LoPtrOff);
1218
1219 // Store to %sp+BIAS+128+Offset
1220 SDValue Store =
1221 DAG.getStore(Chain, DL, Arg, HiPtrOff, MachinePointerInfo());
1222 // Load into Reg and Reg+1
1223 SDValue Hi64 =
1224 DAG.getLoad(MVT::i64, DL, Store, HiPtrOff, MachinePointerInfo());
1225 SDValue Lo64 =
1226 DAG.getLoad(MVT::i64, DL, Store, LoPtrOff, MachinePointerInfo());
1227 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()),
1228 Hi64));
1229 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()+1),
1230 Lo64));
1231 continue;
1232 }
1233
1234 // The custom bit on an i32 return value indicates that it should be
1235 // passed in the high bits of the register.
1236 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) {
1237 Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg,
1238 DAG.getConstant(32, DL, MVT::i32));
1239
1240 // The next value may go in the low bits of the same register.
1241 // Handle both at once.
1242 if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() &&
1243 ArgLocs[i+1].getLocReg() == VA.getLocReg()) {
1244 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64,
1245 CLI.OutVals[i+1]);
1246 Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV);
1247 // Skip the next value, it's already done.
1248 ++i;
1249 }
1250 }
1251 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()), Arg));
1252 continue;
1253 }
1254
1255 assert(VA.isMemLoc());
1256
1257 // Create a store off the stack pointer for this argument.
1258 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT);
1259 // The argument area starts at %fp+BIAS+128 in the callee frame,
1260 // %sp+BIAS+128 in ours.
1261 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() +
1262 Subtarget->getStackPointerBias() +
1263 128, DL);
1264 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
1265 MemOpChains.push_back(
1266 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()));
1267 }
1268
1269 // Emit all stores, make sure they occur before the call.
1270 if (!MemOpChains.empty())
1271 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1272
1273 // Build a sequence of CopyToReg nodes glued together with token chain and
1274 // glue operands which copy the outgoing args into registers. The InGlue is
1275 // necessary since all emitted instructions must be stuck together in order
1276 // to pass the live physical registers.
1277 SDValue InGlue;
1278 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1279 Chain = DAG.getCopyToReg(Chain, DL,
1280 RegsToPass[i].first, RegsToPass[i].second, InGlue);
1281 InGlue = Chain.getValue(1);
1282 }
1283
1284 // If the callee is a GlobalAddress node (quite common, every direct call is)
1285 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1286 // Likewise ExternalSymbol -> TargetExternalSymbol.
1287 SDValue Callee = CLI.Callee;
1288 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CS);
1289 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 : 0;
1290 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1291 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT, 0, TF);
1292 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1293 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, TF);
1294
1295 // Build the operands for the call instruction itself.
1296 SmallVector<SDValue, 8> Ops;
1297 Ops.push_back(Chain);
1298 Ops.push_back(Callee);
1299 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1300 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1301 RegsToPass[i].second.getValueType()));
1302
1303 // Add a register mask operand representing the call-preserved registers.
1304 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo();
1305 const uint32_t *Mask =
1306 ((hasReturnsTwice) ? TRI->getRTCallPreservedMask(CLI.CallConv)
1307 : TRI->getCallPreservedMask(DAG.getMachineFunction(),
1308 CLI.CallConv));
1309 assert(Mask && "Missing call preserved mask for calling convention");
1310 Ops.push_back(DAG.getRegisterMask(Mask));
1311
1312 // Make sure the CopyToReg nodes are glued to the call instruction which
1313 // consumes the registers.
1314 if (InGlue.getNode())
1315 Ops.push_back(InGlue);
1316
1317 // Now the call itself.
1318 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1319 Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, Ops);
1320 InGlue = Chain.getValue(1);
1321
1322 // Revert the stack pointer immediately after the call.
1323 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, DL, true),
1324 DAG.getIntPtrConstant(0, DL, true), InGlue, DL);
1325 InGlue = Chain.getValue(1);
1326
1327 // Now extract the return values. This is more or less the same as
1328 // LowerFormalArguments_64.
1329
1330 // Assign locations to each value returned by this call.
1331 SmallVector<CCValAssign, 16> RVLocs;
1332 CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs,
1333 *DAG.getContext());
1334
1335 // Set inreg flag manually for codegen generated library calls that
1336 // return float.
1337 if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CS)
1338 CLI.Ins[0].Flags.setInReg();
1339
1340 RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_Sparc64);
1341
1342 // Copy all of the result registers out of their specified physreg.
1343 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1344 CCValAssign &VA = RVLocs[i];
1345 unsigned Reg = toCallerWindow(VA.getLocReg());
1346
1347 // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can
1348 // reside in the same register in the high and low bits. Reuse the
1349 // CopyFromReg previous node to avoid duplicate copies.
1350 SDValue RV;
1351 if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1)))
1352 if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg)
1353 RV = Chain.getValue(0);
1354
1355 // But usually we'll create a new CopyFromReg for a different register.
1356 if (!RV.getNode()) {
1357 RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue);
1358 Chain = RV.getValue(1);
1359 InGlue = Chain.getValue(2);
1360 }
1361
1362 // Get the high bits for i32 struct elements.
1363 if (VA.getValVT() == MVT::i32 && VA.needsCustom())
1364 RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV,
1365 DAG.getConstant(32, DL, MVT::i32));
1366
1367 // The callee promoted the return value, so insert an Assert?ext SDNode so
1368 // we won't promote the value again in this function.
1369 switch (VA.getLocInfo()) {
1370 case CCValAssign::SExt:
1371 RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV,
1372 DAG.getValueType(VA.getValVT()));
1373 break;
1374 case CCValAssign::ZExt:
1375 RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV,
1376 DAG.getValueType(VA.getValVT()));
1377 break;
1378 default:
1379 break;
1380 }
1381
1382 // Truncate the register down to the return value type.
1383 if (VA.isExtInLoc())
1384 RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV);
1385
1386 InVals.push_back(RV);
1387 }
1388
1389 return Chain;
1390 }
1391
1392 //===----------------------------------------------------------------------===//
1393 // TargetLowering Implementation
1394 //===----------------------------------------------------------------------===//
1395
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const1396 TargetLowering::AtomicExpansionKind SparcTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
1397 if (AI->getOperation() == AtomicRMWInst::Xchg &&
1398 AI->getType()->getPrimitiveSizeInBits() == 32)
1399 return AtomicExpansionKind::None; // Uses xchg instruction
1400
1401 return AtomicExpansionKind::CmpXChg;
1402 }
1403
1404 /// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC
1405 /// condition.
IntCondCCodeToICC(ISD::CondCode CC)1406 static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) {
1407 switch (CC) {
1408 default: llvm_unreachable("Unknown integer condition code!");
1409 case ISD::SETEQ: return SPCC::ICC_E;
1410 case ISD::SETNE: return SPCC::ICC_NE;
1411 case ISD::SETLT: return SPCC::ICC_L;
1412 case ISD::SETGT: return SPCC::ICC_G;
1413 case ISD::SETLE: return SPCC::ICC_LE;
1414 case ISD::SETGE: return SPCC::ICC_GE;
1415 case ISD::SETULT: return SPCC::ICC_CS;
1416 case ISD::SETULE: return SPCC::ICC_LEU;
1417 case ISD::SETUGT: return SPCC::ICC_GU;
1418 case ISD::SETUGE: return SPCC::ICC_CC;
1419 }
1420 }
1421
1422 /// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC
1423 /// FCC condition.
FPCondCCodeToFCC(ISD::CondCode CC)1424 static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) {
1425 switch (CC) {
1426 default: llvm_unreachable("Unknown fp condition code!");
1427 case ISD::SETEQ:
1428 case ISD::SETOEQ: return SPCC::FCC_E;
1429 case ISD::SETNE:
1430 case ISD::SETUNE: return SPCC::FCC_NE;
1431 case ISD::SETLT:
1432 case ISD::SETOLT: return SPCC::FCC_L;
1433 case ISD::SETGT:
1434 case ISD::SETOGT: return SPCC::FCC_G;
1435 case ISD::SETLE:
1436 case ISD::SETOLE: return SPCC::FCC_LE;
1437 case ISD::SETGE:
1438 case ISD::SETOGE: return SPCC::FCC_GE;
1439 case ISD::SETULT: return SPCC::FCC_UL;
1440 case ISD::SETULE: return SPCC::FCC_ULE;
1441 case ISD::SETUGT: return SPCC::FCC_UG;
1442 case ISD::SETUGE: return SPCC::FCC_UGE;
1443 case ISD::SETUO: return SPCC::FCC_U;
1444 case ISD::SETO: return SPCC::FCC_O;
1445 case ISD::SETONE: return SPCC::FCC_LG;
1446 case ISD::SETUEQ: return SPCC::FCC_UE;
1447 }
1448 }
1449
SparcTargetLowering(const TargetMachine & TM,const SparcSubtarget & STI)1450 SparcTargetLowering::SparcTargetLowering(const TargetMachine &TM,
1451 const SparcSubtarget &STI)
1452 : TargetLowering(TM), Subtarget(&STI) {
1453 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
1454
1455 // Instructions which use registers as conditionals examine all the
1456 // bits (as does the pseudo SELECT_CC expansion). I don't think it
1457 // matters much whether it's ZeroOrOneBooleanContent, or
1458 // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the
1459 // former.
1460 setBooleanContents(ZeroOrOneBooleanContent);
1461 setBooleanVectorContents(ZeroOrOneBooleanContent);
1462
1463 // Set up the register classes.
1464 addRegisterClass(MVT::i32, &SP::IntRegsRegClass);
1465 if (!Subtarget->useSoftFloat()) {
1466 addRegisterClass(MVT::f32, &SP::FPRegsRegClass);
1467 addRegisterClass(MVT::f64, &SP::DFPRegsRegClass);
1468 addRegisterClass(MVT::f128, &SP::QFPRegsRegClass);
1469 }
1470 if (Subtarget->is64Bit()) {
1471 addRegisterClass(MVT::i64, &SP::I64RegsRegClass);
1472 } else {
1473 // On 32bit sparc, we define a double-register 32bit register
1474 // class, as well. This is modeled in LLVM as a 2-vector of i32.
1475 addRegisterClass(MVT::v2i32, &SP::IntPairRegClass);
1476
1477 // ...but almost all operations must be expanded, so set that as
1478 // the default.
1479 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
1480 setOperationAction(Op, MVT::v2i32, Expand);
1481 }
1482 // Truncating/extending stores/loads are also not supported.
1483 for (MVT VT : MVT::integer_vector_valuetypes()) {
1484 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Expand);
1485 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i32, Expand);
1486 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Expand);
1487
1488 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, VT, Expand);
1489 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, VT, Expand);
1490 setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, VT, Expand);
1491
1492 setTruncStoreAction(VT, MVT::v2i32, Expand);
1493 setTruncStoreAction(MVT::v2i32, VT, Expand);
1494 }
1495 // However, load and store *are* legal.
1496 setOperationAction(ISD::LOAD, MVT::v2i32, Legal);
1497 setOperationAction(ISD::STORE, MVT::v2i32, Legal);
1498 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Legal);
1499 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Legal);
1500
1501 // And we need to promote i64 loads/stores into vector load/store
1502 setOperationAction(ISD::LOAD, MVT::i64, Custom);
1503 setOperationAction(ISD::STORE, MVT::i64, Custom);
1504
1505 // Sadly, this doesn't work:
1506 // AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
1507 // AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
1508 }
1509
1510 // Turn FP extload into load/fpextend
1511 for (MVT VT : MVT::fp_valuetypes()) {
1512 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1513 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
1514 }
1515
1516 // Sparc doesn't have i1 sign extending load
1517 for (MVT VT : MVT::integer_valuetypes())
1518 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
1519
1520 // Turn FP truncstore into trunc + store.
1521 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1522 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1523 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1524
1525 // Custom legalize GlobalAddress nodes into LO/HI parts.
1526 setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
1527 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
1528 setOperationAction(ISD::ConstantPool, PtrVT, Custom);
1529 setOperationAction(ISD::BlockAddress, PtrVT, Custom);
1530
1531 // Sparc doesn't have sext_inreg, replace them with shl/sra
1532 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1533 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand);
1534 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
1535
1536 // Sparc has no REM or DIVREM operations.
1537 setOperationAction(ISD::UREM, MVT::i32, Expand);
1538 setOperationAction(ISD::SREM, MVT::i32, Expand);
1539 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1540 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1541
1542 // ... nor does SparcV9.
1543 if (Subtarget->is64Bit()) {
1544 setOperationAction(ISD::UREM, MVT::i64, Expand);
1545 setOperationAction(ISD::SREM, MVT::i64, Expand);
1546 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
1547 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
1548 }
1549
1550 // Custom expand fp<->sint
1551 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1552 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
1553 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
1554 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
1555
1556 // Custom Expand fp<->uint
1557 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
1558 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
1559 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
1560 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
1561
1562 setOperationAction(ISD::BITCAST, MVT::f32, Expand);
1563 setOperationAction(ISD::BITCAST, MVT::i32, Expand);
1564
1565 // Sparc has no select or setcc: expand to SELECT_CC.
1566 setOperationAction(ISD::SELECT, MVT::i32, Expand);
1567 setOperationAction(ISD::SELECT, MVT::f32, Expand);
1568 setOperationAction(ISD::SELECT, MVT::f64, Expand);
1569 setOperationAction(ISD::SELECT, MVT::f128, Expand);
1570
1571 setOperationAction(ISD::SETCC, MVT::i32, Expand);
1572 setOperationAction(ISD::SETCC, MVT::f32, Expand);
1573 setOperationAction(ISD::SETCC, MVT::f64, Expand);
1574 setOperationAction(ISD::SETCC, MVT::f128, Expand);
1575
1576 // Sparc doesn't have BRCOND either, it has BR_CC.
1577 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
1578 setOperationAction(ISD::BRIND, MVT::Other, Expand);
1579 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1580 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
1581 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
1582 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
1583 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
1584
1585 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1586 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1587 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1588 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1589
1590 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
1591 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
1592
1593 setOperationAction(ISD::ADDC, MVT::i32, Custom);
1594 setOperationAction(ISD::ADDE, MVT::i32, Custom);
1595 setOperationAction(ISD::SUBC, MVT::i32, Custom);
1596 setOperationAction(ISD::SUBE, MVT::i32, Custom);
1597
1598 if (Subtarget->is64Bit()) {
1599 setOperationAction(ISD::ADDC, MVT::i64, Custom);
1600 setOperationAction(ISD::ADDE, MVT::i64, Custom);
1601 setOperationAction(ISD::SUBC, MVT::i64, Custom);
1602 setOperationAction(ISD::SUBE, MVT::i64, Custom);
1603 setOperationAction(ISD::BITCAST, MVT::f64, Expand);
1604 setOperationAction(ISD::BITCAST, MVT::i64, Expand);
1605 setOperationAction(ISD::SELECT, MVT::i64, Expand);
1606 setOperationAction(ISD::SETCC, MVT::i64, Expand);
1607 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
1608 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
1609
1610 setOperationAction(ISD::CTPOP, MVT::i64,
1611 Subtarget->usePopc() ? Legal : Expand);
1612 setOperationAction(ISD::CTTZ , MVT::i64, Expand);
1613 setOperationAction(ISD::CTLZ , MVT::i64, Expand);
1614 setOperationAction(ISD::BSWAP, MVT::i64, Expand);
1615 setOperationAction(ISD::ROTL , MVT::i64, Expand);
1616 setOperationAction(ISD::ROTR , MVT::i64, Expand);
1617 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
1618 }
1619
1620 // ATOMICs.
1621 // Atomics are supported on SparcV9. 32-bit atomics are also
1622 // supported by some Leon SparcV8 variants. Otherwise, atomics
1623 // are unsupported.
1624 if (Subtarget->isV9())
1625 setMaxAtomicSizeInBitsSupported(64);
1626 else if (Subtarget->hasLeonCasa())
1627 setMaxAtomicSizeInBitsSupported(32);
1628 else
1629 setMaxAtomicSizeInBitsSupported(0);
1630
1631 setMinCmpXchgSizeInBits(32);
1632
1633 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Legal);
1634
1635 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Legal);
1636
1637 // Custom Lower Atomic LOAD/STORE
1638 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1639 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1640
1641 if (Subtarget->is64Bit()) {
1642 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Legal);
1643 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Legal);
1644 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
1645 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Custom);
1646 }
1647
1648 if (!Subtarget->is64Bit()) {
1649 // These libcalls are not available in 32-bit.
1650 setLibcallName(RTLIB::SHL_I128, nullptr);
1651 setLibcallName(RTLIB::SRL_I128, nullptr);
1652 setLibcallName(RTLIB::SRA_I128, nullptr);
1653 }
1654
1655 if (!Subtarget->isV9()) {
1656 // SparcV8 does not have FNEGD and FABSD.
1657 setOperationAction(ISD::FNEG, MVT::f64, Custom);
1658 setOperationAction(ISD::FABS, MVT::f64, Custom);
1659 }
1660
1661 setOperationAction(ISD::FSIN , MVT::f128, Expand);
1662 setOperationAction(ISD::FCOS , MVT::f128, Expand);
1663 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
1664 setOperationAction(ISD::FREM , MVT::f128, Expand);
1665 setOperationAction(ISD::FMA , MVT::f128, Expand);
1666 setOperationAction(ISD::FSIN , MVT::f64, Expand);
1667 setOperationAction(ISD::FCOS , MVT::f64, Expand);
1668 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
1669 setOperationAction(ISD::FREM , MVT::f64, Expand);
1670 setOperationAction(ISD::FMA , MVT::f64, Expand);
1671 setOperationAction(ISD::FSIN , MVT::f32, Expand);
1672 setOperationAction(ISD::FCOS , MVT::f32, Expand);
1673 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
1674 setOperationAction(ISD::FREM , MVT::f32, Expand);
1675 setOperationAction(ISD::FMA , MVT::f32, Expand);
1676 setOperationAction(ISD::CTTZ , MVT::i32, Expand);
1677 setOperationAction(ISD::CTLZ , MVT::i32, Expand);
1678 setOperationAction(ISD::ROTL , MVT::i32, Expand);
1679 setOperationAction(ISD::ROTR , MVT::i32, Expand);
1680 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
1681 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
1682 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
1683 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
1684 setOperationAction(ISD::FPOW , MVT::f128, Expand);
1685 setOperationAction(ISD::FPOW , MVT::f64, Expand);
1686 setOperationAction(ISD::FPOW , MVT::f32, Expand);
1687
1688 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1689 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1690 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1691
1692 // Expands to [SU]MUL_LOHI.
1693 setOperationAction(ISD::MULHU, MVT::i32, Expand);
1694 setOperationAction(ISD::MULHS, MVT::i32, Expand);
1695 setOperationAction(ISD::MUL, MVT::i32, Expand);
1696
1697 if (Subtarget->useSoftMulDiv()) {
1698 // .umul works for both signed and unsigned
1699 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
1700 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
1701 setLibcallName(RTLIB::MUL_I32, ".umul");
1702
1703 setOperationAction(ISD::SDIV, MVT::i32, Expand);
1704 setLibcallName(RTLIB::SDIV_I32, ".div");
1705
1706 setOperationAction(ISD::UDIV, MVT::i32, Expand);
1707 setLibcallName(RTLIB::UDIV_I32, ".udiv");
1708
1709 setLibcallName(RTLIB::SREM_I32, ".rem");
1710 setLibcallName(RTLIB::UREM_I32, ".urem");
1711 }
1712
1713 if (Subtarget->is64Bit()) {
1714 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
1715 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
1716 setOperationAction(ISD::MULHU, MVT::i64, Expand);
1717 setOperationAction(ISD::MULHS, MVT::i64, Expand);
1718
1719 setOperationAction(ISD::UMULO, MVT::i64, Custom);
1720 setOperationAction(ISD::SMULO, MVT::i64, Custom);
1721
1722 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
1723 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
1724 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
1725 }
1726
1727 // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1728 setOperationAction(ISD::VASTART , MVT::Other, Custom);
1729 // VAARG needs to be lowered to not do unaligned accesses for doubles.
1730 setOperationAction(ISD::VAARG , MVT::Other, Custom);
1731
1732 setOperationAction(ISD::TRAP , MVT::Other, Legal);
1733 setOperationAction(ISD::DEBUGTRAP , MVT::Other, Legal);
1734
1735 // Use the default implementation.
1736 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
1737 setOperationAction(ISD::VAEND , MVT::Other, Expand);
1738 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
1739 setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand);
1740 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
1741
1742 setStackPointerRegisterToSaveRestore(SP::O6);
1743
1744 setOperationAction(ISD::CTPOP, MVT::i32,
1745 Subtarget->usePopc() ? Legal : Expand);
1746
1747 if (Subtarget->isV9() && Subtarget->hasHardQuad()) {
1748 setOperationAction(ISD::LOAD, MVT::f128, Legal);
1749 setOperationAction(ISD::STORE, MVT::f128, Legal);
1750 } else {
1751 setOperationAction(ISD::LOAD, MVT::f128, Custom);
1752 setOperationAction(ISD::STORE, MVT::f128, Custom);
1753 }
1754
1755 if (Subtarget->hasHardQuad()) {
1756 setOperationAction(ISD::FADD, MVT::f128, Legal);
1757 setOperationAction(ISD::FSUB, MVT::f128, Legal);
1758 setOperationAction(ISD::FMUL, MVT::f128, Legal);
1759 setOperationAction(ISD::FDIV, MVT::f128, Legal);
1760 setOperationAction(ISD::FSQRT, MVT::f128, Legal);
1761 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1762 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1763 if (Subtarget->isV9()) {
1764 setOperationAction(ISD::FNEG, MVT::f128, Legal);
1765 setOperationAction(ISD::FABS, MVT::f128, Legal);
1766 } else {
1767 setOperationAction(ISD::FNEG, MVT::f128, Custom);
1768 setOperationAction(ISD::FABS, MVT::f128, Custom);
1769 }
1770
1771 if (!Subtarget->is64Bit()) {
1772 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll");
1773 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull");
1774 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq");
1775 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq");
1776 }
1777
1778 } else {
1779 // Custom legalize f128 operations.
1780
1781 setOperationAction(ISD::FADD, MVT::f128, Custom);
1782 setOperationAction(ISD::FSUB, MVT::f128, Custom);
1783 setOperationAction(ISD::FMUL, MVT::f128, Custom);
1784 setOperationAction(ISD::FDIV, MVT::f128, Custom);
1785 setOperationAction(ISD::FSQRT, MVT::f128, Custom);
1786 setOperationAction(ISD::FNEG, MVT::f128, Custom);
1787 setOperationAction(ISD::FABS, MVT::f128, Custom);
1788
1789 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
1790 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
1791 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
1792
1793 // Setup Runtime library names.
1794 if (Subtarget->is64Bit() && !Subtarget->useSoftFloat()) {
1795 setLibcallName(RTLIB::ADD_F128, "_Qp_add");
1796 setLibcallName(RTLIB::SUB_F128, "_Qp_sub");
1797 setLibcallName(RTLIB::MUL_F128, "_Qp_mul");
1798 setLibcallName(RTLIB::DIV_F128, "_Qp_div");
1799 setLibcallName(RTLIB::SQRT_F128, "_Qp_sqrt");
1800 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Qp_qtoi");
1801 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Qp_qtoui");
1802 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Qp_itoq");
1803 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Qp_uitoq");
1804 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Qp_qtox");
1805 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Qp_qtoux");
1806 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Qp_xtoq");
1807 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Qp_uxtoq");
1808 setLibcallName(RTLIB::FPEXT_F32_F128, "_Qp_stoq");
1809 setLibcallName(RTLIB::FPEXT_F64_F128, "_Qp_dtoq");
1810 setLibcallName(RTLIB::FPROUND_F128_F32, "_Qp_qtos");
1811 setLibcallName(RTLIB::FPROUND_F128_F64, "_Qp_qtod");
1812 } else if (!Subtarget->useSoftFloat()) {
1813 setLibcallName(RTLIB::ADD_F128, "_Q_add");
1814 setLibcallName(RTLIB::SUB_F128, "_Q_sub");
1815 setLibcallName(RTLIB::MUL_F128, "_Q_mul");
1816 setLibcallName(RTLIB::DIV_F128, "_Q_div");
1817 setLibcallName(RTLIB::SQRT_F128, "_Q_sqrt");
1818 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Q_qtoi");
1819 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Q_qtou");
1820 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Q_itoq");
1821 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Q_utoq");
1822 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll");
1823 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull");
1824 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq");
1825 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq");
1826 setLibcallName(RTLIB::FPEXT_F32_F128, "_Q_stoq");
1827 setLibcallName(RTLIB::FPEXT_F64_F128, "_Q_dtoq");
1828 setLibcallName(RTLIB::FPROUND_F128_F32, "_Q_qtos");
1829 setLibcallName(RTLIB::FPROUND_F128_F64, "_Q_qtod");
1830 }
1831 }
1832
1833 if (Subtarget->fixAllFDIVSQRT()) {
1834 // Promote FDIVS and FSQRTS to FDIVD and FSQRTD instructions instead as
1835 // the former instructions generate errata on LEON processors.
1836 setOperationAction(ISD::FDIV, MVT::f32, Promote);
1837 setOperationAction(ISD::FSQRT, MVT::f32, Promote);
1838 }
1839
1840 if (Subtarget->hasNoFMULS()) {
1841 setOperationAction(ISD::FMUL, MVT::f32, Promote);
1842 }
1843
1844 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1845
1846 setMinFunctionAlignment(2);
1847
1848 computeRegisterProperties(Subtarget->getRegisterInfo());
1849 }
1850
useSoftFloat() const1851 bool SparcTargetLowering::useSoftFloat() const {
1852 return Subtarget->useSoftFloat();
1853 }
1854
getTargetNodeName(unsigned Opcode) const1855 const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const {
1856 switch ((SPISD::NodeType)Opcode) {
1857 case SPISD::FIRST_NUMBER: break;
1858 case SPISD::CMPICC: return "SPISD::CMPICC";
1859 case SPISD::CMPFCC: return "SPISD::CMPFCC";
1860 case SPISD::BRICC: return "SPISD::BRICC";
1861 case SPISD::BRXCC: return "SPISD::BRXCC";
1862 case SPISD::BRFCC: return "SPISD::BRFCC";
1863 case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC";
1864 case SPISD::SELECT_XCC: return "SPISD::SELECT_XCC";
1865 case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC";
1866 case SPISD::EH_SJLJ_SETJMP: return "SPISD::EH_SJLJ_SETJMP";
1867 case SPISD::EH_SJLJ_LONGJMP: return "SPISD::EH_SJLJ_LONGJMP";
1868 case SPISD::Hi: return "SPISD::Hi";
1869 case SPISD::Lo: return "SPISD::Lo";
1870 case SPISD::FTOI: return "SPISD::FTOI";
1871 case SPISD::ITOF: return "SPISD::ITOF";
1872 case SPISD::FTOX: return "SPISD::FTOX";
1873 case SPISD::XTOF: return "SPISD::XTOF";
1874 case SPISD::CALL: return "SPISD::CALL";
1875 case SPISD::RET_FLAG: return "SPISD::RET_FLAG";
1876 case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG";
1877 case SPISD::FLUSHW: return "SPISD::FLUSHW";
1878 case SPISD::TLS_ADD: return "SPISD::TLS_ADD";
1879 case SPISD::TLS_LD: return "SPISD::TLS_LD";
1880 case SPISD::TLS_CALL: return "SPISD::TLS_CALL";
1881 }
1882 return nullptr;
1883 }
1884
getSetCCResultType(const DataLayout &,LLVMContext &,EVT VT) const1885 EVT SparcTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
1886 EVT VT) const {
1887 if (!VT.isVector())
1888 return MVT::i32;
1889 return VT.changeVectorElementTypeToInteger();
1890 }
1891
1892 /// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to
1893 /// be zero. Op is expected to be a target specific node. Used by DAG
1894 /// combiner.
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const1895 void SparcTargetLowering::computeKnownBitsForTargetNode
1896 (const SDValue Op,
1897 KnownBits &Known,
1898 const APInt &DemandedElts,
1899 const SelectionDAG &DAG,
1900 unsigned Depth) const {
1901 KnownBits Known2;
1902 Known.resetAll();
1903
1904 switch (Op.getOpcode()) {
1905 default: break;
1906 case SPISD::SELECT_ICC:
1907 case SPISD::SELECT_XCC:
1908 case SPISD::SELECT_FCC:
1909 DAG.computeKnownBits(Op.getOperand(1), Known, Depth+1);
1910 DAG.computeKnownBits(Op.getOperand(0), Known2, Depth+1);
1911
1912 // Only known if known in both the LHS and RHS.
1913 Known.One &= Known2.One;
1914 Known.Zero &= Known2.Zero;
1915 break;
1916 }
1917 }
1918
1919 // Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so
1920 // set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition.
LookThroughSetCC(SDValue & LHS,SDValue & RHS,ISD::CondCode CC,unsigned & SPCC)1921 static void LookThroughSetCC(SDValue &LHS, SDValue &RHS,
1922 ISD::CondCode CC, unsigned &SPCC) {
1923 if (isNullConstant(RHS) &&
1924 CC == ISD::SETNE &&
1925 (((LHS.getOpcode() == SPISD::SELECT_ICC ||
1926 LHS.getOpcode() == SPISD::SELECT_XCC) &&
1927 LHS.getOperand(3).getOpcode() == SPISD::CMPICC) ||
1928 (LHS.getOpcode() == SPISD::SELECT_FCC &&
1929 LHS.getOperand(3).getOpcode() == SPISD::CMPFCC)) &&
1930 isOneConstant(LHS.getOperand(0)) &&
1931 isNullConstant(LHS.getOperand(1))) {
1932 SDValue CMPCC = LHS.getOperand(3);
1933 SPCC = cast<ConstantSDNode>(LHS.getOperand(2))->getZExtValue();
1934 LHS = CMPCC.getOperand(0);
1935 RHS = CMPCC.getOperand(1);
1936 }
1937 }
1938
1939 // Convert to a target node and set target flags.
withTargetFlags(SDValue Op,unsigned TF,SelectionDAG & DAG) const1940 SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF,
1941 SelectionDAG &DAG) const {
1942 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
1943 return DAG.getTargetGlobalAddress(GA->getGlobal(),
1944 SDLoc(GA),
1945 GA->getValueType(0),
1946 GA->getOffset(), TF);
1947
1948 if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op))
1949 return DAG.getTargetConstantPool(CP->getConstVal(),
1950 CP->getValueType(0),
1951 CP->getAlignment(),
1952 CP->getOffset(), TF);
1953
1954 if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op))
1955 return DAG.getTargetBlockAddress(BA->getBlockAddress(),
1956 Op.getValueType(),
1957 0,
1958 TF);
1959
1960 if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op))
1961 return DAG.getTargetExternalSymbol(ES->getSymbol(),
1962 ES->getValueType(0), TF);
1963
1964 llvm_unreachable("Unhandled address SDNode");
1965 }
1966
1967 // Split Op into high and low parts according to HiTF and LoTF.
1968 // Return an ADD node combining the parts.
makeHiLoPair(SDValue Op,unsigned HiTF,unsigned LoTF,SelectionDAG & DAG) const1969 SDValue SparcTargetLowering::makeHiLoPair(SDValue Op,
1970 unsigned HiTF, unsigned LoTF,
1971 SelectionDAG &DAG) const {
1972 SDLoc DL(Op);
1973 EVT VT = Op.getValueType();
1974 SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG));
1975 SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG));
1976 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
1977 }
1978
1979 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool,
1980 // or ExternalSymbol SDNode.
makeAddress(SDValue Op,SelectionDAG & DAG) const1981 SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const {
1982 SDLoc DL(Op);
1983 EVT VT = getPointerTy(DAG.getDataLayout());
1984
1985 // Handle PIC mode first. SPARC needs a got load for every variable!
1986 if (isPositionIndependent()) {
1987 const Module *M = DAG.getMachineFunction().getFunction().getParent();
1988 PICLevel::Level picLevel = M->getPICLevel();
1989 SDValue Idx;
1990
1991 if (picLevel == PICLevel::SmallPIC) {
1992 // This is the pic13 code model, the GOT is known to be smaller than 8KiB.
1993 Idx = DAG.getNode(SPISD::Lo, DL, Op.getValueType(),
1994 withTargetFlags(Op, SparcMCExpr::VK_Sparc_GOT13, DAG));
1995 } else {
1996 // This is the pic32 code model, the GOT is known to be smaller than 4GB.
1997 Idx = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_GOT22,
1998 SparcMCExpr::VK_Sparc_GOT10, DAG);
1999 }
2000
2001 SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT);
2002 SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Idx);
2003 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this
2004 // function has calls.
2005 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2006 MFI.setHasCalls(true);
2007 return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr,
2008 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2009 }
2010
2011 // This is one of the absolute code models.
2012 switch(getTargetMachine().getCodeModel()) {
2013 default:
2014 llvm_unreachable("Unsupported absolute code model");
2015 case CodeModel::Small:
2016 // abs32.
2017 return makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI,
2018 SparcMCExpr::VK_Sparc_LO, DAG);
2019 case CodeModel::Medium: {
2020 // abs44.
2021 SDValue H44 = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_H44,
2022 SparcMCExpr::VK_Sparc_M44, DAG);
2023 H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, DL, MVT::i32));
2024 SDValue L44 = withTargetFlags(Op, SparcMCExpr::VK_Sparc_L44, DAG);
2025 L44 = DAG.getNode(SPISD::Lo, DL, VT, L44);
2026 return DAG.getNode(ISD::ADD, DL, VT, H44, L44);
2027 }
2028 case CodeModel::Large: {
2029 // abs64.
2030 SDValue Hi = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HH,
2031 SparcMCExpr::VK_Sparc_HM, DAG);
2032 Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, DL, MVT::i32));
2033 SDValue Lo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI,
2034 SparcMCExpr::VK_Sparc_LO, DAG);
2035 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
2036 }
2037 }
2038 }
2039
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const2040 SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op,
2041 SelectionDAG &DAG) const {
2042 return makeAddress(Op, DAG);
2043 }
2044
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const2045 SDValue SparcTargetLowering::LowerConstantPool(SDValue Op,
2046 SelectionDAG &DAG) const {
2047 return makeAddress(Op, DAG);
2048 }
2049
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const2050 SDValue SparcTargetLowering::LowerBlockAddress(SDValue Op,
2051 SelectionDAG &DAG) const {
2052 return makeAddress(Op, DAG);
2053 }
2054
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const2055 SDValue SparcTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2056 SelectionDAG &DAG) const {
2057
2058 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2059 if (DAG.getTarget().useEmulatedTLS())
2060 return LowerToTLSEmulatedModel(GA, DAG);
2061
2062 SDLoc DL(GA);
2063 const GlobalValue *GV = GA->getGlobal();
2064 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2065
2066 TLSModel::Model model = getTargetMachine().getTLSModel(GV);
2067
2068 if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
2069 unsigned HiTF = ((model == TLSModel::GeneralDynamic)
2070 ? SparcMCExpr::VK_Sparc_TLS_GD_HI22
2071 : SparcMCExpr::VK_Sparc_TLS_LDM_HI22);
2072 unsigned LoTF = ((model == TLSModel::GeneralDynamic)
2073 ? SparcMCExpr::VK_Sparc_TLS_GD_LO10
2074 : SparcMCExpr::VK_Sparc_TLS_LDM_LO10);
2075 unsigned addTF = ((model == TLSModel::GeneralDynamic)
2076 ? SparcMCExpr::VK_Sparc_TLS_GD_ADD
2077 : SparcMCExpr::VK_Sparc_TLS_LDM_ADD);
2078 unsigned callTF = ((model == TLSModel::GeneralDynamic)
2079 ? SparcMCExpr::VK_Sparc_TLS_GD_CALL
2080 : SparcMCExpr::VK_Sparc_TLS_LDM_CALL);
2081
2082 SDValue HiLo = makeHiLoPair(Op, HiTF, LoTF, DAG);
2083 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT);
2084 SDValue Argument = DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Base, HiLo,
2085 withTargetFlags(Op, addTF, DAG));
2086
2087 SDValue Chain = DAG.getEntryNode();
2088 SDValue InFlag;
2089
2090 Chain = DAG.getCALLSEQ_START(Chain, 1, 0, DL);
2091 Chain = DAG.getCopyToReg(Chain, DL, SP::O0, Argument, InFlag);
2092 InFlag = Chain.getValue(1);
2093 SDValue Callee = DAG.getTargetExternalSymbol("__tls_get_addr", PtrVT);
2094 SDValue Symbol = withTargetFlags(Op, callTF, DAG);
2095
2096 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2097 const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask(
2098 DAG.getMachineFunction(), CallingConv::C);
2099 assert(Mask && "Missing call preserved mask for calling convention");
2100 SDValue Ops[] = {Chain,
2101 Callee,
2102 Symbol,
2103 DAG.getRegister(SP::O0, PtrVT),
2104 DAG.getRegisterMask(Mask),
2105 InFlag};
2106 Chain = DAG.getNode(SPISD::TLS_CALL, DL, NodeTys, Ops);
2107 InFlag = Chain.getValue(1);
2108 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(1, DL, true),
2109 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
2110 InFlag = Chain.getValue(1);
2111 SDValue Ret = DAG.getCopyFromReg(Chain, DL, SP::O0, PtrVT, InFlag);
2112
2113 if (model != TLSModel::LocalDynamic)
2114 return Ret;
2115
2116 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT,
2117 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_HIX22, DAG));
2118 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT,
2119 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_LOX10, DAG));
2120 HiLo = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo);
2121 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Ret, HiLo,
2122 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_ADD, DAG));
2123 }
2124
2125 if (model == TLSModel::InitialExec) {
2126 unsigned ldTF = ((PtrVT == MVT::i64)? SparcMCExpr::VK_Sparc_TLS_IE_LDX
2127 : SparcMCExpr::VK_Sparc_TLS_IE_LD);
2128
2129 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT);
2130
2131 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this
2132 // function has calls.
2133 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2134 MFI.setHasCalls(true);
2135
2136 SDValue TGA = makeHiLoPair(Op,
2137 SparcMCExpr::VK_Sparc_TLS_IE_HI22,
2138 SparcMCExpr::VK_Sparc_TLS_IE_LO10, DAG);
2139 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, TGA);
2140 SDValue Offset = DAG.getNode(SPISD::TLS_LD,
2141 DL, PtrVT, Ptr,
2142 withTargetFlags(Op, ldTF, DAG));
2143 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT,
2144 DAG.getRegister(SP::G7, PtrVT), Offset,
2145 withTargetFlags(Op,
2146 SparcMCExpr::VK_Sparc_TLS_IE_ADD, DAG));
2147 }
2148
2149 assert(model == TLSModel::LocalExec);
2150 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT,
2151 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_HIX22, DAG));
2152 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT,
2153 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_LOX10, DAG));
2154 SDValue Offset = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo);
2155
2156 return DAG.getNode(ISD::ADD, DL, PtrVT,
2157 DAG.getRegister(SP::G7, PtrVT), Offset);
2158 }
2159
LowerF128_LibCallArg(SDValue Chain,ArgListTy & Args,SDValue Arg,const SDLoc & DL,SelectionDAG & DAG) const2160 SDValue SparcTargetLowering::LowerF128_LibCallArg(SDValue Chain,
2161 ArgListTy &Args, SDValue Arg,
2162 const SDLoc &DL,
2163 SelectionDAG &DAG) const {
2164 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2165 EVT ArgVT = Arg.getValueType();
2166 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2167
2168 ArgListEntry Entry;
2169 Entry.Node = Arg;
2170 Entry.Ty = ArgTy;
2171
2172 if (ArgTy->isFP128Ty()) {
2173 // Create a stack object and pass the pointer to the library function.
2174 int FI = MFI.CreateStackObject(16, 8, false);
2175 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2176 Chain = DAG.getStore(Chain, DL, Entry.Node, FIPtr, MachinePointerInfo(),
2177 /* Alignment = */ 8);
2178
2179 Entry.Node = FIPtr;
2180 Entry.Ty = PointerType::getUnqual(ArgTy);
2181 }
2182 Args.push_back(Entry);
2183 return Chain;
2184 }
2185
2186 SDValue
LowerF128Op(SDValue Op,SelectionDAG & DAG,const char * LibFuncName,unsigned numArgs) const2187 SparcTargetLowering::LowerF128Op(SDValue Op, SelectionDAG &DAG,
2188 const char *LibFuncName,
2189 unsigned numArgs) const {
2190
2191 ArgListTy Args;
2192
2193 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2194 auto PtrVT = getPointerTy(DAG.getDataLayout());
2195
2196 SDValue Callee = DAG.getExternalSymbol(LibFuncName, PtrVT);
2197 Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
2198 Type *RetTyABI = RetTy;
2199 SDValue Chain = DAG.getEntryNode();
2200 SDValue RetPtr;
2201
2202 if (RetTy->isFP128Ty()) {
2203 // Create a Stack Object to receive the return value of type f128.
2204 ArgListEntry Entry;
2205 int RetFI = MFI.CreateStackObject(16, 8, false);
2206 RetPtr = DAG.getFrameIndex(RetFI, PtrVT);
2207 Entry.Node = RetPtr;
2208 Entry.Ty = PointerType::getUnqual(RetTy);
2209 if (!Subtarget->is64Bit())
2210 Entry.IsSRet = true;
2211 Entry.IsReturned = false;
2212 Args.push_back(Entry);
2213 RetTyABI = Type::getVoidTy(*DAG.getContext());
2214 }
2215
2216 assert(Op->getNumOperands() >= numArgs && "Not enough operands!");
2217 for (unsigned i = 0, e = numArgs; i != e; ++i) {
2218 Chain = LowerF128_LibCallArg(Chain, Args, Op.getOperand(i), SDLoc(Op), DAG);
2219 }
2220 TargetLowering::CallLoweringInfo CLI(DAG);
2221 CLI.setDebugLoc(SDLoc(Op)).setChain(Chain)
2222 .setCallee(CallingConv::C, RetTyABI, Callee, std::move(Args));
2223
2224 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
2225
2226 // chain is in second result.
2227 if (RetTyABI == RetTy)
2228 return CallInfo.first;
2229
2230 assert (RetTy->isFP128Ty() && "Unexpected return type!");
2231
2232 Chain = CallInfo.second;
2233
2234 // Load RetPtr to get the return value.
2235 return DAG.getLoad(Op.getValueType(), SDLoc(Op), Chain, RetPtr,
2236 MachinePointerInfo(), /* Alignment = */ 8);
2237 }
2238
LowerF128Compare(SDValue LHS,SDValue RHS,unsigned & SPCC,const SDLoc & DL,SelectionDAG & DAG) const2239 SDValue SparcTargetLowering::LowerF128Compare(SDValue LHS, SDValue RHS,
2240 unsigned &SPCC, const SDLoc &DL,
2241 SelectionDAG &DAG) const {
2242
2243 const char *LibCall = nullptr;
2244 bool is64Bit = Subtarget->is64Bit();
2245 switch(SPCC) {
2246 default: llvm_unreachable("Unhandled conditional code!");
2247 case SPCC::FCC_E : LibCall = is64Bit? "_Qp_feq" : "_Q_feq"; break;
2248 case SPCC::FCC_NE : LibCall = is64Bit? "_Qp_fne" : "_Q_fne"; break;
2249 case SPCC::FCC_L : LibCall = is64Bit? "_Qp_flt" : "_Q_flt"; break;
2250 case SPCC::FCC_G : LibCall = is64Bit? "_Qp_fgt" : "_Q_fgt"; break;
2251 case SPCC::FCC_LE : LibCall = is64Bit? "_Qp_fle" : "_Q_fle"; break;
2252 case SPCC::FCC_GE : LibCall = is64Bit? "_Qp_fge" : "_Q_fge"; break;
2253 case SPCC::FCC_UL :
2254 case SPCC::FCC_ULE:
2255 case SPCC::FCC_UG :
2256 case SPCC::FCC_UGE:
2257 case SPCC::FCC_U :
2258 case SPCC::FCC_O :
2259 case SPCC::FCC_LG :
2260 case SPCC::FCC_UE : LibCall = is64Bit? "_Qp_cmp" : "_Q_cmp"; break;
2261 }
2262
2263 auto PtrVT = getPointerTy(DAG.getDataLayout());
2264 SDValue Callee = DAG.getExternalSymbol(LibCall, PtrVT);
2265 Type *RetTy = Type::getInt32Ty(*DAG.getContext());
2266 ArgListTy Args;
2267 SDValue Chain = DAG.getEntryNode();
2268 Chain = LowerF128_LibCallArg(Chain, Args, LHS, DL, DAG);
2269 Chain = LowerF128_LibCallArg(Chain, Args, RHS, DL, DAG);
2270
2271 TargetLowering::CallLoweringInfo CLI(DAG);
2272 CLI.setDebugLoc(DL).setChain(Chain)
2273 .setCallee(CallingConv::C, RetTy, Callee, std::move(Args));
2274
2275 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
2276
2277 // result is in first, and chain is in second result.
2278 SDValue Result = CallInfo.first;
2279
2280 switch(SPCC) {
2281 default: {
2282 SDValue RHS = DAG.getTargetConstant(0, DL, Result.getValueType());
2283 SPCC = SPCC::ICC_NE;
2284 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2285 }
2286 case SPCC::FCC_UL : {
2287 SDValue Mask = DAG.getTargetConstant(1, DL, Result.getValueType());
2288 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
2289 SDValue RHS = DAG.getTargetConstant(0, DL, Result.getValueType());
2290 SPCC = SPCC::ICC_NE;
2291 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2292 }
2293 case SPCC::FCC_ULE: {
2294 SDValue RHS = DAG.getTargetConstant(2, DL, Result.getValueType());
2295 SPCC = SPCC::ICC_NE;
2296 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2297 }
2298 case SPCC::FCC_UG : {
2299 SDValue RHS = DAG.getTargetConstant(1, DL, Result.getValueType());
2300 SPCC = SPCC::ICC_G;
2301 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2302 }
2303 case SPCC::FCC_UGE: {
2304 SDValue RHS = DAG.getTargetConstant(1, DL, Result.getValueType());
2305 SPCC = SPCC::ICC_NE;
2306 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2307 }
2308
2309 case SPCC::FCC_U : {
2310 SDValue RHS = DAG.getTargetConstant(3, DL, Result.getValueType());
2311 SPCC = SPCC::ICC_E;
2312 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2313 }
2314 case SPCC::FCC_O : {
2315 SDValue RHS = DAG.getTargetConstant(3, DL, Result.getValueType());
2316 SPCC = SPCC::ICC_NE;
2317 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2318 }
2319 case SPCC::FCC_LG : {
2320 SDValue Mask = DAG.getTargetConstant(3, DL, Result.getValueType());
2321 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
2322 SDValue RHS = DAG.getTargetConstant(0, DL, Result.getValueType());
2323 SPCC = SPCC::ICC_NE;
2324 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2325 }
2326 case SPCC::FCC_UE : {
2327 SDValue Mask = DAG.getTargetConstant(3, DL, Result.getValueType());
2328 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
2329 SDValue RHS = DAG.getTargetConstant(0, DL, Result.getValueType());
2330 SPCC = SPCC::ICC_E;
2331 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2332 }
2333 }
2334 }
2335
2336 static SDValue
LowerF128_FPEXTEND(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI)2337 LowerF128_FPEXTEND(SDValue Op, SelectionDAG &DAG,
2338 const SparcTargetLowering &TLI) {
2339
2340 if (Op.getOperand(0).getValueType() == MVT::f64)
2341 return TLI.LowerF128Op(Op, DAG,
2342 TLI.getLibcallName(RTLIB::FPEXT_F64_F128), 1);
2343
2344 if (Op.getOperand(0).getValueType() == MVT::f32)
2345 return TLI.LowerF128Op(Op, DAG,
2346 TLI.getLibcallName(RTLIB::FPEXT_F32_F128), 1);
2347
2348 llvm_unreachable("fpextend with non-float operand!");
2349 return SDValue();
2350 }
2351
2352 static SDValue
LowerF128_FPROUND(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI)2353 LowerF128_FPROUND(SDValue Op, SelectionDAG &DAG,
2354 const SparcTargetLowering &TLI) {
2355 // FP_ROUND on f64 and f32 are legal.
2356 if (Op.getOperand(0).getValueType() != MVT::f128)
2357 return Op;
2358
2359 if (Op.getValueType() == MVT::f64)
2360 return TLI.LowerF128Op(Op, DAG,
2361 TLI.getLibcallName(RTLIB::FPROUND_F128_F64), 1);
2362 if (Op.getValueType() == MVT::f32)
2363 return TLI.LowerF128Op(Op, DAG,
2364 TLI.getLibcallName(RTLIB::FPROUND_F128_F32), 1);
2365
2366 llvm_unreachable("fpround to non-float!");
2367 return SDValue();
2368 }
2369
LowerFP_TO_SINT(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI,bool hasHardQuad)2370 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG,
2371 const SparcTargetLowering &TLI,
2372 bool hasHardQuad) {
2373 SDLoc dl(Op);
2374 EVT VT = Op.getValueType();
2375 assert(VT == MVT::i32 || VT == MVT::i64);
2376
2377 // Expand f128 operations to fp128 abi calls.
2378 if (Op.getOperand(0).getValueType() == MVT::f128
2379 && (!hasHardQuad || !TLI.isTypeLegal(VT))) {
2380 const char *libName = TLI.getLibcallName(VT == MVT::i32
2381 ? RTLIB::FPTOSINT_F128_I32
2382 : RTLIB::FPTOSINT_F128_I64);
2383 return TLI.LowerF128Op(Op, DAG, libName, 1);
2384 }
2385
2386 // Expand if the resulting type is illegal.
2387 if (!TLI.isTypeLegal(VT))
2388 return SDValue();
2389
2390 // Otherwise, Convert the fp value to integer in an FP register.
2391 if (VT == MVT::i32)
2392 Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0));
2393 else
2394 Op = DAG.getNode(SPISD::FTOX, dl, MVT::f64, Op.getOperand(0));
2395
2396 return DAG.getNode(ISD::BITCAST, dl, VT, Op);
2397 }
2398
LowerSINT_TO_FP(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI,bool hasHardQuad)2399 static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG,
2400 const SparcTargetLowering &TLI,
2401 bool hasHardQuad) {
2402 SDLoc dl(Op);
2403 EVT OpVT = Op.getOperand(0).getValueType();
2404 assert(OpVT == MVT::i32 || (OpVT == MVT::i64));
2405
2406 EVT floatVT = (OpVT == MVT::i32) ? MVT::f32 : MVT::f64;
2407
2408 // Expand f128 operations to fp128 ABI calls.
2409 if (Op.getValueType() == MVT::f128
2410 && (!hasHardQuad || !TLI.isTypeLegal(OpVT))) {
2411 const char *libName = TLI.getLibcallName(OpVT == MVT::i32
2412 ? RTLIB::SINTTOFP_I32_F128
2413 : RTLIB::SINTTOFP_I64_F128);
2414 return TLI.LowerF128Op(Op, DAG, libName, 1);
2415 }
2416
2417 // Expand if the operand type is illegal.
2418 if (!TLI.isTypeLegal(OpVT))
2419 return SDValue();
2420
2421 // Otherwise, Convert the int value to FP in an FP register.
2422 SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, floatVT, Op.getOperand(0));
2423 unsigned opcode = (OpVT == MVT::i32)? SPISD::ITOF : SPISD::XTOF;
2424 return DAG.getNode(opcode, dl, Op.getValueType(), Tmp);
2425 }
2426
LowerFP_TO_UINT(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI,bool hasHardQuad)2427 static SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG,
2428 const SparcTargetLowering &TLI,
2429 bool hasHardQuad) {
2430 SDLoc dl(Op);
2431 EVT VT = Op.getValueType();
2432
2433 // Expand if it does not involve f128 or the target has support for
2434 // quad floating point instructions and the resulting type is legal.
2435 if (Op.getOperand(0).getValueType() != MVT::f128 ||
2436 (hasHardQuad && TLI.isTypeLegal(VT)))
2437 return SDValue();
2438
2439 assert(VT == MVT::i32 || VT == MVT::i64);
2440
2441 return TLI.LowerF128Op(Op, DAG,
2442 TLI.getLibcallName(VT == MVT::i32
2443 ? RTLIB::FPTOUINT_F128_I32
2444 : RTLIB::FPTOUINT_F128_I64),
2445 1);
2446 }
2447
LowerUINT_TO_FP(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI,bool hasHardQuad)2448 static SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG,
2449 const SparcTargetLowering &TLI,
2450 bool hasHardQuad) {
2451 SDLoc dl(Op);
2452 EVT OpVT = Op.getOperand(0).getValueType();
2453 assert(OpVT == MVT::i32 || OpVT == MVT::i64);
2454
2455 // Expand if it does not involve f128 or the target has support for
2456 // quad floating point instructions and the operand type is legal.
2457 if (Op.getValueType() != MVT::f128 || (hasHardQuad && TLI.isTypeLegal(OpVT)))
2458 return SDValue();
2459
2460 return TLI.LowerF128Op(Op, DAG,
2461 TLI.getLibcallName(OpVT == MVT::i32
2462 ? RTLIB::UINTTOFP_I32_F128
2463 : RTLIB::UINTTOFP_I64_F128),
2464 1);
2465 }
2466
LowerBR_CC(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI,bool hasHardQuad)2467 static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG,
2468 const SparcTargetLowering &TLI,
2469 bool hasHardQuad) {
2470 SDValue Chain = Op.getOperand(0);
2471 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2472 SDValue LHS = Op.getOperand(2);
2473 SDValue RHS = Op.getOperand(3);
2474 SDValue Dest = Op.getOperand(4);
2475 SDLoc dl(Op);
2476 unsigned Opc, SPCC = ~0U;
2477
2478 // If this is a br_cc of a "setcc", and if the setcc got lowered into
2479 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
2480 LookThroughSetCC(LHS, RHS, CC, SPCC);
2481
2482 // Get the condition flag.
2483 SDValue CompareFlag;
2484 if (LHS.getValueType().isInteger()) {
2485 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS);
2486 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
2487 // 32-bit compares use the icc flags, 64-bit uses the xcc flags.
2488 Opc = LHS.getValueType() == MVT::i32 ? SPISD::BRICC : SPISD::BRXCC;
2489 } else {
2490 if (!hasHardQuad && LHS.getValueType() == MVT::f128) {
2491 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2492 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG);
2493 Opc = SPISD::BRICC;
2494 } else {
2495 CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS);
2496 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2497 Opc = SPISD::BRFCC;
2498 }
2499 }
2500 return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest,
2501 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag);
2502 }
2503
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI,bool hasHardQuad)2504 static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
2505 const SparcTargetLowering &TLI,
2506 bool hasHardQuad) {
2507 SDValue LHS = Op.getOperand(0);
2508 SDValue RHS = Op.getOperand(1);
2509 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2510 SDValue TrueVal = Op.getOperand(2);
2511 SDValue FalseVal = Op.getOperand(3);
2512 SDLoc dl(Op);
2513 unsigned Opc, SPCC = ~0U;
2514
2515 // If this is a select_cc of a "setcc", and if the setcc got lowered into
2516 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
2517 LookThroughSetCC(LHS, RHS, CC, SPCC);
2518
2519 SDValue CompareFlag;
2520 if (LHS.getValueType().isInteger()) {
2521 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS);
2522 Opc = LHS.getValueType() == MVT::i32 ?
2523 SPISD::SELECT_ICC : SPISD::SELECT_XCC;
2524 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
2525 } else {
2526 if (!hasHardQuad && LHS.getValueType() == MVT::f128) {
2527 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2528 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG);
2529 Opc = SPISD::SELECT_ICC;
2530 } else {
2531 CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS);
2532 Opc = SPISD::SELECT_FCC;
2533 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2534 }
2535 }
2536 return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal,
2537 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag);
2538 }
2539
LowerEH_SJLJ_SETJMP(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI) const2540 SDValue SparcTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG,
2541 const SparcTargetLowering &TLI) const {
2542 SDLoc DL(Op);
2543 return DAG.getNode(SPISD::EH_SJLJ_SETJMP, DL,
2544 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), Op.getOperand(1));
2545
2546 }
2547
LowerEH_SJLJ_LONGJMP(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI) const2548 SDValue SparcTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG,
2549 const SparcTargetLowering &TLI) const {
2550 SDLoc DL(Op);
2551 return DAG.getNode(SPISD::EH_SJLJ_LONGJMP, DL, MVT::Other, Op.getOperand(0), Op.getOperand(1));
2552 }
2553
LowerVASTART(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI)2554 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
2555 const SparcTargetLowering &TLI) {
2556 MachineFunction &MF = DAG.getMachineFunction();
2557 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
2558 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
2559
2560 // Need frame address to find the address of VarArgsFrameIndex.
2561 MF.getFrameInfo().setFrameAddressIsTaken(true);
2562
2563 // vastart just stores the address of the VarArgsFrameIndex slot into the
2564 // memory location argument.
2565 SDLoc DL(Op);
2566 SDValue Offset =
2567 DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(SP::I6, PtrVT),
2568 DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL));
2569 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2570 return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1),
2571 MachinePointerInfo(SV));
2572 }
2573
LowerVAARG(SDValue Op,SelectionDAG & DAG)2574 static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) {
2575 SDNode *Node = Op.getNode();
2576 EVT VT = Node->getValueType(0);
2577 SDValue InChain = Node->getOperand(0);
2578 SDValue VAListPtr = Node->getOperand(1);
2579 EVT PtrVT = VAListPtr.getValueType();
2580 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2581 SDLoc DL(Node);
2582 SDValue VAList =
2583 DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV));
2584 // Increment the pointer, VAList, to the next vaarg.
2585 SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
2586 DAG.getIntPtrConstant(VT.getSizeInBits()/8,
2587 DL));
2588 // Store the incremented VAList to the legalized pointer.
2589 InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr, VAListPtr,
2590 MachinePointerInfo(SV));
2591 // Load the actual argument out of the pointer VAList.
2592 // We can't count on greater alignment than the word size.
2593 return DAG.getLoad(VT, DL, InChain, VAList, MachinePointerInfo(),
2594 std::min(PtrVT.getSizeInBits(), VT.getSizeInBits()) / 8);
2595 }
2596
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG,const SparcSubtarget * Subtarget)2597 static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
2598 const SparcSubtarget *Subtarget) {
2599 SDValue Chain = Op.getOperand(0); // Legalize the chain.
2600 SDValue Size = Op.getOperand(1); // Legalize the size.
2601 unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2602 unsigned StackAlign = Subtarget->getFrameLowering()->getStackAlignment();
2603 EVT VT = Size->getValueType(0);
2604 SDLoc dl(Op);
2605
2606 // TODO: implement over-aligned alloca. (Note: also implies
2607 // supporting support for overaligned function frames + dynamic
2608 // allocations, at all, which currently isn't supported)
2609 if (Align > StackAlign) {
2610 const MachineFunction &MF = DAG.getMachineFunction();
2611 report_fatal_error("Function \"" + Twine(MF.getName()) + "\": "
2612 "over-aligned dynamic alloca not supported.");
2613 }
2614
2615 // The resultant pointer needs to be above the register spill area
2616 // at the bottom of the stack.
2617 unsigned regSpillArea;
2618 if (Subtarget->is64Bit()) {
2619 regSpillArea = 128;
2620 } else {
2621 // On Sparc32, the size of the spill area is 92. Unfortunately,
2622 // that's only 4-byte aligned, not 8-byte aligned (the stack
2623 // pointer is 8-byte aligned). So, if the user asked for an 8-byte
2624 // aligned dynamic allocation, we actually need to add 96 to the
2625 // bottom of the stack, instead of 92, to ensure 8-byte alignment.
2626
2627 // That also means adding 4 to the size of the allocation --
2628 // before applying the 8-byte rounding. Unfortunately, we the
2629 // value we get here has already had rounding applied. So, we need
2630 // to add 8, instead, wasting a bit more memory.
2631
2632 // Further, this only actually needs to be done if the required
2633 // alignment is > 4, but, we've lost that info by this point, too,
2634 // so we always apply it.
2635
2636 // (An alternative approach would be to always reserve 96 bytes
2637 // instead of the required 92, but then we'd waste 4 extra bytes
2638 // in every frame, not just those with dynamic stack allocations)
2639
2640 // TODO: modify code in SelectionDAGBuilder to make this less sad.
2641
2642 Size = DAG.getNode(ISD::ADD, dl, VT, Size,
2643 DAG.getConstant(8, dl, VT));
2644 regSpillArea = 96;
2645 }
2646
2647 unsigned SPReg = SP::O6;
2648 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
2649 SDValue NewSP = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
2650 Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP); // Output chain
2651
2652 regSpillArea += Subtarget->getStackPointerBias();
2653
2654 SDValue NewVal = DAG.getNode(ISD::ADD, dl, VT, NewSP,
2655 DAG.getConstant(regSpillArea, dl, VT));
2656 SDValue Ops[2] = { NewVal, Chain };
2657 return DAG.getMergeValues(Ops, dl);
2658 }
2659
2660
getFLUSHW(SDValue Op,SelectionDAG & DAG)2661 static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) {
2662 SDLoc dl(Op);
2663 SDValue Chain = DAG.getNode(SPISD::FLUSHW,
2664 dl, MVT::Other, DAG.getEntryNode());
2665 return Chain;
2666 }
2667
getFRAMEADDR(uint64_t depth,SDValue Op,SelectionDAG & DAG,const SparcSubtarget * Subtarget)2668 static SDValue getFRAMEADDR(uint64_t depth, SDValue Op, SelectionDAG &DAG,
2669 const SparcSubtarget *Subtarget) {
2670 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2671 MFI.setFrameAddressIsTaken(true);
2672
2673 EVT VT = Op.getValueType();
2674 SDLoc dl(Op);
2675 unsigned FrameReg = SP::I6;
2676 unsigned stackBias = Subtarget->getStackPointerBias();
2677
2678 SDValue FrameAddr;
2679
2680 if (depth == 0) {
2681 FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
2682 if (Subtarget->is64Bit())
2683 FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
2684 DAG.getIntPtrConstant(stackBias, dl));
2685 return FrameAddr;
2686 }
2687
2688 // flush first to make sure the windowed registers' values are in stack
2689 SDValue Chain = getFLUSHW(Op, DAG);
2690 FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT);
2691
2692 unsigned Offset = (Subtarget->is64Bit()) ? (stackBias + 112) : 56;
2693
2694 while (depth--) {
2695 SDValue Ptr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
2696 DAG.getIntPtrConstant(Offset, dl));
2697 FrameAddr = DAG.getLoad(VT, dl, Chain, Ptr, MachinePointerInfo());
2698 }
2699 if (Subtarget->is64Bit())
2700 FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
2701 DAG.getIntPtrConstant(stackBias, dl));
2702 return FrameAddr;
2703 }
2704
2705
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG,const SparcSubtarget * Subtarget)2706 static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG,
2707 const SparcSubtarget *Subtarget) {
2708
2709 uint64_t depth = Op.getConstantOperandVal(0);
2710
2711 return getFRAMEADDR(depth, Op, DAG, Subtarget);
2712
2713 }
2714
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI,const SparcSubtarget * Subtarget)2715 static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG,
2716 const SparcTargetLowering &TLI,
2717 const SparcSubtarget *Subtarget) {
2718 MachineFunction &MF = DAG.getMachineFunction();
2719 MachineFrameInfo &MFI = MF.getFrameInfo();
2720 MFI.setReturnAddressIsTaken(true);
2721
2722 if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG))
2723 return SDValue();
2724
2725 EVT VT = Op.getValueType();
2726 SDLoc dl(Op);
2727 uint64_t depth = Op.getConstantOperandVal(0);
2728
2729 SDValue RetAddr;
2730 if (depth == 0) {
2731 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
2732 unsigned RetReg = MF.addLiveIn(SP::I7, TLI.getRegClassFor(PtrVT));
2733 RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT);
2734 return RetAddr;
2735 }
2736
2737 // Need frame address to find return address of the caller.
2738 SDValue FrameAddr = getFRAMEADDR(depth - 1, Op, DAG, Subtarget);
2739
2740 unsigned Offset = (Subtarget->is64Bit()) ? 120 : 60;
2741 SDValue Ptr = DAG.getNode(ISD::ADD,
2742 dl, VT,
2743 FrameAddr,
2744 DAG.getIntPtrConstant(Offset, dl));
2745 RetAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2746
2747 return RetAddr;
2748 }
2749
LowerF64Op(SDValue SrcReg64,const SDLoc & dl,SelectionDAG & DAG,unsigned opcode)2750 static SDValue LowerF64Op(SDValue SrcReg64, const SDLoc &dl, SelectionDAG &DAG,
2751 unsigned opcode) {
2752 assert(SrcReg64.getValueType() == MVT::f64 && "LowerF64Op called on non-double!");
2753 assert(opcode == ISD::FNEG || opcode == ISD::FABS);
2754
2755 // Lower fneg/fabs on f64 to fneg/fabs on f32.
2756 // fneg f64 => fneg f32:sub_even, fmov f32:sub_odd.
2757 // fabs f64 => fabs f32:sub_even, fmov f32:sub_odd.
2758
2759 // Note: in little-endian, the floating-point value is stored in the
2760 // registers are in the opposite order, so the subreg with the sign
2761 // bit is the highest-numbered (odd), rather than the
2762 // lowest-numbered (even).
2763
2764 SDValue Hi32 = DAG.getTargetExtractSubreg(SP::sub_even, dl, MVT::f32,
2765 SrcReg64);
2766 SDValue Lo32 = DAG.getTargetExtractSubreg(SP::sub_odd, dl, MVT::f32,
2767 SrcReg64);
2768
2769 if (DAG.getDataLayout().isLittleEndian())
2770 Lo32 = DAG.getNode(opcode, dl, MVT::f32, Lo32);
2771 else
2772 Hi32 = DAG.getNode(opcode, dl, MVT::f32, Hi32);
2773
2774 SDValue DstReg64 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
2775 dl, MVT::f64), 0);
2776 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_even, dl, MVT::f64,
2777 DstReg64, Hi32);
2778 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_odd, dl, MVT::f64,
2779 DstReg64, Lo32);
2780 return DstReg64;
2781 }
2782
2783 // Lower a f128 load into two f64 loads.
LowerF128Load(SDValue Op,SelectionDAG & DAG)2784 static SDValue LowerF128Load(SDValue Op, SelectionDAG &DAG)
2785 {
2786 SDLoc dl(Op);
2787 LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode());
2788 assert(LdNode && LdNode->getOffset().isUndef()
2789 && "Unexpected node type");
2790
2791 unsigned alignment = LdNode->getAlignment();
2792 if (alignment > 8)
2793 alignment = 8;
2794
2795 SDValue Hi64 =
2796 DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LdNode->getBasePtr(),
2797 LdNode->getPointerInfo(), alignment);
2798 EVT addrVT = LdNode->getBasePtr().getValueType();
2799 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT,
2800 LdNode->getBasePtr(),
2801 DAG.getConstant(8, dl, addrVT));
2802 SDValue Lo64 = DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LoPtr,
2803 LdNode->getPointerInfo(), alignment);
2804
2805 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32);
2806 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32);
2807
2808 SDNode *InFP128 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
2809 dl, MVT::f128);
2810 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
2811 MVT::f128,
2812 SDValue(InFP128, 0),
2813 Hi64,
2814 SubRegEven);
2815 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
2816 MVT::f128,
2817 SDValue(InFP128, 0),
2818 Lo64,
2819 SubRegOdd);
2820 SDValue OutChains[2] = { SDValue(Hi64.getNode(), 1),
2821 SDValue(Lo64.getNode(), 1) };
2822 SDValue OutChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
2823 SDValue Ops[2] = {SDValue(InFP128,0), OutChain};
2824 return DAG.getMergeValues(Ops, dl);
2825 }
2826
LowerLOAD(SDValue Op,SelectionDAG & DAG)2827 static SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG)
2828 {
2829 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode());
2830
2831 EVT MemVT = LdNode->getMemoryVT();
2832 if (MemVT == MVT::f128)
2833 return LowerF128Load(Op, DAG);
2834
2835 return Op;
2836 }
2837
2838 // Lower a f128 store into two f64 stores.
LowerF128Store(SDValue Op,SelectionDAG & DAG)2839 static SDValue LowerF128Store(SDValue Op, SelectionDAG &DAG) {
2840 SDLoc dl(Op);
2841 StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode());
2842 assert(StNode && StNode->getOffset().isUndef()
2843 && "Unexpected node type");
2844 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32);
2845 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32);
2846
2847 SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG,
2848 dl,
2849 MVT::f64,
2850 StNode->getValue(),
2851 SubRegEven);
2852 SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG,
2853 dl,
2854 MVT::f64,
2855 StNode->getValue(),
2856 SubRegOdd);
2857
2858 unsigned alignment = StNode->getAlignment();
2859 if (alignment > 8)
2860 alignment = 8;
2861
2862 SDValue OutChains[2];
2863 OutChains[0] =
2864 DAG.getStore(StNode->getChain(), dl, SDValue(Hi64, 0),
2865 StNode->getBasePtr(), MachinePointerInfo(), alignment);
2866 EVT addrVT = StNode->getBasePtr().getValueType();
2867 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT,
2868 StNode->getBasePtr(),
2869 DAG.getConstant(8, dl, addrVT));
2870 OutChains[1] = DAG.getStore(StNode->getChain(), dl, SDValue(Lo64, 0), LoPtr,
2871 MachinePointerInfo(), alignment);
2872 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
2873 }
2874
LowerSTORE(SDValue Op,SelectionDAG & DAG)2875 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG)
2876 {
2877 SDLoc dl(Op);
2878 StoreSDNode *St = cast<StoreSDNode>(Op.getNode());
2879
2880 EVT MemVT = St->getMemoryVT();
2881 if (MemVT == MVT::f128)
2882 return LowerF128Store(Op, DAG);
2883
2884 if (MemVT == MVT::i64) {
2885 // Custom handling for i64 stores: turn it into a bitcast and a
2886 // v2i32 store.
2887 SDValue Val = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, St->getValue());
2888 SDValue Chain = DAG.getStore(
2889 St->getChain(), dl, Val, St->getBasePtr(), St->getPointerInfo(),
2890 St->getAlignment(), St->getMemOperand()->getFlags(), St->getAAInfo());
2891 return Chain;
2892 }
2893
2894 return SDValue();
2895 }
2896
LowerFNEGorFABS(SDValue Op,SelectionDAG & DAG,bool isV9)2897 static SDValue LowerFNEGorFABS(SDValue Op, SelectionDAG &DAG, bool isV9) {
2898 assert((Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::FABS)
2899 && "invalid opcode");
2900
2901 SDLoc dl(Op);
2902
2903 if (Op.getValueType() == MVT::f64)
2904 return LowerF64Op(Op.getOperand(0), dl, DAG, Op.getOpcode());
2905 if (Op.getValueType() != MVT::f128)
2906 return Op;
2907
2908 // Lower fabs/fneg on f128 to fabs/fneg on f64
2909 // fabs/fneg f128 => fabs/fneg f64:sub_even64, fmov f64:sub_odd64
2910 // (As with LowerF64Op, on little-endian, we need to negate the odd
2911 // subreg)
2912
2913 SDValue SrcReg128 = Op.getOperand(0);
2914 SDValue Hi64 = DAG.getTargetExtractSubreg(SP::sub_even64, dl, MVT::f64,
2915 SrcReg128);
2916 SDValue Lo64 = DAG.getTargetExtractSubreg(SP::sub_odd64, dl, MVT::f64,
2917 SrcReg128);
2918
2919 if (DAG.getDataLayout().isLittleEndian()) {
2920 if (isV9)
2921 Lo64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Lo64);
2922 else
2923 Lo64 = LowerF64Op(Lo64, dl, DAG, Op.getOpcode());
2924 } else {
2925 if (isV9)
2926 Hi64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Hi64);
2927 else
2928 Hi64 = LowerF64Op(Hi64, dl, DAG, Op.getOpcode());
2929 }
2930
2931 SDValue DstReg128 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
2932 dl, MVT::f128), 0);
2933 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_even64, dl, MVT::f128,
2934 DstReg128, Hi64);
2935 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_odd64, dl, MVT::f128,
2936 DstReg128, Lo64);
2937 return DstReg128;
2938 }
2939
LowerADDC_ADDE_SUBC_SUBE(SDValue Op,SelectionDAG & DAG)2940 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
2941
2942 if (Op.getValueType() != MVT::i64)
2943 return Op;
2944
2945 SDLoc dl(Op);
2946 SDValue Src1 = Op.getOperand(0);
2947 SDValue Src1Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1);
2948 SDValue Src1Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src1,
2949 DAG.getConstant(32, dl, MVT::i64));
2950 Src1Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1Hi);
2951
2952 SDValue Src2 = Op.getOperand(1);
2953 SDValue Src2Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2);
2954 SDValue Src2Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src2,
2955 DAG.getConstant(32, dl, MVT::i64));
2956 Src2Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2Hi);
2957
2958
2959 bool hasChain = false;
2960 unsigned hiOpc = Op.getOpcode();
2961 switch (Op.getOpcode()) {
2962 default: llvm_unreachable("Invalid opcode");
2963 case ISD::ADDC: hiOpc = ISD::ADDE; break;
2964 case ISD::ADDE: hasChain = true; break;
2965 case ISD::SUBC: hiOpc = ISD::SUBE; break;
2966 case ISD::SUBE: hasChain = true; break;
2967 }
2968 SDValue Lo;
2969 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Glue);
2970 if (hasChain) {
2971 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo,
2972 Op.getOperand(2));
2973 } else {
2974 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo);
2975 }
2976 SDValue Hi = DAG.getNode(hiOpc, dl, VTs, Src1Hi, Src2Hi, Lo.getValue(1));
2977 SDValue Carry = Hi.getValue(1);
2978
2979 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Lo);
2980 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Hi);
2981 Hi = DAG.getNode(ISD::SHL, dl, MVT::i64, Hi,
2982 DAG.getConstant(32, dl, MVT::i64));
2983
2984 SDValue Dst = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, Lo);
2985 SDValue Ops[2] = { Dst, Carry };
2986 return DAG.getMergeValues(Ops, dl);
2987 }
2988
2989 // Custom lower UMULO/SMULO for SPARC. This code is similar to ExpandNode()
2990 // in LegalizeDAG.cpp except the order of arguments to the library function.
LowerUMULO_SMULO(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI)2991 static SDValue LowerUMULO_SMULO(SDValue Op, SelectionDAG &DAG,
2992 const SparcTargetLowering &TLI)
2993 {
2994 unsigned opcode = Op.getOpcode();
2995 assert((opcode == ISD::UMULO || opcode == ISD::SMULO) && "Invalid Opcode.");
2996
2997 bool isSigned = (opcode == ISD::SMULO);
2998 EVT VT = MVT::i64;
2999 EVT WideVT = MVT::i128;
3000 SDLoc dl(Op);
3001 SDValue LHS = Op.getOperand(0);
3002
3003 if (LHS.getValueType() != VT)
3004 return Op;
3005
3006 SDValue ShiftAmt = DAG.getConstant(63, dl, VT);
3007
3008 SDValue RHS = Op.getOperand(1);
3009 SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, ShiftAmt);
3010 SDValue HiRHS = DAG.getNode(ISD::SRA, dl, MVT::i64, RHS, ShiftAmt);
3011 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
3012
3013 SDValue MulResult = TLI.makeLibCall(DAG,
3014 RTLIB::MUL_I128, WideVT,
3015 Args, isSigned, dl).first;
3016 SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT,
3017 MulResult, DAG.getIntPtrConstant(0, dl));
3018 SDValue TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT,
3019 MulResult, DAG.getIntPtrConstant(1, dl));
3020 if (isSigned) {
3021 SDValue Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
3022 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, Tmp1, ISD::SETNE);
3023 } else {
3024 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, DAG.getConstant(0, dl, VT),
3025 ISD::SETNE);
3026 }
3027 // MulResult is a node with an illegal type. Because such things are not
3028 // generally permitted during this phase of legalization, ensure that
3029 // nothing is left using the node. The above EXTRACT_ELEMENT nodes should have
3030 // been folded.
3031 assert(MulResult->use_empty() && "Illegally typed node still in use!");
3032
3033 SDValue Ops[2] = { BottomHalf, TopHalf } ;
3034 return DAG.getMergeValues(Ops, dl);
3035 }
3036
LowerATOMIC_LOAD_STORE(SDValue Op,SelectionDAG & DAG)3037 static SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) {
3038 if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
3039 // Expand with a fence.
3040 return SDValue();
3041
3042 // Monotonic load/stores are legal.
3043 return Op;
3044 }
3045
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const3046 SDValue SparcTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3047 SelectionDAG &DAG) const {
3048 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3049 SDLoc dl(Op);
3050 switch (IntNo) {
3051 default: return SDValue(); // Don't custom lower most intrinsics.
3052 case Intrinsic::thread_pointer: {
3053 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3054 return DAG.getRegister(SP::G7, PtrVT);
3055 }
3056 }
3057 }
3058
3059 SDValue SparcTargetLowering::
LowerOperation(SDValue Op,SelectionDAG & DAG) const3060 LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3061
3062 bool hasHardQuad = Subtarget->hasHardQuad();
3063 bool isV9 = Subtarget->isV9();
3064
3065 switch (Op.getOpcode()) {
3066 default: llvm_unreachable("Should not custom lower this!");
3067
3068 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG, *this,
3069 Subtarget);
3070 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG,
3071 Subtarget);
3072 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
3073 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
3074 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
3075 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
3076 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG, *this,
3077 hasHardQuad);
3078 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG, *this,
3079 hasHardQuad);
3080 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG, *this,
3081 hasHardQuad);
3082 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG, *this,
3083 hasHardQuad);
3084 case ISD::BR_CC: return LowerBR_CC(Op, DAG, *this,
3085 hasHardQuad);
3086 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, *this,
3087 hasHardQuad);
3088 case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG, *this);
3089 case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG, *this);
3090 case ISD::VASTART: return LowerVASTART(Op, DAG, *this);
3091 case ISD::VAARG: return LowerVAARG(Op, DAG);
3092 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG,
3093 Subtarget);
3094
3095 case ISD::LOAD: return LowerLOAD(Op, DAG);
3096 case ISD::STORE: return LowerSTORE(Op, DAG);
3097 case ISD::FADD: return LowerF128Op(Op, DAG,
3098 getLibcallName(RTLIB::ADD_F128), 2);
3099 case ISD::FSUB: return LowerF128Op(Op, DAG,
3100 getLibcallName(RTLIB::SUB_F128), 2);
3101 case ISD::FMUL: return LowerF128Op(Op, DAG,
3102 getLibcallName(RTLIB::MUL_F128), 2);
3103 case ISD::FDIV: return LowerF128Op(Op, DAG,
3104 getLibcallName(RTLIB::DIV_F128), 2);
3105 case ISD::FSQRT: return LowerF128Op(Op, DAG,
3106 getLibcallName(RTLIB::SQRT_F128),1);
3107 case ISD::FABS:
3108 case ISD::FNEG: return LowerFNEGorFABS(Op, DAG, isV9);
3109 case ISD::FP_EXTEND: return LowerF128_FPEXTEND(Op, DAG, *this);
3110 case ISD::FP_ROUND: return LowerF128_FPROUND(Op, DAG, *this);
3111 case ISD::ADDC:
3112 case ISD::ADDE:
3113 case ISD::SUBC:
3114 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
3115 case ISD::UMULO:
3116 case ISD::SMULO: return LowerUMULO_SMULO(Op, DAG, *this);
3117 case ISD::ATOMIC_LOAD:
3118 case ISD::ATOMIC_STORE: return LowerATOMIC_LOAD_STORE(Op, DAG);
3119 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3120 }
3121 }
3122
3123 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const3124 SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
3125 MachineBasicBlock *BB) const {
3126 switch (MI.getOpcode()) {
3127 default: llvm_unreachable("Unknown SELECT_CC!");
3128 case SP::SELECT_CC_Int_ICC:
3129 case SP::SELECT_CC_FP_ICC:
3130 case SP::SELECT_CC_DFP_ICC:
3131 case SP::SELECT_CC_QFP_ICC:
3132 return expandSelectCC(MI, BB, SP::BCOND);
3133 case SP::SELECT_CC_Int_FCC:
3134 case SP::SELECT_CC_FP_FCC:
3135 case SP::SELECT_CC_DFP_FCC:
3136 case SP::SELECT_CC_QFP_FCC:
3137 return expandSelectCC(MI, BB, SP::FBCOND);
3138 case SP::EH_SJLJ_SETJMP32ri:
3139 case SP::EH_SJLJ_SETJMP32rr:
3140 return emitEHSjLjSetJmp(MI, BB);
3141 case SP::EH_SJLJ_LONGJMP32rr:
3142 case SP::EH_SJLJ_LONGJMP32ri:
3143 return emitEHSjLjLongJmp(MI, BB);
3144
3145 }
3146 }
3147
3148 MachineBasicBlock *
expandSelectCC(MachineInstr & MI,MachineBasicBlock * BB,unsigned BROpcode) const3149 SparcTargetLowering::expandSelectCC(MachineInstr &MI, MachineBasicBlock *BB,
3150 unsigned BROpcode) const {
3151 const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
3152 DebugLoc dl = MI.getDebugLoc();
3153 unsigned CC = (SPCC::CondCodes)MI.getOperand(3).getImm();
3154
3155 // To "insert" a SELECT_CC instruction, we actually have to insert the
3156 // triangle control-flow pattern. The incoming instruction knows the
3157 // destination vreg to set, the condition code register to branch on, the
3158 // true/false values to select between, and the condition code for the branch.
3159 //
3160 // We produce the following control flow:
3161 // ThisMBB
3162 // | \
3163 // | IfFalseMBB
3164 // | /
3165 // SinkMBB
3166 const BasicBlock *LLVM_BB = BB->getBasicBlock();
3167 MachineFunction::iterator It = ++BB->getIterator();
3168
3169 MachineBasicBlock *ThisMBB = BB;
3170 MachineFunction *F = BB->getParent();
3171 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
3172 MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
3173 F->insert(It, IfFalseMBB);
3174 F->insert(It, SinkMBB);
3175
3176 // Transfer the remainder of ThisMBB and its successor edges to SinkMBB.
3177 SinkMBB->splice(SinkMBB->begin(), ThisMBB,
3178 std::next(MachineBasicBlock::iterator(MI)), ThisMBB->end());
3179 SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB);
3180
3181 // Set the new successors for ThisMBB.
3182 ThisMBB->addSuccessor(IfFalseMBB);
3183 ThisMBB->addSuccessor(SinkMBB);
3184
3185 BuildMI(ThisMBB, dl, TII.get(BROpcode))
3186 .addMBB(SinkMBB)
3187 .addImm(CC);
3188
3189 // IfFalseMBB just falls through to SinkMBB.
3190 IfFalseMBB->addSuccessor(SinkMBB);
3191
3192 // %Result = phi [ %TrueValue, ThisMBB ], [ %FalseValue, IfFalseMBB ]
3193 BuildMI(*SinkMBB, SinkMBB->begin(), dl, TII.get(SP::PHI),
3194 MI.getOperand(0).getReg())
3195 .addReg(MI.getOperand(1).getReg())
3196 .addMBB(ThisMBB)
3197 .addReg(MI.getOperand(2).getReg())
3198 .addMBB(IfFalseMBB);
3199
3200 MI.eraseFromParent(); // The pseudo instruction is gone now.
3201 return SinkMBB;
3202 }
3203
3204 MachineBasicBlock *
emitEHSjLjLongJmp(MachineInstr & MI,MachineBasicBlock * MBB) const3205 SparcTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
3206 MachineBasicBlock *MBB) const {
3207 DebugLoc DL = MI.getDebugLoc();
3208 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
3209
3210 MachineFunction *MF = MBB->getParent();
3211 MachineRegisterInfo &MRI = MF->getRegInfo();
3212 MachineInstrBuilder MIB;
3213
3214 MVT PVT = getPointerTy(MF->getDataLayout());
3215 unsigned RegSize = PVT.getStoreSize();
3216 assert(PVT == MVT::i32 && "Invalid Pointer Size!");
3217
3218 unsigned Buf = MI.getOperand(0).getReg();
3219 unsigned JmpLoc = MRI.createVirtualRegister(&SP::IntRegsRegClass);
3220
3221 // TO DO: If we do 64-bit handling, this perhaps should be FLUSHW, not TA 3
3222 MIB = BuildMI(*MBB, MI, DL, TII->get(SP::TRAPri), SP::G0).addImm(3).addImm(SPCC::ICC_A);
3223
3224 // Instruction to restore FP
3225 const unsigned FP = SP::I6;
3226 MIB = BuildMI(*MBB, MI, DL, TII->get(SP::LDri))
3227 .addReg(FP)
3228 .addReg(Buf)
3229 .addImm(0);
3230
3231 // Instruction to load jmp location
3232 MIB = BuildMI(*MBB, MI, DL, TII->get(SP::LDri))
3233 .addReg(JmpLoc, RegState::Define)
3234 .addReg(Buf)
3235 .addImm(RegSize);
3236
3237 // Instruction to restore SP
3238 const unsigned SP = SP::O6;
3239 MIB = BuildMI(*MBB, MI, DL, TII->get(SP::LDri))
3240 .addReg(SP)
3241 .addReg(Buf)
3242 .addImm(2 * RegSize);
3243
3244 // Instruction to restore I7
3245 MIB = BuildMI(*MBB, MI, DL, TII->get(SP::LDri))
3246 .addReg(SP::I7)
3247 .addReg(Buf, RegState::Kill)
3248 .addImm(3 * RegSize);
3249
3250 // Jump to JmpLoc
3251 BuildMI(*MBB, MI, DL, TII->get(SP::JMPLrr)).addReg(SP::G0).addReg(JmpLoc, RegState::Kill).addReg(SP::G0);
3252
3253 MI.eraseFromParent();
3254 return MBB;
3255 }
3256
3257 MachineBasicBlock *
emitEHSjLjSetJmp(MachineInstr & MI,MachineBasicBlock * MBB) const3258 SparcTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
3259 MachineBasicBlock *MBB) const {
3260 DebugLoc DL = MI.getDebugLoc();
3261 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
3262 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
3263
3264 MachineFunction *MF = MBB->getParent();
3265 MachineRegisterInfo &MRI = MF->getRegInfo();
3266 MachineInstrBuilder MIB;
3267
3268 MVT PVT = getPointerTy(MF->getDataLayout());
3269 unsigned RegSize = PVT.getStoreSize();
3270 assert(PVT == MVT::i32 && "Invalid Pointer Size!");
3271
3272 unsigned DstReg = MI.getOperand(0).getReg();
3273 const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
3274 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
3275 (void)TRI;
3276 unsigned mainDstReg = MRI.createVirtualRegister(RC);
3277 unsigned restoreDstReg = MRI.createVirtualRegister(RC);
3278
3279 // For v = setjmp(buf), we generate
3280 //
3281 // thisMBB:
3282 // buf[0] = FP
3283 // buf[RegSize] = restoreMBB <-- takes address of restoreMBB
3284 // buf[RegSize * 2] = O6
3285 // buf[RegSize * 3] = I7
3286 // Ensure restoreMBB remains in the relocations list (done using a bn instruction)
3287 // b mainMBB
3288 //
3289 // mainMBB:
3290 // v_main = 0
3291 // b sinkMBB
3292 //
3293 // restoreMBB:
3294 // v_restore = 1
3295 // --fall through--
3296 //
3297 // sinkMBB:
3298 // v = phi(main, restore)
3299
3300 const BasicBlock *BB = MBB->getBasicBlock();
3301 MachineFunction::iterator It = ++MBB->getIterator();
3302 MachineBasicBlock *thisMBB = MBB;
3303 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
3304 MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
3305 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
3306
3307 MF->insert(It, mainMBB);
3308 MF->insert(It, restoreMBB);
3309 MF->insert(It, sinkMBB);
3310 restoreMBB->setHasAddressTaken();
3311
3312 // Transfer the remainder of BB and its successor edges to sinkMBB.
3313 sinkMBB->splice(sinkMBB->begin(), MBB,
3314 std::next(MachineBasicBlock::iterator(MI)),
3315 MBB->end());
3316 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
3317
3318 unsigned LabelReg = MRI.createVirtualRegister(&SP::IntRegsRegClass);
3319 unsigned LabelReg2 = MRI.createVirtualRegister(&SP::IntRegsRegClass);
3320 unsigned BufReg = MI.getOperand(1).getReg();
3321
3322 // Instruction to store FP
3323 const unsigned FP = SP::I6;
3324 MIB = BuildMI(thisMBB, DL, TII->get(SP::STri))
3325 .addReg(BufReg)
3326 .addImm(0)
3327 .addReg(FP);
3328
3329 // Instructions to store jmp location
3330 MIB = BuildMI(thisMBB, DL, TII->get(SP::SETHIi))
3331 .addReg(LabelReg, RegState::Define)
3332 .addMBB(restoreMBB, SparcMCExpr::VK_Sparc_HI);
3333
3334 MIB = BuildMI(thisMBB, DL, TII->get(SP::ORri))
3335 .addReg(LabelReg2, RegState::Define)
3336 .addReg(LabelReg, RegState::Kill)
3337 .addMBB(restoreMBB, SparcMCExpr::VK_Sparc_LO);
3338
3339 MIB = BuildMI(thisMBB, DL, TII->get(SP::STri))
3340 .addReg(BufReg)
3341 .addImm(RegSize)
3342 .addReg(LabelReg2, RegState::Kill);
3343
3344 // Instruction to store SP
3345 const unsigned SP = SP::O6;
3346 MIB = BuildMI(thisMBB, DL, TII->get(SP::STri))
3347 .addReg(BufReg)
3348 .addImm(2 * RegSize)
3349 .addReg(SP);
3350
3351 // Instruction to store I7
3352 MIB = BuildMI(thisMBB, DL, TII->get(SP::STri))
3353 .addReg(BufReg)
3354 .addImm(3 * RegSize)
3355 .addReg(SP::I7);
3356
3357
3358 // FIX ME: This next instruction ensures that the restoreMBB block address remains
3359 // valid through optimization passes and serves no other purpose. The ICC_N ensures
3360 // that the branch is never taken. This commented-out code here was an alternative
3361 // attempt to achieve this which brought myriad problems.
3362 //MIB = BuildMI(thisMBB, DL, TII->get(SP::EH_SjLj_Setup)).addMBB(restoreMBB, SparcMCExpr::VK_Sparc_None);
3363 MIB = BuildMI(thisMBB, DL, TII->get(SP::BCOND))
3364 .addMBB(restoreMBB)
3365 .addImm(SPCC::ICC_N);
3366
3367 MIB = BuildMI(thisMBB, DL, TII->get(SP::BCOND))
3368 .addMBB(mainMBB)
3369 .addImm(SPCC::ICC_A);
3370
3371 thisMBB->addSuccessor(mainMBB);
3372 thisMBB->addSuccessor(restoreMBB);
3373
3374
3375 // mainMBB:
3376 MIB = BuildMI(mainMBB, DL, TII->get(SP::ORrr))
3377 .addReg(mainDstReg, RegState::Define)
3378 .addReg(SP::G0)
3379 .addReg(SP::G0);
3380 MIB = BuildMI(mainMBB, DL, TII->get(SP::BCOND)).addMBB(sinkMBB).addImm(SPCC::ICC_A);
3381
3382 mainMBB->addSuccessor(sinkMBB);
3383
3384
3385 // restoreMBB:
3386 MIB = BuildMI(restoreMBB, DL, TII->get(SP::ORri))
3387 .addReg(restoreDstReg, RegState::Define)
3388 .addReg(SP::G0)
3389 .addImm(1);
3390 //MIB = BuildMI(restoreMBB, DL, TII->get(SP::BCOND)).addMBB(sinkMBB).addImm(SPCC::ICC_A);
3391 restoreMBB->addSuccessor(sinkMBB);
3392
3393 // sinkMBB:
3394 MIB = BuildMI(*sinkMBB, sinkMBB->begin(), DL,
3395 TII->get(SP::PHI), DstReg)
3396 .addReg(mainDstReg).addMBB(mainMBB)
3397 .addReg(restoreDstReg).addMBB(restoreMBB);
3398
3399 MI.eraseFromParent();
3400 return sinkMBB;
3401 }
3402
3403 //===----------------------------------------------------------------------===//
3404 // Sparc Inline Assembly Support
3405 //===----------------------------------------------------------------------===//
3406
3407 /// getConstraintType - Given a constraint letter, return the type of
3408 /// constraint it is for this target.
3409 SparcTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const3410 SparcTargetLowering::getConstraintType(StringRef Constraint) const {
3411 if (Constraint.size() == 1) {
3412 switch (Constraint[0]) {
3413 default: break;
3414 case 'r':
3415 case 'f':
3416 case 'e':
3417 return C_RegisterClass;
3418 case 'I': // SIMM13
3419 return C_Other;
3420 }
3421 }
3422
3423 return TargetLowering::getConstraintType(Constraint);
3424 }
3425
3426 TargetLowering::ConstraintWeight SparcTargetLowering::
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const3427 getSingleConstraintMatchWeight(AsmOperandInfo &info,
3428 const char *constraint) const {
3429 ConstraintWeight weight = CW_Invalid;
3430 Value *CallOperandVal = info.CallOperandVal;
3431 // If we don't have a value, we can't do a match,
3432 // but allow it at the lowest weight.
3433 if (!CallOperandVal)
3434 return CW_Default;
3435
3436 // Look at the constraint type.
3437 switch (*constraint) {
3438 default:
3439 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3440 break;
3441 case 'I': // SIMM13
3442 if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
3443 if (isInt<13>(C->getSExtValue()))
3444 weight = CW_Constant;
3445 }
3446 break;
3447 }
3448 return weight;
3449 }
3450
3451 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3452 /// vector. If it is invalid, don't add anything to Ops.
3453 void SparcTargetLowering::
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const3454 LowerAsmOperandForConstraint(SDValue Op,
3455 std::string &Constraint,
3456 std::vector<SDValue> &Ops,
3457 SelectionDAG &DAG) const {
3458 SDValue Result(nullptr, 0);
3459
3460 // Only support length 1 constraints for now.
3461 if (Constraint.length() > 1)
3462 return;
3463
3464 char ConstraintLetter = Constraint[0];
3465 switch (ConstraintLetter) {
3466 default: break;
3467 case 'I':
3468 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3469 if (isInt<13>(C->getSExtValue())) {
3470 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
3471 Op.getValueType());
3472 break;
3473 }
3474 return;
3475 }
3476 }
3477
3478 if (Result.getNode()) {
3479 Ops.push_back(Result);
3480 return;
3481 }
3482 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3483 }
3484
3485 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const3486 SparcTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3487 StringRef Constraint,
3488 MVT VT) const {
3489 if (Constraint.size() == 1) {
3490 switch (Constraint[0]) {
3491 case 'r':
3492 if (VT == MVT::v2i32)
3493 return std::make_pair(0U, &SP::IntPairRegClass);
3494 else
3495 return std::make_pair(0U, &SP::IntRegsRegClass);
3496 case 'f':
3497 if (VT == MVT::f32)
3498 return std::make_pair(0U, &SP::FPRegsRegClass);
3499 else if (VT == MVT::f64)
3500 return std::make_pair(0U, &SP::LowDFPRegsRegClass);
3501 else if (VT == MVT::f128)
3502 return std::make_pair(0U, &SP::LowQFPRegsRegClass);
3503 llvm_unreachable("Unknown ValueType for f-register-type!");
3504 break;
3505 case 'e':
3506 if (VT == MVT::f32)
3507 return std::make_pair(0U, &SP::FPRegsRegClass);
3508 else if (VT == MVT::f64)
3509 return std::make_pair(0U, &SP::DFPRegsRegClass);
3510 else if (VT == MVT::f128)
3511 return std::make_pair(0U, &SP::QFPRegsRegClass);
3512 llvm_unreachable("Unknown ValueType for e-register-type!");
3513 break;
3514 }
3515 } else if (!Constraint.empty() && Constraint.size() <= 5
3516 && Constraint[0] == '{' && *(Constraint.end()-1) == '}') {
3517 // constraint = '{r<d>}'
3518 // Remove the braces from around the name.
3519 StringRef name(Constraint.data()+1, Constraint.size()-2);
3520 // Handle register aliases:
3521 // r0-r7 -> g0-g7
3522 // r8-r15 -> o0-o7
3523 // r16-r23 -> l0-l7
3524 // r24-r31 -> i0-i7
3525 uint64_t intVal = 0;
3526 if (name.substr(0, 1).equals("r")
3527 && !name.substr(1).getAsInteger(10, intVal) && intVal <= 31) {
3528 const char regTypes[] = { 'g', 'o', 'l', 'i' };
3529 char regType = regTypes[intVal/8];
3530 char regIdx = '0' + (intVal % 8);
3531 char tmp[] = { '{', regType, regIdx, '}', 0 };
3532 std::string newConstraint = std::string(tmp);
3533 return TargetLowering::getRegForInlineAsmConstraint(TRI, newConstraint,
3534 VT);
3535 }
3536 if (name.substr(0, 1).equals("f") &&
3537 !name.substr(1).getAsInteger(10, intVal) && intVal <= 63) {
3538 std::string newConstraint;
3539
3540 if (VT == MVT::f32 || VT == MVT::Other) {
3541 newConstraint = "{f" + utostr(intVal) + "}";
3542 } else if (VT == MVT::f64 && (intVal % 2 == 0)) {
3543 newConstraint = "{d" + utostr(intVal / 2) + "}";
3544 } else if (VT == MVT::f128 && (intVal % 4 == 0)) {
3545 newConstraint = "{q" + utostr(intVal / 4) + "}";
3546 } else {
3547 return std::make_pair(0U, nullptr);
3548 }
3549 return TargetLowering::getRegForInlineAsmConstraint(TRI, newConstraint,
3550 VT);
3551 }
3552 }
3553
3554 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3555 }
3556
3557 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const3558 SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3559 // The Sparc target isn't yet aware of offsets.
3560 return false;
3561 }
3562
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const3563 void SparcTargetLowering::ReplaceNodeResults(SDNode *N,
3564 SmallVectorImpl<SDValue>& Results,
3565 SelectionDAG &DAG) const {
3566
3567 SDLoc dl(N);
3568
3569 RTLIB::Libcall libCall = RTLIB::UNKNOWN_LIBCALL;
3570
3571 switch (N->getOpcode()) {
3572 default:
3573 llvm_unreachable("Do not know how to custom type legalize this operation!");
3574
3575 case ISD::FP_TO_SINT:
3576 case ISD::FP_TO_UINT:
3577 // Custom lower only if it involves f128 or i64.
3578 if (N->getOperand(0).getValueType() != MVT::f128
3579 || N->getValueType(0) != MVT::i64)
3580 return;
3581 libCall = ((N->getOpcode() == ISD::FP_TO_SINT)
3582 ? RTLIB::FPTOSINT_F128_I64
3583 : RTLIB::FPTOUINT_F128_I64);
3584
3585 Results.push_back(LowerF128Op(SDValue(N, 0),
3586 DAG,
3587 getLibcallName(libCall),
3588 1));
3589 return;
3590
3591 case ISD::SINT_TO_FP:
3592 case ISD::UINT_TO_FP:
3593 // Custom lower only if it involves f128 or i64.
3594 if (N->getValueType(0) != MVT::f128
3595 || N->getOperand(0).getValueType() != MVT::i64)
3596 return;
3597
3598 libCall = ((N->getOpcode() == ISD::SINT_TO_FP)
3599 ? RTLIB::SINTTOFP_I64_F128
3600 : RTLIB::UINTTOFP_I64_F128);
3601
3602 Results.push_back(LowerF128Op(SDValue(N, 0),
3603 DAG,
3604 getLibcallName(libCall),
3605 1));
3606 return;
3607 case ISD::LOAD: {
3608 LoadSDNode *Ld = cast<LoadSDNode>(N);
3609 // Custom handling only for i64: turn i64 load into a v2i32 load,
3610 // and a bitcast.
3611 if (Ld->getValueType(0) != MVT::i64 || Ld->getMemoryVT() != MVT::i64)
3612 return;
3613
3614 SDLoc dl(N);
3615 SDValue LoadRes = DAG.getExtLoad(
3616 Ld->getExtensionType(), dl, MVT::v2i32, Ld->getChain(),
3617 Ld->getBasePtr(), Ld->getPointerInfo(), MVT::v2i32, Ld->getAlignment(),
3618 Ld->getMemOperand()->getFlags(), Ld->getAAInfo());
3619
3620 SDValue Res = DAG.getNode(ISD::BITCAST, dl, MVT::i64, LoadRes);
3621 Results.push_back(Res);
3622 Results.push_back(LoadRes.getValue(1));
3623 return;
3624 }
3625 }
3626 }
3627
3628 // Override to enable LOAD_STACK_GUARD lowering on Linux.
useLoadStackGuardNode() const3629 bool SparcTargetLowering::useLoadStackGuardNode() const {
3630 if (!Subtarget->isTargetLinux())
3631 return TargetLowering::useLoadStackGuardNode();
3632 return true;
3633 }
3634
3635 // Override to disable global variable loading on Linux.
insertSSPDeclarations(Module & M) const3636 void SparcTargetLowering::insertSSPDeclarations(Module &M) const {
3637 if (!Subtarget->isTargetLinux())
3638 return TargetLowering::insertSSPDeclarations(M);
3639 }
3640