1//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// True when generating 32-bit code.
25def Is32Bit : Predicate<"!Subtarget->is64Bit()">;
26
27// True when generating 64-bit code. This also implies HasV9.
28def Is64Bit : Predicate<"Subtarget->is64Bit()">;
29
30def UseSoftMulDiv : Predicate<"Subtarget->useSoftMulDiv()">,
31              AssemblerPredicate<"FeatureSoftMulDiv">;
32
33// HasV9 - This predicate is true when the target processor supports V9
34// instructions.  Note that the machine may be running in 32-bit mode.
35def HasV9   : Predicate<"Subtarget->isV9()">,
36              AssemblerPredicate<"FeatureV9">;
37
38// HasNoV9 - This predicate is true when the target doesn't have V9
39// instructions.  Use of this is just a hack for the isel not having proper
40// costs for V8 instructions that are more expensive than their V9 ones.
41def HasNoV9 : Predicate<"!Subtarget->isV9()">;
42
43// HasVIS - This is true when the target processor has VIS extensions.
44def HasVIS : Predicate<"Subtarget->isVIS()">,
45             AssemblerPredicate<"FeatureVIS">;
46def HasVIS2 : Predicate<"Subtarget->isVIS2()">,
47             AssemblerPredicate<"FeatureVIS2">;
48def HasVIS3 : Predicate<"Subtarget->isVIS3()">,
49             AssemblerPredicate<"FeatureVIS3">;
50
51// HasHardQuad - This is true when the target processor supports quad floating
52// point instructions.
53def HasHardQuad : Predicate<"Subtarget->hasHardQuad()">;
54
55// HasLeonCASA - This is true when the target processor supports the CASA
56// instruction
57def HasLeonCASA : Predicate<"Subtarget->hasLeonCasa()">;
58
59// HasUMAC_SMAC - This is true when the target processor supports the
60// UMAC and SMAC instructions
61def HasUMAC_SMAC : Predicate<"Subtarget->hasUmacSmac()">;
62
63def HasNoFdivSqrtFix : Predicate<"!Subtarget->fixAllFDIVSQRT()">;
64def HasFMULS : Predicate<"!Subtarget->hasNoFMULS()">;
65def HasFSMULD : Predicate<"!Subtarget->hasNoFSMULD()">;
66
67// UseDeprecatedInsts - This predicate is true when the target processor is a
68// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
69// to use when appropriate.  In either of these cases, the instruction selector
70// will pick deprecated instructions.
71def UseDeprecatedInsts : Predicate<"Subtarget->useDeprecatedV8Instructions()">;
72
73//===----------------------------------------------------------------------===//
74// Instruction Pattern Stuff
75//===----------------------------------------------------------------------===//
76
77def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
78
79def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
80
81def LO10 : SDNodeXForm<imm, [{
82  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023, SDLoc(N),
83                                   MVT::i32);
84}]>;
85
86def HI22 : SDNodeXForm<imm, [{
87  // Transformation function: shift the immediate value down into the low bits.
88  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, SDLoc(N),
89                                   MVT::i32);
90}]>;
91
92def SETHIimm : PatLeaf<(imm), [{
93  return isShiftedUInt<22, 10>(N->getZExtValue());
94}], HI22>;
95
96// Addressing modes.
97def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>;
98def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>;
99
100// Address operands
101def SparcMEMrrAsmOperand : AsmOperandClass {
102  let Name = "MEMrr";
103  let ParserMethod = "parseMEMOperand";
104}
105
106def SparcMEMriAsmOperand : AsmOperandClass {
107  let Name = "MEMri";
108  let ParserMethod = "parseMEMOperand";
109}
110
111def MEMrr : Operand<iPTR> {
112  let PrintMethod = "printMemOperand";
113  let MIOperandInfo = (ops ptr_rc, ptr_rc);
114  let ParserMatchClass = SparcMEMrrAsmOperand;
115}
116def MEMri : Operand<iPTR> {
117  let PrintMethod = "printMemOperand";
118  let MIOperandInfo = (ops ptr_rc, i32imm);
119  let ParserMatchClass = SparcMEMriAsmOperand;
120}
121
122def TLSSym : Operand<iPTR>;
123
124// Branch targets have OtherVT type.
125def brtarget : Operand<OtherVT> {
126  let EncoderMethod = "getBranchTargetOpValue";
127}
128
129def bprtarget : Operand<OtherVT> {
130  let EncoderMethod = "getBranchPredTargetOpValue";
131}
132
133def bprtarget16 : Operand<OtherVT> {
134  let EncoderMethod = "getBranchOnRegTargetOpValue";
135}
136
137def calltarget : Operand<i32> {
138  let EncoderMethod = "getCallTargetOpValue";
139  let DecoderMethod = "DecodeCall";
140}
141
142def simm13Op : Operand<i32> {
143  let DecoderMethod = "DecodeSIMM13";
144}
145
146// Operand for printing out a condition code.
147let PrintMethod = "printCCOperand" in
148  def CCOp : Operand<i32>;
149
150def SDTSPcmpicc :
151SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
152def SDTSPcmpfcc :
153SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
154def SDTSPbrcc :
155SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
156def SDTSPselectcc :
157SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
158def SDTSPFTOI :
159SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
160def SDTSPITOF :
161SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
162def SDTSPFTOX :
163SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>;
164def SDTSPXTOF :
165SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>;
166
167def SDTSPtlsadd :
168SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
169def SDTSPtlsld :
170SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
171
172def SDTSPeh_sjlj_setjmp : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisPtrTy<1>]>;
173def SDTSPeh_sjlj_longjmp: SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
174
175def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>;
176def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
177def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
178def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
179def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
180
181def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
182def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
183
184def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
185def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
186def SPftox  : SDNode<"SPISD::FTOX", SDTSPFTOX>;
187def SPxtof  : SDNode<"SPISD::XTOF", SDTSPXTOF>;
188
189def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
190def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>;
191def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
192
193def SPsjlj_setjmp: SDNode<"SPISD::EH_SJLJ_SETJMP",
194                          SDTSPeh_sjlj_setjmp,
195                          [SDNPHasChain, SDNPSideEffect]>;
196def SPsjlj_longjmp: SDNode<"SPISD::EH_SJLJ_LONGJMP",
197                           SDTSPeh_sjlj_longjmp,
198                           [SDNPHasChain, SDNPSideEffect]>;
199
200//  These are target-independent nodes, but have target-specific formats.
201def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>,
202                                          SDTCisVT<1, i32> ]>;
203def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
204                                        SDTCisVT<1, i32> ]>;
205
206def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
207                           [SDNPHasChain, SDNPOutGlue]>;
208def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
209                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
210
211def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
212def call          : SDNode<"SPISD::CALL", SDT_SPCall,
213                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
214                            SDNPVariadic]>;
215
216def SDT_SPRet     : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
217def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
218                           [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
219
220def flushw        : SDNode<"SPISD::FLUSHW", SDTNone,
221                           [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;
222
223def tlsadd        : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>;
224def tlsld         : SDNode<"SPISD::TLS_LD",  SDTSPtlsld>;
225def tlscall       : SDNode<"SPISD::TLS_CALL", SDT_SPCall,
226                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
227                             SDNPVariadic]>;
228
229def getPCX        : Operand<iPTR> {
230  let PrintMethod = "printGetPCX";
231}
232
233//===----------------------------------------------------------------------===//
234// SPARC Flag Conditions
235//===----------------------------------------------------------------------===//
236
237// Note that these values must be kept in sync with the CCOp::CondCode enum
238// values.
239class ICC_VAL<int N> : PatLeaf<(i32 N)>;
240def ICC_NE  : ICC_VAL< 9>;  // Not Equal
241def ICC_E   : ICC_VAL< 1>;  // Equal
242def ICC_G   : ICC_VAL<10>;  // Greater
243def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
244def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
245def ICC_L   : ICC_VAL< 3>;  // Less
246def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
247def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
248def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
249def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
250def ICC_POS : ICC_VAL<14>;  // Positive
251def ICC_NEG : ICC_VAL< 6>;  // Negative
252def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
253def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
254
255class FCC_VAL<int N> : PatLeaf<(i32 N)>;
256def FCC_U   : FCC_VAL<23>;  // Unordered
257def FCC_G   : FCC_VAL<22>;  // Greater
258def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
259def FCC_L   : FCC_VAL<20>;  // Less
260def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
261def FCC_LG  : FCC_VAL<18>;  // Less or Greater
262def FCC_NE  : FCC_VAL<17>;  // Not Equal
263def FCC_E   : FCC_VAL<25>;  // Equal
264def FCC_UE  : FCC_VAL<26>;  // Unordered or Equal
265def FCC_GE  : FCC_VAL<27>;  // Greater or Equal
266def FCC_UGE : FCC_VAL<28>;  // Unordered or Greater or Equal
267def FCC_LE  : FCC_VAL<29>;  // Less or Equal
268def FCC_ULE : FCC_VAL<30>;  // Unordered or Less or Equal
269def FCC_O   : FCC_VAL<31>;  // Ordered
270
271class CPCC_VAL<int N> : PatLeaf<(i32 N)>;
272def CPCC_3   : CPCC_VAL<39>;  // 3
273def CPCC_2   : CPCC_VAL<38>;  // 2
274def CPCC_23  : CPCC_VAL<37>;  // 2 or 3
275def CPCC_1   : CPCC_VAL<36>;  // 1
276def CPCC_13  : CPCC_VAL<35>;  // 1 or 3
277def CPCC_12  : CPCC_VAL<34>;  // 1 or 2
278def CPCC_123 : CPCC_VAL<33>;  // 1 or 2 or 3
279def CPCC_0   : CPCC_VAL<41>;  // 0
280def CPCC_03  : CPCC_VAL<42>;  // 0 or 3
281def CPCC_02  : CPCC_VAL<43>;  // 0 or 2
282def CPCC_023 : CPCC_VAL<44>;  // 0 or 2 or 3
283def CPCC_01  : CPCC_VAL<45>;  // 0 or 1
284def CPCC_013 : CPCC_VAL<46>;  // 0 or 1 or 3
285def CPCC_012 : CPCC_VAL<47>;  // 0 or 1 or 2
286
287//===----------------------------------------------------------------------===//
288// Instruction Class Templates
289//===----------------------------------------------------------------------===//
290
291/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
292multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode,
293                 RegisterClass RC, ValueType Ty, Operand immOp,
294                 InstrItinClass itin = IIC_iu_instr> {
295  def rr  : F3_1<2, Op3Val,
296                 (outs RC:$rd), (ins RC:$rs1, RC:$rs2),
297                 !strconcat(OpcStr, " $rs1, $rs2, $rd"),
298                 [(set Ty:$rd, (OpNode Ty:$rs1, Ty:$rs2))],
299                 itin>;
300  def ri  : F3_2<2, Op3Val,
301                 (outs RC:$rd), (ins RC:$rs1, immOp:$simm13),
302                 !strconcat(OpcStr, " $rs1, $simm13, $rd"),
303                 [(set Ty:$rd, (OpNode Ty:$rs1, (Ty simm13:$simm13)))],
304                 itin>;
305}
306
307/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
308/// pattern.
309multiclass F3_12np<string OpcStr, bits<6> Op3Val, InstrItinClass itin = IIC_iu_instr> {
310  def rr  : F3_1<2, Op3Val,
311                 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
312                 !strconcat(OpcStr, " $rs1, $rs2, $rd"), [],
313                 itin>;
314  def ri  : F3_2<2, Op3Val,
315                 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
316                 !strconcat(OpcStr, " $rs1, $simm13, $rd"), [],
317                 itin>;
318}
319
320// Load multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
321multiclass Load<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
322           RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_iu_instr> {
323  def rr  : F3_1<3, Op3Val,
324                 (outs RC:$dst), (ins MEMrr:$addr),
325                 !strconcat(OpcStr, " [$addr], $dst"),
326                 [(set Ty:$dst, (OpNode ADDRrr:$addr))],
327                 itin>;
328  def ri  : F3_2<3, Op3Val,
329                 (outs RC:$dst), (ins MEMri:$addr),
330                 !strconcat(OpcStr, " [$addr], $dst"),
331                 [(set Ty:$dst, (OpNode ADDRri:$addr))],
332                 itin>;
333}
334
335// TODO: Instructions of the LoadASI class are currently asm only; hooking up
336// CodeGen's address spaces to use these is a future task.
337class LoadASI<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
338              RegisterClass RC, ValueType Ty, InstrItinClass itin = NoItinerary> :
339  F3_1_asi<3, Op3Val, (outs RC:$dst), (ins MEMrr:$addr, i8imm:$asi),
340                !strconcat(OpcStr, "a [$addr] $asi, $dst"),
341                []>;
342
343// LoadA multiclass - As above, but also define alternate address space variant
344multiclass LoadA<string OpcStr, bits<6> Op3Val, bits<6> LoadAOp3Val,
345                 SDPatternOperator OpNode, RegisterClass RC, ValueType Ty,
346                 InstrItinClass itin = NoItinerary> :
347             Load<OpcStr, Op3Val, OpNode, RC, Ty, itin> {
348  def Arr  : LoadASI<OpcStr, LoadAOp3Val, OpNode, RC, Ty>;
349}
350
351// The LDSTUB instruction is supported for asm only.
352// It is unlikely that general-purpose code could make use of it.
353// CAS is preferred for sparc v9.
354def LDSTUBrr : F3_1<3, 0b001101, (outs IntRegs:$dst), (ins MEMrr:$addr),
355                    "ldstub [$addr], $dst", []>;
356def LDSTUBri : F3_2<3, 0b001101, (outs IntRegs:$dst), (ins MEMri:$addr),
357                    "ldstub [$addr], $dst", []>;
358def LDSTUBArr : F3_1_asi<3, 0b011101, (outs IntRegs:$dst),
359                         (ins MEMrr:$addr, i8imm:$asi),
360                         "ldstuba [$addr] $asi, $dst", []>;
361
362// Store multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
363multiclass Store<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
364           RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_st> {
365  def rr  : F3_1<3, Op3Val,
366                 (outs), (ins MEMrr:$addr, RC:$rd),
367                 !strconcat(OpcStr, " $rd, [$addr]"),
368                 [(OpNode Ty:$rd, ADDRrr:$addr)],
369                 itin>;
370  def ri  : F3_2<3, Op3Val,
371                 (outs), (ins MEMri:$addr, RC:$rd),
372                 !strconcat(OpcStr, " $rd, [$addr]"),
373                 [(OpNode Ty:$rd, ADDRri:$addr)],
374                 itin>;
375}
376
377// TODO: Instructions of the StoreASI class are currently asm only; hooking up
378// CodeGen's address spaces to use these is a future task.
379class StoreASI<string OpcStr, bits<6> Op3Val,
380               SDPatternOperator OpNode, RegisterClass RC, ValueType Ty,
381               InstrItinClass itin = IIC_st> :
382  F3_1_asi<3, Op3Val, (outs), (ins MEMrr:$addr, RC:$rd, i8imm:$asi),
383           !strconcat(OpcStr, "a $rd, [$addr] $asi"),
384           [],
385           itin>;
386
387multiclass StoreA<string OpcStr, bits<6> Op3Val, bits<6> StoreAOp3Val,
388                  SDPatternOperator OpNode, RegisterClass RC, ValueType Ty,
389                  InstrItinClass itin = IIC_st> :
390             Store<OpcStr, Op3Val, OpNode, RC, Ty> {
391  def Arr : StoreASI<OpcStr, StoreAOp3Val, OpNode, RC, Ty, itin>;
392}
393
394//===----------------------------------------------------------------------===//
395// Instructions
396//===----------------------------------------------------------------------===//
397
398// Pseudo instructions.
399class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
400   : InstSP<outs, ins, asmstr, pattern> {
401  let isCodeGenOnly = 1;
402  let isPseudo = 1;
403}
404
405// GETPCX for PIC
406let Defs = [O7] in {
407  def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
408}
409
410let Defs = [O6], Uses = [O6] in {
411def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
412                               "!ADJCALLSTACKDOWN $amt1, $amt2",
413                               [(callseq_start timm:$amt1, timm:$amt2)]>;
414def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
415                            "!ADJCALLSTACKUP $amt1",
416                            [(callseq_end timm:$amt1, timm:$amt2)]>;
417}
418
419let hasSideEffects = 1, mayStore = 1 in {
420  let rd = 0, rs1 = 0, rs2 = 0 in
421    def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
422                      "flushw",
423                      [(flushw)]>, Requires<[HasV9]>;
424  let rd = 8, rs1 = 0, simm13 = 3 in
425    def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
426                   "ta 3",
427                   [(flushw)]>;
428}
429
430// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
431// instruction selection into a branch sequence.  This has to handle all
432// permutations of selection between i32/f32/f64 on ICC and FCC.
433// Expanded after instruction selection.
434let Uses = [ICC], usesCustomInserter = 1 in {
435  def SELECT_CC_Int_ICC
436   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
437            "; SELECT_CC_Int_ICC PSEUDO!",
438            [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
439  def SELECT_CC_FP_ICC
440   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
441            "; SELECT_CC_FP_ICC PSEUDO!",
442            [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;
443
444  def SELECT_CC_DFP_ICC
445   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
446            "; SELECT_CC_DFP_ICC PSEUDO!",
447            [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;
448
449  def SELECT_CC_QFP_ICC
450   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
451            "; SELECT_CC_QFP_ICC PSEUDO!",
452            [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>;
453}
454
455let usesCustomInserter = 1, Uses = [FCC0] in {
456
457  def SELECT_CC_Int_FCC
458   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
459            "; SELECT_CC_Int_FCC PSEUDO!",
460            [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;
461
462  def SELECT_CC_FP_FCC
463   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
464            "; SELECT_CC_FP_FCC PSEUDO!",
465            [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
466  def SELECT_CC_DFP_FCC
467   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
468            "; SELECT_CC_DFP_FCC PSEUDO!",
469            [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
470  def SELECT_CC_QFP_FCC
471   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
472            "; SELECT_CC_QFP_FCC PSEUDO!",
473            [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>;
474}
475
476let hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in {
477  let Defs = [WIM] in
478  def EH_SJLJ_SETJMP32ri  : Pseudo<(outs IntRegs:$dst), (ins MEMri:$buf),
479                            "#EH_SJLJ_SETJMP32",
480                            [(set i32:$dst, (SPsjlj_setjmp ADDRri:$buf))]>,
481                            Requires<[Is32Bit]>;
482  def EH_SJLJ_SETJMP32rr  : Pseudo<(outs IntRegs:$dst), (ins MEMrr:$buf),
483                            "#EH_SJLJ_SETJMP32",
484                            [(set i32:$dst, (SPsjlj_setjmp ADDRrr:$buf))]>,
485                            Requires<[Is32Bit]>;
486  let isTerminator = 1 in
487  def EH_SJLJ_LONGJMP32ri : Pseudo<(outs), (ins MEMri:$buf),
488                            "#EH_SJLJ_LONGJMP32",
489                            [(SPsjlj_longjmp ADDRri:$buf)]>,
490                            Requires<[Is32Bit]>;
491  def EH_SJLJ_LONGJMP32rr : Pseudo<(outs), (ins MEMrr:$buf),
492                            "#EH_SJLJ_LONGJMP32",
493                            [(SPsjlj_longjmp ADDRrr:$buf)]>,
494                            Requires<[Is32Bit]>;
495}
496
497// Section B.1 - Load Integer Instructions, p. 90
498let DecoderMethod = "DecodeLoadInt" in {
499  defm LDSB : LoadA<"ldsb", 0b001001, 0b011001, sextloadi8,  IntRegs, i32>;
500  defm LDSH : LoadA<"ldsh", 0b001010, 0b011010, sextloadi16, IntRegs, i32>;
501  defm LDUB : LoadA<"ldub", 0b000001, 0b010001, zextloadi8,  IntRegs, i32>;
502  defm LDUH : LoadA<"lduh", 0b000010, 0b010010, zextloadi16, IntRegs, i32>;
503  defm LD   : LoadA<"ld",   0b000000, 0b010000, load,        IntRegs, i32>;
504}
505
506let DecoderMethod = "DecodeLoadIntPair" in
507  defm LDD : LoadA<"ldd", 0b000011, 0b010011, load, IntPair, v2i32, IIC_ldd>;
508
509// Section B.2 - Load Floating-point Instructions, p. 92
510let DecoderMethod = "DecodeLoadFP" in {
511  defm LDF   : Load<"ld",  0b100000, load,    FPRegs,  f32, IIC_iu_or_fpu_instr>;
512  def LDFArr : LoadASI<"ld",  0b110000, load, FPRegs,  f32, IIC_iu_or_fpu_instr>,
513                Requires<[HasV9]>;
514}
515let DecoderMethod = "DecodeLoadDFP" in {
516  defm LDDF   : Load<"ldd", 0b100011, load,    DFPRegs, f64, IIC_ldd>;
517  def LDDFArr : LoadASI<"ldd", 0b110011, load, DFPRegs, f64>,
518                 Requires<[HasV9]>;
519}
520let DecoderMethod = "DecodeLoadQFP" in
521  defm LDQF  : LoadA<"ldq", 0b100010, 0b110010, load, QFPRegs, f128>,
522               Requires<[HasV9, HasHardQuad]>;
523
524let DecoderMethod = "DecodeLoadCP" in
525  defm LDC   : Load<"ld", 0b110000, load, CoprocRegs, i32>;
526let DecoderMethod = "DecodeLoadCPPair" in
527  defm LDDC   : Load<"ldd", 0b110011, load, CoprocPair, v2i32, IIC_ldd>;
528
529let DecoderMethod = "DecodeLoadCP", Defs = [CPSR] in {
530  let rd = 0 in {
531    def LDCSRrr : F3_1<3, 0b110001, (outs), (ins MEMrr:$addr),
532                       "ld [$addr], %csr", []>;
533    def LDCSRri : F3_2<3, 0b110001, (outs), (ins MEMri:$addr),
534                       "ld [$addr], %csr", []>;
535  }
536}
537
538let DecoderMethod = "DecodeLoadFP" in
539  let Defs = [FSR] in {
540    let rd = 0 in {
541      def LDFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr),
542                     "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>;
543      def LDFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr),
544                     "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>;
545    }
546    let rd = 1 in {
547      def LDXFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr),
548                     "ldx [$addr], %fsr", []>, Requires<[HasV9]>;
549      def LDXFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr),
550                     "ldx [$addr], %fsr", []>, Requires<[HasV9]>;
551    }
552  }
553
554// Section B.4 - Store Integer Instructions, p. 95
555let DecoderMethod = "DecodeStoreInt" in {
556  defm STB   : StoreA<"stb", 0b000101, 0b010101, truncstorei8,  IntRegs, i32>;
557  defm STH   : StoreA<"sth", 0b000110, 0b010110, truncstorei16, IntRegs, i32>;
558  defm ST    : StoreA<"st",  0b000100, 0b010100, store,         IntRegs, i32>;
559}
560
561let DecoderMethod = "DecodeStoreIntPair" in
562  defm STD   : StoreA<"std", 0b000111, 0b010111, store, IntPair, v2i32, IIC_std>;
563
564// Section B.5 - Store Floating-point Instructions, p. 97
565let DecoderMethod = "DecodeStoreFP" in {
566  defm STF   : Store<"st",  0b100100, store,         FPRegs,  f32>;
567  def STFArr : StoreASI<"st",  0b110100, store,      FPRegs,  f32>,
568               Requires<[HasV9]>;
569}
570let DecoderMethod = "DecodeStoreDFP" in {
571  defm STDF   : Store<"std", 0b100111, store,         DFPRegs, f64, IIC_std>;
572  def STDFArr : StoreASI<"std", 0b110111, store,      DFPRegs, f64>,
573                Requires<[HasV9]>;
574}
575let DecoderMethod = "DecodeStoreQFP" in
576  defm STQF  : StoreA<"stq", 0b100110, 0b110110, store, QFPRegs, f128>,
577               Requires<[HasV9, HasHardQuad]>;
578
579let DecoderMethod = "DecodeStoreCP" in
580  defm STC   : Store<"st", 0b110100, store, CoprocRegs, i32>;
581
582let DecoderMethod = "DecodeStoreCPPair" in
583  defm STDC   : Store<"std", 0b110111, store, CoprocPair, v2i32, IIC_std>;
584
585let DecoderMethod = "DecodeStoreCP", rd = 0 in {
586  let Defs = [CPSR] in {
587    def STCSRrr : F3_1<3, 0b110101, (outs MEMrr:$addr), (ins),
588                       "st %csr, [$addr]", [], IIC_st>;
589    def STCSRri : F3_2<3, 0b110101, (outs MEMri:$addr), (ins),
590                       "st %csr, [$addr]", [], IIC_st>;
591  }
592  let Defs = [CPQ] in {
593    def STDCQrr : F3_1<3, 0b110110, (outs MEMrr:$addr), (ins),
594                       "std %cq, [$addr]", [], IIC_std>;
595    def STDCQri : F3_2<3, 0b110110, (outs MEMri:$addr), (ins),
596                       "std %cq, [$addr]", [], IIC_std>;
597  }
598}
599
600let DecoderMethod = "DecodeStoreFP" in {
601  let rd = 0 in {
602    let Defs = [FSR] in {
603      def STFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins),
604                     "st %fsr, [$addr]", [], IIC_st>;
605      def STFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins),
606                     "st %fsr, [$addr]", [], IIC_st>;
607    }
608    let Defs = [FQ] in {
609      def STDFQrr : F3_1<3, 0b100110, (outs MEMrr:$addr), (ins),
610                     "std %fq, [$addr]", [], IIC_std>;
611      def STDFQri : F3_2<3, 0b100110, (outs MEMri:$addr), (ins),
612                     "std %fq, [$addr]", [], IIC_std>;
613    }
614  }
615  let rd = 1, Defs = [FSR] in {
616    def STXFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins),
617                   "stx %fsr, [$addr]", []>, Requires<[HasV9]>;
618    def STXFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins),
619                   "stx %fsr, [$addr]", []>, Requires<[HasV9]>;
620  }
621}
622
623// Section B.8 - SWAP Register with Memory Instruction
624// (Atomic swap)
625let Constraints = "$val = $dst", DecoderMethod = "DecodeSWAP" in {
626  def SWAPrr : F3_1<3, 0b001111,
627                 (outs IntRegs:$dst), (ins MEMrr:$addr, IntRegs:$val),
628                 "swap [$addr], $dst",
629                 [(set i32:$dst, (atomic_swap_32 ADDRrr:$addr, i32:$val))]>;
630  def SWAPri : F3_2<3, 0b001111,
631                 (outs IntRegs:$dst), (ins MEMri:$addr, IntRegs:$val),
632                 "swap [$addr], $dst",
633                 [(set i32:$dst, (atomic_swap_32 ADDRri:$addr, i32:$val))]>;
634  def SWAPArr : F3_1_asi<3, 0b011111,
635                 (outs IntRegs:$dst), (ins MEMrr:$addr, i8imm:$asi, IntRegs:$val),
636                 "swapa [$addr] $asi, $dst",
637                 [/*FIXME: pattern?*/]>;
638}
639
640
641// Section B.9 - SETHI Instruction, p. 104
642def SETHIi: F2_1<0b100,
643                 (outs IntRegs:$rd), (ins i32imm:$imm22),
644                 "sethi $imm22, $rd",
645                 [(set i32:$rd, SETHIimm:$imm22)],
646                 IIC_iu_instr>;
647
648// Section B.10 - NOP Instruction, p. 105
649// (It's a special case of SETHI)
650let rd = 0, imm22 = 0 in
651  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
652
653// Section B.11 - Logical Instructions, p. 106
654defm AND    : F3_12<"and", 0b000001, and, IntRegs, i32, simm13Op>;
655
656def ANDNrr  : F3_1<2, 0b000101,
657                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
658                   "andn $rs1, $rs2, $rd",
659                   [(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>;
660def ANDNri  : F3_2<2, 0b000101,
661                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
662                   "andn $rs1, $simm13, $rd", []>;
663
664defm OR     : F3_12<"or", 0b000010, or, IntRegs, i32, simm13Op>;
665
666def ORNrr   : F3_1<2, 0b000110,
667                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
668                   "orn $rs1, $rs2, $rd",
669                   [(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>;
670def ORNri   : F3_2<2, 0b000110,
671                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
672                   "orn $rs1, $simm13, $rd", []>;
673defm XOR    : F3_12<"xor", 0b000011, xor, IntRegs, i32, simm13Op>;
674
675def XNORrr  : F3_1<2, 0b000111,
676                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
677                   "xnor $rs1, $rs2, $rd",
678                   [(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>;
679def XNORri  : F3_2<2, 0b000111,
680                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
681                   "xnor $rs1, $simm13, $rd", []>;
682
683let Defs = [ICC] in {
684  defm ANDCC  : F3_12np<"andcc",  0b010001>;
685  defm ANDNCC : F3_12np<"andncc", 0b010101>;
686  defm ORCC   : F3_12np<"orcc",   0b010010>;
687  defm ORNCC  : F3_12np<"orncc",  0b010110>;
688  defm XORCC  : F3_12np<"xorcc",  0b010011>;
689  defm XNORCC : F3_12np<"xnorcc", 0b010111>;
690}
691
692// Section B.12 - Shift Instructions, p. 107
693defm SLL : F3_12<"sll", 0b100101, shl, IntRegs, i32, simm13Op>;
694defm SRL : F3_12<"srl", 0b100110, srl, IntRegs, i32, simm13Op>;
695defm SRA : F3_12<"sra", 0b100111, sra, IntRegs, i32, simm13Op>;
696
697// Section B.13 - Add Instructions, p. 108
698defm ADD   : F3_12<"add", 0b000000, add, IntRegs, i32, simm13Op>;
699
700// "LEA" forms of add (patterns to make tblgen happy)
701let Predicates = [Is32Bit], isCodeGenOnly = 1 in
702  def LEA_ADDri   : F3_2<2, 0b000000,
703                     (outs IntRegs:$dst), (ins MEMri:$addr),
704                     "add ${addr:arith}, $dst",
705                     [(set iPTR:$dst, ADDRri:$addr)]>;
706
707let Defs = [ICC] in
708  defm ADDCC  : F3_12<"addcc", 0b010000, addc, IntRegs, i32, simm13Op>;
709
710let Uses = [ICC] in
711  defm ADDC   : F3_12np<"addx", 0b001000>;
712
713let Uses = [ICC], Defs = [ICC] in
714  defm ADDE  : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, simm13Op>;
715
716// Section B.15 - Subtract Instructions, p. 110
717defm SUB    : F3_12  <"sub"  , 0b000100, sub, IntRegs, i32, simm13Op>;
718let Uses = [ICC], Defs = [ICC] in
719  defm SUBE   : F3_12  <"subxcc" , 0b011100, sube, IntRegs, i32, simm13Op>;
720
721let Defs = [ICC] in
722  defm SUBCC  : F3_12  <"subcc", 0b010100, subc, IntRegs, i32, simm13Op>;
723
724let Uses = [ICC] in
725  defm SUBC   : F3_12np <"subx", 0b001100>;
726
727// cmp (from Section A.3) is a specialized alias for subcc
728let Defs = [ICC], rd = 0 in {
729  def CMPrr   : F3_1<2, 0b010100,
730                     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
731                     "cmp $rs1, $rs2",
732                     [(SPcmpicc i32:$rs1, i32:$rs2)]>;
733  def CMPri   : F3_2<2, 0b010100,
734                     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
735                     "cmp $rs1, $simm13",
736                     [(SPcmpicc i32:$rs1, (i32 simm13:$simm13))]>;
737}
738
739// Section B.18 - Multiply Instructions, p. 113
740let Defs = [Y] in {
741  defm UMUL : F3_12<"umul", 0b001010, umullohi, IntRegs, i32, simm13Op, IIC_iu_umul>;
742  defm SMUL : F3_12<"smul", 0b001011, smullohi, IntRegs, i32, simm13Op, IIC_iu_smul>;
743}
744
745let Defs = [Y, ICC] in {
746  defm UMULCC : F3_12np<"umulcc", 0b011010, IIC_iu_umul>;
747  defm SMULCC : F3_12np<"smulcc", 0b011011, IIC_iu_smul>;
748}
749
750let Defs = [Y, ICC], Uses = [Y, ICC] in {
751  defm MULSCC : F3_12np<"mulscc", 0b100100>;
752}
753
754// Section B.19 - Divide Instructions, p. 115
755let Uses = [Y], Defs = [Y] in {
756  defm UDIV : F3_12np<"udiv", 0b001110, IIC_iu_div>;
757  defm SDIV : F3_12np<"sdiv", 0b001111, IIC_iu_div>;
758}
759
760let Uses = [Y], Defs = [Y, ICC] in {
761  defm UDIVCC : F3_12np<"udivcc", 0b011110, IIC_iu_div>;
762  defm SDIVCC : F3_12np<"sdivcc", 0b011111, IIC_iu_div>;
763}
764
765// Section B.20 - SAVE and RESTORE, p. 117
766defm SAVE    : F3_12np<"save"   , 0b111100>;
767defm RESTORE : F3_12np<"restore", 0b111101>;
768
769// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
770
771// unconditional branch class.
772class BranchAlways<dag ins, string asmstr, list<dag> pattern>
773  : F2_2<0b010, 0, (outs), ins, asmstr, pattern> {
774  let isBranch     = 1;
775  let isTerminator = 1;
776  let hasDelaySlot = 1;
777  let isBarrier    = 1;
778}
779
780let cond = 8 in
781  def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>;
782
783
784let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
785
786// conditional branch class:
787class BranchSP<dag ins, string asmstr, list<dag> pattern>
788 : F2_2<0b010, 0, (outs), ins, asmstr, pattern, IIC_iu_instr>;
789
790// conditional branch with annul class:
791class BranchSPA<dag ins, string asmstr, list<dag> pattern>
792 : F2_2<0b010, 1, (outs), ins, asmstr, pattern, IIC_iu_instr>;
793
794// Conditional branch class on %icc|%xcc with predication:
795multiclass IPredBranch<string regstr, list<dag> CCPattern> {
796  def CC    : F2_3<0b001, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
797                   !strconcat("b$cond ", !strconcat(regstr, ", $imm19")),
798                   CCPattern,
799                   IIC_iu_instr>;
800  def CCA   : F2_3<0b001, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
801                   !strconcat("b$cond,a ", !strconcat(regstr, ", $imm19")),
802                   [],
803                   IIC_iu_instr>;
804  def CCNT  : F2_3<0b001, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
805                   !strconcat("b$cond,pn ", !strconcat(regstr, ", $imm19")),
806                   [],
807                   IIC_iu_instr>;
808  def CCANT : F2_3<0b001, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
809                   !strconcat("b$cond,a,pn ", !strconcat(regstr, ", $imm19")),
810                   [],
811                   IIC_iu_instr>;
812}
813
814} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
815
816
817// Indirect branch instructions.
818let isTerminator = 1, isBarrier = 1,  hasDelaySlot = 1, isBranch =1,
819     isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in {
820  def BINDrr  : F3_1<2, 0b111000,
821                   (outs), (ins MEMrr:$ptr),
822                   "jmp $ptr",
823                   [(brind ADDRrr:$ptr)]>;
824  def BINDri  : F3_2<2, 0b111000,
825                   (outs), (ins MEMri:$ptr),
826                   "jmp $ptr",
827                   [(brind ADDRri:$ptr)]>;
828}
829
830let Uses = [ICC] in {
831  def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond),
832                         "b$cond $imm22",
833                        [(SPbricc bb:$imm22, imm:$cond)]>;
834  def BCONDA : BranchSPA<(ins brtarget:$imm22, CCOp:$cond),
835                         "b$cond,a $imm22", []>;
836
837  let Predicates = [HasV9], cc = 0b00 in
838    defm BPI : IPredBranch<"%icc", []>;
839}
840
841// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
842
843let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
844
845// floating-point conditional branch class:
846class FPBranchSP<dag ins, string asmstr, list<dag> pattern>
847 : F2_2<0b110, 0, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>;
848
849// floating-point conditional branch with annul class:
850class FPBranchSPA<dag ins, string asmstr, list<dag> pattern>
851 : F2_2<0b110, 1, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>;
852
853// Conditional branch class on %fcc0-%fcc3 with predication:
854multiclass FPredBranch {
855  def CC    : F2_3<0b101, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
856                                         FCCRegs:$cc),
857                  "fb$cond $cc, $imm19", [], IIC_fpu_normal_instr>;
858  def CCA   : F2_3<0b101, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
859                                         FCCRegs:$cc),
860                  "fb$cond,a $cc, $imm19", [], IIC_fpu_normal_instr>;
861  def CCNT  : F2_3<0b101, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
862                                         FCCRegs:$cc),
863                  "fb$cond,pn $cc, $imm19", [], IIC_fpu_normal_instr>;
864  def CCANT : F2_3<0b101, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
865                                         FCCRegs:$cc),
866                  "fb$cond,a,pn $cc, $imm19", [], IIC_fpu_normal_instr>;
867}
868} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
869
870let Uses = [FCC0] in {
871  def FBCOND  : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
872                              "fb$cond $imm22",
873                              [(SPbrfcc bb:$imm22, imm:$cond)]>;
874  def FBCONDA : FPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
875                             "fb$cond,a $imm22", []>;
876}
877
878let Predicates = [HasV9] in
879  defm BPF : FPredBranch;
880
881// Section B.22 - Branch on Co-processor Condition Codes Instructions, p. 123
882let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
883
884// co-processor conditional branch class:
885class CPBranchSP<dag ins, string asmstr, list<dag> pattern>
886 : F2_2<0b111, 0, (outs), ins, asmstr, pattern>;
887
888// co-processor conditional branch with annul class:
889class CPBranchSPA<dag ins, string asmstr, list<dag> pattern>
890 : F2_2<0b111, 1, (outs), ins, asmstr, pattern>;
891
892} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
893
894def CBCOND  : CPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
895                          "cb$cond $imm22",
896                          [(SPbrfcc bb:$imm22, imm:$cond)]>;
897def CBCONDA : CPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
898                           "cb$cond,a $imm22", []>;
899
900// Section B.24 - Call and Link Instruction, p. 125
901// This is the only Format 1 instruction
902let Uses = [O6],
903    hasDelaySlot = 1, isCall = 1 in {
904  def CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops),
905                    "call $disp",
906                    [],
907                    IIC_jmp_or_call> {
908    bits<30> disp;
909    let op = 1;
910    let Inst{29-0} = disp;
911  }
912
913  // indirect calls: special cases of JMPL.
914  let isCodeGenOnly = 1, rd = 15 in {
915    def CALLrr : F3_1<2, 0b111000,
916                      (outs), (ins MEMrr:$ptr, variable_ops),
917                      "call $ptr",
918                      [(call ADDRrr:$ptr)],
919                      IIC_jmp_or_call>;
920    def CALLri : F3_2<2, 0b111000,
921                      (outs), (ins MEMri:$ptr, variable_ops),
922                      "call $ptr",
923                      [(call ADDRri:$ptr)],
924                      IIC_jmp_or_call>;
925  }
926}
927
928// Section B.25 - Jump and Link Instruction
929
930// JMPL Instruction.
931let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
932    DecoderMethod = "DecodeJMPL" in {
933  def JMPLrr: F3_1<2, 0b111000,
934                   (outs IntRegs:$dst), (ins MEMrr:$addr),
935                   "jmpl $addr, $dst",
936                   [],
937                   IIC_jmp_or_call>;
938  def JMPLri: F3_2<2, 0b111000,
939                   (outs IntRegs:$dst), (ins MEMri:$addr),
940                   "jmpl $addr, $dst",
941                   [],
942                   IIC_jmp_or_call>;
943}
944
945// Section A.3 - Synthetic Instructions, p. 85
946// special cases of JMPL:
947let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
948    isCodeGenOnly = 1 in {
949  let rd = 0, rs1 = 15 in
950    def RETL: F3_2<2, 0b111000,
951                   (outs), (ins i32imm:$val),
952                   "jmp %o7+$val",
953                   [(retflag simm13:$val)],
954                   IIC_jmp_or_call>;
955
956  let rd = 0, rs1 = 31 in
957    def RET: F3_2<2, 0b111000,
958                  (outs), (ins i32imm:$val),
959                  "jmp %i7+$val",
960                  [],
961                  IIC_jmp_or_call>;
962}
963
964// Section B.26 - Return from Trap Instruction
965let isReturn = 1, isTerminator = 1, hasDelaySlot = 1,
966     isBarrier = 1, rd = 0, DecoderMethod = "DecodeReturn" in {
967  def RETTrr : F3_1<2, 0b111001,
968                   (outs), (ins MEMrr:$addr),
969                   "rett $addr",
970                   [],
971                   IIC_jmp_or_call>;
972  def RETTri : F3_2<2, 0b111001,
973                    (outs), (ins MEMri:$addr),
974                    "rett $addr",
975                    [],
976                    IIC_jmp_or_call>;
977}
978
979
980// Section B.27 - Trap on Integer Condition Codes Instruction
981// conditional branch class:
982let DecoderNamespace = "SparcV8", DecoderMethod = "DecodeTRAP", hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
983{
984  def TRAPrr : TRAPSPrr<0b111010,
985                        (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond),
986                        "t$cond $rs1 + $rs2",
987                        []>;
988  def TRAPri : TRAPSPri<0b111010,
989                        (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond),
990                        "t$cond $rs1 + $imm",
991                        []>;
992}
993
994multiclass TRAP<string regStr> {
995  def rr : TRAPSPrr<0b111010,
996                    (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond),
997                    !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"),
998                    []>;
999  def ri : TRAPSPri<0b111010,
1000                    (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond),
1001                    !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"),
1002                    []>;
1003}
1004
1005let DecoderNamespace = "SparcV9", DecoderMethod = "DecodeTRAP", Predicates = [HasV9], hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
1006  defm TICC : TRAP<"%icc">;
1007
1008
1009let isBarrier = 1, isTerminator = 1, rd = 0b01000, rs1 = 0, simm13 = 5 in
1010  def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>;
1011
1012let hasSideEffects = 1, rd = 0b01000, rs1 = 0, simm13 = 1 in
1013  def TA1 : F3_2<0b10, 0b111010, (outs), (ins), "ta 1", [(debugtrap)]>;
1014
1015// Section B.28 - Read State Register Instructions
1016let rs2 = 0 in
1017  def RDASR : F3_1<2, 0b101000,
1018                 (outs IntRegs:$rd), (ins ASRRegs:$rs1),
1019                 "rd $rs1, $rd", []>;
1020
1021// PSR, WIM, and TBR don't exist on the SparcV9, only the V8.
1022let Predicates = [HasNoV9] in {
1023  let rs2 = 0, rs1 = 0, Uses=[PSR] in
1024    def RDPSR : F3_1<2, 0b101001,
1025		     (outs IntRegs:$rd), (ins),
1026		     "rd %psr, $rd", []>;
1027
1028  let rs2 = 0, rs1 = 0, Uses=[WIM] in
1029    def RDWIM : F3_1<2, 0b101010,
1030		     (outs IntRegs:$rd), (ins),
1031		     "rd %wim, $rd", []>;
1032
1033  let rs2 = 0, rs1 = 0, Uses=[TBR] in
1034    def RDTBR : F3_1<2, 0b101011,
1035		     (outs IntRegs:$rd), (ins),
1036		     "rd %tbr, $rd", []>;
1037}
1038
1039// Section B.29 - Write State Register Instructions
1040def WRASRrr : F3_1<2, 0b110000,
1041                 (outs ASRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
1042                 "wr $rs1, $rs2, $rd", []>;
1043def WRASRri : F3_2<2, 0b110000,
1044                 (outs ASRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
1045                 "wr $rs1, $simm13, $rd", []>;
1046
1047// PSR, WIM, and TBR don't exist on the SparcV9, only the V8.
1048let Predicates = [HasNoV9] in {
1049  let Defs = [PSR], rd=0 in {
1050    def WRPSRrr : F3_1<2, 0b110001,
1051		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
1052		     "wr $rs1, $rs2, %psr", []>;
1053    def WRPSRri : F3_2<2, 0b110001,
1054		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
1055		     "wr $rs1, $simm13, %psr", []>;
1056  }
1057
1058  let Defs = [WIM], rd=0 in {
1059    def WRWIMrr : F3_1<2, 0b110010,
1060		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
1061		     "wr $rs1, $rs2, %wim", []>;
1062    def WRWIMri : F3_2<2, 0b110010,
1063		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
1064		     "wr $rs1, $simm13, %wim", []>;
1065  }
1066
1067  let Defs = [TBR], rd=0 in {
1068    def WRTBRrr : F3_1<2, 0b110011,
1069		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
1070		     "wr $rs1, $rs2, %tbr", []>;
1071    def WRTBRri : F3_2<2, 0b110011,
1072		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
1073		     "wr $rs1, $simm13, %tbr", []>;
1074  }
1075}
1076
1077// Section B.30 - STBAR Instruction
1078let hasSideEffects = 1, rd = 0, rs1 = 0b01111, rs2 = 0 in
1079  def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>;
1080
1081
1082// Section B.31 - Unimplmented Instruction
1083let rd = 0 in
1084  def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22),
1085                  "unimp $imm22", []>;
1086
1087// Section B.32 - Flush Instruction Memory
1088let rd = 0 in {
1089  def FLUSHrr : F3_1<2, 0b111011, (outs), (ins MEMrr:$addr),
1090                       "flush $addr", []>;
1091  def FLUSHri : F3_2<2, 0b111011, (outs), (ins MEMri:$addr),
1092                       "flush $addr", []>;
1093
1094  // The no-arg FLUSH is only here for the benefit of the InstAlias
1095  // "flush", which cannot seem to use FLUSHrr, due to the inability
1096  // to construct a MEMrr with fixed G0 registers.
1097  let rs1 = 0, rs2 = 0 in
1098    def FLUSH   : F3_1<2, 0b111011, (outs), (ins), "flush %g0", []>;
1099}
1100
1101// Section B.33 - Floating-point Operate (FPop) Instructions
1102
1103// Convert Integer to Floating-point Instructions, p. 141
1104def FITOS : F3_3u<2, 0b110100, 0b011000100,
1105                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
1106                 "fitos $rs2, $rd",
1107                 [(set FPRegs:$rd, (SPitof FPRegs:$rs2))],
1108                 IIC_fpu_fast_instr>;
1109def FITOD : F3_3u<2, 0b110100, 0b011001000,
1110                 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
1111                 "fitod $rs2, $rd",
1112                 [(set DFPRegs:$rd, (SPitof FPRegs:$rs2))],
1113                 IIC_fpu_fast_instr>;
1114def FITOQ : F3_3u<2, 0b110100, 0b011001100,
1115                 (outs QFPRegs:$rd), (ins FPRegs:$rs2),
1116                 "fitoq $rs2, $rd",
1117                 [(set QFPRegs:$rd, (SPitof FPRegs:$rs2))]>,
1118                 Requires<[HasHardQuad]>;
1119
1120// Convert Floating-point to Integer Instructions, p. 142
1121def FSTOI : F3_3u<2, 0b110100, 0b011010001,
1122                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
1123                 "fstoi $rs2, $rd",
1124                 [(set FPRegs:$rd, (SPftoi FPRegs:$rs2))],
1125                 IIC_fpu_fast_instr>;
1126def FDTOI : F3_3u<2, 0b110100, 0b011010010,
1127                 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
1128                 "fdtoi $rs2, $rd",
1129                 [(set FPRegs:$rd, (SPftoi DFPRegs:$rs2))],
1130                 IIC_fpu_fast_instr>;
1131def FQTOI : F3_3u<2, 0b110100, 0b011010011,
1132                 (outs FPRegs:$rd), (ins QFPRegs:$rs2),
1133                 "fqtoi $rs2, $rd",
1134                 [(set FPRegs:$rd, (SPftoi QFPRegs:$rs2))]>,
1135                 Requires<[HasHardQuad]>;
1136
1137// Convert between Floating-point Formats Instructions, p. 143
1138def FSTOD : F3_3u<2, 0b110100, 0b011001001,
1139                 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
1140                 "fstod $rs2, $rd",
1141                 [(set f64:$rd, (fpextend f32:$rs2))],
1142                 IIC_fpu_stod>;
1143def FSTOQ : F3_3u<2, 0b110100, 0b011001101,
1144                 (outs QFPRegs:$rd), (ins FPRegs:$rs2),
1145                 "fstoq $rs2, $rd",
1146                 [(set f128:$rd, (fpextend f32:$rs2))]>,
1147                 Requires<[HasHardQuad]>;
1148def FDTOS : F3_3u<2, 0b110100, 0b011000110,
1149                 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
1150                 "fdtos $rs2, $rd",
1151                 [(set f32:$rd, (fpround f64:$rs2))],
1152                 IIC_fpu_fast_instr>;
1153def FDTOQ : F3_3u<2, 0b110100, 0b011001110,
1154                 (outs QFPRegs:$rd), (ins DFPRegs:$rs2),
1155                 "fdtoq $rs2, $rd",
1156                 [(set f128:$rd, (fpextend f64:$rs2))]>,
1157                 Requires<[HasHardQuad]>;
1158def FQTOS : F3_3u<2, 0b110100, 0b011000111,
1159                 (outs FPRegs:$rd), (ins QFPRegs:$rs2),
1160                 "fqtos $rs2, $rd",
1161                 [(set f32:$rd, (fpround f128:$rs2))]>,
1162                 Requires<[HasHardQuad]>;
1163def FQTOD : F3_3u<2, 0b110100, 0b011001011,
1164                 (outs DFPRegs:$rd), (ins QFPRegs:$rs2),
1165                 "fqtod $rs2, $rd",
1166                 [(set f64:$rd, (fpround f128:$rs2))]>,
1167                 Requires<[HasHardQuad]>;
1168
1169// Floating-point Move Instructions, p. 144
1170def FMOVS : F3_3u<2, 0b110100, 0b000000001,
1171                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
1172                 "fmovs $rs2, $rd", []>;
1173def FNEGS : F3_3u<2, 0b110100, 0b000000101,
1174                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
1175                 "fnegs $rs2, $rd",
1176                 [(set f32:$rd, (fneg f32:$rs2))],
1177                 IIC_fpu_negs>;
1178def FABSS : F3_3u<2, 0b110100, 0b000001001,
1179                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
1180                 "fabss $rs2, $rd",
1181                 [(set f32:$rd, (fabs f32:$rs2))],
1182                 IIC_fpu_abs>;
1183
1184
1185// Floating-point Square Root Instructions, p.145
1186// FSQRTS generates an erratum on LEON processors, so by disabling this instruction
1187// this will be promoted to use FSQRTD with doubles instead.
1188let Predicates = [HasNoFdivSqrtFix] in
1189def FSQRTS : F3_3u<2, 0b110100, 0b000101001,
1190                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
1191                  "fsqrts $rs2, $rd",
1192                  [(set f32:$rd, (fsqrt f32:$rs2))],
1193                  IIC_fpu_sqrts>;
1194def FSQRTD : F3_3u<2, 0b110100, 0b000101010,
1195                  (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
1196                  "fsqrtd $rs2, $rd",
1197                  [(set f64:$rd, (fsqrt f64:$rs2))],
1198                  IIC_fpu_sqrtd>;
1199def FSQRTQ : F3_3u<2, 0b110100, 0b000101011,
1200                  (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
1201                  "fsqrtq $rs2, $rd",
1202                  [(set f128:$rd, (fsqrt f128:$rs2))]>,
1203                  Requires<[HasHardQuad]>;
1204
1205
1206
1207// Floating-point Add and Subtract Instructions, p. 146
1208def FADDS  : F3_3<2, 0b110100, 0b001000001,
1209                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1210                  "fadds $rs1, $rs2, $rd",
1211                  [(set f32:$rd, (fadd f32:$rs1, f32:$rs2))],
1212                  IIC_fpu_fast_instr>;
1213def FADDD  : F3_3<2, 0b110100, 0b001000010,
1214                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1215                  "faddd $rs1, $rs2, $rd",
1216                  [(set f64:$rd, (fadd f64:$rs1, f64:$rs2))],
1217                  IIC_fpu_fast_instr>;
1218def FADDQ  : F3_3<2, 0b110100, 0b001000011,
1219                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1220                  "faddq $rs1, $rs2, $rd",
1221                  [(set f128:$rd, (fadd f128:$rs1, f128:$rs2))]>,
1222                  Requires<[HasHardQuad]>;
1223
1224def FSUBS  : F3_3<2, 0b110100, 0b001000101,
1225                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1226                  "fsubs $rs1, $rs2, $rd",
1227                  [(set f32:$rd, (fsub f32:$rs1, f32:$rs2))],
1228                  IIC_fpu_fast_instr>;
1229def FSUBD  : F3_3<2, 0b110100, 0b001000110,
1230                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1231                  "fsubd $rs1, $rs2, $rd",
1232                  [(set f64:$rd, (fsub f64:$rs1, f64:$rs2))],
1233                  IIC_fpu_fast_instr>;
1234def FSUBQ  : F3_3<2, 0b110100, 0b001000111,
1235                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1236                  "fsubq $rs1, $rs2, $rd",
1237                  [(set f128:$rd, (fsub f128:$rs1, f128:$rs2))]>,
1238                  Requires<[HasHardQuad]>;
1239
1240
1241// Floating-point Multiply and Divide Instructions, p. 147
1242def FMULS  : F3_3<2, 0b110100, 0b001001001,
1243                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1244                  "fmuls $rs1, $rs2, $rd",
1245                  [(set f32:$rd, (fmul f32:$rs1, f32:$rs2))],
1246                  IIC_fpu_muls>,
1247		  Requires<[HasFMULS]>;
1248def FMULD  : F3_3<2, 0b110100, 0b001001010,
1249                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1250                  "fmuld $rs1, $rs2, $rd",
1251                  [(set f64:$rd, (fmul f64:$rs1, f64:$rs2))],
1252                  IIC_fpu_muld>;
1253def FMULQ  : F3_3<2, 0b110100, 0b001001011,
1254                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1255                  "fmulq $rs1, $rs2, $rd",
1256                  [(set f128:$rd, (fmul f128:$rs1, f128:$rs2))]>,
1257                  Requires<[HasHardQuad]>;
1258
1259def FSMULD : F3_3<2, 0b110100, 0b001101001,
1260                  (outs DFPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1261                  "fsmuld $rs1, $rs2, $rd",
1262                  [(set f64:$rd, (fmul (fpextend f32:$rs1),
1263                                        (fpextend f32:$rs2)))],
1264                  IIC_fpu_muld>,
1265		  Requires<[HasFSMULD]>;
1266def FDMULQ : F3_3<2, 0b110100, 0b001101110,
1267                  (outs QFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1268                  "fdmulq $rs1, $rs2, $rd",
1269                  [(set f128:$rd, (fmul (fpextend f64:$rs1),
1270                                         (fpextend f64:$rs2)))]>,
1271                  Requires<[HasHardQuad]>;
1272
1273// FDIVS generates an erratum on LEON processors, so by disabling this instruction
1274// this will be promoted to use FDIVD with doubles instead.
1275def FDIVS  : F3_3<2, 0b110100, 0b001001101,
1276                 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1277                 "fdivs $rs1, $rs2, $rd",
1278                 [(set f32:$rd, (fdiv f32:$rs1, f32:$rs2))],
1279                 IIC_fpu_divs>;
1280def FDIVD  : F3_3<2, 0b110100, 0b001001110,
1281                 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1282                 "fdivd $rs1, $rs2, $rd",
1283                 [(set f64:$rd, (fdiv f64:$rs1, f64:$rs2))],
1284                 IIC_fpu_divd>;
1285def FDIVQ  : F3_3<2, 0b110100, 0b001001111,
1286                 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1287                 "fdivq $rs1, $rs2, $rd",
1288                 [(set f128:$rd, (fdiv f128:$rs1, f128:$rs2))]>,
1289                 Requires<[HasHardQuad]>;
1290
1291// Floating-point Compare Instructions, p. 148
1292// Note: the 2nd template arg is different for these guys.
1293// Note 2: the result of a FCMP is not available until the 2nd cycle
1294// after the instr is retired, but there is no interlock in Sparc V8.
1295// This behavior is modeled with a forced noop after the instruction in
1296// DelaySlotFiller.
1297
1298let Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in {
1299  def FCMPS  : F3_3c<2, 0b110101, 0b001010001,
1300                   (outs), (ins FPRegs:$rs1, FPRegs:$rs2),
1301                   "fcmps $rs1, $rs2",
1302                   [(SPcmpfcc f32:$rs1, f32:$rs2)],
1303                   IIC_fpu_fast_instr>;
1304  def FCMPD  : F3_3c<2, 0b110101, 0b001010010,
1305                   (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1306                   "fcmpd $rs1, $rs2",
1307                   [(SPcmpfcc f64:$rs1, f64:$rs2)],
1308                   IIC_fpu_fast_instr>;
1309  def FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
1310                   (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1311                   "fcmpq $rs1, $rs2",
1312                   [(SPcmpfcc f128:$rs1, f128:$rs2)]>,
1313                   Requires<[HasHardQuad]>;
1314}
1315
1316//===----------------------------------------------------------------------===//
1317// Instructions for Thread Local Storage(TLS).
1318//===----------------------------------------------------------------------===//
1319let isCodeGenOnly = 1, isAsmParserOnly = 1 in {
1320def TLS_ADDrr : F3_1<2, 0b000000,
1321                    (outs IntRegs:$rd),
1322                    (ins IntRegs:$rs1, IntRegs:$rs2, TLSSym:$sym),
1323                    "add $rs1, $rs2, $rd, $sym",
1324                    [(set i32:$rd,
1325                        (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>;
1326
1327let mayLoad = 1 in
1328  def TLS_LDrr : F3_1<3, 0b000000,
1329                      (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
1330                      "ld [$addr], $dst, $sym",
1331                      [(set i32:$dst,
1332                          (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
1333
1334let Uses = [O6], isCall = 1, hasDelaySlot = 1 in
1335  def TLS_CALL : InstSP<(outs),
1336                        (ins calltarget:$disp, TLSSym:$sym, variable_ops),
1337                        "call $disp, $sym",
1338                        [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)],
1339                        IIC_jmp_or_call> {
1340  bits<30> disp;
1341  let op = 1;
1342  let Inst{29-0} = disp;
1343}
1344}
1345
1346//===----------------------------------------------------------------------===//
1347// V9 Instructions
1348//===----------------------------------------------------------------------===//
1349
1350// V9 Conditional Moves.
1351let Predicates = [HasV9], Constraints = "$f = $rd" in {
1352  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
1353  let Uses = [ICC], intcc = 1, cc = 0b00 in {
1354    def MOVICCrr
1355      : F4_1<0b101100, (outs IntRegs:$rd),
1356             (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
1357             "mov$cond %icc, $rs2, $rd",
1358             [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>;
1359
1360    def MOVICCri
1361      : F4_2<0b101100, (outs IntRegs:$rd),
1362             (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
1363             "mov$cond %icc, $simm11, $rd",
1364             [(set i32:$rd,
1365                    (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>;
1366  }
1367
1368  let Uses = [FCC0], intcc = 0, cc = 0b00 in {
1369    def MOVFCCrr
1370      : F4_1<0b101100, (outs IntRegs:$rd),
1371             (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
1372             "mov$cond %fcc0, $rs2, $rd",
1373             [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>;
1374    def MOVFCCri
1375      : F4_2<0b101100, (outs IntRegs:$rd),
1376             (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
1377             "mov$cond %fcc0, $simm11, $rd",
1378             [(set i32:$rd,
1379                    (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>;
1380  }
1381
1382  let Uses = [ICC], intcc = 1, opf_cc = 0b00 in {
1383    def FMOVS_ICC
1384      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
1385             (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
1386             "fmovs$cond %icc, $rs2, $rd",
1387             [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>;
1388    def FMOVD_ICC
1389      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
1390               (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
1391               "fmovd$cond %icc, $rs2, $rd",
1392               [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>;
1393    def FMOVQ_ICC
1394      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
1395               (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
1396               "fmovq$cond %icc, $rs2, $rd",
1397               [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>,
1398               Requires<[HasHardQuad]>;
1399  }
1400
1401  let Uses = [FCC0], intcc = 0, opf_cc = 0b00 in {
1402    def FMOVS_FCC
1403      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
1404             (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
1405             "fmovs$cond %fcc0, $rs2, $rd",
1406             [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>;
1407    def FMOVD_FCC
1408      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
1409             (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
1410             "fmovd$cond %fcc0, $rs2, $rd",
1411             [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>;
1412    def FMOVQ_FCC
1413      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
1414             (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
1415             "fmovq$cond %fcc0, $rs2, $rd",
1416             [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>,
1417             Requires<[HasHardQuad]>;
1418  }
1419
1420}
1421
1422// Floating-Point Move Instructions, p. 164 of the V9 manual.
1423let Predicates = [HasV9] in {
1424  def FMOVD : F3_3u<2, 0b110100, 0b000000010,
1425                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
1426                   "fmovd $rs2, $rd", []>;
1427  def FMOVQ : F3_3u<2, 0b110100, 0b000000011,
1428                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
1429                   "fmovq $rs2, $rd", []>,
1430                   Requires<[HasHardQuad]>;
1431  def FNEGD : F3_3u<2, 0b110100, 0b000000110,
1432                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
1433                   "fnegd $rs2, $rd",
1434                   [(set f64:$rd, (fneg f64:$rs2))]>;
1435  def FNEGQ : F3_3u<2, 0b110100, 0b000000111,
1436                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
1437                   "fnegq $rs2, $rd",
1438                   [(set f128:$rd, (fneg f128:$rs2))]>,
1439                   Requires<[HasHardQuad]>;
1440  def FABSD : F3_3u<2, 0b110100, 0b000001010,
1441                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
1442                   "fabsd $rs2, $rd",
1443                   [(set f64:$rd, (fabs f64:$rs2))]>;
1444  def FABSQ : F3_3u<2, 0b110100, 0b000001011,
1445                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
1446                   "fabsq $rs2, $rd",
1447                   [(set f128:$rd, (fabs f128:$rs2))]>,
1448                   Requires<[HasHardQuad]>;
1449}
1450
1451// Floating-point compare instruction with %fcc0-%fcc3.
1452def V9FCMPS  : F3_3c<2, 0b110101, 0b001010001,
1453               (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1454               "fcmps $rd, $rs1, $rs2", []>;
1455def V9FCMPD  : F3_3c<2, 0b110101, 0b001010010,
1456                (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1457                "fcmpd $rd, $rs1, $rs2", []>;
1458def V9FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
1459                (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1460                "fcmpq $rd, $rs1, $rs2", []>,
1461                 Requires<[HasHardQuad]>;
1462
1463let hasSideEffects = 1 in {
1464  def V9FCMPES  : F3_3c<2, 0b110101, 0b001010101,
1465                   (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1466                   "fcmpes $rd, $rs1, $rs2", []>;
1467  def V9FCMPED  : F3_3c<2, 0b110101, 0b001010110,
1468                   (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1469                   "fcmped $rd, $rs1, $rs2", []>;
1470  def V9FCMPEQ  : F3_3c<2, 0b110101, 0b001010111,
1471                   (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1472                   "fcmpeq $rd, $rs1, $rs2", []>,
1473                   Requires<[HasHardQuad]>;
1474}
1475
1476// Floating point conditional move instrucitons with %fcc0-%fcc3.
1477let Predicates = [HasV9] in {
1478  let Constraints = "$f = $rd", intcc = 0 in {
1479    def V9MOVFCCrr
1480      : F4_1<0b101100, (outs IntRegs:$rd),
1481             (ins FCCRegs:$cc, IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
1482             "mov$cond $cc, $rs2, $rd", []>;
1483    def V9MOVFCCri
1484      : F4_2<0b101100, (outs IntRegs:$rd),
1485             (ins FCCRegs:$cc, i32imm:$simm11, IntRegs:$f, CCOp:$cond),
1486             "mov$cond $cc, $simm11, $rd", []>;
1487    def V9FMOVS_FCC
1488      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
1489             (ins FCCRegs:$opf_cc, FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
1490             "fmovs$cond $opf_cc, $rs2, $rd", []>;
1491    def V9FMOVD_FCC
1492      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
1493             (ins FCCRegs:$opf_cc, DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
1494             "fmovd$cond $opf_cc, $rs2, $rd", []>;
1495    def V9FMOVQ_FCC
1496      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
1497             (ins FCCRegs:$opf_cc, QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
1498             "fmovq$cond $opf_cc, $rs2, $rd", []>,
1499             Requires<[HasHardQuad]>;
1500  } // Constraints = "$f = $rd", ...
1501} // let Predicates = [hasV9]
1502
1503
1504// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
1505// the top 32-bits before using it.  To do this clearing, we use a SRLri X,0.
1506let rs1 = 0 in
1507  def POPCrr : F3_1<2, 0b101110,
1508                    (outs IntRegs:$rd), (ins IntRegs:$rs2),
1509                    "popc $rs2, $rd", []>, Requires<[HasV9]>;
1510def : Pat<(ctpop i32:$src),
1511          (POPCrr (SRLri $src, 0))>;
1512
1513let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in
1514 def MEMBARi : F3_2<2, 0b101000, (outs), (ins simm13Op:$simm13),
1515                    "membar $simm13", []>;
1516
1517// The CAS instruction, unlike other instructions, only comes in a
1518// form which requires an ASI be provided. The ASI value hardcoded
1519// here is ASI_PRIMARY, the default unprivileged ASI for SparcV9.
1520let Predicates = [HasV9], Constraints = "$swap = $rd", asi = 0b10000000 in
1521  def CASrr: F3_1_asi<3, 0b111100,
1522                (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
1523                                     IntRegs:$swap),
1524                 "cas [$rs1], $rs2, $rd",
1525                 [(set i32:$rd,
1526                     (atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>;
1527
1528
1529// CASA is supported as an instruction on some LEON3 and all LEON4 processors.
1530// This version can be automatically lowered from C code, selecting ASI 10
1531let Predicates = [HasLeonCASA], Constraints = "$swap = $rd", asi = 0b00001010 in
1532  def CASAasi10: F3_1_asi<3, 0b111100,
1533                (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
1534                                     IntRegs:$swap),
1535                 "casa [$rs1] 10, $rs2, $rd",
1536                 [(set i32:$rd,
1537                     (atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>;
1538
1539// CASA supported on some LEON3 and all LEON4 processors. Same pattern as
1540// CASrr, above, but with a different ASI. This version is supported for
1541// inline assembly lowering only.
1542let Predicates = [HasLeonCASA], Constraints = "$swap = $rd" in
1543  def CASArr: F3_1_asi<3, 0b111100,
1544                (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
1545                                     IntRegs:$swap, i8imm:$asi),
1546                 "casa [$rs1] $asi, $rs2, $rd", []>;
1547
1548// TODO: Add DAG sequence to lower these instructions. Currently, only provided
1549// as inline assembler-supported instructions.
1550let Predicates = [HasUMAC_SMAC], Defs = [Y, ASR18], Uses = [Y, ASR18] in {
1551  def SMACrr :  F3_1<2, 0b111111,
1552                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18),
1553                   "smac $rs1, $rs2, $rd",
1554                   [], IIC_smac_umac>;
1555
1556  def SMACri :  F3_2<2, 0b111111,
1557                  (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18),
1558                   "smac $rs1, $simm13, $rd",
1559                   [], IIC_smac_umac>;
1560
1561  def UMACrr :  F3_1<2, 0b111110,
1562                  (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18),
1563                   "umac $rs1, $rs2, $rd",
1564                   [], IIC_smac_umac>;
1565
1566  def UMACri :  F3_2<2, 0b111110,
1567                  (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18),
1568                   "umac $rs1, $simm13, $rd",
1569                   [], IIC_smac_umac>;
1570}
1571
1572let Defs = [ICC] in {
1573defm TADDCC   : F3_12np<"taddcc",   0b100000>;
1574defm TSUBCC   : F3_12np<"tsubcc",   0b100001>;
1575
1576let hasSideEffects = 1 in {
1577  defm TADDCCTV : F3_12np<"taddcctv", 0b100010>;
1578  defm TSUBCCTV : F3_12np<"tsubcctv", 0b100011>;
1579}
1580}
1581
1582
1583// Section A.43 - Read Privileged Register Instructions
1584let Predicates = [HasV9] in {
1585let rs2 = 0 in
1586  def RDPR : F3_1<2, 0b101010,
1587                 (outs IntRegs:$rd), (ins PRRegs:$rs1),
1588                 "rdpr $rs1, $rd", []>;
1589}
1590
1591// Section A.62 - Write Privileged Register Instructions
1592let Predicates = [HasV9] in {
1593  def WRPRrr : F3_1<2, 0b110010,
1594                   (outs PRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
1595                   "wrpr $rs1, $rs2, $rd", []>;
1596  def WRPRri : F3_2<2, 0b110010,
1597                   (outs PRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
1598                   "wrpr $rs1, $simm13, $rd", []>;
1599}
1600
1601//===----------------------------------------------------------------------===//
1602// Non-Instruction Patterns
1603//===----------------------------------------------------------------------===//
1604
1605// Zero immediate.
1606def : Pat<(i32 0),
1607          (ORrr (i32 G0), (i32 G0))>;
1608// Small immediates.
1609def : Pat<(i32 simm13:$val),
1610          (ORri (i32 G0), imm:$val)>;
1611// Arbitrary immediates.
1612def : Pat<(i32 imm:$val),
1613          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
1614
1615
1616// Global addresses, constant pool entries
1617let Predicates = [Is32Bit] in {
1618
1619def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
1620def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>;
1621def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
1622def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>;
1623
1624// GlobalTLS addresses
1625def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
1626def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>;
1627def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
1628          (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
1629def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
1630          (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
1631
1632// Blockaddress
1633def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
1634def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>;
1635
1636// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
1637def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>;
1638def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDri $r, tconstpool:$in)>;
1639def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
1640                        (ADDri $r, tblockaddress:$in)>;
1641}
1642
1643// Calls:
1644def : Pat<(call tglobaladdr:$dst),
1645          (CALL tglobaladdr:$dst)>;
1646def : Pat<(call texternalsym:$dst),
1647          (CALL texternalsym:$dst)>;
1648
1649// Map integer extload's to zextloads.
1650def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1651def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1652def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1653def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1654def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
1655def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
1656
1657// zextload bool -> zextload byte
1658def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1659def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1660
1661// store 0, addr -> store %g0, addr
1662def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>;
1663def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>;
1664
1665// store bar for all atomic_fence in V8.
1666let Predicates = [HasNoV9] in
1667  def : Pat<(atomic_fence imm, imm), (STBAR)>;
1668
1669// atomic_load addr -> load addr
1670def : Pat<(i32 (atomic_load_8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1671def : Pat<(i32 (atomic_load_8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1672def : Pat<(i32 (atomic_load_16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
1673def : Pat<(i32 (atomic_load_16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
1674def : Pat<(i32 (atomic_load_32 ADDRrr:$src)), (LDrr ADDRrr:$src)>;
1675def : Pat<(i32 (atomic_load_32 ADDRri:$src)), (LDri ADDRri:$src)>;
1676
1677// atomic_store val, addr -> store val, addr
1678def : Pat<(atomic_store_8 ADDRrr:$dst, i32:$val), (STBrr ADDRrr:$dst, $val)>;
1679def : Pat<(atomic_store_8 ADDRri:$dst, i32:$val), (STBri ADDRri:$dst, $val)>;
1680def : Pat<(atomic_store_16 ADDRrr:$dst, i32:$val), (STHrr ADDRrr:$dst, $val)>;
1681def : Pat<(atomic_store_16 ADDRri:$dst, i32:$val), (STHri ADDRri:$dst, $val)>;
1682def : Pat<(atomic_store_32 ADDRrr:$dst, i32:$val), (STrr ADDRrr:$dst, $val)>;
1683def : Pat<(atomic_store_32 ADDRri:$dst, i32:$val), (STri ADDRri:$dst, $val)>;
1684
1685// extract_vector
1686def : Pat<(extractelt (v2i32 IntPair:$Rn), 0),
1687          (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_even))>;
1688def : Pat<(extractelt (v2i32 IntPair:$Rn), 1),
1689          (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_odd))>;
1690
1691// build_vector
1692def : Pat<(build_vector (i32 IntRegs:$a1), (i32 IntRegs:$a2)),
1693          (INSERT_SUBREG
1694	    (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (i32 IntRegs:$a1), sub_even),
1695            (i32 IntRegs:$a2), sub_odd)>;
1696
1697
1698include "SparcInstr64Bit.td"
1699include "SparcInstrVIS.td"
1700include "SparcInstrAliases.td"
1701