1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SystemZTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SystemZISelLowering.h"
15 #include "SystemZCallingConv.h"
16 #include "SystemZConstantPoolValue.h"
17 #include "SystemZMachineFunctionInfo.h"
18 #include "SystemZTargetMachine.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28
29 using namespace llvm;
30
31 #define DEBUG_TYPE "systemz-lower"
32
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
Comparison__anonc28d03810111::Comparison36 Comparison(SDValue Op0In, SDValue Op1In)
37 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
38
39 // The operands to the comparison.
40 SDValue Op0, Op1;
41
42 // The opcode that should be used to compare Op0 and Op1.
43 unsigned Opcode;
44
45 // A SystemZICMP value. Only used for integer comparisons.
46 unsigned ICmpType;
47
48 // The mask of CC values that Opcode can produce.
49 unsigned CCValid;
50
51 // The mask of CC values for which the original condition is true.
52 unsigned CCMask;
53 };
54 } // end anonymous namespace
55
56 // Classify VT as either 32 or 64 bit.
is32Bit(EVT VT)57 static bool is32Bit(EVT VT) {
58 switch (VT.getSimpleVT().SimpleTy) {
59 case MVT::i32:
60 return true;
61 case MVT::i64:
62 return false;
63 default:
64 llvm_unreachable("Unsupported type");
65 }
66 }
67
68 // Return a version of MachineOperand that can be safely used before the
69 // final use.
earlyUseOperand(MachineOperand Op)70 static MachineOperand earlyUseOperand(MachineOperand Op) {
71 if (Op.isReg())
72 Op.setIsKill(false);
73 return Op;
74 }
75
SystemZTargetLowering(const TargetMachine & TM,const SystemZSubtarget & STI)76 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
77 const SystemZSubtarget &STI)
78 : TargetLowering(TM), Subtarget(STI) {
79 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
80
81 // Set up the register classes.
82 if (Subtarget.hasHighWord())
83 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
84 else
85 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
86 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
87 if (Subtarget.hasVector()) {
88 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
89 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
90 } else {
91 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
92 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
93 }
94 if (Subtarget.hasVectorEnhancements1())
95 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
96 else
97 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
98
99 if (Subtarget.hasVector()) {
100 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
101 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
102 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
103 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
104 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
105 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
106 }
107
108 // Compute derived properties from the register classes
109 computeRegisterProperties(Subtarget.getRegisterInfo());
110
111 // Set up special registers.
112 setStackPointerRegisterToSaveRestore(SystemZ::R15D);
113
114 // TODO: It may be better to default to latency-oriented scheduling, however
115 // LLVM's current latency-oriented scheduler can't handle physreg definitions
116 // such as SystemZ has with CC, so set this to the register-pressure
117 // scheduler, because it can.
118 setSchedulingPreference(Sched::RegPressure);
119
120 setBooleanContents(ZeroOrOneBooleanContent);
121 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
122
123 // Instructions are strings of 2-byte aligned 2-byte values.
124 setMinFunctionAlignment(2);
125 // For performance reasons we prefer 16-byte alignment.
126 setPrefFunctionAlignment(4);
127
128 // Handle operations that are handled in a similar way for all types.
129 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
130 I <= MVT::LAST_FP_VALUETYPE;
131 ++I) {
132 MVT VT = MVT::SimpleValueType(I);
133 if (isTypeLegal(VT)) {
134 // Lower SET_CC into an IPM-based sequence.
135 setOperationAction(ISD::SETCC, VT, Custom);
136
137 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
138 setOperationAction(ISD::SELECT, VT, Expand);
139
140 // Lower SELECT_CC and BR_CC into separate comparisons and branches.
141 setOperationAction(ISD::SELECT_CC, VT, Custom);
142 setOperationAction(ISD::BR_CC, VT, Custom);
143 }
144 }
145
146 // Expand jump table branches as address arithmetic followed by an
147 // indirect jump.
148 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
149
150 // Expand BRCOND into a BR_CC (see above).
151 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
152
153 // Handle integer types.
154 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
155 I <= MVT::LAST_INTEGER_VALUETYPE;
156 ++I) {
157 MVT VT = MVT::SimpleValueType(I);
158 if (isTypeLegal(VT)) {
159 // Expand individual DIV and REMs into DIVREMs.
160 setOperationAction(ISD::SDIV, VT, Expand);
161 setOperationAction(ISD::UDIV, VT, Expand);
162 setOperationAction(ISD::SREM, VT, Expand);
163 setOperationAction(ISD::UREM, VT, Expand);
164 setOperationAction(ISD::SDIVREM, VT, Custom);
165 setOperationAction(ISD::UDIVREM, VT, Custom);
166
167 // Support addition/subtraction with overflow.
168 setOperationAction(ISD::SADDO, VT, Custom);
169 setOperationAction(ISD::SSUBO, VT, Custom);
170
171 // Support addition/subtraction with carry.
172 setOperationAction(ISD::UADDO, VT, Custom);
173 setOperationAction(ISD::USUBO, VT, Custom);
174
175 // Support carry in as value rather than glue.
176 setOperationAction(ISD::ADDCARRY, VT, Custom);
177 setOperationAction(ISD::SUBCARRY, VT, Custom);
178
179 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
180 // stores, putting a serialization instruction after the stores.
181 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom);
182 setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
183
184 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
185 // available, or if the operand is constant.
186 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
187
188 // Use POPCNT on z196 and above.
189 if (Subtarget.hasPopulationCount())
190 setOperationAction(ISD::CTPOP, VT, Custom);
191 else
192 setOperationAction(ISD::CTPOP, VT, Expand);
193
194 // No special instructions for these.
195 setOperationAction(ISD::CTTZ, VT, Expand);
196 setOperationAction(ISD::ROTR, VT, Expand);
197
198 // Use *MUL_LOHI where possible instead of MULH*.
199 setOperationAction(ISD::MULHS, VT, Expand);
200 setOperationAction(ISD::MULHU, VT, Expand);
201 setOperationAction(ISD::SMUL_LOHI, VT, Custom);
202 setOperationAction(ISD::UMUL_LOHI, VT, Custom);
203
204 // Only z196 and above have native support for conversions to unsigned.
205 // On z10, promoting to i64 doesn't generate an inexact condition for
206 // values that are outside the i32 range but in the i64 range, so use
207 // the default expansion.
208 if (!Subtarget.hasFPExtension())
209 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
210 }
211 }
212
213 // Type legalization will convert 8- and 16-bit atomic operations into
214 // forms that operate on i32s (but still keeping the original memory VT).
215 // Lower them into full i32 operations.
216 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom);
217 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom);
218 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
219 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
220 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom);
221 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom);
222 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
223 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom);
224 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom);
225 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
226 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
227
228 // Even though i128 is not a legal type, we still need to custom lower
229 // the atomic operations in order to exploit SystemZ instructions.
230 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom);
231 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom);
232
233 // We can use the CC result of compare-and-swap to implement
234 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
235 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
236 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
237 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
238
239 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
240
241 // Traps are legal, as we will convert them to "j .+2".
242 setOperationAction(ISD::TRAP, MVT::Other, Legal);
243
244 // z10 has instructions for signed but not unsigned FP conversion.
245 // Handle unsigned 32-bit types as signed 64-bit types.
246 if (!Subtarget.hasFPExtension()) {
247 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
248 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
249 }
250
251 // We have native support for a 64-bit CTLZ, via FLOGR.
252 setOperationAction(ISD::CTLZ, MVT::i32, Promote);
253 setOperationAction(ISD::CTLZ, MVT::i64, Legal);
254
255 // Give LowerOperation the chance to replace 64-bit ORs with subregs.
256 setOperationAction(ISD::OR, MVT::i64, Custom);
257
258 // FIXME: Can we support these natively?
259 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
260 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
261 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
262
263 // We have native instructions for i8, i16 and i32 extensions, but not i1.
264 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
265 for (MVT VT : MVT::integer_valuetypes()) {
266 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
267 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
268 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
269 }
270
271 // Handle the various types of symbolic address.
272 setOperationAction(ISD::ConstantPool, PtrVT, Custom);
273 setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
274 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
275 setOperationAction(ISD::BlockAddress, PtrVT, Custom);
276 setOperationAction(ISD::JumpTable, PtrVT, Custom);
277
278 // We need to handle dynamic allocations specially because of the
279 // 160-byte area at the bottom of the stack.
280 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
281 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
282
283 // Use custom expanders so that we can force the function to use
284 // a frame pointer.
285 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
286 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
287
288 // Handle prefetches with PFD or PFDRL.
289 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
290
291 for (MVT VT : MVT::vector_valuetypes()) {
292 // Assume by default that all vector operations need to be expanded.
293 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
294 if (getOperationAction(Opcode, VT) == Legal)
295 setOperationAction(Opcode, VT, Expand);
296
297 // Likewise all truncating stores and extending loads.
298 for (MVT InnerVT : MVT::vector_valuetypes()) {
299 setTruncStoreAction(VT, InnerVT, Expand);
300 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
301 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
302 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
303 }
304
305 if (isTypeLegal(VT)) {
306 // These operations are legal for anything that can be stored in a
307 // vector register, even if there is no native support for the format
308 // as such. In particular, we can do these for v4f32 even though there
309 // are no specific instructions for that format.
310 setOperationAction(ISD::LOAD, VT, Legal);
311 setOperationAction(ISD::STORE, VT, Legal);
312 setOperationAction(ISD::VSELECT, VT, Legal);
313 setOperationAction(ISD::BITCAST, VT, Legal);
314 setOperationAction(ISD::UNDEF, VT, Legal);
315
316 // Likewise, except that we need to replace the nodes with something
317 // more specific.
318 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
319 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
320 }
321 }
322
323 // Handle integer vector types.
324 for (MVT VT : MVT::integer_vector_valuetypes()) {
325 if (isTypeLegal(VT)) {
326 // These operations have direct equivalents.
327 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
328 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
329 setOperationAction(ISD::ADD, VT, Legal);
330 setOperationAction(ISD::SUB, VT, Legal);
331 if (VT != MVT::v2i64)
332 setOperationAction(ISD::MUL, VT, Legal);
333 setOperationAction(ISD::AND, VT, Legal);
334 setOperationAction(ISD::OR, VT, Legal);
335 setOperationAction(ISD::XOR, VT, Legal);
336 if (Subtarget.hasVectorEnhancements1())
337 setOperationAction(ISD::CTPOP, VT, Legal);
338 else
339 setOperationAction(ISD::CTPOP, VT, Custom);
340 setOperationAction(ISD::CTTZ, VT, Legal);
341 setOperationAction(ISD::CTLZ, VT, Legal);
342
343 // Convert a GPR scalar to a vector by inserting it into element 0.
344 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
345
346 // Use a series of unpacks for extensions.
347 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
348 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
349
350 // Detect shifts by a scalar amount and convert them into
351 // V*_BY_SCALAR.
352 setOperationAction(ISD::SHL, VT, Custom);
353 setOperationAction(ISD::SRA, VT, Custom);
354 setOperationAction(ISD::SRL, VT, Custom);
355
356 // At present ROTL isn't matched by DAGCombiner. ROTR should be
357 // converted into ROTL.
358 setOperationAction(ISD::ROTL, VT, Expand);
359 setOperationAction(ISD::ROTR, VT, Expand);
360
361 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
362 // and inverting the result as necessary.
363 setOperationAction(ISD::SETCC, VT, Custom);
364 }
365 }
366
367 if (Subtarget.hasVector()) {
368 // There should be no need to check for float types other than v2f64
369 // since <2 x f32> isn't a legal type.
370 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
371 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
372 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
373 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
374 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
375 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
376 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
377 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
378 }
379
380 // Handle floating-point types.
381 for (unsigned I = MVT::FIRST_FP_VALUETYPE;
382 I <= MVT::LAST_FP_VALUETYPE;
383 ++I) {
384 MVT VT = MVT::SimpleValueType(I);
385 if (isTypeLegal(VT)) {
386 // We can use FI for FRINT.
387 setOperationAction(ISD::FRINT, VT, Legal);
388
389 // We can use the extended form of FI for other rounding operations.
390 if (Subtarget.hasFPExtension()) {
391 setOperationAction(ISD::FNEARBYINT, VT, Legal);
392 setOperationAction(ISD::FFLOOR, VT, Legal);
393 setOperationAction(ISD::FCEIL, VT, Legal);
394 setOperationAction(ISD::FTRUNC, VT, Legal);
395 setOperationAction(ISD::FROUND, VT, Legal);
396 }
397
398 // No special instructions for these.
399 setOperationAction(ISD::FSIN, VT, Expand);
400 setOperationAction(ISD::FCOS, VT, Expand);
401 setOperationAction(ISD::FSINCOS, VT, Expand);
402 setOperationAction(ISD::FREM, VT, Expand);
403 setOperationAction(ISD::FPOW, VT, Expand);
404 }
405 }
406
407 // Handle floating-point vector types.
408 if (Subtarget.hasVector()) {
409 // Scalar-to-vector conversion is just a subreg.
410 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
411 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
412
413 // Some insertions and extractions can be done directly but others
414 // need to go via integers.
415 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
416 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
417 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
418 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
419
420 // These operations have direct equivalents.
421 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
422 setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
423 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
424 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
425 setOperationAction(ISD::FMA, MVT::v2f64, Legal);
426 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
427 setOperationAction(ISD::FABS, MVT::v2f64, Legal);
428 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
429 setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
430 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
431 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
432 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
433 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
434 setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
435 }
436
437 // The vector enhancements facility 1 has instructions for these.
438 if (Subtarget.hasVectorEnhancements1()) {
439 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
440 setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
441 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
442 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
443 setOperationAction(ISD::FMA, MVT::v4f32, Legal);
444 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
445 setOperationAction(ISD::FABS, MVT::v4f32, Legal);
446 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
447 setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
448 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
449 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
450 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
451 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
452 setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
453
454 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
455 setOperationAction(ISD::FMAXNAN, MVT::f64, Legal);
456 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
457 setOperationAction(ISD::FMINNAN, MVT::f64, Legal);
458
459 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
460 setOperationAction(ISD::FMAXNAN, MVT::v2f64, Legal);
461 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
462 setOperationAction(ISD::FMINNAN, MVT::v2f64, Legal);
463
464 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
465 setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
466 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
467 setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
468
469 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
470 setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
471 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
472 setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
473
474 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
475 setOperationAction(ISD::FMAXNAN, MVT::f128, Legal);
476 setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
477 setOperationAction(ISD::FMINNAN, MVT::f128, Legal);
478 }
479
480 // We have fused multiply-addition for f32 and f64 but not f128.
481 setOperationAction(ISD::FMA, MVT::f32, Legal);
482 setOperationAction(ISD::FMA, MVT::f64, Legal);
483 if (Subtarget.hasVectorEnhancements1())
484 setOperationAction(ISD::FMA, MVT::f128, Legal);
485 else
486 setOperationAction(ISD::FMA, MVT::f128, Expand);
487
488 // We don't have a copysign instruction on vector registers.
489 if (Subtarget.hasVectorEnhancements1())
490 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
491
492 // Needed so that we don't try to implement f128 constant loads using
493 // a load-and-extend of a f80 constant (in cases where the constant
494 // would fit in an f80).
495 for (MVT VT : MVT::fp_valuetypes())
496 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
497
498 // We don't have extending load instruction on vector registers.
499 if (Subtarget.hasVectorEnhancements1()) {
500 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
501 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
502 }
503
504 // Floating-point truncation and stores need to be done separately.
505 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
506 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
507 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
508
509 // We have 64-bit FPR<->GPR moves, but need special handling for
510 // 32-bit forms.
511 if (!Subtarget.hasVector()) {
512 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
513 setOperationAction(ISD::BITCAST, MVT::f32, Custom);
514 }
515
516 // VASTART and VACOPY need to deal with the SystemZ-specific varargs
517 // structure, but VAEND is a no-op.
518 setOperationAction(ISD::VASTART, MVT::Other, Custom);
519 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
520 setOperationAction(ISD::VAEND, MVT::Other, Expand);
521
522 // Codes for which we want to perform some z-specific combinations.
523 setTargetDAGCombine(ISD::ZERO_EXTEND);
524 setTargetDAGCombine(ISD::SIGN_EXTEND);
525 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
526 setTargetDAGCombine(ISD::STORE);
527 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
528 setTargetDAGCombine(ISD::FP_ROUND);
529 setTargetDAGCombine(ISD::BSWAP);
530
531 // Handle intrinsics.
532 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
533 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
534
535 // We want to use MVC in preference to even a single load/store pair.
536 MaxStoresPerMemcpy = 0;
537 MaxStoresPerMemcpyOptSize = 0;
538
539 // The main memset sequence is a byte store followed by an MVC.
540 // Two STC or MV..I stores win over that, but the kind of fused stores
541 // generated by target-independent code don't when the byte value is
542 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better
543 // than "STC;MVC". Handle the choice in target-specific code instead.
544 MaxStoresPerMemset = 0;
545 MaxStoresPerMemsetOptSize = 0;
546 }
547
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const548 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
549 LLVMContext &, EVT VT) const {
550 if (!VT.isVector())
551 return MVT::i32;
552 return VT.changeVectorElementTypeToInteger();
553 }
554
isFMAFasterThanFMulAndFAdd(EVT VT) const555 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
556 VT = VT.getScalarType();
557
558 if (!VT.isSimple())
559 return false;
560
561 switch (VT.getSimpleVT().SimpleTy) {
562 case MVT::f32:
563 case MVT::f64:
564 return true;
565 case MVT::f128:
566 return Subtarget.hasVectorEnhancements1();
567 default:
568 break;
569 }
570
571 return false;
572 }
573
isFPImmLegal(const APFloat & Imm,EVT VT) const574 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
575 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
576 return Imm.isZero() || Imm.isNegZero();
577 }
578
isLegalICmpImmediate(int64_t Imm) const579 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
580 // We can use CGFI or CLGFI.
581 return isInt<32>(Imm) || isUInt<32>(Imm);
582 }
583
isLegalAddImmediate(int64_t Imm) const584 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
585 // We can use ALGFI or SLGFI.
586 return isUInt<32>(Imm) || isUInt<32>(-Imm);
587 }
588
allowsMisalignedMemoryAccesses(EVT VT,unsigned,unsigned,bool * Fast) const589 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
590 unsigned,
591 unsigned,
592 bool *Fast) const {
593 // Unaligned accesses should never be slower than the expanded version.
594 // We check specifically for aligned accesses in the few cases where
595 // they are required.
596 if (Fast)
597 *Fast = true;
598 return true;
599 }
600
601 // Information about the addressing mode for a memory access.
602 struct AddressingMode {
603 // True if a long displacement is supported.
604 bool LongDisplacement;
605
606 // True if use of index register is supported.
607 bool IndexReg;
608
AddressingModeAddressingMode609 AddressingMode(bool LongDispl, bool IdxReg) :
610 LongDisplacement(LongDispl), IndexReg(IdxReg) {}
611 };
612
613 // Return the desired addressing mode for a Load which has only one use (in
614 // the same block) which is a Store.
getLoadStoreAddrMode(bool HasVector,Type * Ty)615 static AddressingMode getLoadStoreAddrMode(bool HasVector,
616 Type *Ty) {
617 // With vector support a Load->Store combination may be combined to either
618 // an MVC or vector operations and it seems to work best to allow the
619 // vector addressing mode.
620 if (HasVector)
621 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
622
623 // Otherwise only the MVC case is special.
624 bool MVC = Ty->isIntegerTy(8);
625 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
626 }
627
628 // Return the addressing mode which seems most desirable given an LLVM
629 // Instruction pointer.
630 static AddressingMode
supportedAddressingMode(Instruction * I,bool HasVector)631 supportedAddressingMode(Instruction *I, bool HasVector) {
632 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
633 switch (II->getIntrinsicID()) {
634 default: break;
635 case Intrinsic::memset:
636 case Intrinsic::memmove:
637 case Intrinsic::memcpy:
638 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
639 }
640 }
641
642 if (isa<LoadInst>(I) && I->hasOneUse()) {
643 auto *SingleUser = dyn_cast<Instruction>(*I->user_begin());
644 if (SingleUser->getParent() == I->getParent()) {
645 if (isa<ICmpInst>(SingleUser)) {
646 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
647 if (C->getBitWidth() <= 64 &&
648 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
649 // Comparison of memory with 16 bit signed / unsigned immediate
650 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
651 } else if (isa<StoreInst>(SingleUser))
652 // Load->Store
653 return getLoadStoreAddrMode(HasVector, I->getType());
654 }
655 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
656 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
657 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
658 // Load->Store
659 return getLoadStoreAddrMode(HasVector, LoadI->getType());
660 }
661
662 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
663
664 // * Use LDE instead of LE/LEY for z13 to avoid partial register
665 // dependencies (LDE only supports small offsets).
666 // * Utilize the vector registers to hold floating point
667 // values (vector load / store instructions only support small
668 // offsets).
669
670 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
671 I->getOperand(0)->getType());
672 bool IsFPAccess = MemAccessTy->isFloatingPointTy();
673 bool IsVectorAccess = MemAccessTy->isVectorTy();
674
675 // A store of an extracted vector element will be combined into a VSTE type
676 // instruction.
677 if (!IsVectorAccess && isa<StoreInst>(I)) {
678 Value *DataOp = I->getOperand(0);
679 if (isa<ExtractElementInst>(DataOp))
680 IsVectorAccess = true;
681 }
682
683 // A load which gets inserted into a vector element will be combined into a
684 // VLE type instruction.
685 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
686 User *LoadUser = *I->user_begin();
687 if (isa<InsertElementInst>(LoadUser))
688 IsVectorAccess = true;
689 }
690
691 if (IsFPAccess || IsVectorAccess)
692 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
693 }
694
695 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
696 }
697
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const698 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
699 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
700 // Punt on globals for now, although they can be used in limited
701 // RELATIVE LONG cases.
702 if (AM.BaseGV)
703 return false;
704
705 // Require a 20-bit signed offset.
706 if (!isInt<20>(AM.BaseOffs))
707 return false;
708
709 AddressingMode SupportedAM(true, true);
710 if (I != nullptr)
711 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
712
713 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
714 return false;
715
716 if (!SupportedAM.IndexReg)
717 // No indexing allowed.
718 return AM.Scale == 0;
719 else
720 // Indexing is OK but no scale factor can be applied.
721 return AM.Scale == 0 || AM.Scale == 1;
722 }
723
isTruncateFree(Type * FromType,Type * ToType) const724 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
725 if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
726 return false;
727 unsigned FromBits = FromType->getPrimitiveSizeInBits();
728 unsigned ToBits = ToType->getPrimitiveSizeInBits();
729 return FromBits > ToBits;
730 }
731
isTruncateFree(EVT FromVT,EVT ToVT) const732 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
733 if (!FromVT.isInteger() || !ToVT.isInteger())
734 return false;
735 unsigned FromBits = FromVT.getSizeInBits();
736 unsigned ToBits = ToVT.getSizeInBits();
737 return FromBits > ToBits;
738 }
739
740 //===----------------------------------------------------------------------===//
741 // Inline asm support
742 //===----------------------------------------------------------------------===//
743
744 TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const745 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
746 if (Constraint.size() == 1) {
747 switch (Constraint[0]) {
748 case 'a': // Address register
749 case 'd': // Data register (equivalent to 'r')
750 case 'f': // Floating-point register
751 case 'h': // High-part register
752 case 'r': // General-purpose register
753 case 'v': // Vector register
754 return C_RegisterClass;
755
756 case 'Q': // Memory with base and unsigned 12-bit displacement
757 case 'R': // Likewise, plus an index
758 case 'S': // Memory with base and signed 20-bit displacement
759 case 'T': // Likewise, plus an index
760 case 'm': // Equivalent to 'T'.
761 return C_Memory;
762
763 case 'I': // Unsigned 8-bit constant
764 case 'J': // Unsigned 12-bit constant
765 case 'K': // Signed 16-bit constant
766 case 'L': // Signed 20-bit displacement (on all targets we support)
767 case 'M': // 0x7fffffff
768 return C_Other;
769
770 default:
771 break;
772 }
773 }
774 return TargetLowering::getConstraintType(Constraint);
775 }
776
777 TargetLowering::ConstraintWeight SystemZTargetLowering::
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const778 getSingleConstraintMatchWeight(AsmOperandInfo &info,
779 const char *constraint) const {
780 ConstraintWeight weight = CW_Invalid;
781 Value *CallOperandVal = info.CallOperandVal;
782 // If we don't have a value, we can't do a match,
783 // but allow it at the lowest weight.
784 if (!CallOperandVal)
785 return CW_Default;
786 Type *type = CallOperandVal->getType();
787 // Look at the constraint type.
788 switch (*constraint) {
789 default:
790 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
791 break;
792
793 case 'a': // Address register
794 case 'd': // Data register (equivalent to 'r')
795 case 'h': // High-part register
796 case 'r': // General-purpose register
797 if (CallOperandVal->getType()->isIntegerTy())
798 weight = CW_Register;
799 break;
800
801 case 'f': // Floating-point register
802 if (type->isFloatingPointTy())
803 weight = CW_Register;
804 break;
805
806 case 'v': // Vector register
807 if ((type->isVectorTy() || type->isFloatingPointTy()) &&
808 Subtarget.hasVector())
809 weight = CW_Register;
810 break;
811
812 case 'I': // Unsigned 8-bit constant
813 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
814 if (isUInt<8>(C->getZExtValue()))
815 weight = CW_Constant;
816 break;
817
818 case 'J': // Unsigned 12-bit constant
819 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
820 if (isUInt<12>(C->getZExtValue()))
821 weight = CW_Constant;
822 break;
823
824 case 'K': // Signed 16-bit constant
825 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
826 if (isInt<16>(C->getSExtValue()))
827 weight = CW_Constant;
828 break;
829
830 case 'L': // Signed 20-bit displacement (on all targets we support)
831 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
832 if (isInt<20>(C->getSExtValue()))
833 weight = CW_Constant;
834 break;
835
836 case 'M': // 0x7fffffff
837 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
838 if (C->getZExtValue() == 0x7fffffff)
839 weight = CW_Constant;
840 break;
841 }
842 return weight;
843 }
844
845 // Parse a "{tNNN}" register constraint for which the register type "t"
846 // has already been verified. MC is the class associated with "t" and
847 // Map maps 0-based register numbers to LLVM register numbers.
848 static std::pair<unsigned, const TargetRegisterClass *>
parseRegisterNumber(StringRef Constraint,const TargetRegisterClass * RC,const unsigned * Map,unsigned Size)849 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
850 const unsigned *Map, unsigned Size) {
851 assert(*(Constraint.end()-1) == '}' && "Missing '}'");
852 if (isdigit(Constraint[2])) {
853 unsigned Index;
854 bool Failed =
855 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
856 if (!Failed && Index < Size && Map[Index])
857 return std::make_pair(Map[Index], RC);
858 }
859 return std::make_pair(0U, nullptr);
860 }
861
862 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const863 SystemZTargetLowering::getRegForInlineAsmConstraint(
864 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
865 if (Constraint.size() == 1) {
866 // GCC Constraint Letters
867 switch (Constraint[0]) {
868 default: break;
869 case 'd': // Data register (equivalent to 'r')
870 case 'r': // General-purpose register
871 if (VT == MVT::i64)
872 return std::make_pair(0U, &SystemZ::GR64BitRegClass);
873 else if (VT == MVT::i128)
874 return std::make_pair(0U, &SystemZ::GR128BitRegClass);
875 return std::make_pair(0U, &SystemZ::GR32BitRegClass);
876
877 case 'a': // Address register
878 if (VT == MVT::i64)
879 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
880 else if (VT == MVT::i128)
881 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
882 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
883
884 case 'h': // High-part register (an LLVM extension)
885 return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
886
887 case 'f': // Floating-point register
888 if (VT == MVT::f64)
889 return std::make_pair(0U, &SystemZ::FP64BitRegClass);
890 else if (VT == MVT::f128)
891 return std::make_pair(0U, &SystemZ::FP128BitRegClass);
892 return std::make_pair(0U, &SystemZ::FP32BitRegClass);
893
894 case 'v': // Vector register
895 if (Subtarget.hasVector()) {
896 if (VT == MVT::f32)
897 return std::make_pair(0U, &SystemZ::VR32BitRegClass);
898 if (VT == MVT::f64)
899 return std::make_pair(0U, &SystemZ::VR64BitRegClass);
900 return std::make_pair(0U, &SystemZ::VR128BitRegClass);
901 }
902 break;
903 }
904 }
905 if (Constraint.size() > 0 && Constraint[0] == '{') {
906 // We need to override the default register parsing for GPRs and FPRs
907 // because the interpretation depends on VT. The internal names of
908 // the registers are also different from the external names
909 // (F0D and F0S instead of F0, etc.).
910 if (Constraint[1] == 'r') {
911 if (VT == MVT::i32)
912 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
913 SystemZMC::GR32Regs, 16);
914 if (VT == MVT::i128)
915 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
916 SystemZMC::GR128Regs, 16);
917 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
918 SystemZMC::GR64Regs, 16);
919 }
920 if (Constraint[1] == 'f') {
921 if (VT == MVT::f32)
922 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
923 SystemZMC::FP32Regs, 16);
924 if (VT == MVT::f128)
925 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
926 SystemZMC::FP128Regs, 16);
927 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
928 SystemZMC::FP64Regs, 16);
929 }
930 if (Constraint[1] == 'v') {
931 if (VT == MVT::f32)
932 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
933 SystemZMC::VR32Regs, 32);
934 if (VT == MVT::f64)
935 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
936 SystemZMC::VR64Regs, 32);
937 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
938 SystemZMC::VR128Regs, 32);
939 }
940 }
941 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
942 }
943
944 void SystemZTargetLowering::
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const945 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
946 std::vector<SDValue> &Ops,
947 SelectionDAG &DAG) const {
948 // Only support length 1 constraints for now.
949 if (Constraint.length() == 1) {
950 switch (Constraint[0]) {
951 case 'I': // Unsigned 8-bit constant
952 if (auto *C = dyn_cast<ConstantSDNode>(Op))
953 if (isUInt<8>(C->getZExtValue()))
954 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
955 Op.getValueType()));
956 return;
957
958 case 'J': // Unsigned 12-bit constant
959 if (auto *C = dyn_cast<ConstantSDNode>(Op))
960 if (isUInt<12>(C->getZExtValue()))
961 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
962 Op.getValueType()));
963 return;
964
965 case 'K': // Signed 16-bit constant
966 if (auto *C = dyn_cast<ConstantSDNode>(Op))
967 if (isInt<16>(C->getSExtValue()))
968 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
969 Op.getValueType()));
970 return;
971
972 case 'L': // Signed 20-bit displacement (on all targets we support)
973 if (auto *C = dyn_cast<ConstantSDNode>(Op))
974 if (isInt<20>(C->getSExtValue()))
975 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
976 Op.getValueType()));
977 return;
978
979 case 'M': // 0x7fffffff
980 if (auto *C = dyn_cast<ConstantSDNode>(Op))
981 if (C->getZExtValue() == 0x7fffffff)
982 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
983 Op.getValueType()));
984 return;
985 }
986 }
987 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
988 }
989
990 //===----------------------------------------------------------------------===//
991 // Calling conventions
992 //===----------------------------------------------------------------------===//
993
994 #include "SystemZGenCallingConv.inc"
995
getScratchRegisters(CallingConv::ID) const996 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
997 CallingConv::ID) const {
998 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
999 SystemZ::R14D, 0 };
1000 return ScratchRegs;
1001 }
1002
allowTruncateForTailCall(Type * FromType,Type * ToType) const1003 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1004 Type *ToType) const {
1005 return isTruncateFree(FromType, ToType);
1006 }
1007
mayBeEmittedAsTailCall(const CallInst * CI) const1008 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1009 return CI->isTailCall();
1010 }
1011
1012 // We do not yet support 128-bit single-element vector types. If the user
1013 // attempts to use such types as function argument or return type, prefer
1014 // to error out instead of emitting code violating the ABI.
VerifyVectorType(MVT VT,EVT ArgVT)1015 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1016 if (ArgVT.isVector() && !VT.isVector())
1017 report_fatal_error("Unsupported vector argument or return type");
1018 }
1019
VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> & Ins)1020 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1021 for (unsigned i = 0; i < Ins.size(); ++i)
1022 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1023 }
1024
VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> & Outs)1025 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1026 for (unsigned i = 0; i < Outs.size(); ++i)
1027 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1028 }
1029
1030 // Value is a value that has been passed to us in the location described by VA
1031 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining
1032 // any loads onto Chain.
convertLocVTToValVT(SelectionDAG & DAG,const SDLoc & DL,CCValAssign & VA,SDValue Chain,SDValue Value)1033 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1034 CCValAssign &VA, SDValue Chain,
1035 SDValue Value) {
1036 // If the argument has been promoted from a smaller type, insert an
1037 // assertion to capture this.
1038 if (VA.getLocInfo() == CCValAssign::SExt)
1039 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1040 DAG.getValueType(VA.getValVT()));
1041 else if (VA.getLocInfo() == CCValAssign::ZExt)
1042 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1043 DAG.getValueType(VA.getValVT()));
1044
1045 if (VA.isExtInLoc())
1046 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1047 else if (VA.getLocInfo() == CCValAssign::BCvt) {
1048 // If this is a short vector argument loaded from the stack,
1049 // extend from i64 to full vector size and then bitcast.
1050 assert(VA.getLocVT() == MVT::i64);
1051 assert(VA.getValVT().isVector());
1052 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1053 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1054 } else
1055 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1056 return Value;
1057 }
1058
1059 // Value is a value of type VA.getValVT() that we need to copy into
1060 // the location described by VA. Return a copy of Value converted to
1061 // VA.getValVT(). The caller is responsible for handling indirect values.
convertValVTToLocVT(SelectionDAG & DAG,const SDLoc & DL,CCValAssign & VA,SDValue Value)1062 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1063 CCValAssign &VA, SDValue Value) {
1064 switch (VA.getLocInfo()) {
1065 case CCValAssign::SExt:
1066 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1067 case CCValAssign::ZExt:
1068 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1069 case CCValAssign::AExt:
1070 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1071 case CCValAssign::BCvt:
1072 // If this is a short vector argument to be stored to the stack,
1073 // bitcast to v2i64 and then extract first element.
1074 assert(VA.getLocVT() == MVT::i64);
1075 assert(VA.getValVT().isVector());
1076 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1077 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1078 DAG.getConstant(0, DL, MVT::i32));
1079 case CCValAssign::Full:
1080 return Value;
1081 default:
1082 llvm_unreachable("Unhandled getLocInfo()");
1083 }
1084 }
1085
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1086 SDValue SystemZTargetLowering::LowerFormalArguments(
1087 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1088 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1089 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1090 MachineFunction &MF = DAG.getMachineFunction();
1091 MachineFrameInfo &MFI = MF.getFrameInfo();
1092 MachineRegisterInfo &MRI = MF.getRegInfo();
1093 SystemZMachineFunctionInfo *FuncInfo =
1094 MF.getInfo<SystemZMachineFunctionInfo>();
1095 auto *TFL =
1096 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1097 EVT PtrVT = getPointerTy(DAG.getDataLayout());
1098
1099 // Detect unsupported vector argument types.
1100 if (Subtarget.hasVector())
1101 VerifyVectorTypes(Ins);
1102
1103 // Assign locations to all of the incoming arguments.
1104 SmallVector<CCValAssign, 16> ArgLocs;
1105 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1106 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1107
1108 unsigned NumFixedGPRs = 0;
1109 unsigned NumFixedFPRs = 0;
1110 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1111 SDValue ArgValue;
1112 CCValAssign &VA = ArgLocs[I];
1113 EVT LocVT = VA.getLocVT();
1114 if (VA.isRegLoc()) {
1115 // Arguments passed in registers
1116 const TargetRegisterClass *RC;
1117 switch (LocVT.getSimpleVT().SimpleTy) {
1118 default:
1119 // Integers smaller than i64 should be promoted to i64.
1120 llvm_unreachable("Unexpected argument type");
1121 case MVT::i32:
1122 NumFixedGPRs += 1;
1123 RC = &SystemZ::GR32BitRegClass;
1124 break;
1125 case MVT::i64:
1126 NumFixedGPRs += 1;
1127 RC = &SystemZ::GR64BitRegClass;
1128 break;
1129 case MVT::f32:
1130 NumFixedFPRs += 1;
1131 RC = &SystemZ::FP32BitRegClass;
1132 break;
1133 case MVT::f64:
1134 NumFixedFPRs += 1;
1135 RC = &SystemZ::FP64BitRegClass;
1136 break;
1137 case MVT::v16i8:
1138 case MVT::v8i16:
1139 case MVT::v4i32:
1140 case MVT::v2i64:
1141 case MVT::v4f32:
1142 case MVT::v2f64:
1143 RC = &SystemZ::VR128BitRegClass;
1144 break;
1145 }
1146
1147 unsigned VReg = MRI.createVirtualRegister(RC);
1148 MRI.addLiveIn(VA.getLocReg(), VReg);
1149 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1150 } else {
1151 assert(VA.isMemLoc() && "Argument not register or memory");
1152
1153 // Create the frame index object for this incoming parameter.
1154 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1155 VA.getLocMemOffset(), true);
1156
1157 // Create the SelectionDAG nodes corresponding to a load
1158 // from this parameter. Unpromoted ints and floats are
1159 // passed as right-justified 8-byte values.
1160 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1161 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1162 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1163 DAG.getIntPtrConstant(4, DL));
1164 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1165 MachinePointerInfo::getFixedStack(MF, FI));
1166 }
1167
1168 // Convert the value of the argument register into the value that's
1169 // being passed.
1170 if (VA.getLocInfo() == CCValAssign::Indirect) {
1171 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1172 MachinePointerInfo()));
1173 // If the original argument was split (e.g. i128), we need
1174 // to load all parts of it here (using the same address).
1175 unsigned ArgIndex = Ins[I].OrigArgIndex;
1176 assert (Ins[I].PartOffset == 0);
1177 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1178 CCValAssign &PartVA = ArgLocs[I + 1];
1179 unsigned PartOffset = Ins[I + 1].PartOffset;
1180 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1181 DAG.getIntPtrConstant(PartOffset, DL));
1182 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1183 MachinePointerInfo()));
1184 ++I;
1185 }
1186 } else
1187 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1188 }
1189
1190 if (IsVarArg) {
1191 // Save the number of non-varargs registers for later use by va_start, etc.
1192 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1193 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1194
1195 // Likewise the address (in the form of a frame index) of where the
1196 // first stack vararg would be. The 1-byte size here is arbitrary.
1197 int64_t StackSize = CCInfo.getNextStackOffset();
1198 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1199
1200 // ...and a similar frame index for the caller-allocated save area
1201 // that will be used to store the incoming registers.
1202 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
1203 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1204 FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1205
1206 // Store the FPR varargs in the reserved frame slots. (We store the
1207 // GPRs as part of the prologue.)
1208 if (NumFixedFPRs < SystemZ::NumArgFPRs) {
1209 SDValue MemOps[SystemZ::NumArgFPRs];
1210 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1211 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
1212 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
1213 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1214 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1215 &SystemZ::FP64BitRegClass);
1216 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1217 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1218 MachinePointerInfo::getFixedStack(MF, FI));
1219 }
1220 // Join the stores, which are independent of one another.
1221 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1222 makeArrayRef(&MemOps[NumFixedFPRs],
1223 SystemZ::NumArgFPRs-NumFixedFPRs));
1224 }
1225 }
1226
1227 return Chain;
1228 }
1229
canUseSiblingCall(const CCState & ArgCCInfo,SmallVectorImpl<CCValAssign> & ArgLocs,SmallVectorImpl<ISD::OutputArg> & Outs)1230 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1231 SmallVectorImpl<CCValAssign> &ArgLocs,
1232 SmallVectorImpl<ISD::OutputArg> &Outs) {
1233 // Punt if there are any indirect or stack arguments, or if the call
1234 // needs the callee-saved argument register R6, or if the call uses
1235 // the callee-saved register arguments SwiftSelf and SwiftError.
1236 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1237 CCValAssign &VA = ArgLocs[I];
1238 if (VA.getLocInfo() == CCValAssign::Indirect)
1239 return false;
1240 if (!VA.isRegLoc())
1241 return false;
1242 unsigned Reg = VA.getLocReg();
1243 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1244 return false;
1245 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1246 return false;
1247 }
1248 return true;
1249 }
1250
1251 SDValue
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1252 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1253 SmallVectorImpl<SDValue> &InVals) const {
1254 SelectionDAG &DAG = CLI.DAG;
1255 SDLoc &DL = CLI.DL;
1256 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1257 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1258 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1259 SDValue Chain = CLI.Chain;
1260 SDValue Callee = CLI.Callee;
1261 bool &IsTailCall = CLI.IsTailCall;
1262 CallingConv::ID CallConv = CLI.CallConv;
1263 bool IsVarArg = CLI.IsVarArg;
1264 MachineFunction &MF = DAG.getMachineFunction();
1265 EVT PtrVT = getPointerTy(MF.getDataLayout());
1266
1267 // Detect unsupported vector argument and return types.
1268 if (Subtarget.hasVector()) {
1269 VerifyVectorTypes(Outs);
1270 VerifyVectorTypes(Ins);
1271 }
1272
1273 // Analyze the operands of the call, assigning locations to each operand.
1274 SmallVector<CCValAssign, 16> ArgLocs;
1275 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1276 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1277
1278 // We don't support GuaranteedTailCallOpt, only automatically-detected
1279 // sibling calls.
1280 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1281 IsTailCall = false;
1282
1283 // Get a count of how many bytes are to be pushed on the stack.
1284 unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1285
1286 // Mark the start of the call.
1287 if (!IsTailCall)
1288 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1289
1290 // Copy argument values to their designated locations.
1291 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1292 SmallVector<SDValue, 8> MemOpChains;
1293 SDValue StackPtr;
1294 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1295 CCValAssign &VA = ArgLocs[I];
1296 SDValue ArgValue = OutVals[I];
1297
1298 if (VA.getLocInfo() == CCValAssign::Indirect) {
1299 // Store the argument in a stack slot and pass its address.
1300 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1301 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1302 MemOpChains.push_back(
1303 DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1304 MachinePointerInfo::getFixedStack(MF, FI)));
1305 // If the original argument was split (e.g. i128), we need
1306 // to store all parts of it here (and pass just one address).
1307 unsigned ArgIndex = Outs[I].OrigArgIndex;
1308 assert (Outs[I].PartOffset == 0);
1309 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1310 SDValue PartValue = OutVals[I + 1];
1311 unsigned PartOffset = Outs[I + 1].PartOffset;
1312 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1313 DAG.getIntPtrConstant(PartOffset, DL));
1314 MemOpChains.push_back(
1315 DAG.getStore(Chain, DL, PartValue, Address,
1316 MachinePointerInfo::getFixedStack(MF, FI)));
1317 ++I;
1318 }
1319 ArgValue = SpillSlot;
1320 } else
1321 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1322
1323 if (VA.isRegLoc())
1324 // Queue up the argument copies and emit them at the end.
1325 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1326 else {
1327 assert(VA.isMemLoc() && "Argument not register or memory");
1328
1329 // Work out the address of the stack slot. Unpromoted ints and
1330 // floats are passed as right-justified 8-byte values.
1331 if (!StackPtr.getNode())
1332 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1333 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1334 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1335 Offset += 4;
1336 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1337 DAG.getIntPtrConstant(Offset, DL));
1338
1339 // Emit the store.
1340 MemOpChains.push_back(
1341 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1342 }
1343 }
1344
1345 // Join the stores, which are independent of one another.
1346 if (!MemOpChains.empty())
1347 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1348
1349 // Accept direct calls by converting symbolic call addresses to the
1350 // associated Target* opcodes. Force %r1 to be used for indirect
1351 // tail calls.
1352 SDValue Glue;
1353 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1354 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1355 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1356 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1357 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1358 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1359 } else if (IsTailCall) {
1360 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1361 Glue = Chain.getValue(1);
1362 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1363 }
1364
1365 // Build a sequence of copy-to-reg nodes, chained and glued together.
1366 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1367 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1368 RegsToPass[I].second, Glue);
1369 Glue = Chain.getValue(1);
1370 }
1371
1372 // The first call operand is the chain and the second is the target address.
1373 SmallVector<SDValue, 8> Ops;
1374 Ops.push_back(Chain);
1375 Ops.push_back(Callee);
1376
1377 // Add argument registers to the end of the list so that they are
1378 // known live into the call.
1379 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1380 Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1381 RegsToPass[I].second.getValueType()));
1382
1383 // Add a register mask operand representing the call-preserved registers.
1384 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1385 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1386 assert(Mask && "Missing call preserved mask for calling convention");
1387 Ops.push_back(DAG.getRegisterMask(Mask));
1388
1389 // Glue the call to the argument copies, if any.
1390 if (Glue.getNode())
1391 Ops.push_back(Glue);
1392
1393 // Emit the call.
1394 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1395 if (IsTailCall)
1396 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1397 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1398 Glue = Chain.getValue(1);
1399
1400 // Mark the end of the call, which is glued to the call itself.
1401 Chain = DAG.getCALLSEQ_END(Chain,
1402 DAG.getConstant(NumBytes, DL, PtrVT, true),
1403 DAG.getConstant(0, DL, PtrVT, true),
1404 Glue, DL);
1405 Glue = Chain.getValue(1);
1406
1407 // Assign locations to each value returned by this call.
1408 SmallVector<CCValAssign, 16> RetLocs;
1409 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1410 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1411
1412 // Copy all of the result registers out of their specified physreg.
1413 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1414 CCValAssign &VA = RetLocs[I];
1415
1416 // Copy the value out, gluing the copy to the end of the call sequence.
1417 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1418 VA.getLocVT(), Glue);
1419 Chain = RetValue.getValue(1);
1420 Glue = RetValue.getValue(2);
1421
1422 // Convert the value of the return register into the value that's
1423 // being returned.
1424 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1425 }
1426
1427 return Chain;
1428 }
1429
1430 bool SystemZTargetLowering::
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const1431 CanLowerReturn(CallingConv::ID CallConv,
1432 MachineFunction &MF, bool isVarArg,
1433 const SmallVectorImpl<ISD::OutputArg> &Outs,
1434 LLVMContext &Context) const {
1435 // Detect unsupported vector return types.
1436 if (Subtarget.hasVector())
1437 VerifyVectorTypes(Outs);
1438
1439 // Special case that we cannot easily detect in RetCC_SystemZ since
1440 // i128 is not a legal type.
1441 for (auto &Out : Outs)
1442 if (Out.ArgVT == MVT::i128)
1443 return false;
1444
1445 SmallVector<CCValAssign, 16> RetLocs;
1446 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1447 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1448 }
1449
1450 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const1451 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1452 bool IsVarArg,
1453 const SmallVectorImpl<ISD::OutputArg> &Outs,
1454 const SmallVectorImpl<SDValue> &OutVals,
1455 const SDLoc &DL, SelectionDAG &DAG) const {
1456 MachineFunction &MF = DAG.getMachineFunction();
1457
1458 // Detect unsupported vector return types.
1459 if (Subtarget.hasVector())
1460 VerifyVectorTypes(Outs);
1461
1462 // Assign locations to each returned value.
1463 SmallVector<CCValAssign, 16> RetLocs;
1464 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1465 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1466
1467 // Quick exit for void returns
1468 if (RetLocs.empty())
1469 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1470
1471 // Copy the result values into the output registers.
1472 SDValue Glue;
1473 SmallVector<SDValue, 4> RetOps;
1474 RetOps.push_back(Chain);
1475 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1476 CCValAssign &VA = RetLocs[I];
1477 SDValue RetValue = OutVals[I];
1478
1479 // Make the return register live on exit.
1480 assert(VA.isRegLoc() && "Can only return in registers!");
1481
1482 // Promote the value as required.
1483 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1484
1485 // Chain and glue the copies together.
1486 unsigned Reg = VA.getLocReg();
1487 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1488 Glue = Chain.getValue(1);
1489 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1490 }
1491
1492 // Update chain and glue.
1493 RetOps[0] = Chain;
1494 if (Glue.getNode())
1495 RetOps.push_back(Glue);
1496
1497 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1498 }
1499
1500 // Return true if Op is an intrinsic node with chain that returns the CC value
1501 // as its only (other) argument. Provide the associated SystemZISD opcode and
1502 // the mask of valid CC values if so.
isIntrinsicWithCCAndChain(SDValue Op,unsigned & Opcode,unsigned & CCValid)1503 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1504 unsigned &CCValid) {
1505 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1506 switch (Id) {
1507 case Intrinsic::s390_tbegin:
1508 Opcode = SystemZISD::TBEGIN;
1509 CCValid = SystemZ::CCMASK_TBEGIN;
1510 return true;
1511
1512 case Intrinsic::s390_tbegin_nofloat:
1513 Opcode = SystemZISD::TBEGIN_NOFLOAT;
1514 CCValid = SystemZ::CCMASK_TBEGIN;
1515 return true;
1516
1517 case Intrinsic::s390_tend:
1518 Opcode = SystemZISD::TEND;
1519 CCValid = SystemZ::CCMASK_TEND;
1520 return true;
1521
1522 default:
1523 return false;
1524 }
1525 }
1526
1527 // Return true if Op is an intrinsic node without chain that returns the
1528 // CC value as its final argument. Provide the associated SystemZISD
1529 // opcode and the mask of valid CC values if so.
isIntrinsicWithCC(SDValue Op,unsigned & Opcode,unsigned & CCValid)1530 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1531 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1532 switch (Id) {
1533 case Intrinsic::s390_vpkshs:
1534 case Intrinsic::s390_vpksfs:
1535 case Intrinsic::s390_vpksgs:
1536 Opcode = SystemZISD::PACKS_CC;
1537 CCValid = SystemZ::CCMASK_VCMP;
1538 return true;
1539
1540 case Intrinsic::s390_vpklshs:
1541 case Intrinsic::s390_vpklsfs:
1542 case Intrinsic::s390_vpklsgs:
1543 Opcode = SystemZISD::PACKLS_CC;
1544 CCValid = SystemZ::CCMASK_VCMP;
1545 return true;
1546
1547 case Intrinsic::s390_vceqbs:
1548 case Intrinsic::s390_vceqhs:
1549 case Intrinsic::s390_vceqfs:
1550 case Intrinsic::s390_vceqgs:
1551 Opcode = SystemZISD::VICMPES;
1552 CCValid = SystemZ::CCMASK_VCMP;
1553 return true;
1554
1555 case Intrinsic::s390_vchbs:
1556 case Intrinsic::s390_vchhs:
1557 case Intrinsic::s390_vchfs:
1558 case Intrinsic::s390_vchgs:
1559 Opcode = SystemZISD::VICMPHS;
1560 CCValid = SystemZ::CCMASK_VCMP;
1561 return true;
1562
1563 case Intrinsic::s390_vchlbs:
1564 case Intrinsic::s390_vchlhs:
1565 case Intrinsic::s390_vchlfs:
1566 case Intrinsic::s390_vchlgs:
1567 Opcode = SystemZISD::VICMPHLS;
1568 CCValid = SystemZ::CCMASK_VCMP;
1569 return true;
1570
1571 case Intrinsic::s390_vtm:
1572 Opcode = SystemZISD::VTM;
1573 CCValid = SystemZ::CCMASK_VCMP;
1574 return true;
1575
1576 case Intrinsic::s390_vfaebs:
1577 case Intrinsic::s390_vfaehs:
1578 case Intrinsic::s390_vfaefs:
1579 Opcode = SystemZISD::VFAE_CC;
1580 CCValid = SystemZ::CCMASK_ANY;
1581 return true;
1582
1583 case Intrinsic::s390_vfaezbs:
1584 case Intrinsic::s390_vfaezhs:
1585 case Intrinsic::s390_vfaezfs:
1586 Opcode = SystemZISD::VFAEZ_CC;
1587 CCValid = SystemZ::CCMASK_ANY;
1588 return true;
1589
1590 case Intrinsic::s390_vfeebs:
1591 case Intrinsic::s390_vfeehs:
1592 case Intrinsic::s390_vfeefs:
1593 Opcode = SystemZISD::VFEE_CC;
1594 CCValid = SystemZ::CCMASK_ANY;
1595 return true;
1596
1597 case Intrinsic::s390_vfeezbs:
1598 case Intrinsic::s390_vfeezhs:
1599 case Intrinsic::s390_vfeezfs:
1600 Opcode = SystemZISD::VFEEZ_CC;
1601 CCValid = SystemZ::CCMASK_ANY;
1602 return true;
1603
1604 case Intrinsic::s390_vfenebs:
1605 case Intrinsic::s390_vfenehs:
1606 case Intrinsic::s390_vfenefs:
1607 Opcode = SystemZISD::VFENE_CC;
1608 CCValid = SystemZ::CCMASK_ANY;
1609 return true;
1610
1611 case Intrinsic::s390_vfenezbs:
1612 case Intrinsic::s390_vfenezhs:
1613 case Intrinsic::s390_vfenezfs:
1614 Opcode = SystemZISD::VFENEZ_CC;
1615 CCValid = SystemZ::CCMASK_ANY;
1616 return true;
1617
1618 case Intrinsic::s390_vistrbs:
1619 case Intrinsic::s390_vistrhs:
1620 case Intrinsic::s390_vistrfs:
1621 Opcode = SystemZISD::VISTR_CC;
1622 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1623 return true;
1624
1625 case Intrinsic::s390_vstrcbs:
1626 case Intrinsic::s390_vstrchs:
1627 case Intrinsic::s390_vstrcfs:
1628 Opcode = SystemZISD::VSTRC_CC;
1629 CCValid = SystemZ::CCMASK_ANY;
1630 return true;
1631
1632 case Intrinsic::s390_vstrczbs:
1633 case Intrinsic::s390_vstrczhs:
1634 case Intrinsic::s390_vstrczfs:
1635 Opcode = SystemZISD::VSTRCZ_CC;
1636 CCValid = SystemZ::CCMASK_ANY;
1637 return true;
1638
1639 case Intrinsic::s390_vfcedbs:
1640 case Intrinsic::s390_vfcesbs:
1641 Opcode = SystemZISD::VFCMPES;
1642 CCValid = SystemZ::CCMASK_VCMP;
1643 return true;
1644
1645 case Intrinsic::s390_vfchdbs:
1646 case Intrinsic::s390_vfchsbs:
1647 Opcode = SystemZISD::VFCMPHS;
1648 CCValid = SystemZ::CCMASK_VCMP;
1649 return true;
1650
1651 case Intrinsic::s390_vfchedbs:
1652 case Intrinsic::s390_vfchesbs:
1653 Opcode = SystemZISD::VFCMPHES;
1654 CCValid = SystemZ::CCMASK_VCMP;
1655 return true;
1656
1657 case Intrinsic::s390_vftcidb:
1658 case Intrinsic::s390_vftcisb:
1659 Opcode = SystemZISD::VFTCI;
1660 CCValid = SystemZ::CCMASK_VCMP;
1661 return true;
1662
1663 case Intrinsic::s390_tdc:
1664 Opcode = SystemZISD::TDC;
1665 CCValid = SystemZ::CCMASK_TDC;
1666 return true;
1667
1668 default:
1669 return false;
1670 }
1671 }
1672
1673 // Emit an intrinsic with chain and an explicit CC register result.
emitIntrinsicWithCCAndChain(SelectionDAG & DAG,SDValue Op,unsigned Opcode)1674 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1675 unsigned Opcode) {
1676 // Copy all operands except the intrinsic ID.
1677 unsigned NumOps = Op.getNumOperands();
1678 SmallVector<SDValue, 6> Ops;
1679 Ops.reserve(NumOps - 1);
1680 Ops.push_back(Op.getOperand(0));
1681 for (unsigned I = 2; I < NumOps; ++I)
1682 Ops.push_back(Op.getOperand(I));
1683
1684 assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1685 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
1686 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1687 SDValue OldChain = SDValue(Op.getNode(), 1);
1688 SDValue NewChain = SDValue(Intr.getNode(), 1);
1689 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1690 return Intr.getNode();
1691 }
1692
1693 // Emit an intrinsic with an explicit CC register result.
emitIntrinsicWithCC(SelectionDAG & DAG,SDValue Op,unsigned Opcode)1694 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
1695 unsigned Opcode) {
1696 // Copy all operands except the intrinsic ID.
1697 unsigned NumOps = Op.getNumOperands();
1698 SmallVector<SDValue, 6> Ops;
1699 Ops.reserve(NumOps - 1);
1700 for (unsigned I = 1; I < NumOps; ++I)
1701 Ops.push_back(Op.getOperand(I));
1702
1703 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
1704 return Intr.getNode();
1705 }
1706
1707 // CC is a comparison that will be implemented using an integer or
1708 // floating-point comparison. Return the condition code mask for
1709 // a branch on true. In the integer case, CCMASK_CMP_UO is set for
1710 // unsigned comparisons and clear for signed ones. In the floating-point
1711 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
CCMaskForCondCode(ISD::CondCode CC)1712 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1713 #define CONV(X) \
1714 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1715 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1716 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1717
1718 switch (CC) {
1719 default:
1720 llvm_unreachable("Invalid integer condition!");
1721
1722 CONV(EQ);
1723 CONV(NE);
1724 CONV(GT);
1725 CONV(GE);
1726 CONV(LT);
1727 CONV(LE);
1728
1729 case ISD::SETO: return SystemZ::CCMASK_CMP_O;
1730 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1731 }
1732 #undef CONV
1733 }
1734
1735 // If C can be converted to a comparison against zero, adjust the operands
1736 // as necessary.
adjustZeroCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)1737 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
1738 if (C.ICmpType == SystemZICMP::UnsignedOnly)
1739 return;
1740
1741 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1742 if (!ConstOp1)
1743 return;
1744
1745 int64_t Value = ConstOp1->getSExtValue();
1746 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1747 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1748 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1749 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1750 C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1751 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
1752 }
1753 }
1754
1755 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1756 // adjust the operands as necessary.
adjustSubwordCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)1757 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
1758 Comparison &C) {
1759 // For us to make any changes, it must a comparison between a single-use
1760 // load and a constant.
1761 if (!C.Op0.hasOneUse() ||
1762 C.Op0.getOpcode() != ISD::LOAD ||
1763 C.Op1.getOpcode() != ISD::Constant)
1764 return;
1765
1766 // We must have an 8- or 16-bit load.
1767 auto *Load = cast<LoadSDNode>(C.Op0);
1768 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1769 if (NumBits != 8 && NumBits != 16)
1770 return;
1771
1772 // The load must be an extending one and the constant must be within the
1773 // range of the unextended value.
1774 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1775 uint64_t Value = ConstOp1->getZExtValue();
1776 uint64_t Mask = (1 << NumBits) - 1;
1777 if (Load->getExtensionType() == ISD::SEXTLOAD) {
1778 // Make sure that ConstOp1 is in range of C.Op0.
1779 int64_t SignedValue = ConstOp1->getSExtValue();
1780 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
1781 return;
1782 if (C.ICmpType != SystemZICMP::SignedOnly) {
1783 // Unsigned comparison between two sign-extended values is equivalent
1784 // to unsigned comparison between two zero-extended values.
1785 Value &= Mask;
1786 } else if (NumBits == 8) {
1787 // Try to treat the comparison as unsigned, so that we can use CLI.
1788 // Adjust CCMask and Value as necessary.
1789 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
1790 // Test whether the high bit of the byte is set.
1791 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1792 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
1793 // Test whether the high bit of the byte is clear.
1794 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
1795 else
1796 // No instruction exists for this combination.
1797 return;
1798 C.ICmpType = SystemZICMP::UnsignedOnly;
1799 }
1800 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1801 if (Value > Mask)
1802 return;
1803 // If the constant is in range, we can use any comparison.
1804 C.ICmpType = SystemZICMP::Any;
1805 } else
1806 return;
1807
1808 // Make sure that the first operand is an i32 of the right extension type.
1809 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1810 ISD::SEXTLOAD :
1811 ISD::ZEXTLOAD);
1812 if (C.Op0.getValueType() != MVT::i32 ||
1813 Load->getExtensionType() != ExtType) {
1814 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
1815 Load->getBasePtr(), Load->getPointerInfo(),
1816 Load->getMemoryVT(), Load->getAlignment(),
1817 Load->getMemOperand()->getFlags());
1818 // Update the chain uses.
1819 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
1820 }
1821
1822 // Make sure that the second operand is an i32 with the right value.
1823 if (C.Op1.getValueType() != MVT::i32 ||
1824 Value != ConstOp1->getZExtValue())
1825 C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
1826 }
1827
1828 // Return true if Op is either an unextended load, or a load suitable
1829 // for integer register-memory comparisons of type ICmpType.
isNaturalMemoryOperand(SDValue Op,unsigned ICmpType)1830 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1831 auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
1832 if (Load) {
1833 // There are no instructions to compare a register with a memory byte.
1834 if (Load->getMemoryVT() == MVT::i8)
1835 return false;
1836 // Otherwise decide on extension type.
1837 switch (Load->getExtensionType()) {
1838 case ISD::NON_EXTLOAD:
1839 return true;
1840 case ISD::SEXTLOAD:
1841 return ICmpType != SystemZICMP::UnsignedOnly;
1842 case ISD::ZEXTLOAD:
1843 return ICmpType != SystemZICMP::SignedOnly;
1844 default:
1845 break;
1846 }
1847 }
1848 return false;
1849 }
1850
1851 // Return true if it is better to swap the operands of C.
shouldSwapCmpOperands(const Comparison & C)1852 static bool shouldSwapCmpOperands(const Comparison &C) {
1853 // Leave f128 comparisons alone, since they have no memory forms.
1854 if (C.Op0.getValueType() == MVT::f128)
1855 return false;
1856
1857 // Always keep a floating-point constant second, since comparisons with
1858 // zero can use LOAD TEST and comparisons with other constants make a
1859 // natural memory operand.
1860 if (isa<ConstantFPSDNode>(C.Op1))
1861 return false;
1862
1863 // Never swap comparisons with zero since there are many ways to optimize
1864 // those later.
1865 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1866 if (ConstOp1 && ConstOp1->getZExtValue() == 0)
1867 return false;
1868
1869 // Also keep natural memory operands second if the loaded value is
1870 // only used here. Several comparisons have memory forms.
1871 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
1872 return false;
1873
1874 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1875 // In that case we generally prefer the memory to be second.
1876 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
1877 // The only exceptions are when the second operand is a constant and
1878 // we can use things like CHHSI.
1879 if (!ConstOp1)
1880 return true;
1881 // The unsigned memory-immediate instructions can handle 16-bit
1882 // unsigned integers.
1883 if (C.ICmpType != SystemZICMP::SignedOnly &&
1884 isUInt<16>(ConstOp1->getZExtValue()))
1885 return false;
1886 // The signed memory-immediate instructions can handle 16-bit
1887 // signed integers.
1888 if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1889 isInt<16>(ConstOp1->getSExtValue()))
1890 return false;
1891 return true;
1892 }
1893
1894 // Try to promote the use of CGFR and CLGFR.
1895 unsigned Opcode0 = C.Op0.getOpcode();
1896 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
1897 return true;
1898 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
1899 return true;
1900 if (C.ICmpType != SystemZICMP::SignedOnly &&
1901 Opcode0 == ISD::AND &&
1902 C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1903 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
1904 return true;
1905
1906 return false;
1907 }
1908
1909 // Return a version of comparison CC mask CCMask in which the LT and GT
1910 // actions are swapped.
reverseCCMask(unsigned CCMask)1911 static unsigned reverseCCMask(unsigned CCMask) {
1912 return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1913 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1914 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1915 (CCMask & SystemZ::CCMASK_CMP_UO));
1916 }
1917
1918 // Check whether C tests for equality between X and Y and whether X - Y
1919 // or Y - X is also computed. In that case it's better to compare the
1920 // result of the subtraction against zero.
adjustForSubtraction(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)1921 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
1922 Comparison &C) {
1923 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1924 C.CCMask == SystemZ::CCMASK_CMP_NE) {
1925 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1926 SDNode *N = *I;
1927 if (N->getOpcode() == ISD::SUB &&
1928 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1929 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1930 C.Op0 = SDValue(N, 0);
1931 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
1932 return;
1933 }
1934 }
1935 }
1936 }
1937
1938 // Check whether C compares a floating-point value with zero and if that
1939 // floating-point value is also negated. In this case we can use the
1940 // negation to set CC, so avoiding separate LOAD AND TEST and
1941 // LOAD (NEGATIVE/COMPLEMENT) instructions.
adjustForFNeg(Comparison & C)1942 static void adjustForFNeg(Comparison &C) {
1943 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
1944 if (C1 && C1->isZero()) {
1945 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1946 SDNode *N = *I;
1947 if (N->getOpcode() == ISD::FNEG) {
1948 C.Op0 = SDValue(N, 0);
1949 C.CCMask = reverseCCMask(C.CCMask);
1950 return;
1951 }
1952 }
1953 }
1954 }
1955
1956 // Check whether C compares (shl X, 32) with 0 and whether X is
1957 // also sign-extended. In that case it is better to test the result
1958 // of the sign extension using LTGFR.
1959 //
1960 // This case is important because InstCombine transforms a comparison
1961 // with (sext (trunc X)) into a comparison with (shl X, 32).
adjustForLTGFR(Comparison & C)1962 static void adjustForLTGFR(Comparison &C) {
1963 // Check for a comparison between (shl X, 32) and 0.
1964 if (C.Op0.getOpcode() == ISD::SHL &&
1965 C.Op0.getValueType() == MVT::i64 &&
1966 C.Op1.getOpcode() == ISD::Constant &&
1967 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1968 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
1969 if (C1 && C1->getZExtValue() == 32) {
1970 SDValue ShlOp0 = C.Op0.getOperand(0);
1971 // See whether X has any SIGN_EXTEND_INREG uses.
1972 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
1973 SDNode *N = *I;
1974 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
1975 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
1976 C.Op0 = SDValue(N, 0);
1977 return;
1978 }
1979 }
1980 }
1981 }
1982 }
1983
1984 // If C compares the truncation of an extending load, try to compare
1985 // the untruncated value instead. This exposes more opportunities to
1986 // reuse CC.
adjustICmpTruncate(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)1987 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
1988 Comparison &C) {
1989 if (C.Op0.getOpcode() == ISD::TRUNCATE &&
1990 C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
1991 C.Op1.getOpcode() == ISD::Constant &&
1992 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1993 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
1994 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
1995 unsigned Type = L->getExtensionType();
1996 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
1997 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
1998 C.Op0 = C.Op0.getOperand(0);
1999 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2000 }
2001 }
2002 }
2003 }
2004
2005 // Return true if shift operation N has an in-range constant shift value.
2006 // Store it in ShiftVal if so.
isSimpleShift(SDValue N,unsigned & ShiftVal)2007 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2008 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2009 if (!Shift)
2010 return false;
2011
2012 uint64_t Amount = Shift->getZExtValue();
2013 if (Amount >= N.getValueSizeInBits())
2014 return false;
2015
2016 ShiftVal = Amount;
2017 return true;
2018 }
2019
2020 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2021 // instruction and whether the CC value is descriptive enough to handle
2022 // a comparison of type Opcode between the AND result and CmpVal.
2023 // CCMask says which comparison result is being tested and BitSize is
2024 // the number of bits in the operands. If TEST UNDER MASK can be used,
2025 // return the corresponding CC mask, otherwise return 0.
getTestUnderMaskCond(unsigned BitSize,unsigned CCMask,uint64_t Mask,uint64_t CmpVal,unsigned ICmpType)2026 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2027 uint64_t Mask, uint64_t CmpVal,
2028 unsigned ICmpType) {
2029 assert(Mask != 0 && "ANDs with zero should have been removed by now");
2030
2031 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2032 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2033 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2034 return 0;
2035
2036 // Work out the masks for the lowest and highest bits.
2037 unsigned HighShift = 63 - countLeadingZeros(Mask);
2038 uint64_t High = uint64_t(1) << HighShift;
2039 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2040
2041 // Signed ordered comparisons are effectively unsigned if the sign
2042 // bit is dropped.
2043 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2044
2045 // Check for equality comparisons with 0, or the equivalent.
2046 if (CmpVal == 0) {
2047 if (CCMask == SystemZ::CCMASK_CMP_EQ)
2048 return SystemZ::CCMASK_TM_ALL_0;
2049 if (CCMask == SystemZ::CCMASK_CMP_NE)
2050 return SystemZ::CCMASK_TM_SOME_1;
2051 }
2052 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2053 if (CCMask == SystemZ::CCMASK_CMP_LT)
2054 return SystemZ::CCMASK_TM_ALL_0;
2055 if (CCMask == SystemZ::CCMASK_CMP_GE)
2056 return SystemZ::CCMASK_TM_SOME_1;
2057 }
2058 if (EffectivelyUnsigned && CmpVal < Low) {
2059 if (CCMask == SystemZ::CCMASK_CMP_LE)
2060 return SystemZ::CCMASK_TM_ALL_0;
2061 if (CCMask == SystemZ::CCMASK_CMP_GT)
2062 return SystemZ::CCMASK_TM_SOME_1;
2063 }
2064
2065 // Check for equality comparisons with the mask, or the equivalent.
2066 if (CmpVal == Mask) {
2067 if (CCMask == SystemZ::CCMASK_CMP_EQ)
2068 return SystemZ::CCMASK_TM_ALL_1;
2069 if (CCMask == SystemZ::CCMASK_CMP_NE)
2070 return SystemZ::CCMASK_TM_SOME_0;
2071 }
2072 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2073 if (CCMask == SystemZ::CCMASK_CMP_GT)
2074 return SystemZ::CCMASK_TM_ALL_1;
2075 if (CCMask == SystemZ::CCMASK_CMP_LE)
2076 return SystemZ::CCMASK_TM_SOME_0;
2077 }
2078 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2079 if (CCMask == SystemZ::CCMASK_CMP_GE)
2080 return SystemZ::CCMASK_TM_ALL_1;
2081 if (CCMask == SystemZ::CCMASK_CMP_LT)
2082 return SystemZ::CCMASK_TM_SOME_0;
2083 }
2084
2085 // Check for ordered comparisons with the top bit.
2086 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2087 if (CCMask == SystemZ::CCMASK_CMP_LE)
2088 return SystemZ::CCMASK_TM_MSB_0;
2089 if (CCMask == SystemZ::CCMASK_CMP_GT)
2090 return SystemZ::CCMASK_TM_MSB_1;
2091 }
2092 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2093 if (CCMask == SystemZ::CCMASK_CMP_LT)
2094 return SystemZ::CCMASK_TM_MSB_0;
2095 if (CCMask == SystemZ::CCMASK_CMP_GE)
2096 return SystemZ::CCMASK_TM_MSB_1;
2097 }
2098
2099 // If there are just two bits, we can do equality checks for Low and High
2100 // as well.
2101 if (Mask == Low + High) {
2102 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2103 return SystemZ::CCMASK_TM_MIXED_MSB_0;
2104 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2105 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2106 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2107 return SystemZ::CCMASK_TM_MIXED_MSB_1;
2108 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2109 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2110 }
2111
2112 // Looks like we've exhausted our options.
2113 return 0;
2114 }
2115
2116 // See whether C can be implemented as a TEST UNDER MASK instruction.
2117 // Update the arguments with the TM version if so.
adjustForTestUnderMask(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2118 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2119 Comparison &C) {
2120 // Check that we have a comparison with a constant.
2121 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2122 if (!ConstOp1)
2123 return;
2124 uint64_t CmpVal = ConstOp1->getZExtValue();
2125
2126 // Check whether the nonconstant input is an AND with a constant mask.
2127 Comparison NewC(C);
2128 uint64_t MaskVal;
2129 ConstantSDNode *Mask = nullptr;
2130 if (C.Op0.getOpcode() == ISD::AND) {
2131 NewC.Op0 = C.Op0.getOperand(0);
2132 NewC.Op1 = C.Op0.getOperand(1);
2133 Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2134 if (!Mask)
2135 return;
2136 MaskVal = Mask->getZExtValue();
2137 } else {
2138 // There is no instruction to compare with a 64-bit immediate
2139 // so use TMHH instead if possible. We need an unsigned ordered
2140 // comparison with an i64 immediate.
2141 if (NewC.Op0.getValueType() != MVT::i64 ||
2142 NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2143 NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2144 NewC.ICmpType == SystemZICMP::SignedOnly)
2145 return;
2146 // Convert LE and GT comparisons into LT and GE.
2147 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2148 NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2149 if (CmpVal == uint64_t(-1))
2150 return;
2151 CmpVal += 1;
2152 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2153 }
2154 // If the low N bits of Op1 are zero than the low N bits of Op0 can
2155 // be masked off without changing the result.
2156 MaskVal = -(CmpVal & -CmpVal);
2157 NewC.ICmpType = SystemZICMP::UnsignedOnly;
2158 }
2159 if (!MaskVal)
2160 return;
2161
2162 // Check whether the combination of mask, comparison value and comparison
2163 // type are suitable.
2164 unsigned BitSize = NewC.Op0.getValueSizeInBits();
2165 unsigned NewCCMask, ShiftVal;
2166 if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2167 NewC.Op0.getOpcode() == ISD::SHL &&
2168 isSimpleShift(NewC.Op0, ShiftVal) &&
2169 (MaskVal >> ShiftVal != 0) &&
2170 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2171 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2172 MaskVal >> ShiftVal,
2173 CmpVal >> ShiftVal,
2174 SystemZICMP::Any))) {
2175 NewC.Op0 = NewC.Op0.getOperand(0);
2176 MaskVal >>= ShiftVal;
2177 } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2178 NewC.Op0.getOpcode() == ISD::SRL &&
2179 isSimpleShift(NewC.Op0, ShiftVal) &&
2180 (MaskVal << ShiftVal != 0) &&
2181 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2182 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2183 MaskVal << ShiftVal,
2184 CmpVal << ShiftVal,
2185 SystemZICMP::UnsignedOnly))) {
2186 NewC.Op0 = NewC.Op0.getOperand(0);
2187 MaskVal <<= ShiftVal;
2188 } else {
2189 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2190 NewC.ICmpType);
2191 if (!NewCCMask)
2192 return;
2193 }
2194
2195 // Go ahead and make the change.
2196 C.Opcode = SystemZISD::TM;
2197 C.Op0 = NewC.Op0;
2198 if (Mask && Mask->getZExtValue() == MaskVal)
2199 C.Op1 = SDValue(Mask, 0);
2200 else
2201 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2202 C.CCValid = SystemZ::CCMASK_TM;
2203 C.CCMask = NewCCMask;
2204 }
2205
2206 // See whether the comparison argument contains a redundant AND
2207 // and remove it if so. This sometimes happens due to the generic
2208 // BRCOND expansion.
adjustForRedundantAnd(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2209 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2210 Comparison &C) {
2211 if (C.Op0.getOpcode() != ISD::AND)
2212 return;
2213 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2214 if (!Mask)
2215 return;
2216 KnownBits Known;
2217 DAG.computeKnownBits(C.Op0.getOperand(0), Known);
2218 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2219 return;
2220
2221 C.Op0 = C.Op0.getOperand(0);
2222 }
2223
2224 // Return a Comparison that tests the condition-code result of intrinsic
2225 // node Call against constant integer CC using comparison code Cond.
2226 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2227 // and CCValid is the set of possible condition-code results.
getIntrinsicCmp(SelectionDAG & DAG,unsigned Opcode,SDValue Call,unsigned CCValid,uint64_t CC,ISD::CondCode Cond)2228 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2229 SDValue Call, unsigned CCValid, uint64_t CC,
2230 ISD::CondCode Cond) {
2231 Comparison C(Call, SDValue());
2232 C.Opcode = Opcode;
2233 C.CCValid = CCValid;
2234 if (Cond == ISD::SETEQ)
2235 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2236 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2237 else if (Cond == ISD::SETNE)
2238 // ...and the inverse of that.
2239 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2240 else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2241 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2242 // always true for CC>3.
2243 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2244 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2245 // ...and the inverse of that.
2246 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2247 else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2248 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2249 // always true for CC>3.
2250 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2251 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2252 // ...and the inverse of that.
2253 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2254 else
2255 llvm_unreachable("Unexpected integer comparison type");
2256 C.CCMask &= CCValid;
2257 return C;
2258 }
2259
2260 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
getCmp(SelectionDAG & DAG,SDValue CmpOp0,SDValue CmpOp1,ISD::CondCode Cond,const SDLoc & DL)2261 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2262 ISD::CondCode Cond, const SDLoc &DL) {
2263 if (CmpOp1.getOpcode() == ISD::Constant) {
2264 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2265 unsigned Opcode, CCValid;
2266 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2267 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2268 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2269 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2270 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2271 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2272 isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2273 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2274 }
2275 Comparison C(CmpOp0, CmpOp1);
2276 C.CCMask = CCMaskForCondCode(Cond);
2277 if (C.Op0.getValueType().isFloatingPoint()) {
2278 C.CCValid = SystemZ::CCMASK_FCMP;
2279 C.Opcode = SystemZISD::FCMP;
2280 adjustForFNeg(C);
2281 } else {
2282 C.CCValid = SystemZ::CCMASK_ICMP;
2283 C.Opcode = SystemZISD::ICMP;
2284 // Choose the type of comparison. Equality and inequality tests can
2285 // use either signed or unsigned comparisons. The choice also doesn't
2286 // matter if both sign bits are known to be clear. In those cases we
2287 // want to give the main isel code the freedom to choose whichever
2288 // form fits best.
2289 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2290 C.CCMask == SystemZ::CCMASK_CMP_NE ||
2291 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2292 C.ICmpType = SystemZICMP::Any;
2293 else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2294 C.ICmpType = SystemZICMP::UnsignedOnly;
2295 else
2296 C.ICmpType = SystemZICMP::SignedOnly;
2297 C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2298 adjustForRedundantAnd(DAG, DL, C);
2299 adjustZeroCmp(DAG, DL, C);
2300 adjustSubwordCmp(DAG, DL, C);
2301 adjustForSubtraction(DAG, DL, C);
2302 adjustForLTGFR(C);
2303 adjustICmpTruncate(DAG, DL, C);
2304 }
2305
2306 if (shouldSwapCmpOperands(C)) {
2307 std::swap(C.Op0, C.Op1);
2308 C.CCMask = reverseCCMask(C.CCMask);
2309 }
2310
2311 adjustForTestUnderMask(DAG, DL, C);
2312 return C;
2313 }
2314
2315 // Emit the comparison instruction described by C.
emitCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2316 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2317 if (!C.Op1.getNode()) {
2318 SDNode *Node;
2319 switch (C.Op0.getOpcode()) {
2320 case ISD::INTRINSIC_W_CHAIN:
2321 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2322 return SDValue(Node, 0);
2323 case ISD::INTRINSIC_WO_CHAIN:
2324 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2325 return SDValue(Node, Node->getNumValues() - 1);
2326 default:
2327 llvm_unreachable("Invalid comparison operands");
2328 }
2329 }
2330 if (C.Opcode == SystemZISD::ICMP)
2331 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2332 DAG.getConstant(C.ICmpType, DL, MVT::i32));
2333 if (C.Opcode == SystemZISD::TM) {
2334 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2335 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2336 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2337 DAG.getConstant(RegisterOnly, DL, MVT::i32));
2338 }
2339 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2340 }
2341
2342 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2343 // 64 bits. Extend is the extension type to use. Store the high part
2344 // in Hi and the low part in Lo.
lowerMUL_LOHI32(SelectionDAG & DAG,const SDLoc & DL,unsigned Extend,SDValue Op0,SDValue Op1,SDValue & Hi,SDValue & Lo)2345 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2346 SDValue Op0, SDValue Op1, SDValue &Hi,
2347 SDValue &Lo) {
2348 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2349 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2350 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2351 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2352 DAG.getConstant(32, DL, MVT::i64));
2353 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2354 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2355 }
2356
2357 // Lower a binary operation that produces two VT results, one in each
2358 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation,
2359 // and Opcode performs the GR128 operation. Store the even register result
2360 // in Even and the odd register result in Odd.
lowerGR128Binary(SelectionDAG & DAG,const SDLoc & DL,EVT VT,unsigned Opcode,SDValue Op0,SDValue Op1,SDValue & Even,SDValue & Odd)2361 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2362 unsigned Opcode, SDValue Op0, SDValue Op1,
2363 SDValue &Even, SDValue &Odd) {
2364 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2365 bool Is32Bit = is32Bit(VT);
2366 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2367 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2368 }
2369
2370 // Return an i32 value that is 1 if the CC value produced by CCReg is
2371 // in the mask CCMask and 0 otherwise. CC is known to have a value
2372 // in CCValid, so other values can be ignored.
emitSETCC(SelectionDAG & DAG,const SDLoc & DL,SDValue CCReg,unsigned CCValid,unsigned CCMask)2373 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2374 unsigned CCValid, unsigned CCMask) {
2375 SDValue Ops[] = { DAG.getConstant(1, DL, MVT::i32),
2376 DAG.getConstant(0, DL, MVT::i32),
2377 DAG.getConstant(CCValid, DL, MVT::i32),
2378 DAG.getConstant(CCMask, DL, MVT::i32), CCReg };
2379 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2380 }
2381
2382 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2383 // be done directly. IsFP is true if CC is for a floating-point rather than
2384 // integer comparison.
getVectorComparison(ISD::CondCode CC,bool IsFP)2385 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
2386 switch (CC) {
2387 case ISD::SETOEQ:
2388 case ISD::SETEQ:
2389 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
2390
2391 case ISD::SETOGE:
2392 case ISD::SETGE:
2393 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
2394
2395 case ISD::SETOGT:
2396 case ISD::SETGT:
2397 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
2398
2399 case ISD::SETUGT:
2400 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
2401
2402 default:
2403 return 0;
2404 }
2405 }
2406
2407 // Return the SystemZISD vector comparison operation for CC or its inverse,
2408 // or 0 if neither can be done directly. Indicate in Invert whether the
2409 // result is for the inverse of CC. IsFP is true if CC is for a
2410 // floating-point rather than integer comparison.
getVectorComparisonOrInvert(ISD::CondCode CC,bool IsFP,bool & Invert)2411 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
2412 bool &Invert) {
2413 if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2414 Invert = false;
2415 return Opcode;
2416 }
2417
2418 CC = ISD::getSetCCInverse(CC, !IsFP);
2419 if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2420 Invert = true;
2421 return Opcode;
2422 }
2423
2424 return 0;
2425 }
2426
2427 // Return a v2f64 that contains the extended form of elements Start and Start+1
2428 // of v4f32 value Op.
expandV4F32ToV2F64(SelectionDAG & DAG,int Start,const SDLoc & DL,SDValue Op)2429 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2430 SDValue Op) {
2431 int Mask[] = { Start, -1, Start + 1, -1 };
2432 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2433 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2434 }
2435
2436 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2437 // producing a result of type VT.
getVectorCmp(SelectionDAG & DAG,unsigned Opcode,const SDLoc & DL,EVT VT,SDValue CmpOp0,SDValue CmpOp1) const2438 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2439 const SDLoc &DL, EVT VT,
2440 SDValue CmpOp0,
2441 SDValue CmpOp1) const {
2442 // There is no hardware support for v4f32 (unless we have the vector
2443 // enhancements facility 1), so extend the vector into two v2f64s
2444 // and compare those.
2445 if (CmpOp0.getValueType() == MVT::v4f32 &&
2446 !Subtarget.hasVectorEnhancements1()) {
2447 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
2448 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
2449 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
2450 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
2451 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2452 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2453 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2454 }
2455 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2456 }
2457
2458 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2459 // an integer mask of type VT.
lowerVectorSETCC(SelectionDAG & DAG,const SDLoc & DL,EVT VT,ISD::CondCode CC,SDValue CmpOp0,SDValue CmpOp1) const2460 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2461 const SDLoc &DL, EVT VT,
2462 ISD::CondCode CC,
2463 SDValue CmpOp0,
2464 SDValue CmpOp1) const {
2465 bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2466 bool Invert = false;
2467 SDValue Cmp;
2468 switch (CC) {
2469 // Handle tests for order using (or (ogt y x) (oge x y)).
2470 case ISD::SETUO:
2471 Invert = true;
2472 LLVM_FALLTHROUGH;
2473 case ISD::SETO: {
2474 assert(IsFP && "Unexpected integer comparison");
2475 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2476 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
2477 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2478 break;
2479 }
2480
2481 // Handle <> tests using (or (ogt y x) (ogt x y)).
2482 case ISD::SETUEQ:
2483 Invert = true;
2484 LLVM_FALLTHROUGH;
2485 case ISD::SETONE: {
2486 assert(IsFP && "Unexpected integer comparison");
2487 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2488 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
2489 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2490 break;
2491 }
2492
2493 // Otherwise a single comparison is enough. It doesn't really
2494 // matter whether we try the inversion or the swap first, since
2495 // there are no cases where both work.
2496 default:
2497 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2498 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
2499 else {
2500 CC = ISD::getSetCCSwappedOperands(CC);
2501 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2502 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
2503 else
2504 llvm_unreachable("Unhandled comparison");
2505 }
2506 break;
2507 }
2508 if (Invert) {
2509 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
2510 DAG.getConstant(65535, DL, MVT::i32));
2511 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask);
2512 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2513 }
2514 return Cmp;
2515 }
2516
lowerSETCC(SDValue Op,SelectionDAG & DAG) const2517 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2518 SelectionDAG &DAG) const {
2519 SDValue CmpOp0 = Op.getOperand(0);
2520 SDValue CmpOp1 = Op.getOperand(1);
2521 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2522 SDLoc DL(Op);
2523 EVT VT = Op.getValueType();
2524 if (VT.isVector())
2525 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2526
2527 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2528 SDValue CCReg = emitCmp(DAG, DL, C);
2529 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2530 }
2531
lowerBR_CC(SDValue Op,SelectionDAG & DAG) const2532 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2533 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2534 SDValue CmpOp0 = Op.getOperand(2);
2535 SDValue CmpOp1 = Op.getOperand(3);
2536 SDValue Dest = Op.getOperand(4);
2537 SDLoc DL(Op);
2538
2539 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2540 SDValue CCReg = emitCmp(DAG, DL, C);
2541 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
2542 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
2543 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2544 }
2545
2546 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2547 // allowing Pos and Neg to be wider than CmpOp.
isAbsolute(SDValue CmpOp,SDValue Pos,SDValue Neg)2548 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2549 return (Neg.getOpcode() == ISD::SUB &&
2550 Neg.getOperand(0).getOpcode() == ISD::Constant &&
2551 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2552 Neg.getOperand(1) == Pos &&
2553 (Pos == CmpOp ||
2554 (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2555 Pos.getOperand(0) == CmpOp)));
2556 }
2557
2558 // Return the absolute or negative absolute of Op; IsNegative decides which.
getAbsolute(SelectionDAG & DAG,const SDLoc & DL,SDValue Op,bool IsNegative)2559 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2560 bool IsNegative) {
2561 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2562 if (IsNegative)
2563 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2564 DAG.getConstant(0, DL, Op.getValueType()), Op);
2565 return Op;
2566 }
2567
lowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const2568 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2569 SelectionDAG &DAG) const {
2570 SDValue CmpOp0 = Op.getOperand(0);
2571 SDValue CmpOp1 = Op.getOperand(1);
2572 SDValue TrueOp = Op.getOperand(2);
2573 SDValue FalseOp = Op.getOperand(3);
2574 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2575 SDLoc DL(Op);
2576
2577 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2578
2579 // Check for absolute and negative-absolute selections, including those
2580 // where the comparison value is sign-extended (for LPGFR and LNGFR).
2581 // This check supplements the one in DAGCombiner.
2582 if (C.Opcode == SystemZISD::ICMP &&
2583 C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2584 C.CCMask != SystemZ::CCMASK_CMP_NE &&
2585 C.Op1.getOpcode() == ISD::Constant &&
2586 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2587 if (isAbsolute(C.Op0, TrueOp, FalseOp))
2588 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2589 if (isAbsolute(C.Op0, FalseOp, TrueOp))
2590 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2591 }
2592
2593 SDValue CCReg = emitCmp(DAG, DL, C);
2594 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
2595 DAG.getConstant(C.CCMask, DL, MVT::i32), CCReg};
2596
2597 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
2598 }
2599
lowerGlobalAddress(GlobalAddressSDNode * Node,SelectionDAG & DAG) const2600 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2601 SelectionDAG &DAG) const {
2602 SDLoc DL(Node);
2603 const GlobalValue *GV = Node->getGlobal();
2604 int64_t Offset = Node->getOffset();
2605 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2606 CodeModel::Model CM = DAG.getTarget().getCodeModel();
2607
2608 SDValue Result;
2609 if (Subtarget.isPC32DBLSymbol(GV, CM)) {
2610 // Assign anchors at 1<<12 byte boundaries.
2611 uint64_t Anchor = Offset & ~uint64_t(0xfff);
2612 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2613 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2614
2615 // The offset can be folded into the address if it is aligned to a halfword.
2616 Offset -= Anchor;
2617 if (Offset != 0 && (Offset & 1) == 0) {
2618 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2619 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
2620 Offset = 0;
2621 }
2622 } else {
2623 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2624 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2625 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2626 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2627 }
2628
2629 // If there was a non-zero offset that we didn't fold, create an explicit
2630 // addition for it.
2631 if (Offset != 0)
2632 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
2633 DAG.getConstant(Offset, DL, PtrVT));
2634
2635 return Result;
2636 }
2637
lowerTLSGetOffset(GlobalAddressSDNode * Node,SelectionDAG & DAG,unsigned Opcode,SDValue GOTOffset) const2638 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
2639 SelectionDAG &DAG,
2640 unsigned Opcode,
2641 SDValue GOTOffset) const {
2642 SDLoc DL(Node);
2643 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2644 SDValue Chain = DAG.getEntryNode();
2645 SDValue Glue;
2646
2647 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
2648 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2649 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
2650 Glue = Chain.getValue(1);
2651 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
2652 Glue = Chain.getValue(1);
2653
2654 // The first call operand is the chain and the second is the TLS symbol.
2655 SmallVector<SDValue, 8> Ops;
2656 Ops.push_back(Chain);
2657 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
2658 Node->getValueType(0),
2659 0, 0));
2660
2661 // Add argument registers to the end of the list so that they are
2662 // known live into the call.
2663 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
2664 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
2665
2666 // Add a register mask operand representing the call-preserved registers.
2667 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2668 const uint32_t *Mask =
2669 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
2670 assert(Mask && "Missing call preserved mask for calling convention");
2671 Ops.push_back(DAG.getRegisterMask(Mask));
2672
2673 // Glue the call to the argument copies.
2674 Ops.push_back(Glue);
2675
2676 // Emit the call.
2677 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2678 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
2679 Glue = Chain.getValue(1);
2680
2681 // Copy the return value from %r2.
2682 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
2683 }
2684
lowerThreadPointer(const SDLoc & DL,SelectionDAG & DAG) const2685 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
2686 SelectionDAG &DAG) const {
2687 SDValue Chain = DAG.getEntryNode();
2688 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2689
2690 // The high part of the thread pointer is in access register 0.
2691 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
2692 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
2693
2694 // The low part of the thread pointer is in access register 1.
2695 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
2696 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
2697
2698 // Merge them into a single 64-bit address.
2699 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
2700 DAG.getConstant(32, DL, PtrVT));
2701 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
2702 }
2703
lowerGlobalTLSAddress(GlobalAddressSDNode * Node,SelectionDAG & DAG) const2704 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
2705 SelectionDAG &DAG) const {
2706 if (DAG.getTarget().useEmulatedTLS())
2707 return LowerToTLSEmulatedModel(Node, DAG);
2708 SDLoc DL(Node);
2709 const GlobalValue *GV = Node->getGlobal();
2710 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2711 TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
2712
2713 SDValue TP = lowerThreadPointer(DL, DAG);
2714
2715 // Get the offset of GA from the thread pointer, based on the TLS model.
2716 SDValue Offset;
2717 switch (model) {
2718 case TLSModel::GeneralDynamic: {
2719 // Load the GOT offset of the tls_index (module ID / per-symbol offset).
2720 SystemZConstantPoolValue *CPV =
2721 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
2722
2723 Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2724 Offset = DAG.getLoad(
2725 PtrVT, DL, DAG.getEntryNode(), Offset,
2726 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2727
2728 // Call __tls_get_offset to retrieve the offset.
2729 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
2730 break;
2731 }
2732
2733 case TLSModel::LocalDynamic: {
2734 // Load the GOT offset of the module ID.
2735 SystemZConstantPoolValue *CPV =
2736 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
2737
2738 Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2739 Offset = DAG.getLoad(
2740 PtrVT, DL, DAG.getEntryNode(), Offset,
2741 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2742
2743 // Call __tls_get_offset to retrieve the module base offset.
2744 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
2745
2746 // Note: The SystemZLDCleanupPass will remove redundant computations
2747 // of the module base offset. Count total number of local-dynamic
2748 // accesses to trigger execution of that pass.
2749 SystemZMachineFunctionInfo* MFI =
2750 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
2751 MFI->incNumLocalDynamicTLSAccesses();
2752
2753 // Add the per-symbol offset.
2754 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
2755
2756 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
2757 DTPOffset = DAG.getLoad(
2758 PtrVT, DL, DAG.getEntryNode(), DTPOffset,
2759 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2760
2761 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
2762 break;
2763 }
2764
2765 case TLSModel::InitialExec: {
2766 // Load the offset from the GOT.
2767 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2768 SystemZII::MO_INDNTPOFF);
2769 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
2770 Offset =
2771 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
2772 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2773 break;
2774 }
2775
2776 case TLSModel::LocalExec: {
2777 // Force the offset into the constant pool and load it from there.
2778 SystemZConstantPoolValue *CPV =
2779 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
2780
2781 Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2782 Offset = DAG.getLoad(
2783 PtrVT, DL, DAG.getEntryNode(), Offset,
2784 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2785 break;
2786 }
2787 }
2788
2789 // Add the base and offset together.
2790 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
2791 }
2792
lowerBlockAddress(BlockAddressSDNode * Node,SelectionDAG & DAG) const2793 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
2794 SelectionDAG &DAG) const {
2795 SDLoc DL(Node);
2796 const BlockAddress *BA = Node->getBlockAddress();
2797 int64_t Offset = Node->getOffset();
2798 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2799
2800 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
2801 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2802 return Result;
2803 }
2804
lowerJumpTable(JumpTableSDNode * JT,SelectionDAG & DAG) const2805 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
2806 SelectionDAG &DAG) const {
2807 SDLoc DL(JT);
2808 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2809 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2810
2811 // Use LARL to load the address of the table.
2812 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2813 }
2814
lowerConstantPool(ConstantPoolSDNode * CP,SelectionDAG & DAG) const2815 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
2816 SelectionDAG &DAG) const {
2817 SDLoc DL(CP);
2818 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2819
2820 SDValue Result;
2821 if (CP->isMachineConstantPoolEntry())
2822 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2823 CP->getAlignment());
2824 else
2825 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2826 CP->getAlignment(), CP->getOffset());
2827
2828 // Use LARL to load the address of the constant pool entry.
2829 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2830 }
2831
lowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const2832 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
2833 SelectionDAG &DAG) const {
2834 MachineFunction &MF = DAG.getMachineFunction();
2835 MachineFrameInfo &MFI = MF.getFrameInfo();
2836 MFI.setFrameAddressIsTaken(true);
2837
2838 SDLoc DL(Op);
2839 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2840 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2841
2842 // If the back chain frame index has not been allocated yet, do so.
2843 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>();
2844 int BackChainIdx = FI->getFramePointerSaveIndex();
2845 if (!BackChainIdx) {
2846 // By definition, the frame address is the address of the back chain.
2847 BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false);
2848 FI->setFramePointerSaveIndex(BackChainIdx);
2849 }
2850 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
2851
2852 // FIXME The frontend should detect this case.
2853 if (Depth > 0) {
2854 report_fatal_error("Unsupported stack frame traversal count");
2855 }
2856
2857 return BackChain;
2858 }
2859
lowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const2860 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
2861 SelectionDAG &DAG) const {
2862 MachineFunction &MF = DAG.getMachineFunction();
2863 MachineFrameInfo &MFI = MF.getFrameInfo();
2864 MFI.setReturnAddressIsTaken(true);
2865
2866 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2867 return SDValue();
2868
2869 SDLoc DL(Op);
2870 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2871 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2872
2873 // FIXME The frontend should detect this case.
2874 if (Depth > 0) {
2875 report_fatal_error("Unsupported stack frame traversal count");
2876 }
2877
2878 // Return R14D, which has the return address. Mark it an implicit live-in.
2879 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
2880 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
2881 }
2882
lowerBITCAST(SDValue Op,SelectionDAG & DAG) const2883 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
2884 SelectionDAG &DAG) const {
2885 SDLoc DL(Op);
2886 SDValue In = Op.getOperand(0);
2887 EVT InVT = In.getValueType();
2888 EVT ResVT = Op.getValueType();
2889
2890 // Convert loads directly. This is normally done by DAGCombiner,
2891 // but we need this case for bitcasts that are created during lowering
2892 // and which are then lowered themselves.
2893 if (auto *LoadN = dyn_cast<LoadSDNode>(In))
2894 if (ISD::isNormalLoad(LoadN)) {
2895 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
2896 LoadN->getBasePtr(), LoadN->getMemOperand());
2897 // Update the chain uses.
2898 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
2899 return NewLoad;
2900 }
2901
2902 if (InVT == MVT::i32 && ResVT == MVT::f32) {
2903 SDValue In64;
2904 if (Subtarget.hasHighWord()) {
2905 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
2906 MVT::i64);
2907 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
2908 MVT::i64, SDValue(U64, 0), In);
2909 } else {
2910 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
2911 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
2912 DAG.getConstant(32, DL, MVT::i64));
2913 }
2914 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
2915 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32,
2916 DL, MVT::f32, Out64);
2917 }
2918 if (InVT == MVT::f32 && ResVT == MVT::i32) {
2919 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
2920 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL,
2921 MVT::f64, SDValue(U64, 0), In);
2922 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
2923 if (Subtarget.hasHighWord())
2924 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
2925 MVT::i32, Out64);
2926 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
2927 DAG.getConstant(32, DL, MVT::i64));
2928 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
2929 }
2930 llvm_unreachable("Unexpected bitcast combination");
2931 }
2932
lowerVASTART(SDValue Op,SelectionDAG & DAG) const2933 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
2934 SelectionDAG &DAG) const {
2935 MachineFunction &MF = DAG.getMachineFunction();
2936 SystemZMachineFunctionInfo *FuncInfo =
2937 MF.getInfo<SystemZMachineFunctionInfo>();
2938 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2939
2940 SDValue Chain = Op.getOperand(0);
2941 SDValue Addr = Op.getOperand(1);
2942 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2943 SDLoc DL(Op);
2944
2945 // The initial values of each field.
2946 const unsigned NumFields = 4;
2947 SDValue Fields[NumFields] = {
2948 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
2949 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
2950 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
2951 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
2952 };
2953
2954 // Store each field into its respective slot.
2955 SDValue MemOps[NumFields];
2956 unsigned Offset = 0;
2957 for (unsigned I = 0; I < NumFields; ++I) {
2958 SDValue FieldAddr = Addr;
2959 if (Offset != 0)
2960 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
2961 DAG.getIntPtrConstant(Offset, DL));
2962 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
2963 MachinePointerInfo(SV, Offset));
2964 Offset += 8;
2965 }
2966 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2967 }
2968
lowerVACOPY(SDValue Op,SelectionDAG & DAG) const2969 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
2970 SelectionDAG &DAG) const {
2971 SDValue Chain = Op.getOperand(0);
2972 SDValue DstPtr = Op.getOperand(1);
2973 SDValue SrcPtr = Op.getOperand(2);
2974 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2975 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
2976 SDLoc DL(Op);
2977
2978 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
2979 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
2980 /*isTailCall*/false,
2981 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
2982 }
2983
2984 SDValue SystemZTargetLowering::
lowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const2985 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
2986 const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
2987 MachineFunction &MF = DAG.getMachineFunction();
2988 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
2989 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
2990
2991 SDValue Chain = Op.getOperand(0);
2992 SDValue Size = Op.getOperand(1);
2993 SDValue Align = Op.getOperand(2);
2994 SDLoc DL(Op);
2995
2996 // If user has set the no alignment function attribute, ignore
2997 // alloca alignments.
2998 uint64_t AlignVal = (RealignOpt ?
2999 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3000
3001 uint64_t StackAlign = TFI->getStackAlignment();
3002 uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3003 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3004
3005 unsigned SPReg = getStackPointerRegisterToSaveRestore();
3006 SDValue NeededSpace = Size;
3007
3008 // Get a reference to the stack pointer.
3009 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3010
3011 // If we need a backchain, save it now.
3012 SDValue Backchain;
3013 if (StoreBackchain)
3014 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3015
3016 // Add extra space for alignment if needed.
3017 if (ExtraAlignSpace)
3018 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3019 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3020
3021 // Get the new stack pointer value.
3022 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3023
3024 // Copy the new stack pointer back.
3025 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3026
3027 // The allocated data lives above the 160 bytes allocated for the standard
3028 // frame, plus any outgoing stack arguments. We don't know how much that
3029 // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3030 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3031 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3032
3033 // Dynamically realign if needed.
3034 if (RequiredAlign > StackAlign) {
3035 Result =
3036 DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3037 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3038 Result =
3039 DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3040 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3041 }
3042
3043 if (StoreBackchain)
3044 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3045
3046 SDValue Ops[2] = { Result, Chain };
3047 return DAG.getMergeValues(Ops, DL);
3048 }
3049
lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,SelectionDAG & DAG) const3050 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3051 SDValue Op, SelectionDAG &DAG) const {
3052 SDLoc DL(Op);
3053
3054 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3055 }
3056
lowerSMUL_LOHI(SDValue Op,SelectionDAG & DAG) const3057 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3058 SelectionDAG &DAG) const {
3059 EVT VT = Op.getValueType();
3060 SDLoc DL(Op);
3061 SDValue Ops[2];
3062 if (is32Bit(VT))
3063 // Just do a normal 64-bit multiplication and extract the results.
3064 // We define this so that it can be used for constant division.
3065 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3066 Op.getOperand(1), Ops[1], Ops[0]);
3067 else if (Subtarget.hasMiscellaneousExtensions2())
3068 // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3069 // the high result in the even register. ISD::SMUL_LOHI is defined to
3070 // return the low half first, so the results are in reverse order.
3071 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3072 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3073 else {
3074 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3075 //
3076 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3077 //
3078 // but using the fact that the upper halves are either all zeros
3079 // or all ones:
3080 //
3081 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3082 //
3083 // and grouping the right terms together since they are quicker than the
3084 // multiplication:
3085 //
3086 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3087 SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3088 SDValue LL = Op.getOperand(0);
3089 SDValue RL = Op.getOperand(1);
3090 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3091 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3092 // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3093 // the high result in the even register. ISD::SMUL_LOHI is defined to
3094 // return the low half first, so the results are in reverse order.
3095 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3096 LL, RL, Ops[1], Ops[0]);
3097 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3098 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3099 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3100 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3101 }
3102 return DAG.getMergeValues(Ops, DL);
3103 }
3104
lowerUMUL_LOHI(SDValue Op,SelectionDAG & DAG) const3105 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3106 SelectionDAG &DAG) const {
3107 EVT VT = Op.getValueType();
3108 SDLoc DL(Op);
3109 SDValue Ops[2];
3110 if (is32Bit(VT))
3111 // Just do a normal 64-bit multiplication and extract the results.
3112 // We define this so that it can be used for constant division.
3113 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3114 Op.getOperand(1), Ops[1], Ops[0]);
3115 else
3116 // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3117 // the high result in the even register. ISD::UMUL_LOHI is defined to
3118 // return the low half first, so the results are in reverse order.
3119 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3120 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3121 return DAG.getMergeValues(Ops, DL);
3122 }
3123
lowerSDIVREM(SDValue Op,SelectionDAG & DAG) const3124 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3125 SelectionDAG &DAG) const {
3126 SDValue Op0 = Op.getOperand(0);
3127 SDValue Op1 = Op.getOperand(1);
3128 EVT VT = Op.getValueType();
3129 SDLoc DL(Op);
3130
3131 // We use DSGF for 32-bit division. This means the first operand must
3132 // always be 64-bit, and the second operand should be 32-bit whenever
3133 // that is possible, to improve performance.
3134 if (is32Bit(VT))
3135 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3136 else if (DAG.ComputeNumSignBits(Op1) > 32)
3137 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3138
3139 // DSG(F) returns the remainder in the even register and the
3140 // quotient in the odd register.
3141 SDValue Ops[2];
3142 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3143 return DAG.getMergeValues(Ops, DL);
3144 }
3145
lowerUDIVREM(SDValue Op,SelectionDAG & DAG) const3146 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3147 SelectionDAG &DAG) const {
3148 EVT VT = Op.getValueType();
3149 SDLoc DL(Op);
3150
3151 // DL(G) returns the remainder in the even register and the
3152 // quotient in the odd register.
3153 SDValue Ops[2];
3154 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3155 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3156 return DAG.getMergeValues(Ops, DL);
3157 }
3158
lowerOR(SDValue Op,SelectionDAG & DAG) const3159 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3160 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3161
3162 // Get the known-zero masks for each operand.
3163 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
3164 KnownBits Known[2];
3165 DAG.computeKnownBits(Ops[0], Known[0]);
3166 DAG.computeKnownBits(Ops[1], Known[1]);
3167
3168 // See if the upper 32 bits of one operand and the lower 32 bits of the
3169 // other are known zero. They are the low and high operands respectively.
3170 uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3171 Known[1].Zero.getZExtValue() };
3172 unsigned High, Low;
3173 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3174 High = 1, Low = 0;
3175 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3176 High = 0, Low = 1;
3177 else
3178 return Op;
3179
3180 SDValue LowOp = Ops[Low];
3181 SDValue HighOp = Ops[High];
3182
3183 // If the high part is a constant, we're better off using IILH.
3184 if (HighOp.getOpcode() == ISD::Constant)
3185 return Op;
3186
3187 // If the low part is a constant that is outside the range of LHI,
3188 // then we're better off using IILF.
3189 if (LowOp.getOpcode() == ISD::Constant) {
3190 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3191 if (!isInt<16>(Value))
3192 return Op;
3193 }
3194
3195 // Check whether the high part is an AND that doesn't change the
3196 // high 32 bits and just masks out low bits. We can skip it if so.
3197 if (HighOp.getOpcode() == ISD::AND &&
3198 HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3199 SDValue HighOp0 = HighOp.getOperand(0);
3200 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3201 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3202 HighOp = HighOp0;
3203 }
3204
3205 // Take advantage of the fact that all GR32 operations only change the
3206 // low 32 bits by truncating Low to an i32 and inserting it directly
3207 // using a subreg. The interesting cases are those where the truncation
3208 // can be folded.
3209 SDLoc DL(Op);
3210 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3211 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3212 MVT::i64, HighOp, Low32);
3213 }
3214
3215 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
lowerXALUO(SDValue Op,SelectionDAG & DAG) const3216 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3217 SelectionDAG &DAG) const {
3218 SDNode *N = Op.getNode();
3219 SDValue LHS = N->getOperand(0);
3220 SDValue RHS = N->getOperand(1);
3221 SDLoc DL(N);
3222 unsigned BaseOp = 0;
3223 unsigned CCValid = 0;
3224 unsigned CCMask = 0;
3225
3226 switch (Op.getOpcode()) {
3227 default: llvm_unreachable("Unknown instruction!");
3228 case ISD::SADDO:
3229 BaseOp = SystemZISD::SADDO;
3230 CCValid = SystemZ::CCMASK_ARITH;
3231 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3232 break;
3233 case ISD::SSUBO:
3234 BaseOp = SystemZISD::SSUBO;
3235 CCValid = SystemZ::CCMASK_ARITH;
3236 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3237 break;
3238 case ISD::UADDO:
3239 BaseOp = SystemZISD::UADDO;
3240 CCValid = SystemZ::CCMASK_LOGICAL;
3241 CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3242 break;
3243 case ISD::USUBO:
3244 BaseOp = SystemZISD::USUBO;
3245 CCValid = SystemZ::CCMASK_LOGICAL;
3246 CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3247 break;
3248 }
3249
3250 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3251 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3252
3253 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3254 if (N->getValueType(1) == MVT::i1)
3255 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3256
3257 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3258 }
3259
3260 // Lower ADDCARRY/SUBCARRY nodes.
lowerADDSUBCARRY(SDValue Op,SelectionDAG & DAG) const3261 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3262 SelectionDAG &DAG) const {
3263
3264 SDNode *N = Op.getNode();
3265 MVT VT = N->getSimpleValueType(0);
3266
3267 // Let legalize expand this if it isn't a legal type yet.
3268 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3269 return SDValue();
3270
3271 SDValue LHS = N->getOperand(0);
3272 SDValue RHS = N->getOperand(1);
3273 SDValue Carry = Op.getOperand(2);
3274 SDLoc DL(N);
3275 unsigned BaseOp = 0;
3276 unsigned CCValid = 0;
3277 unsigned CCMask = 0;
3278
3279 switch (Op.getOpcode()) {
3280 default: llvm_unreachable("Unknown instruction!");
3281 case ISD::ADDCARRY:
3282 BaseOp = SystemZISD::ADDCARRY;
3283 CCValid = SystemZ::CCMASK_LOGICAL;
3284 CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3285 break;
3286 case ISD::SUBCARRY:
3287 BaseOp = SystemZISD::SUBCARRY;
3288 CCValid = SystemZ::CCMASK_LOGICAL;
3289 CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3290 break;
3291 }
3292
3293 // Set the condition code from the carry flag.
3294 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3295 DAG.getConstant(CCValid, DL, MVT::i32),
3296 DAG.getConstant(CCMask, DL, MVT::i32));
3297
3298 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3299 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3300
3301 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3302 if (N->getValueType(1) == MVT::i1)
3303 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3304
3305 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3306 }
3307
lowerCTPOP(SDValue Op,SelectionDAG & DAG) const3308 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3309 SelectionDAG &DAG) const {
3310 EVT VT = Op.getValueType();
3311 SDLoc DL(Op);
3312 Op = Op.getOperand(0);
3313
3314 // Handle vector types via VPOPCT.
3315 if (VT.isVector()) {
3316 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3317 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3318 switch (VT.getScalarSizeInBits()) {
3319 case 8:
3320 break;
3321 case 16: {
3322 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3323 SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3324 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3325 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3326 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3327 break;
3328 }
3329 case 32: {
3330 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3331 DAG.getConstant(0, DL, MVT::i32));
3332 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3333 break;
3334 }
3335 case 64: {
3336 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3337 DAG.getConstant(0, DL, MVT::i32));
3338 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3339 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3340 break;
3341 }
3342 default:
3343 llvm_unreachable("Unexpected type");
3344 }
3345 return Op;
3346 }
3347
3348 // Get the known-zero mask for the operand.
3349 KnownBits Known;
3350 DAG.computeKnownBits(Op, Known);
3351 unsigned NumSignificantBits = (~Known.Zero).getActiveBits();
3352 if (NumSignificantBits == 0)
3353 return DAG.getConstant(0, DL, VT);
3354
3355 // Skip known-zero high parts of the operand.
3356 int64_t OrigBitSize = VT.getSizeInBits();
3357 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3358 BitSize = std::min(BitSize, OrigBitSize);
3359
3360 // The POPCNT instruction counts the number of bits in each byte.
3361 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3362 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3363 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3364
3365 // Add up per-byte counts in a binary tree. All bits of Op at
3366 // position larger than BitSize remain zero throughout.
3367 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3368 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3369 if (BitSize != OrigBitSize)
3370 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3371 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3372 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3373 }
3374
3375 // Extract overall result from high byte.
3376 if (BitSize > 8)
3377 Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3378 DAG.getConstant(BitSize - 8, DL, VT));
3379
3380 return Op;
3381 }
3382
lowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG) const3383 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3384 SelectionDAG &DAG) const {
3385 SDLoc DL(Op);
3386 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3387 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3388 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3389 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3390
3391 // The only fence that needs an instruction is a sequentially-consistent
3392 // cross-thread fence.
3393 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3394 FenceSSID == SyncScope::System) {
3395 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3396 Op.getOperand(0)),
3397 0);
3398 }
3399
3400 // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3401 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3402 }
3403
3404 // Op is an atomic load. Lower it into a normal volatile load.
lowerATOMIC_LOAD(SDValue Op,SelectionDAG & DAG) const3405 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3406 SelectionDAG &DAG) const {
3407 auto *Node = cast<AtomicSDNode>(Op.getNode());
3408 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3409 Node->getChain(), Node->getBasePtr(),
3410 Node->getMemoryVT(), Node->getMemOperand());
3411 }
3412
3413 // Op is an atomic store. Lower it into a normal volatile store.
lowerATOMIC_STORE(SDValue Op,SelectionDAG & DAG) const3414 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3415 SelectionDAG &DAG) const {
3416 auto *Node = cast<AtomicSDNode>(Op.getNode());
3417 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3418 Node->getBasePtr(), Node->getMemoryVT(),
3419 Node->getMemOperand());
3420 // We have to enforce sequential consistency by performing a
3421 // serialization operation after the store.
3422 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3423 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3424 MVT::Other, Chain), 0);
3425 return Chain;
3426 }
3427
3428 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first
3429 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
lowerATOMIC_LOAD_OP(SDValue Op,SelectionDAG & DAG,unsigned Opcode) const3430 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3431 SelectionDAG &DAG,
3432 unsigned Opcode) const {
3433 auto *Node = cast<AtomicSDNode>(Op.getNode());
3434
3435 // 32-bit operations need no code outside the main loop.
3436 EVT NarrowVT = Node->getMemoryVT();
3437 EVT WideVT = MVT::i32;
3438 if (NarrowVT == WideVT)
3439 return Op;
3440
3441 int64_t BitSize = NarrowVT.getSizeInBits();
3442 SDValue ChainIn = Node->getChain();
3443 SDValue Addr = Node->getBasePtr();
3444 SDValue Src2 = Node->getVal();
3445 MachineMemOperand *MMO = Node->getMemOperand();
3446 SDLoc DL(Node);
3447 EVT PtrVT = Addr.getValueType();
3448
3449 // Convert atomic subtracts of constants into additions.
3450 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3451 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3452 Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3453 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3454 }
3455
3456 // Get the address of the containing word.
3457 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3458 DAG.getConstant(-4, DL, PtrVT));
3459
3460 // Get the number of bits that the word must be rotated left in order
3461 // to bring the field to the top bits of a GR32.
3462 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3463 DAG.getConstant(3, DL, PtrVT));
3464 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3465
3466 // Get the complementing shift amount, for rotating a field in the top
3467 // bits back to its proper position.
3468 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3469 DAG.getConstant(0, DL, WideVT), BitShift);
3470
3471 // Extend the source operand to 32 bits and prepare it for the inner loop.
3472 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3473 // operations require the source to be shifted in advance. (This shift
3474 // can be folded if the source is constant.) For AND and NAND, the lower
3475 // bits must be set, while for other opcodes they should be left clear.
3476 if (Opcode != SystemZISD::ATOMIC_SWAPW)
3477 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3478 DAG.getConstant(32 - BitSize, DL, WideVT));
3479 if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3480 Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3481 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3482 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3483
3484 // Construct the ATOMIC_LOADW_* node.
3485 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3486 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3487 DAG.getConstant(BitSize, DL, WideVT) };
3488 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3489 NarrowVT, MMO);
3490
3491 // Rotate the result of the final CS so that the field is in the lower
3492 // bits of a GR32, then truncate it.
3493 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3494 DAG.getConstant(BitSize, DL, WideVT));
3495 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3496
3497 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3498 return DAG.getMergeValues(RetOps, DL);
3499 }
3500
3501 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations
3502 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3503 // operations into additions.
lowerATOMIC_LOAD_SUB(SDValue Op,SelectionDAG & DAG) const3504 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3505 SelectionDAG &DAG) const {
3506 auto *Node = cast<AtomicSDNode>(Op.getNode());
3507 EVT MemVT = Node->getMemoryVT();
3508 if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3509 // A full-width operation.
3510 assert(Op.getValueType() == MemVT && "Mismatched VTs");
3511 SDValue Src2 = Node->getVal();
3512 SDValue NegSrc2;
3513 SDLoc DL(Src2);
3514
3515 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3516 // Use an addition if the operand is constant and either LAA(G) is
3517 // available or the negative value is in the range of A(G)FHI.
3518 int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3519 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3520 NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3521 } else if (Subtarget.hasInterlockedAccess1())
3522 // Use LAA(G) if available.
3523 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3524 Src2);
3525
3526 if (NegSrc2.getNode())
3527 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3528 Node->getChain(), Node->getBasePtr(), NegSrc2,
3529 Node->getMemOperand());
3530
3531 // Use the node as-is.
3532 return Op;
3533 }
3534
3535 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3536 }
3537
3538 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
lowerATOMIC_CMP_SWAP(SDValue Op,SelectionDAG & DAG) const3539 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3540 SelectionDAG &DAG) const {
3541 auto *Node = cast<AtomicSDNode>(Op.getNode());
3542 SDValue ChainIn = Node->getOperand(0);
3543 SDValue Addr = Node->getOperand(1);
3544 SDValue CmpVal = Node->getOperand(2);
3545 SDValue SwapVal = Node->getOperand(3);
3546 MachineMemOperand *MMO = Node->getMemOperand();
3547 SDLoc DL(Node);
3548
3549 // We have native support for 32-bit and 64-bit compare and swap, but we
3550 // still need to expand extracting the "success" result from the CC.
3551 EVT NarrowVT = Node->getMemoryVT();
3552 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3553 if (NarrowVT == WideVT) {
3554 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3555 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3556 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
3557 DL, Tys, Ops, NarrowVT, MMO);
3558 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3559 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
3560
3561 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3562 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3563 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3564 return SDValue();
3565 }
3566
3567 // Convert 8-bit and 16-bit compare and swap to a loop, implemented
3568 // via a fullword ATOMIC_CMP_SWAPW operation.
3569 int64_t BitSize = NarrowVT.getSizeInBits();
3570 EVT PtrVT = Addr.getValueType();
3571
3572 // Get the address of the containing word.
3573 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3574 DAG.getConstant(-4, DL, PtrVT));
3575
3576 // Get the number of bits that the word must be rotated left in order
3577 // to bring the field to the top bits of a GR32.
3578 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3579 DAG.getConstant(3, DL, PtrVT));
3580 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3581
3582 // Get the complementing shift amount, for rotating a field in the top
3583 // bits back to its proper position.
3584 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3585 DAG.getConstant(0, DL, WideVT), BitShift);
3586
3587 // Construct the ATOMIC_CMP_SWAPW node.
3588 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3589 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3590 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
3591 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
3592 VTList, Ops, NarrowVT, MMO);
3593 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3594 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
3595
3596 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3597 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3598 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3599 return SDValue();
3600 }
3601
lowerSTACKSAVE(SDValue Op,SelectionDAG & DAG) const3602 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
3603 SelectionDAG &DAG) const {
3604 MachineFunction &MF = DAG.getMachineFunction();
3605 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3606 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
3607 SystemZ::R15D, Op.getValueType());
3608 }
3609
lowerSTACKRESTORE(SDValue Op,SelectionDAG & DAG) const3610 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
3611 SelectionDAG &DAG) const {
3612 MachineFunction &MF = DAG.getMachineFunction();
3613 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3614 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3615
3616 SDValue Chain = Op.getOperand(0);
3617 SDValue NewSP = Op.getOperand(1);
3618 SDValue Backchain;
3619 SDLoc DL(Op);
3620
3621 if (StoreBackchain) {
3622 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
3623 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3624 }
3625
3626 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
3627
3628 if (StoreBackchain)
3629 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3630
3631 return Chain;
3632 }
3633
lowerPREFETCH(SDValue Op,SelectionDAG & DAG) const3634 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
3635 SelectionDAG &DAG) const {
3636 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3637 if (!IsData)
3638 // Just preserve the chain.
3639 return Op.getOperand(0);
3640
3641 SDLoc DL(Op);
3642 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3643 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
3644 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
3645 SDValue Ops[] = {
3646 Op.getOperand(0),
3647 DAG.getConstant(Code, DL, MVT::i32),
3648 Op.getOperand(1)
3649 };
3650 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
3651 Node->getVTList(), Ops,
3652 Node->getMemoryVT(), Node->getMemOperand());
3653 }
3654
3655 // Convert condition code in CCReg to an i32 value.
getCCResult(SelectionDAG & DAG,SDValue CCReg)3656 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
3657 SDLoc DL(CCReg);
3658 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
3659 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
3660 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
3661 }
3662
3663 SDValue
lowerINTRINSIC_W_CHAIN(SDValue Op,SelectionDAG & DAG) const3664 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
3665 SelectionDAG &DAG) const {
3666 unsigned Opcode, CCValid;
3667 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
3668 assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
3669 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
3670 SDValue CC = getCCResult(DAG, SDValue(Node, 0));
3671 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
3672 return SDValue();
3673 }
3674
3675 return SDValue();
3676 }
3677
3678 SDValue
lowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const3679 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
3680 SelectionDAG &DAG) const {
3681 unsigned Opcode, CCValid;
3682 if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
3683 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
3684 if (Op->getNumValues() == 1)
3685 return getCCResult(DAG, SDValue(Node, 0));
3686 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
3687 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
3688 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
3689 }
3690
3691 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3692 switch (Id) {
3693 case Intrinsic::thread_pointer:
3694 return lowerThreadPointer(SDLoc(Op), DAG);
3695
3696 case Intrinsic::s390_vpdi:
3697 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
3698 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3699
3700 case Intrinsic::s390_vperm:
3701 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
3702 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3703
3704 case Intrinsic::s390_vuphb:
3705 case Intrinsic::s390_vuphh:
3706 case Intrinsic::s390_vuphf:
3707 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
3708 Op.getOperand(1));
3709
3710 case Intrinsic::s390_vuplhb:
3711 case Intrinsic::s390_vuplhh:
3712 case Intrinsic::s390_vuplhf:
3713 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
3714 Op.getOperand(1));
3715
3716 case Intrinsic::s390_vuplb:
3717 case Intrinsic::s390_vuplhw:
3718 case Intrinsic::s390_vuplf:
3719 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
3720 Op.getOperand(1));
3721
3722 case Intrinsic::s390_vupllb:
3723 case Intrinsic::s390_vupllh:
3724 case Intrinsic::s390_vupllf:
3725 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
3726 Op.getOperand(1));
3727
3728 case Intrinsic::s390_vsumb:
3729 case Intrinsic::s390_vsumh:
3730 case Intrinsic::s390_vsumgh:
3731 case Intrinsic::s390_vsumgf:
3732 case Intrinsic::s390_vsumqf:
3733 case Intrinsic::s390_vsumqg:
3734 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
3735 Op.getOperand(1), Op.getOperand(2));
3736 }
3737
3738 return SDValue();
3739 }
3740
3741 namespace {
3742 // Says that SystemZISD operation Opcode can be used to perform the equivalent
3743 // of a VPERM with permute vector Bytes. If Opcode takes three operands,
3744 // Operand is the constant third operand, otherwise it is the number of
3745 // bytes in each element of the result.
3746 struct Permute {
3747 unsigned Opcode;
3748 unsigned Operand;
3749 unsigned char Bytes[SystemZ::VectorBytes];
3750 };
3751 }
3752
3753 static const Permute PermuteForms[] = {
3754 // VMRHG
3755 { SystemZISD::MERGE_HIGH, 8,
3756 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
3757 // VMRHF
3758 { SystemZISD::MERGE_HIGH, 4,
3759 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
3760 // VMRHH
3761 { SystemZISD::MERGE_HIGH, 2,
3762 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
3763 // VMRHB
3764 { SystemZISD::MERGE_HIGH, 1,
3765 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
3766 // VMRLG
3767 { SystemZISD::MERGE_LOW, 8,
3768 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
3769 // VMRLF
3770 { SystemZISD::MERGE_LOW, 4,
3771 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
3772 // VMRLH
3773 { SystemZISD::MERGE_LOW, 2,
3774 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
3775 // VMRLB
3776 { SystemZISD::MERGE_LOW, 1,
3777 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
3778 // VPKG
3779 { SystemZISD::PACK, 4,
3780 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
3781 // VPKF
3782 { SystemZISD::PACK, 2,
3783 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
3784 // VPKH
3785 { SystemZISD::PACK, 1,
3786 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
3787 // VPDI V1, V2, 4 (low half of V1, high half of V2)
3788 { SystemZISD::PERMUTE_DWORDS, 4,
3789 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
3790 // VPDI V1, V2, 1 (high half of V1, low half of V2)
3791 { SystemZISD::PERMUTE_DWORDS, 1,
3792 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
3793 };
3794
3795 // Called after matching a vector shuffle against a particular pattern.
3796 // Both the original shuffle and the pattern have two vector operands.
3797 // OpNos[0] is the operand of the original shuffle that should be used for
3798 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
3799 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and
3800 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
3801 // for operands 0 and 1 of the pattern.
chooseShuffleOpNos(int * OpNos,unsigned & OpNo0,unsigned & OpNo1)3802 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
3803 if (OpNos[0] < 0) {
3804 if (OpNos[1] < 0)
3805 return false;
3806 OpNo0 = OpNo1 = OpNos[1];
3807 } else if (OpNos[1] < 0) {
3808 OpNo0 = OpNo1 = OpNos[0];
3809 } else {
3810 OpNo0 = OpNos[0];
3811 OpNo1 = OpNos[1];
3812 }
3813 return true;
3814 }
3815
3816 // Bytes is a VPERM-like permute vector, except that -1 is used for
3817 // undefined bytes. Return true if the VPERM can be implemented using P.
3818 // When returning true set OpNo0 to the VPERM operand that should be
3819 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
3820 //
3821 // For example, if swapping the VPERM operands allows P to match, OpNo0
3822 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one
3823 // operand, but rewriting it to use two duplicated operands allows it to
3824 // match P, then OpNo0 and OpNo1 will be the same.
matchPermute(const SmallVectorImpl<int> & Bytes,const Permute & P,unsigned & OpNo0,unsigned & OpNo1)3825 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
3826 unsigned &OpNo0, unsigned &OpNo1) {
3827 int OpNos[] = { -1, -1 };
3828 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
3829 int Elt = Bytes[I];
3830 if (Elt >= 0) {
3831 // Make sure that the two permute vectors use the same suboperand
3832 // byte number. Only the operand numbers (the high bits) are
3833 // allowed to differ.
3834 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
3835 return false;
3836 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
3837 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
3838 // Make sure that the operand mappings are consistent with previous
3839 // elements.
3840 if (OpNos[ModelOpNo] == 1 - RealOpNo)
3841 return false;
3842 OpNos[ModelOpNo] = RealOpNo;
3843 }
3844 }
3845 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3846 }
3847
3848 // As above, but search for a matching permute.
matchPermute(const SmallVectorImpl<int> & Bytes,unsigned & OpNo0,unsigned & OpNo1)3849 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
3850 unsigned &OpNo0, unsigned &OpNo1) {
3851 for (auto &P : PermuteForms)
3852 if (matchPermute(Bytes, P, OpNo0, OpNo1))
3853 return &P;
3854 return nullptr;
3855 }
3856
3857 // Bytes is a VPERM-like permute vector, except that -1 is used for
3858 // undefined bytes. This permute is an operand of an outer permute.
3859 // See whether redistributing the -1 bytes gives a shuffle that can be
3860 // implemented using P. If so, set Transform to a VPERM-like permute vector
3861 // that, when applied to the result of P, gives the original permute in Bytes.
matchDoublePermute(const SmallVectorImpl<int> & Bytes,const Permute & P,SmallVectorImpl<int> & Transform)3862 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3863 const Permute &P,
3864 SmallVectorImpl<int> &Transform) {
3865 unsigned To = 0;
3866 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
3867 int Elt = Bytes[From];
3868 if (Elt < 0)
3869 // Byte number From of the result is undefined.
3870 Transform[From] = -1;
3871 else {
3872 while (P.Bytes[To] != Elt) {
3873 To += 1;
3874 if (To == SystemZ::VectorBytes)
3875 return false;
3876 }
3877 Transform[From] = To;
3878 }
3879 }
3880 return true;
3881 }
3882
3883 // As above, but search for a matching permute.
matchDoublePermute(const SmallVectorImpl<int> & Bytes,SmallVectorImpl<int> & Transform)3884 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3885 SmallVectorImpl<int> &Transform) {
3886 for (auto &P : PermuteForms)
3887 if (matchDoublePermute(Bytes, P, Transform))
3888 return &P;
3889 return nullptr;
3890 }
3891
3892 // Convert the mask of the given shuffle op into a byte-level mask,
3893 // as if it had type vNi8.
getVPermMask(SDValue ShuffleOp,SmallVectorImpl<int> & Bytes)3894 static bool getVPermMask(SDValue ShuffleOp,
3895 SmallVectorImpl<int> &Bytes) {
3896 EVT VT = ShuffleOp.getValueType();
3897 unsigned NumElements = VT.getVectorNumElements();
3898 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3899
3900 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
3901 Bytes.resize(NumElements * BytesPerElement, -1);
3902 for (unsigned I = 0; I < NumElements; ++I) {
3903 int Index = VSN->getMaskElt(I);
3904 if (Index >= 0)
3905 for (unsigned J = 0; J < BytesPerElement; ++J)
3906 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
3907 }
3908 return true;
3909 }
3910 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
3911 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
3912 unsigned Index = ShuffleOp.getConstantOperandVal(1);
3913 Bytes.resize(NumElements * BytesPerElement, -1);
3914 for (unsigned I = 0; I < NumElements; ++I)
3915 for (unsigned J = 0; J < BytesPerElement; ++J)
3916 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
3917 return true;
3918 }
3919 return false;
3920 }
3921
3922 // Bytes is a VPERM-like permute vector, except that -1 is used for
3923 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of
3924 // the result come from a contiguous sequence of bytes from one input.
3925 // Set Base to the selector for the first byte if so.
getShuffleInput(const SmallVectorImpl<int> & Bytes,unsigned Start,unsigned BytesPerElement,int & Base)3926 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
3927 unsigned BytesPerElement, int &Base) {
3928 Base = -1;
3929 for (unsigned I = 0; I < BytesPerElement; ++I) {
3930 if (Bytes[Start + I] >= 0) {
3931 unsigned Elem = Bytes[Start + I];
3932 if (Base < 0) {
3933 Base = Elem - I;
3934 // Make sure the bytes would come from one input operand.
3935 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
3936 return false;
3937 } else if (unsigned(Base) != Elem - I)
3938 return false;
3939 }
3940 }
3941 return true;
3942 }
3943
3944 // Bytes is a VPERM-like permute vector, except that -1 is used for
3945 // undefined bytes. Return true if it can be performed using VSLDI.
3946 // When returning true, set StartIndex to the shift amount and OpNo0
3947 // and OpNo1 to the VPERM operands that should be used as the first
3948 // and second shift operand respectively.
isShlDoublePermute(const SmallVectorImpl<int> & Bytes,unsigned & StartIndex,unsigned & OpNo0,unsigned & OpNo1)3949 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
3950 unsigned &StartIndex, unsigned &OpNo0,
3951 unsigned &OpNo1) {
3952 int OpNos[] = { -1, -1 };
3953 int Shift = -1;
3954 for (unsigned I = 0; I < 16; ++I) {
3955 int Index = Bytes[I];
3956 if (Index >= 0) {
3957 int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
3958 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
3959 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
3960 if (Shift < 0)
3961 Shift = ExpectedShift;
3962 else if (Shift != ExpectedShift)
3963 return false;
3964 // Make sure that the operand mappings are consistent with previous
3965 // elements.
3966 if (OpNos[ModelOpNo] == 1 - RealOpNo)
3967 return false;
3968 OpNos[ModelOpNo] = RealOpNo;
3969 }
3970 }
3971 StartIndex = Shift;
3972 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3973 }
3974
3975 // Create a node that performs P on operands Op0 and Op1, casting the
3976 // operands to the appropriate type. The type of the result is determined by P.
getPermuteNode(SelectionDAG & DAG,const SDLoc & DL,const Permute & P,SDValue Op0,SDValue Op1)3977 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3978 const Permute &P, SDValue Op0, SDValue Op1) {
3979 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input
3980 // elements of a PACK are twice as wide as the outputs.
3981 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
3982 P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
3983 P.Operand);
3984 // Cast both operands to the appropriate type.
3985 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
3986 SystemZ::VectorBytes / InBytes);
3987 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
3988 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
3989 SDValue Op;
3990 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
3991 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
3992 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
3993 } else if (P.Opcode == SystemZISD::PACK) {
3994 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
3995 SystemZ::VectorBytes / P.Operand);
3996 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
3997 } else {
3998 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
3999 }
4000 return Op;
4001 }
4002
4003 // Bytes is a VPERM-like permute vector, except that -1 is used for
4004 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using
4005 // VSLDI or VPERM.
getGeneralPermuteNode(SelectionDAG & DAG,const SDLoc & DL,SDValue * Ops,const SmallVectorImpl<int> & Bytes)4006 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4007 SDValue *Ops,
4008 const SmallVectorImpl<int> &Bytes) {
4009 for (unsigned I = 0; I < 2; ++I)
4010 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4011
4012 // First see whether VSLDI can be used.
4013 unsigned StartIndex, OpNo0, OpNo1;
4014 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4015 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4016 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
4017
4018 // Fall back on VPERM. Construct an SDNode for the permute vector.
4019 SDValue IndexNodes[SystemZ::VectorBytes];
4020 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4021 if (Bytes[I] >= 0)
4022 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4023 else
4024 IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4025 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4026 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
4027 }
4028
4029 namespace {
4030 // Describes a general N-operand vector shuffle.
4031 struct GeneralShuffle {
GeneralShuffle__anonc28d03810311::GeneralShuffle4032 GeneralShuffle(EVT vt) : VT(vt) {}
4033 void addUndef();
4034 bool add(SDValue, unsigned);
4035 SDValue getNode(SelectionDAG &, const SDLoc &);
4036
4037 // The operands of the shuffle.
4038 SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4039
4040 // Index I is -1 if byte I of the result is undefined. Otherwise the
4041 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4042 // Bytes[I] / SystemZ::VectorBytes.
4043 SmallVector<int, SystemZ::VectorBytes> Bytes;
4044
4045 // The type of the shuffle result.
4046 EVT VT;
4047 };
4048 }
4049
4050 // Add an extra undefined element to the shuffle.
addUndef()4051 void GeneralShuffle::addUndef() {
4052 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4053 for (unsigned I = 0; I < BytesPerElement; ++I)
4054 Bytes.push_back(-1);
4055 }
4056
4057 // Add an extra element to the shuffle, taking it from element Elem of Op.
4058 // A null Op indicates a vector input whose value will be calculated later;
4059 // there is at most one such input per shuffle and it always has the same
4060 // type as the result. Aborts and returns false if the source vector elements
4061 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4062 // LLVM they become implicitly extended, but this is rare and not optimized.
add(SDValue Op,unsigned Elem)4063 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4064 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4065
4066 // The source vector can have wider elements than the result,
4067 // either through an explicit TRUNCATE or because of type legalization.
4068 // We want the least significant part.
4069 EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4070 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4071
4072 // Return false if the source elements are smaller than their destination
4073 // elements.
4074 if (FromBytesPerElement < BytesPerElement)
4075 return false;
4076
4077 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4078 (FromBytesPerElement - BytesPerElement));
4079
4080 // Look through things like shuffles and bitcasts.
4081 while (Op.getNode()) {
4082 if (Op.getOpcode() == ISD::BITCAST)
4083 Op = Op.getOperand(0);
4084 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4085 // See whether the bytes we need come from a contiguous part of one
4086 // operand.
4087 SmallVector<int, SystemZ::VectorBytes> OpBytes;
4088 if (!getVPermMask(Op, OpBytes))
4089 break;
4090 int NewByte;
4091 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4092 break;
4093 if (NewByte < 0) {
4094 addUndef();
4095 return true;
4096 }
4097 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4098 Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4099 } else if (Op.isUndef()) {
4100 addUndef();
4101 return true;
4102 } else
4103 break;
4104 }
4105
4106 // Make sure that the source of the extraction is in Ops.
4107 unsigned OpNo = 0;
4108 for (; OpNo < Ops.size(); ++OpNo)
4109 if (Ops[OpNo] == Op)
4110 break;
4111 if (OpNo == Ops.size())
4112 Ops.push_back(Op);
4113
4114 // Add the element to Bytes.
4115 unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4116 for (unsigned I = 0; I < BytesPerElement; ++I)
4117 Bytes.push_back(Base + I);
4118
4119 return true;
4120 }
4121
4122 // Return SDNodes for the completed shuffle.
getNode(SelectionDAG & DAG,const SDLoc & DL)4123 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4124 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4125
4126 if (Ops.size() == 0)
4127 return DAG.getUNDEF(VT);
4128
4129 // Make sure that there are at least two shuffle operands.
4130 if (Ops.size() == 1)
4131 Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4132
4133 // Create a tree of shuffles, deferring root node until after the loop.
4134 // Try to redistribute the undefined elements of non-root nodes so that
4135 // the non-root shuffles match something like a pack or merge, then adjust
4136 // the parent node's permute vector to compensate for the new order.
4137 // Among other things, this copes with vectors like <2 x i16> that were
4138 // padded with undefined elements during type legalization.
4139 //
4140 // In the best case this redistribution will lead to the whole tree
4141 // using packs and merges. It should rarely be a loss in other cases.
4142 unsigned Stride = 1;
4143 for (; Stride * 2 < Ops.size(); Stride *= 2) {
4144 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4145 SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4146
4147 // Create a mask for just these two operands.
4148 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4149 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4150 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4151 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4152 if (OpNo == I)
4153 NewBytes[J] = Byte;
4154 else if (OpNo == I + Stride)
4155 NewBytes[J] = SystemZ::VectorBytes + Byte;
4156 else
4157 NewBytes[J] = -1;
4158 }
4159 // See if it would be better to reorganize NewMask to avoid using VPERM.
4160 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4161 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4162 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4163 // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4164 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4165 if (NewBytes[J] >= 0) {
4166 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4167 "Invalid double permute");
4168 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4169 } else
4170 assert(NewBytesMap[J] < 0 && "Invalid double permute");
4171 }
4172 } else {
4173 // Just use NewBytes on the operands.
4174 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4175 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4176 if (NewBytes[J] >= 0)
4177 Bytes[J] = I * SystemZ::VectorBytes + J;
4178 }
4179 }
4180 }
4181
4182 // Now we just have 2 inputs. Put the second operand in Ops[1].
4183 if (Stride > 1) {
4184 Ops[1] = Ops[Stride];
4185 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4186 if (Bytes[I] >= int(SystemZ::VectorBytes))
4187 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4188 }
4189
4190 // Look for an instruction that can do the permute without resorting
4191 // to VPERM.
4192 unsigned OpNo0, OpNo1;
4193 SDValue Op;
4194 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4195 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4196 else
4197 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4198 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4199 }
4200
4201 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
isScalarToVector(SDValue Op)4202 static bool isScalarToVector(SDValue Op) {
4203 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4204 if (!Op.getOperand(I).isUndef())
4205 return false;
4206 return true;
4207 }
4208
4209 // Return a vector of type VT that contains Value in the first element.
4210 // The other elements don't matter.
buildScalarToVector(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SDValue Value)4211 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4212 SDValue Value) {
4213 // If we have a constant, replicate it to all elements and let the
4214 // BUILD_VECTOR lowering take care of it.
4215 if (Value.getOpcode() == ISD::Constant ||
4216 Value.getOpcode() == ISD::ConstantFP) {
4217 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4218 return DAG.getBuildVector(VT, DL, Ops);
4219 }
4220 if (Value.isUndef())
4221 return DAG.getUNDEF(VT);
4222 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4223 }
4224
4225 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4226 // element 1. Used for cases in which replication is cheap.
buildMergeScalars(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SDValue Op0,SDValue Op1)4227 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4228 SDValue Op0, SDValue Op1) {
4229 if (Op0.isUndef()) {
4230 if (Op1.isUndef())
4231 return DAG.getUNDEF(VT);
4232 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4233 }
4234 if (Op1.isUndef())
4235 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4236 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4237 buildScalarToVector(DAG, DL, VT, Op0),
4238 buildScalarToVector(DAG, DL, VT, Op1));
4239 }
4240
4241 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4242 // vector for them.
joinDwords(SelectionDAG & DAG,const SDLoc & DL,SDValue Op0,SDValue Op1)4243 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4244 SDValue Op1) {
4245 if (Op0.isUndef() && Op1.isUndef())
4246 return DAG.getUNDEF(MVT::v2i64);
4247 // If one of the two inputs is undefined then replicate the other one,
4248 // in order to avoid using another register unnecessarily.
4249 if (Op0.isUndef())
4250 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4251 else if (Op1.isUndef())
4252 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4253 else {
4254 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4255 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4256 }
4257 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4258 }
4259
4260 // Try to represent constant BUILD_VECTOR node BVN using a
4261 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask
4262 // on success.
tryBuildVectorByteMask(BuildVectorSDNode * BVN,uint64_t & Mask)4263 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) {
4264 EVT ElemVT = BVN->getValueType(0).getVectorElementType();
4265 unsigned BytesPerElement = ElemVT.getStoreSize();
4266 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) {
4267 SDValue Op = BVN->getOperand(I);
4268 if (!Op.isUndef()) {
4269 uint64_t Value;
4270 if (Op.getOpcode() == ISD::Constant)
4271 Value = cast<ConstantSDNode>(Op)->getZExtValue();
4272 else if (Op.getOpcode() == ISD::ConstantFP)
4273 Value = (cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()
4274 .getZExtValue());
4275 else
4276 return false;
4277 for (unsigned J = 0; J < BytesPerElement; ++J) {
4278 uint64_t Byte = (Value >> (J * 8)) & 0xff;
4279 if (Byte == 0xff)
4280 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J);
4281 else if (Byte != 0)
4282 return false;
4283 }
4284 }
4285 }
4286 return true;
4287 }
4288
4289 // Try to load a vector constant in which BitsPerElement-bit value Value
4290 // is replicated to fill the vector. VT is the type of the resulting
4291 // constant, which may have elements of a different size from BitsPerElement.
4292 // Return the SDValue of the constant on success, otherwise return
4293 // an empty value.
tryBuildVectorReplicate(SelectionDAG & DAG,const SystemZInstrInfo * TII,const SDLoc & DL,EVT VT,uint64_t Value,unsigned BitsPerElement)4294 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG,
4295 const SystemZInstrInfo *TII,
4296 const SDLoc &DL, EVT VT, uint64_t Value,
4297 unsigned BitsPerElement) {
4298 // Signed 16-bit values can be replicated using VREPI.
4299 // Mark the constants as opaque or DAGCombiner will convert back to
4300 // BUILD_VECTOR.
4301 int64_t SignedValue = SignExtend64(Value, BitsPerElement);
4302 if (isInt<16>(SignedValue)) {
4303 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4304 SystemZ::VectorBits / BitsPerElement);
4305 SDValue Op = DAG.getNode(
4306 SystemZISD::REPLICATE, DL, VecVT,
4307 DAG.getConstant(SignedValue, DL, MVT::i32, false, true /*isOpaque*/));
4308 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4309 }
4310 // See whether rotating the constant left some N places gives a value that
4311 // is one less than a power of 2 (i.e. all zeros followed by all ones).
4312 // If so we can use VGM.
4313 unsigned Start, End;
4314 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) {
4315 // isRxSBGMask returns the bit numbers for a full 64-bit value,
4316 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to
4317 // bit numbers for an BitsPerElement value, so that 0 denotes
4318 // 1 << (BitsPerElement-1).
4319 Start -= 64 - BitsPerElement;
4320 End -= 64 - BitsPerElement;
4321 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4322 SystemZ::VectorBits / BitsPerElement);
4323 SDValue Op = DAG.getNode(
4324 SystemZISD::ROTATE_MASK, DL, VecVT,
4325 DAG.getConstant(Start, DL, MVT::i32, false, true /*isOpaque*/),
4326 DAG.getConstant(End, DL, MVT::i32, false, true /*isOpaque*/));
4327 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4328 }
4329 return SDValue();
4330 }
4331
4332 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4333 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4334 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR
4335 // would benefit from this representation and return it if so.
tryBuildVectorShuffle(SelectionDAG & DAG,BuildVectorSDNode * BVN)4336 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4337 BuildVectorSDNode *BVN) {
4338 EVT VT = BVN->getValueType(0);
4339 unsigned NumElements = VT.getVectorNumElements();
4340
4341 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4342 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still
4343 // need a BUILD_VECTOR, add an additional placeholder operand for that
4344 // BUILD_VECTOR and store its operands in ResidueOps.
4345 GeneralShuffle GS(VT);
4346 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4347 bool FoundOne = false;
4348 for (unsigned I = 0; I < NumElements; ++I) {
4349 SDValue Op = BVN->getOperand(I);
4350 if (Op.getOpcode() == ISD::TRUNCATE)
4351 Op = Op.getOperand(0);
4352 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4353 Op.getOperand(1).getOpcode() == ISD::Constant) {
4354 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4355 if (!GS.add(Op.getOperand(0), Elem))
4356 return SDValue();
4357 FoundOne = true;
4358 } else if (Op.isUndef()) {
4359 GS.addUndef();
4360 } else {
4361 if (!GS.add(SDValue(), ResidueOps.size()))
4362 return SDValue();
4363 ResidueOps.push_back(BVN->getOperand(I));
4364 }
4365 }
4366
4367 // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4368 if (!FoundOne)
4369 return SDValue();
4370
4371 // Create the BUILD_VECTOR for the remaining elements, if any.
4372 if (!ResidueOps.empty()) {
4373 while (ResidueOps.size() < NumElements)
4374 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4375 for (auto &Op : GS.Ops) {
4376 if (!Op.getNode()) {
4377 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4378 break;
4379 }
4380 }
4381 }
4382 return GS.getNode(DAG, SDLoc(BVN));
4383 }
4384
4385 // Combine GPR scalar values Elems into a vector of type VT.
buildVector(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SmallVectorImpl<SDValue> & Elems)4386 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4387 SmallVectorImpl<SDValue> &Elems) {
4388 // See whether there is a single replicated value.
4389 SDValue Single;
4390 unsigned int NumElements = Elems.size();
4391 unsigned int Count = 0;
4392 for (auto Elem : Elems) {
4393 if (!Elem.isUndef()) {
4394 if (!Single.getNode())
4395 Single = Elem;
4396 else if (Elem != Single) {
4397 Single = SDValue();
4398 break;
4399 }
4400 Count += 1;
4401 }
4402 }
4403 // There are three cases here:
4404 //
4405 // - if the only defined element is a loaded one, the best sequence
4406 // is a replicating load.
4407 //
4408 // - otherwise, if the only defined element is an i64 value, we will
4409 // end up with the same VLVGP sequence regardless of whether we short-cut
4410 // for replication or fall through to the later code.
4411 //
4412 // - otherwise, if the only defined element is an i32 or smaller value,
4413 // we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4414 // This is only a win if the single defined element is used more than once.
4415 // In other cases we're better off using a single VLVGx.
4416 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD))
4417 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4418
4419 // If all elements are loads, use VLREP/VLEs (below).
4420 bool AllLoads = true;
4421 for (auto Elem : Elems)
4422 if (Elem.getOpcode() != ISD::LOAD || cast<LoadSDNode>(Elem)->isIndexed()) {
4423 AllLoads = false;
4424 break;
4425 }
4426
4427 // The best way of building a v2i64 from two i64s is to use VLVGP.
4428 if (VT == MVT::v2i64 && !AllLoads)
4429 return joinDwords(DAG, DL, Elems[0], Elems[1]);
4430
4431 // Use a 64-bit merge high to combine two doubles.
4432 if (VT == MVT::v2f64 && !AllLoads)
4433 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4434
4435 // Build v4f32 values directly from the FPRs:
4436 //
4437 // <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4438 // V V VMRHF
4439 // <ABxx> <CDxx>
4440 // V VMRHG
4441 // <ABCD>
4442 if (VT == MVT::v4f32 && !AllLoads) {
4443 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4444 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4445 // Avoid unnecessary undefs by reusing the other operand.
4446 if (Op01.isUndef())
4447 Op01 = Op23;
4448 else if (Op23.isUndef())
4449 Op23 = Op01;
4450 // Merging identical replications is a no-op.
4451 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4452 return Op01;
4453 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4454 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4455 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4456 DL, MVT::v2i64, Op01, Op23);
4457 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4458 }
4459
4460 // Collect the constant terms.
4461 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4462 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4463
4464 unsigned NumConstants = 0;
4465 for (unsigned I = 0; I < NumElements; ++I) {
4466 SDValue Elem = Elems[I];
4467 if (Elem.getOpcode() == ISD::Constant ||
4468 Elem.getOpcode() == ISD::ConstantFP) {
4469 NumConstants += 1;
4470 Constants[I] = Elem;
4471 Done[I] = true;
4472 }
4473 }
4474 // If there was at least one constant, fill in the other elements of
4475 // Constants with undefs to get a full vector constant and use that
4476 // as the starting point.
4477 SDValue Result;
4478 if (NumConstants > 0) {
4479 for (unsigned I = 0; I < NumElements; ++I)
4480 if (!Constants[I].getNode())
4481 Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4482 Result = DAG.getBuildVector(VT, DL, Constants);
4483 } else {
4484 // Otherwise try to use VLREP or VLVGP to start the sequence in order to
4485 // avoid a false dependency on any previous contents of the vector
4486 // register.
4487
4488 // Use a VLREP if at least one element is a load.
4489 unsigned LoadElIdx = UINT_MAX;
4490 for (unsigned I = 0; I < NumElements; ++I)
4491 if (Elems[I].getOpcode() == ISD::LOAD &&
4492 cast<LoadSDNode>(Elems[I])->isUnindexed()) {
4493 LoadElIdx = I;
4494 break;
4495 }
4496 if (LoadElIdx != UINT_MAX) {
4497 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, Elems[LoadElIdx]);
4498 Done[LoadElIdx] = true;
4499 } else {
4500 // Try to use VLVGP.
4501 unsigned I1 = NumElements / 2 - 1;
4502 unsigned I2 = NumElements - 1;
4503 bool Def1 = !Elems[I1].isUndef();
4504 bool Def2 = !Elems[I2].isUndef();
4505 if (Def1 || Def2) {
4506 SDValue Elem1 = Elems[Def1 ? I1 : I2];
4507 SDValue Elem2 = Elems[Def2 ? I2 : I1];
4508 Result = DAG.getNode(ISD::BITCAST, DL, VT,
4509 joinDwords(DAG, DL, Elem1, Elem2));
4510 Done[I1] = true;
4511 Done[I2] = true;
4512 } else
4513 Result = DAG.getUNDEF(VT);
4514 }
4515 }
4516
4517 // Use VLVGx to insert the other elements.
4518 for (unsigned I = 0; I < NumElements; ++I)
4519 if (!Done[I] && !Elems[I].isUndef())
4520 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4521 DAG.getConstant(I, DL, MVT::i32));
4522 return Result;
4523 }
4524
lowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const4525 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4526 SelectionDAG &DAG) const {
4527 const SystemZInstrInfo *TII =
4528 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
4529 auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4530 SDLoc DL(Op);
4531 EVT VT = Op.getValueType();
4532
4533 if (BVN->isConstant()) {
4534 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally-
4535 // preferred way of creating all-zero and all-one vectors so give it
4536 // priority over other methods below.
4537 uint64_t Mask = 0;
4538 if (tryBuildVectorByteMask(BVN, Mask)) {
4539 SDValue Op = DAG.getNode(
4540 SystemZISD::BYTE_MASK, DL, MVT::v16i8,
4541 DAG.getConstant(Mask, DL, MVT::i32, false, true /*isOpaque*/));
4542 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4543 }
4544
4545 // Try using some form of replication.
4546 APInt SplatBits, SplatUndef;
4547 unsigned SplatBitSize;
4548 bool HasAnyUndefs;
4549 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4550 8, true) &&
4551 SplatBitSize <= 64) {
4552 // First try assuming that any undefined bits above the highest set bit
4553 // and below the lowest set bit are 1s. This increases the likelihood of
4554 // being able to use a sign-extended element value in VECTOR REPLICATE
4555 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
4556 uint64_t SplatBitsZ = SplatBits.getZExtValue();
4557 uint64_t SplatUndefZ = SplatUndef.getZExtValue();
4558 uint64_t Lower = (SplatUndefZ
4559 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
4560 uint64_t Upper = (SplatUndefZ
4561 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
4562 uint64_t Value = SplatBitsZ | Upper | Lower;
4563 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value,
4564 SplatBitSize);
4565 if (Op.getNode())
4566 return Op;
4567
4568 // Now try assuming that any undefined bits between the first and
4569 // last defined set bits are set. This increases the chances of
4570 // using a non-wraparound mask.
4571 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
4572 Value = SplatBitsZ | Middle;
4573 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize);
4574 if (Op.getNode())
4575 return Op;
4576 }
4577
4578 // Fall back to loading it from memory.
4579 return SDValue();
4580 }
4581
4582 // See if we should use shuffles to construct the vector from other vectors.
4583 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4584 return Res;
4585
4586 // Detect SCALAR_TO_VECTOR conversions.
4587 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4588 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4589
4590 // Otherwise use buildVector to build the vector up from GPRs.
4591 unsigned NumElements = Op.getNumOperands();
4592 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4593 for (unsigned I = 0; I < NumElements; ++I)
4594 Ops[I] = Op.getOperand(I);
4595 return buildVector(DAG, DL, VT, Ops);
4596 }
4597
lowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const4598 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4599 SelectionDAG &DAG) const {
4600 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4601 SDLoc DL(Op);
4602 EVT VT = Op.getValueType();
4603 unsigned NumElements = VT.getVectorNumElements();
4604
4605 if (VSN->isSplat()) {
4606 SDValue Op0 = Op.getOperand(0);
4607 unsigned Index = VSN->getSplatIndex();
4608 assert(Index < VT.getVectorNumElements() &&
4609 "Splat index should be defined and in first operand");
4610 // See whether the value we're splatting is directly available as a scalar.
4611 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4612 Op0.getOpcode() == ISD::BUILD_VECTOR)
4613 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4614 // Otherwise keep it as a vector-to-vector operation.
4615 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4616 DAG.getConstant(Index, DL, MVT::i32));
4617 }
4618
4619 GeneralShuffle GS(VT);
4620 for (unsigned I = 0; I < NumElements; ++I) {
4621 int Elt = VSN->getMaskElt(I);
4622 if (Elt < 0)
4623 GS.addUndef();
4624 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4625 unsigned(Elt) % NumElements))
4626 return SDValue();
4627 }
4628 return GS.getNode(DAG, SDLoc(VSN));
4629 }
4630
lowerSCALAR_TO_VECTOR(SDValue Op,SelectionDAG & DAG) const4631 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4632 SelectionDAG &DAG) const {
4633 SDLoc DL(Op);
4634 // Just insert the scalar into element 0 of an undefined vector.
4635 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4636 Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4637 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4638 }
4639
lowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const4640 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4641 SelectionDAG &DAG) const {
4642 // Handle insertions of floating-point values.
4643 SDLoc DL(Op);
4644 SDValue Op0 = Op.getOperand(0);
4645 SDValue Op1 = Op.getOperand(1);
4646 SDValue Op2 = Op.getOperand(2);
4647 EVT VT = Op.getValueType();
4648
4649 // Insertions into constant indices of a v2f64 can be done using VPDI.
4650 // However, if the inserted value is a bitcast or a constant then it's
4651 // better to use GPRs, as below.
4652 if (VT == MVT::v2f64 &&
4653 Op1.getOpcode() != ISD::BITCAST &&
4654 Op1.getOpcode() != ISD::ConstantFP &&
4655 Op2.getOpcode() == ISD::Constant) {
4656 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
4657 unsigned Mask = VT.getVectorNumElements() - 1;
4658 if (Index <= Mask)
4659 return Op;
4660 }
4661
4662 // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4663 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
4664 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4665 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4666 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4667 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4668 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4669 }
4670
4671 SDValue
lowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const4672 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4673 SelectionDAG &DAG) const {
4674 // Handle extractions of floating-point values.
4675 SDLoc DL(Op);
4676 SDValue Op0 = Op.getOperand(0);
4677 SDValue Op1 = Op.getOperand(1);
4678 EVT VT = Op.getValueType();
4679 EVT VecVT = Op0.getValueType();
4680
4681 // Extractions of constant indices can be done directly.
4682 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
4683 uint64_t Index = CIndexN->getZExtValue();
4684 unsigned Mask = VecVT.getVectorNumElements() - 1;
4685 if (Index <= Mask)
4686 return Op;
4687 }
4688
4689 // Otherwise bitcast to the equivalent integer form and extract via a GPR.
4690 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
4691 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
4692 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
4693 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
4694 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4695 }
4696
4697 SDValue
lowerExtendVectorInreg(SDValue Op,SelectionDAG & DAG,unsigned UnpackHigh) const4698 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
4699 unsigned UnpackHigh) const {
4700 SDValue PackedOp = Op.getOperand(0);
4701 EVT OutVT = Op.getValueType();
4702 EVT InVT = PackedOp.getValueType();
4703 unsigned ToBits = OutVT.getScalarSizeInBits();
4704 unsigned FromBits = InVT.getScalarSizeInBits();
4705 do {
4706 FromBits *= 2;
4707 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
4708 SystemZ::VectorBits / FromBits);
4709 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
4710 } while (FromBits != ToBits);
4711 return PackedOp;
4712 }
4713
lowerShift(SDValue Op,SelectionDAG & DAG,unsigned ByScalar) const4714 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
4715 unsigned ByScalar) const {
4716 // Look for cases where a vector shift can use the *_BY_SCALAR form.
4717 SDValue Op0 = Op.getOperand(0);
4718 SDValue Op1 = Op.getOperand(1);
4719 SDLoc DL(Op);
4720 EVT VT = Op.getValueType();
4721 unsigned ElemBitSize = VT.getScalarSizeInBits();
4722
4723 // See whether the shift vector is a splat represented as BUILD_VECTOR.
4724 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
4725 APInt SplatBits, SplatUndef;
4726 unsigned SplatBitSize;
4727 bool HasAnyUndefs;
4728 // Check for constant splats. Use ElemBitSize as the minimum element
4729 // width and reject splats that need wider elements.
4730 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4731 ElemBitSize, true) &&
4732 SplatBitSize == ElemBitSize) {
4733 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
4734 DL, MVT::i32);
4735 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4736 }
4737 // Check for variable splats.
4738 BitVector UndefElements;
4739 SDValue Splat = BVN->getSplatValue(&UndefElements);
4740 if (Splat) {
4741 // Since i32 is the smallest legal type, we either need a no-op
4742 // or a truncation.
4743 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
4744 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4745 }
4746 }
4747
4748 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
4749 // and the shift amount is directly available in a GPR.
4750 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
4751 if (VSN->isSplat()) {
4752 SDValue VSNOp0 = VSN->getOperand(0);
4753 unsigned Index = VSN->getSplatIndex();
4754 assert(Index < VT.getVectorNumElements() &&
4755 "Splat index should be defined and in first operand");
4756 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4757 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
4758 // Since i32 is the smallest legal type, we either need a no-op
4759 // or a truncation.
4760 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
4761 VSNOp0.getOperand(Index));
4762 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4763 }
4764 }
4765 }
4766
4767 // Otherwise just treat the current form as legal.
4768 return Op;
4769 }
4770
LowerOperation(SDValue Op,SelectionDAG & DAG) const4771 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
4772 SelectionDAG &DAG) const {
4773 switch (Op.getOpcode()) {
4774 case ISD::FRAMEADDR:
4775 return lowerFRAMEADDR(Op, DAG);
4776 case ISD::RETURNADDR:
4777 return lowerRETURNADDR(Op, DAG);
4778 case ISD::BR_CC:
4779 return lowerBR_CC(Op, DAG);
4780 case ISD::SELECT_CC:
4781 return lowerSELECT_CC(Op, DAG);
4782 case ISD::SETCC:
4783 return lowerSETCC(Op, DAG);
4784 case ISD::GlobalAddress:
4785 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
4786 case ISD::GlobalTLSAddress:
4787 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
4788 case ISD::BlockAddress:
4789 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
4790 case ISD::JumpTable:
4791 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
4792 case ISD::ConstantPool:
4793 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
4794 case ISD::BITCAST:
4795 return lowerBITCAST(Op, DAG);
4796 case ISD::VASTART:
4797 return lowerVASTART(Op, DAG);
4798 case ISD::VACOPY:
4799 return lowerVACOPY(Op, DAG);
4800 case ISD::DYNAMIC_STACKALLOC:
4801 return lowerDYNAMIC_STACKALLOC(Op, DAG);
4802 case ISD::GET_DYNAMIC_AREA_OFFSET:
4803 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
4804 case ISD::SMUL_LOHI:
4805 return lowerSMUL_LOHI(Op, DAG);
4806 case ISD::UMUL_LOHI:
4807 return lowerUMUL_LOHI(Op, DAG);
4808 case ISD::SDIVREM:
4809 return lowerSDIVREM(Op, DAG);
4810 case ISD::UDIVREM:
4811 return lowerUDIVREM(Op, DAG);
4812 case ISD::SADDO:
4813 case ISD::SSUBO:
4814 case ISD::UADDO:
4815 case ISD::USUBO:
4816 return lowerXALUO(Op, DAG);
4817 case ISD::ADDCARRY:
4818 case ISD::SUBCARRY:
4819 return lowerADDSUBCARRY(Op, DAG);
4820 case ISD::OR:
4821 return lowerOR(Op, DAG);
4822 case ISD::CTPOP:
4823 return lowerCTPOP(Op, DAG);
4824 case ISD::ATOMIC_FENCE:
4825 return lowerATOMIC_FENCE(Op, DAG);
4826 case ISD::ATOMIC_SWAP:
4827 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
4828 case ISD::ATOMIC_STORE:
4829 return lowerATOMIC_STORE(Op, DAG);
4830 case ISD::ATOMIC_LOAD:
4831 return lowerATOMIC_LOAD(Op, DAG);
4832 case ISD::ATOMIC_LOAD_ADD:
4833 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
4834 case ISD::ATOMIC_LOAD_SUB:
4835 return lowerATOMIC_LOAD_SUB(Op, DAG);
4836 case ISD::ATOMIC_LOAD_AND:
4837 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
4838 case ISD::ATOMIC_LOAD_OR:
4839 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
4840 case ISD::ATOMIC_LOAD_XOR:
4841 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
4842 case ISD::ATOMIC_LOAD_NAND:
4843 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
4844 case ISD::ATOMIC_LOAD_MIN:
4845 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
4846 case ISD::ATOMIC_LOAD_MAX:
4847 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
4848 case ISD::ATOMIC_LOAD_UMIN:
4849 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
4850 case ISD::ATOMIC_LOAD_UMAX:
4851 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
4852 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4853 return lowerATOMIC_CMP_SWAP(Op, DAG);
4854 case ISD::STACKSAVE:
4855 return lowerSTACKSAVE(Op, DAG);
4856 case ISD::STACKRESTORE:
4857 return lowerSTACKRESTORE(Op, DAG);
4858 case ISD::PREFETCH:
4859 return lowerPREFETCH(Op, DAG);
4860 case ISD::INTRINSIC_W_CHAIN:
4861 return lowerINTRINSIC_W_CHAIN(Op, DAG);
4862 case ISD::INTRINSIC_WO_CHAIN:
4863 return lowerINTRINSIC_WO_CHAIN(Op, DAG);
4864 case ISD::BUILD_VECTOR:
4865 return lowerBUILD_VECTOR(Op, DAG);
4866 case ISD::VECTOR_SHUFFLE:
4867 return lowerVECTOR_SHUFFLE(Op, DAG);
4868 case ISD::SCALAR_TO_VECTOR:
4869 return lowerSCALAR_TO_VECTOR(Op, DAG);
4870 case ISD::INSERT_VECTOR_ELT:
4871 return lowerINSERT_VECTOR_ELT(Op, DAG);
4872 case ISD::EXTRACT_VECTOR_ELT:
4873 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4874 case ISD::SIGN_EXTEND_VECTOR_INREG:
4875 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
4876 case ISD::ZERO_EXTEND_VECTOR_INREG:
4877 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
4878 case ISD::SHL:
4879 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
4880 case ISD::SRL:
4881 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
4882 case ISD::SRA:
4883 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
4884 default:
4885 llvm_unreachable("Unexpected node to lower");
4886 }
4887 }
4888
4889 // Lower operations with invalid operand or result types (currently used
4890 // only for 128-bit integer types).
4891
lowerI128ToGR128(SelectionDAG & DAG,SDValue In)4892 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
4893 SDLoc DL(In);
4894 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4895 DAG.getIntPtrConstant(0, DL));
4896 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4897 DAG.getIntPtrConstant(1, DL));
4898 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
4899 MVT::Untyped, Hi, Lo);
4900 return SDValue(Pair, 0);
4901 }
4902
lowerGR128ToI128(SelectionDAG & DAG,SDValue In)4903 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
4904 SDLoc DL(In);
4905 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
4906 DL, MVT::i64, In);
4907 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
4908 DL, MVT::i64, In);
4909 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
4910 }
4911
4912 void
LowerOperationWrapper(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const4913 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
4914 SmallVectorImpl<SDValue> &Results,
4915 SelectionDAG &DAG) const {
4916 switch (N->getOpcode()) {
4917 case ISD::ATOMIC_LOAD: {
4918 SDLoc DL(N);
4919 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
4920 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
4921 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4922 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
4923 DL, Tys, Ops, MVT::i128, MMO);
4924 Results.push_back(lowerGR128ToI128(DAG, Res));
4925 Results.push_back(Res.getValue(1));
4926 break;
4927 }
4928 case ISD::ATOMIC_STORE: {
4929 SDLoc DL(N);
4930 SDVTList Tys = DAG.getVTList(MVT::Other);
4931 SDValue Ops[] = { N->getOperand(0),
4932 lowerI128ToGR128(DAG, N->getOperand(2)),
4933 N->getOperand(1) };
4934 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4935 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
4936 DL, Tys, Ops, MVT::i128, MMO);
4937 // We have to enforce sequential consistency by performing a
4938 // serialization operation after the store.
4939 if (cast<AtomicSDNode>(N)->getOrdering() ==
4940 AtomicOrdering::SequentiallyConsistent)
4941 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
4942 MVT::Other, Res), 0);
4943 Results.push_back(Res);
4944 break;
4945 }
4946 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
4947 SDLoc DL(N);
4948 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
4949 SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
4950 lowerI128ToGR128(DAG, N->getOperand(2)),
4951 lowerI128ToGR128(DAG, N->getOperand(3)) };
4952 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4953 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
4954 DL, Tys, Ops, MVT::i128, MMO);
4955 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
4956 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4957 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
4958 Results.push_back(lowerGR128ToI128(DAG, Res));
4959 Results.push_back(Success);
4960 Results.push_back(Res.getValue(2));
4961 break;
4962 }
4963 default:
4964 llvm_unreachable("Unexpected node to lower");
4965 }
4966 }
4967
4968 void
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const4969 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
4970 SmallVectorImpl<SDValue> &Results,
4971 SelectionDAG &DAG) const {
4972 return LowerOperationWrapper(N, Results, DAG);
4973 }
4974
getTargetNodeName(unsigned Opcode) const4975 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
4976 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
4977 switch ((SystemZISD::NodeType)Opcode) {
4978 case SystemZISD::FIRST_NUMBER: break;
4979 OPCODE(RET_FLAG);
4980 OPCODE(CALL);
4981 OPCODE(SIBCALL);
4982 OPCODE(TLS_GDCALL);
4983 OPCODE(TLS_LDCALL);
4984 OPCODE(PCREL_WRAPPER);
4985 OPCODE(PCREL_OFFSET);
4986 OPCODE(IABS);
4987 OPCODE(ICMP);
4988 OPCODE(FCMP);
4989 OPCODE(TM);
4990 OPCODE(BR_CCMASK);
4991 OPCODE(SELECT_CCMASK);
4992 OPCODE(ADJDYNALLOC);
4993 OPCODE(POPCNT);
4994 OPCODE(SMUL_LOHI);
4995 OPCODE(UMUL_LOHI);
4996 OPCODE(SDIVREM);
4997 OPCODE(UDIVREM);
4998 OPCODE(SADDO);
4999 OPCODE(SSUBO);
5000 OPCODE(UADDO);
5001 OPCODE(USUBO);
5002 OPCODE(ADDCARRY);
5003 OPCODE(SUBCARRY);
5004 OPCODE(GET_CCMASK);
5005 OPCODE(MVC);
5006 OPCODE(MVC_LOOP);
5007 OPCODE(NC);
5008 OPCODE(NC_LOOP);
5009 OPCODE(OC);
5010 OPCODE(OC_LOOP);
5011 OPCODE(XC);
5012 OPCODE(XC_LOOP);
5013 OPCODE(CLC);
5014 OPCODE(CLC_LOOP);
5015 OPCODE(STPCPY);
5016 OPCODE(STRCMP);
5017 OPCODE(SEARCH_STRING);
5018 OPCODE(IPM);
5019 OPCODE(MEMBARRIER);
5020 OPCODE(TBEGIN);
5021 OPCODE(TBEGIN_NOFLOAT);
5022 OPCODE(TEND);
5023 OPCODE(BYTE_MASK);
5024 OPCODE(ROTATE_MASK);
5025 OPCODE(REPLICATE);
5026 OPCODE(JOIN_DWORDS);
5027 OPCODE(SPLAT);
5028 OPCODE(MERGE_HIGH);
5029 OPCODE(MERGE_LOW);
5030 OPCODE(SHL_DOUBLE);
5031 OPCODE(PERMUTE_DWORDS);
5032 OPCODE(PERMUTE);
5033 OPCODE(PACK);
5034 OPCODE(PACKS_CC);
5035 OPCODE(PACKLS_CC);
5036 OPCODE(UNPACK_HIGH);
5037 OPCODE(UNPACKL_HIGH);
5038 OPCODE(UNPACK_LOW);
5039 OPCODE(UNPACKL_LOW);
5040 OPCODE(VSHL_BY_SCALAR);
5041 OPCODE(VSRL_BY_SCALAR);
5042 OPCODE(VSRA_BY_SCALAR);
5043 OPCODE(VSUM);
5044 OPCODE(VICMPE);
5045 OPCODE(VICMPH);
5046 OPCODE(VICMPHL);
5047 OPCODE(VICMPES);
5048 OPCODE(VICMPHS);
5049 OPCODE(VICMPHLS);
5050 OPCODE(VFCMPE);
5051 OPCODE(VFCMPH);
5052 OPCODE(VFCMPHE);
5053 OPCODE(VFCMPES);
5054 OPCODE(VFCMPHS);
5055 OPCODE(VFCMPHES);
5056 OPCODE(VFTCI);
5057 OPCODE(VEXTEND);
5058 OPCODE(VROUND);
5059 OPCODE(VTM);
5060 OPCODE(VFAE_CC);
5061 OPCODE(VFAEZ_CC);
5062 OPCODE(VFEE_CC);
5063 OPCODE(VFEEZ_CC);
5064 OPCODE(VFENE_CC);
5065 OPCODE(VFENEZ_CC);
5066 OPCODE(VISTR_CC);
5067 OPCODE(VSTRC_CC);
5068 OPCODE(VSTRCZ_CC);
5069 OPCODE(TDC);
5070 OPCODE(ATOMIC_SWAPW);
5071 OPCODE(ATOMIC_LOADW_ADD);
5072 OPCODE(ATOMIC_LOADW_SUB);
5073 OPCODE(ATOMIC_LOADW_AND);
5074 OPCODE(ATOMIC_LOADW_OR);
5075 OPCODE(ATOMIC_LOADW_XOR);
5076 OPCODE(ATOMIC_LOADW_NAND);
5077 OPCODE(ATOMIC_LOADW_MIN);
5078 OPCODE(ATOMIC_LOADW_MAX);
5079 OPCODE(ATOMIC_LOADW_UMIN);
5080 OPCODE(ATOMIC_LOADW_UMAX);
5081 OPCODE(ATOMIC_CMP_SWAPW);
5082 OPCODE(ATOMIC_CMP_SWAP);
5083 OPCODE(ATOMIC_LOAD_128);
5084 OPCODE(ATOMIC_STORE_128);
5085 OPCODE(ATOMIC_CMP_SWAP_128);
5086 OPCODE(LRV);
5087 OPCODE(STRV);
5088 OPCODE(PREFETCH);
5089 }
5090 return nullptr;
5091 #undef OPCODE
5092 }
5093
5094 // Return true if VT is a vector whose elements are a whole number of bytes
5095 // in width. Also check for presence of vector support.
canTreatAsByteVector(EVT VT) const5096 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5097 if (!Subtarget.hasVector())
5098 return false;
5099
5100 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5101 }
5102
5103 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5104 // producing a result of type ResVT. Op is a possibly bitcast version
5105 // of the input vector and Index is the index (based on type VecVT) that
5106 // should be extracted. Return the new extraction if a simplification
5107 // was possible or if Force is true.
combineExtract(const SDLoc & DL,EVT ResVT,EVT VecVT,SDValue Op,unsigned Index,DAGCombinerInfo & DCI,bool Force) const5108 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5109 EVT VecVT, SDValue Op,
5110 unsigned Index,
5111 DAGCombinerInfo &DCI,
5112 bool Force) const {
5113 SelectionDAG &DAG = DCI.DAG;
5114
5115 // The number of bytes being extracted.
5116 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5117
5118 for (;;) {
5119 unsigned Opcode = Op.getOpcode();
5120 if (Opcode == ISD::BITCAST)
5121 // Look through bitcasts.
5122 Op = Op.getOperand(0);
5123 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5124 canTreatAsByteVector(Op.getValueType())) {
5125 // Get a VPERM-like permute mask and see whether the bytes covered
5126 // by the extracted element are a contiguous sequence from one
5127 // source operand.
5128 SmallVector<int, SystemZ::VectorBytes> Bytes;
5129 if (!getVPermMask(Op, Bytes))
5130 break;
5131 int First;
5132 if (!getShuffleInput(Bytes, Index * BytesPerElement,
5133 BytesPerElement, First))
5134 break;
5135 if (First < 0)
5136 return DAG.getUNDEF(ResVT);
5137 // Make sure the contiguous sequence starts at a multiple of the
5138 // original element size.
5139 unsigned Byte = unsigned(First) % Bytes.size();
5140 if (Byte % BytesPerElement != 0)
5141 break;
5142 // We can get the extracted value directly from an input.
5143 Index = Byte / BytesPerElement;
5144 Op = Op.getOperand(unsigned(First) / Bytes.size());
5145 Force = true;
5146 } else if (Opcode == ISD::BUILD_VECTOR &&
5147 canTreatAsByteVector(Op.getValueType())) {
5148 // We can only optimize this case if the BUILD_VECTOR elements are
5149 // at least as wide as the extracted value.
5150 EVT OpVT = Op.getValueType();
5151 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5152 if (OpBytesPerElement < BytesPerElement)
5153 break;
5154 // Make sure that the least-significant bit of the extracted value
5155 // is the least significant bit of an input.
5156 unsigned End = (Index + 1) * BytesPerElement;
5157 if (End % OpBytesPerElement != 0)
5158 break;
5159 // We're extracting the low part of one operand of the BUILD_VECTOR.
5160 Op = Op.getOperand(End / OpBytesPerElement - 1);
5161 if (!Op.getValueType().isInteger()) {
5162 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5163 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5164 DCI.AddToWorklist(Op.getNode());
5165 }
5166 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5167 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5168 if (VT != ResVT) {
5169 DCI.AddToWorklist(Op.getNode());
5170 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5171 }
5172 return Op;
5173 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5174 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5175 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5176 canTreatAsByteVector(Op.getValueType()) &&
5177 canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5178 // Make sure that only the unextended bits are significant.
5179 EVT ExtVT = Op.getValueType();
5180 EVT OpVT = Op.getOperand(0).getValueType();
5181 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5182 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5183 unsigned Byte = Index * BytesPerElement;
5184 unsigned SubByte = Byte % ExtBytesPerElement;
5185 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5186 if (SubByte < MinSubByte ||
5187 SubByte + BytesPerElement > ExtBytesPerElement)
5188 break;
5189 // Get the byte offset of the unextended element
5190 Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5191 // ...then add the byte offset relative to that element.
5192 Byte += SubByte - MinSubByte;
5193 if (Byte % BytesPerElement != 0)
5194 break;
5195 Op = Op.getOperand(0);
5196 Index = Byte / BytesPerElement;
5197 Force = true;
5198 } else
5199 break;
5200 }
5201 if (Force) {
5202 if (Op.getValueType() != VecVT) {
5203 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5204 DCI.AddToWorklist(Op.getNode());
5205 }
5206 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5207 DAG.getConstant(Index, DL, MVT::i32));
5208 }
5209 return SDValue();
5210 }
5211
5212 // Optimize vector operations in scalar value Op on the basis that Op
5213 // is truncated to TruncVT.
combineTruncateExtract(const SDLoc & DL,EVT TruncVT,SDValue Op,DAGCombinerInfo & DCI) const5214 SDValue SystemZTargetLowering::combineTruncateExtract(
5215 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5216 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5217 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5218 // of type TruncVT.
5219 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5220 TruncVT.getSizeInBits() % 8 == 0) {
5221 SDValue Vec = Op.getOperand(0);
5222 EVT VecVT = Vec.getValueType();
5223 if (canTreatAsByteVector(VecVT)) {
5224 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5225 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5226 unsigned TruncBytes = TruncVT.getStoreSize();
5227 if (BytesPerElement % TruncBytes == 0) {
5228 // Calculate the value of Y' in the above description. We are
5229 // splitting the original elements into Scale equal-sized pieces
5230 // and for truncation purposes want the last (least-significant)
5231 // of these pieces for IndexN. This is easiest to do by calculating
5232 // the start index of the following element and then subtracting 1.
5233 unsigned Scale = BytesPerElement / TruncBytes;
5234 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5235
5236 // Defer the creation of the bitcast from X to combineExtract,
5237 // which might be able to optimize the extraction.
5238 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5239 VecVT.getStoreSize() / TruncBytes);
5240 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5241 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5242 }
5243 }
5244 }
5245 }
5246 return SDValue();
5247 }
5248
combineZERO_EXTEND(SDNode * N,DAGCombinerInfo & DCI) const5249 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5250 SDNode *N, DAGCombinerInfo &DCI) const {
5251 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5252 SelectionDAG &DAG = DCI.DAG;
5253 SDValue N0 = N->getOperand(0);
5254 EVT VT = N->getValueType(0);
5255 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5256 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5257 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5258 if (TrueOp && FalseOp) {
5259 SDLoc DL(N0);
5260 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5261 DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5262 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5263 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5264 // If N0 has multiple uses, change other uses as well.
5265 if (!N0.hasOneUse()) {
5266 SDValue TruncSelect =
5267 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5268 DCI.CombineTo(N0.getNode(), TruncSelect);
5269 }
5270 return NewSelect;
5271 }
5272 }
5273 return SDValue();
5274 }
5275
combineSIGN_EXTEND_INREG(SDNode * N,DAGCombinerInfo & DCI) const5276 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5277 SDNode *N, DAGCombinerInfo &DCI) const {
5278 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5279 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5280 // into (select_cc LHS, RHS, -1, 0, COND)
5281 SelectionDAG &DAG = DCI.DAG;
5282 SDValue N0 = N->getOperand(0);
5283 EVT VT = N->getValueType(0);
5284 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5285 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5286 N0 = N0.getOperand(0);
5287 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5288 SDLoc DL(N0);
5289 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5290 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5291 N0.getOperand(2) };
5292 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5293 }
5294 return SDValue();
5295 }
5296
combineSIGN_EXTEND(SDNode * N,DAGCombinerInfo & DCI) const5297 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5298 SDNode *N, DAGCombinerInfo &DCI) const {
5299 // Convert (sext (ashr (shl X, C1), C2)) to
5300 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5301 // cheap as narrower ones.
5302 SelectionDAG &DAG = DCI.DAG;
5303 SDValue N0 = N->getOperand(0);
5304 EVT VT = N->getValueType(0);
5305 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5306 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5307 SDValue Inner = N0.getOperand(0);
5308 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5309 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5310 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5311 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5312 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5313 EVT ShiftVT = N0.getOperand(1).getValueType();
5314 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5315 Inner.getOperand(0));
5316 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5317 DAG.getConstant(NewShlAmt, SDLoc(Inner),
5318 ShiftVT));
5319 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5320 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5321 }
5322 }
5323 }
5324 return SDValue();
5325 }
5326
combineMERGE(SDNode * N,DAGCombinerInfo & DCI) const5327 SDValue SystemZTargetLowering::combineMERGE(
5328 SDNode *N, DAGCombinerInfo &DCI) const {
5329 SelectionDAG &DAG = DCI.DAG;
5330 unsigned Opcode = N->getOpcode();
5331 SDValue Op0 = N->getOperand(0);
5332 SDValue Op1 = N->getOperand(1);
5333 if (Op0.getOpcode() == ISD::BITCAST)
5334 Op0 = Op0.getOperand(0);
5335 if (Op0.getOpcode() == SystemZISD::BYTE_MASK &&
5336 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) {
5337 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF
5338 // for v4f32.
5339 if (Op1 == N->getOperand(0))
5340 return Op1;
5341 // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5342 EVT VT = Op1.getValueType();
5343 unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5344 if (ElemBytes <= 4) {
5345 Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5346 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5347 EVT InVT = VT.changeVectorElementTypeToInteger();
5348 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5349 SystemZ::VectorBytes / ElemBytes / 2);
5350 if (VT != InVT) {
5351 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5352 DCI.AddToWorklist(Op1.getNode());
5353 }
5354 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5355 DCI.AddToWorklist(Op.getNode());
5356 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5357 }
5358 }
5359 return SDValue();
5360 }
5361
combineSTORE(SDNode * N,DAGCombinerInfo & DCI) const5362 SDValue SystemZTargetLowering::combineSTORE(
5363 SDNode *N, DAGCombinerInfo &DCI) const {
5364 SelectionDAG &DAG = DCI.DAG;
5365 auto *SN = cast<StoreSDNode>(N);
5366 auto &Op1 = N->getOperand(1);
5367 EVT MemVT = SN->getMemoryVT();
5368 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
5369 // for the extraction to be done on a vMiN value, so that we can use VSTE.
5370 // If X has wider elements then convert it to:
5371 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
5372 if (MemVT.isInteger() && SN->isTruncatingStore()) {
5373 if (SDValue Value =
5374 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
5375 DCI.AddToWorklist(Value.getNode());
5376
5377 // Rewrite the store with the new form of stored value.
5378 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
5379 SN->getBasePtr(), SN->getMemoryVT(),
5380 SN->getMemOperand());
5381 }
5382 }
5383 // Combine STORE (BSWAP) into STRVH/STRV/STRVG
5384 if (!SN->isTruncatingStore() &&
5385 Op1.getOpcode() == ISD::BSWAP &&
5386 Op1.getNode()->hasOneUse() &&
5387 (Op1.getValueType() == MVT::i16 ||
5388 Op1.getValueType() == MVT::i32 ||
5389 Op1.getValueType() == MVT::i64)) {
5390
5391 SDValue BSwapOp = Op1.getOperand(0);
5392
5393 if (BSwapOp.getValueType() == MVT::i16)
5394 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
5395
5396 SDValue Ops[] = {
5397 N->getOperand(0), BSwapOp, N->getOperand(2),
5398 DAG.getValueType(Op1.getValueType())
5399 };
5400
5401 return
5402 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
5403 Ops, MemVT, SN->getMemOperand());
5404 }
5405 return SDValue();
5406 }
5407
combineEXTRACT_VECTOR_ELT(SDNode * N,DAGCombinerInfo & DCI) const5408 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
5409 SDNode *N, DAGCombinerInfo &DCI) const {
5410
5411 if (!Subtarget.hasVector())
5412 return SDValue();
5413
5414 // Try to simplify a vector extraction.
5415 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
5416 SDValue Op0 = N->getOperand(0);
5417 EVT VecVT = Op0.getValueType();
5418 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
5419 IndexN->getZExtValue(), DCI, false);
5420 }
5421 return SDValue();
5422 }
5423
combineJOIN_DWORDS(SDNode * N,DAGCombinerInfo & DCI) const5424 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
5425 SDNode *N, DAGCombinerInfo &DCI) const {
5426 SelectionDAG &DAG = DCI.DAG;
5427 // (join_dwords X, X) == (replicate X)
5428 if (N->getOperand(0) == N->getOperand(1))
5429 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
5430 N->getOperand(0));
5431 return SDValue();
5432 }
5433
combineFP_ROUND(SDNode * N,DAGCombinerInfo & DCI) const5434 SDValue SystemZTargetLowering::combineFP_ROUND(
5435 SDNode *N, DAGCombinerInfo &DCI) const {
5436 // (fpround (extract_vector_elt X 0))
5437 // (fpround (extract_vector_elt X 1)) ->
5438 // (extract_vector_elt (VROUND X) 0)
5439 // (extract_vector_elt (VROUND X) 1)
5440 //
5441 // This is a special case since the target doesn't really support v2f32s.
5442 SelectionDAG &DAG = DCI.DAG;
5443 SDValue Op0 = N->getOperand(0);
5444 if (N->getValueType(0) == MVT::f32 &&
5445 Op0.hasOneUse() &&
5446 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5447 Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5448 Op0.getOperand(1).getOpcode() == ISD::Constant &&
5449 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5450 SDValue Vec = Op0.getOperand(0);
5451 for (auto *U : Vec->uses()) {
5452 if (U != Op0.getNode() &&
5453 U->hasOneUse() &&
5454 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5455 U->getOperand(0) == Vec &&
5456 U->getOperand(1).getOpcode() == ISD::Constant &&
5457 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5458 SDValue OtherRound = SDValue(*U->use_begin(), 0);
5459 if (OtherRound.getOpcode() == ISD::FP_ROUND &&
5460 OtherRound.getOperand(0) == SDValue(U, 0) &&
5461 OtherRound.getValueType() == MVT::f32) {
5462 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5463 MVT::v4f32, Vec);
5464 DCI.AddToWorklist(VRound.getNode());
5465 SDValue Extract1 =
5466 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5467 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5468 DCI.AddToWorklist(Extract1.getNode());
5469 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5470 SDValue Extract0 =
5471 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5472 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5473 return Extract0;
5474 }
5475 }
5476 }
5477 }
5478 return SDValue();
5479 }
5480
combineBSWAP(SDNode * N,DAGCombinerInfo & DCI) const5481 SDValue SystemZTargetLowering::combineBSWAP(
5482 SDNode *N, DAGCombinerInfo &DCI) const {
5483 SelectionDAG &DAG = DCI.DAG;
5484 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG
5485 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5486 N->getOperand(0).hasOneUse() &&
5487 (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 ||
5488 N->getValueType(0) == MVT::i64)) {
5489 SDValue Load = N->getOperand(0);
5490 LoadSDNode *LD = cast<LoadSDNode>(Load);
5491
5492 // Create the byte-swapping load.
5493 SDValue Ops[] = {
5494 LD->getChain(), // Chain
5495 LD->getBasePtr(), // Ptr
5496 DAG.getValueType(N->getValueType(0)) // VT
5497 };
5498 SDValue BSLoad =
5499 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
5500 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
5501 MVT::i64 : MVT::i32, MVT::Other),
5502 Ops, LD->getMemoryVT(), LD->getMemOperand());
5503
5504 // If this is an i16 load, insert the truncate.
5505 SDValue ResVal = BSLoad;
5506 if (N->getValueType(0) == MVT::i16)
5507 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
5508
5509 // First, combine the bswap away. This makes the value produced by the
5510 // load dead.
5511 DCI.CombineTo(N, ResVal);
5512
5513 // Next, combine the load away, we give it a bogus result value but a real
5514 // chain result. The result value is dead because the bswap is dead.
5515 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5516
5517 // Return N so it doesn't get rechecked!
5518 return SDValue(N, 0);
5519 }
5520 return SDValue();
5521 }
5522
combineCCMask(SDValue & CCReg,int & CCValid,int & CCMask)5523 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
5524 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
5525 // set by the CCReg instruction using the CCValid / CCMask masks,
5526 // If the CCReg instruction is itself a (ICMP (SELECT_CCMASK)) testing
5527 // the condition code set by some other instruction, see whether we
5528 // can directly use that condition code.
5529 bool Invert = false;
5530
5531 // Verify that we have an appropriate mask for a EQ or NE comparison.
5532 if (CCValid != SystemZ::CCMASK_ICMP)
5533 return false;
5534 if (CCMask == SystemZ::CCMASK_CMP_NE)
5535 Invert = !Invert;
5536 else if (CCMask != SystemZ::CCMASK_CMP_EQ)
5537 return false;
5538
5539 // Verify that we have an ICMP that is the user of a SELECT_CCMASK.
5540 SDNode *ICmp = CCReg.getNode();
5541 if (ICmp->getOpcode() != SystemZISD::ICMP)
5542 return false;
5543 SDNode *Select = ICmp->getOperand(0).getNode();
5544 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
5545 return false;
5546
5547 // Verify that the ICMP compares against one of select values.
5548 auto *CompareVal = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
5549 if (!CompareVal)
5550 return false;
5551 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
5552 if (!TrueVal)
5553 return false;
5554 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
5555 if (!FalseVal)
5556 return false;
5557 if (CompareVal->getZExtValue() == FalseVal->getZExtValue())
5558 Invert = !Invert;
5559 else if (CompareVal->getZExtValue() != TrueVal->getZExtValue())
5560 return false;
5561
5562 // Compute the effective CC mask for the new branch or select.
5563 auto *NewCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
5564 auto *NewCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
5565 if (!NewCCValid || !NewCCMask)
5566 return false;
5567 CCValid = NewCCValid->getZExtValue();
5568 CCMask = NewCCMask->getZExtValue();
5569 if (Invert)
5570 CCMask ^= CCValid;
5571
5572 // Return the updated CCReg link.
5573 CCReg = Select->getOperand(4);
5574 return true;
5575 }
5576
combineBR_CCMASK(SDNode * N,DAGCombinerInfo & DCI) const5577 SDValue SystemZTargetLowering::combineBR_CCMASK(
5578 SDNode *N, DAGCombinerInfo &DCI) const {
5579 SelectionDAG &DAG = DCI.DAG;
5580
5581 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
5582 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
5583 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
5584 if (!CCValid || !CCMask)
5585 return SDValue();
5586
5587 int CCValidVal = CCValid->getZExtValue();
5588 int CCMaskVal = CCMask->getZExtValue();
5589 SDValue Chain = N->getOperand(0);
5590 SDValue CCReg = N->getOperand(4);
5591
5592 if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
5593 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
5594 Chain,
5595 DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
5596 DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
5597 N->getOperand(3), CCReg);
5598 return SDValue();
5599 }
5600
combineSELECT_CCMASK(SDNode * N,DAGCombinerInfo & DCI) const5601 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
5602 SDNode *N, DAGCombinerInfo &DCI) const {
5603 SelectionDAG &DAG = DCI.DAG;
5604
5605 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
5606 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
5607 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
5608 if (!CCValid || !CCMask)
5609 return SDValue();
5610
5611 int CCValidVal = CCValid->getZExtValue();
5612 int CCMaskVal = CCMask->getZExtValue();
5613 SDValue CCReg = N->getOperand(4);
5614
5615 if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
5616 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
5617 N->getOperand(0),
5618 N->getOperand(1),
5619 DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
5620 DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
5621 CCReg);
5622 return SDValue();
5623 }
5624
5625
combineGET_CCMASK(SDNode * N,DAGCombinerInfo & DCI) const5626 SDValue SystemZTargetLowering::combineGET_CCMASK(
5627 SDNode *N, DAGCombinerInfo &DCI) const {
5628
5629 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
5630 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
5631 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
5632 if (!CCValid || !CCMask)
5633 return SDValue();
5634 int CCValidVal = CCValid->getZExtValue();
5635 int CCMaskVal = CCMask->getZExtValue();
5636
5637 SDValue Select = N->getOperand(0);
5638 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
5639 return SDValue();
5640
5641 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
5642 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
5643 if (!SelectCCValid || !SelectCCMask)
5644 return SDValue();
5645 int SelectCCValidVal = SelectCCValid->getZExtValue();
5646 int SelectCCMaskVal = SelectCCMask->getZExtValue();
5647
5648 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
5649 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
5650 if (!TrueVal || !FalseVal)
5651 return SDValue();
5652 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
5653 ;
5654 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
5655 SelectCCMaskVal ^= SelectCCValidVal;
5656 else
5657 return SDValue();
5658
5659 if (SelectCCValidVal & ~CCValidVal)
5660 return SDValue();
5661 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
5662 return SDValue();
5663
5664 return Select->getOperand(4);
5665 }
5666
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const5667 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
5668 DAGCombinerInfo &DCI) const {
5669 switch(N->getOpcode()) {
5670 default: break;
5671 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI);
5672 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI);
5673 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI);
5674 case SystemZISD::MERGE_HIGH:
5675 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI);
5676 case ISD::STORE: return combineSTORE(N, DCI);
5677 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
5678 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
5679 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI);
5680 case ISD::BSWAP: return combineBSWAP(N, DCI);
5681 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI);
5682 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
5683 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI);
5684 }
5685
5686 return SDValue();
5687 }
5688
5689 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
5690 // are for Op.
getDemandedSrcElements(SDValue Op,const APInt & DemandedElts,unsigned OpNo)5691 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
5692 unsigned OpNo) {
5693 EVT VT = Op.getValueType();
5694 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
5695 APInt SrcDemE;
5696 unsigned Opcode = Op.getOpcode();
5697 if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
5698 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5699 switch (Id) {
5700 case Intrinsic::s390_vpksh: // PACKS
5701 case Intrinsic::s390_vpksf:
5702 case Intrinsic::s390_vpksg:
5703 case Intrinsic::s390_vpkshs: // PACKS_CC
5704 case Intrinsic::s390_vpksfs:
5705 case Intrinsic::s390_vpksgs:
5706 case Intrinsic::s390_vpklsh: // PACKLS
5707 case Intrinsic::s390_vpklsf:
5708 case Intrinsic::s390_vpklsg:
5709 case Intrinsic::s390_vpklshs: // PACKLS_CC
5710 case Intrinsic::s390_vpklsfs:
5711 case Intrinsic::s390_vpklsgs:
5712 // VECTOR PACK truncates the elements of two source vectors into one.
5713 SrcDemE = DemandedElts;
5714 if (OpNo == 2)
5715 SrcDemE.lshrInPlace(NumElts / 2);
5716 SrcDemE = SrcDemE.trunc(NumElts / 2);
5717 break;
5718 // VECTOR UNPACK extends half the elements of the source vector.
5719 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
5720 case Intrinsic::s390_vuphh:
5721 case Intrinsic::s390_vuphf:
5722 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
5723 case Intrinsic::s390_vuplhh:
5724 case Intrinsic::s390_vuplhf:
5725 SrcDemE = APInt(NumElts * 2, 0);
5726 SrcDemE.insertBits(DemandedElts, 0);
5727 break;
5728 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
5729 case Intrinsic::s390_vuplhw:
5730 case Intrinsic::s390_vuplf:
5731 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
5732 case Intrinsic::s390_vupllh:
5733 case Intrinsic::s390_vupllf:
5734 SrcDemE = APInt(NumElts * 2, 0);
5735 SrcDemE.insertBits(DemandedElts, NumElts);
5736 break;
5737 case Intrinsic::s390_vpdi: {
5738 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
5739 SrcDemE = APInt(NumElts, 0);
5740 if (!DemandedElts[OpNo - 1])
5741 break;
5742 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
5743 unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
5744 // Demand input element 0 or 1, given by the mask bit value.
5745 SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
5746 break;
5747 }
5748 case Intrinsic::s390_vsldb: {
5749 // VECTOR SHIFT LEFT DOUBLE BY BYTE
5750 assert(VT == MVT::v16i8 && "Unexpected type.");
5751 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
5752 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
5753 unsigned NumSrc0Els = 16 - FirstIdx;
5754 SrcDemE = APInt(NumElts, 0);
5755 if (OpNo == 1) {
5756 APInt DemEls = DemandedElts.trunc(NumSrc0Els);
5757 SrcDemE.insertBits(DemEls, FirstIdx);
5758 } else {
5759 APInt DemEls = DemandedElts.lshr(NumSrc0Els);
5760 SrcDemE.insertBits(DemEls, 0);
5761 }
5762 break;
5763 }
5764 case Intrinsic::s390_vperm:
5765 SrcDemE = APInt(NumElts, 1);
5766 break;
5767 default:
5768 llvm_unreachable("Unhandled intrinsic.");
5769 break;
5770 }
5771 } else {
5772 switch (Opcode) {
5773 case SystemZISD::JOIN_DWORDS:
5774 // Scalar operand.
5775 SrcDemE = APInt(1, 1);
5776 break;
5777 case SystemZISD::SELECT_CCMASK:
5778 SrcDemE = DemandedElts;
5779 break;
5780 default:
5781 llvm_unreachable("Unhandled opcode.");
5782 break;
5783 }
5784 }
5785 return SrcDemE;
5786 }
5787
computeKnownBitsBinOp(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth,unsigned OpNo)5788 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
5789 const APInt &DemandedElts,
5790 const SelectionDAG &DAG, unsigned Depth,
5791 unsigned OpNo) {
5792 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
5793 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
5794 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
5795 KnownBits LHSKnown(SrcBitWidth), RHSKnown(SrcBitWidth);
5796 DAG.computeKnownBits(Op.getOperand(OpNo), LHSKnown, Src0DemE, Depth + 1);
5797 DAG.computeKnownBits(Op.getOperand(OpNo + 1), RHSKnown, Src1DemE, Depth + 1);
5798 Known.Zero = LHSKnown.Zero & RHSKnown.Zero;
5799 Known.One = LHSKnown.One & RHSKnown.One;
5800 }
5801
5802 void
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const5803 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
5804 KnownBits &Known,
5805 const APInt &DemandedElts,
5806 const SelectionDAG &DAG,
5807 unsigned Depth) const {
5808 Known.resetAll();
5809
5810 // Intrinsic CC result is returned in the two low bits.
5811 unsigned tmp0, tmp1; // not used
5812 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
5813 Known.Zero.setBitsFrom(2);
5814 return;
5815 }
5816 EVT VT = Op.getValueType();
5817 if (Op.getResNo() != 0 || VT == MVT::Untyped)
5818 return;
5819 assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
5820 "KnownBits does not match VT in bitwidth");
5821 assert ((!VT.isVector() ||
5822 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
5823 "DemandedElts does not match VT number of elements");
5824 unsigned BitWidth = Known.getBitWidth();
5825 unsigned Opcode = Op.getOpcode();
5826 if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
5827 bool IsLogical = false;
5828 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5829 switch (Id) {
5830 case Intrinsic::s390_vpksh: // PACKS
5831 case Intrinsic::s390_vpksf:
5832 case Intrinsic::s390_vpksg:
5833 case Intrinsic::s390_vpkshs: // PACKS_CC
5834 case Intrinsic::s390_vpksfs:
5835 case Intrinsic::s390_vpksgs:
5836 case Intrinsic::s390_vpklsh: // PACKLS
5837 case Intrinsic::s390_vpklsf:
5838 case Intrinsic::s390_vpklsg:
5839 case Intrinsic::s390_vpklshs: // PACKLS_CC
5840 case Intrinsic::s390_vpklsfs:
5841 case Intrinsic::s390_vpklsgs:
5842 case Intrinsic::s390_vpdi:
5843 case Intrinsic::s390_vsldb:
5844 case Intrinsic::s390_vperm:
5845 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
5846 break;
5847 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
5848 case Intrinsic::s390_vuplhh:
5849 case Intrinsic::s390_vuplhf:
5850 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
5851 case Intrinsic::s390_vupllh:
5852 case Intrinsic::s390_vupllf:
5853 IsLogical = true;
5854 LLVM_FALLTHROUGH;
5855 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
5856 case Intrinsic::s390_vuphh:
5857 case Intrinsic::s390_vuphf:
5858 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
5859 case Intrinsic::s390_vuplhw:
5860 case Intrinsic::s390_vuplf: {
5861 SDValue SrcOp = Op.getOperand(1);
5862 unsigned SrcBitWidth = SrcOp.getScalarValueSizeInBits();
5863 Known = KnownBits(SrcBitWidth);
5864 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
5865 DAG.computeKnownBits(SrcOp, Known, SrcDemE, Depth + 1);
5866 if (IsLogical) {
5867 Known = Known.zext(BitWidth);
5868 Known.Zero.setBitsFrom(SrcBitWidth);
5869 } else
5870 Known = Known.sext(BitWidth);
5871 break;
5872 }
5873 default:
5874 break;
5875 }
5876 } else {
5877 switch (Opcode) {
5878 case SystemZISD::JOIN_DWORDS:
5879 case SystemZISD::SELECT_CCMASK:
5880 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
5881 break;
5882 case SystemZISD::REPLICATE: {
5883 SDValue SrcOp = Op.getOperand(0);
5884 DAG.computeKnownBits(SrcOp, Known, Depth + 1);
5885 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
5886 Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
5887 break;
5888 }
5889 default:
5890 break;
5891 }
5892 }
5893
5894 // Known has the width of the source operand(s). Adjust if needed to match
5895 // the passed bitwidth.
5896 if (Known.getBitWidth() != BitWidth)
5897 Known = Known.zextOrTrunc(BitWidth);
5898 }
5899
computeNumSignBitsBinOp(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth,unsigned OpNo)5900 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
5901 const SelectionDAG &DAG, unsigned Depth,
5902 unsigned OpNo) {
5903 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
5904 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
5905 if (LHS == 1) return 1; // Early out.
5906 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
5907 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
5908 if (RHS == 1) return 1; // Early out.
5909 unsigned Common = std::min(LHS, RHS);
5910 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
5911 EVT VT = Op.getValueType();
5912 unsigned VTBits = VT.getScalarSizeInBits();
5913 if (SrcBitWidth > VTBits) { // PACK
5914 unsigned SrcExtraBits = SrcBitWidth - VTBits;
5915 if (Common > SrcExtraBits)
5916 return (Common - SrcExtraBits);
5917 return 1;
5918 }
5919 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
5920 return Common;
5921 }
5922
5923 unsigned
ComputeNumSignBitsForTargetNode(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const5924 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
5925 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
5926 unsigned Depth) const {
5927 if (Op.getResNo() != 0)
5928 return 1;
5929 unsigned Opcode = Op.getOpcode();
5930 if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
5931 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5932 switch (Id) {
5933 case Intrinsic::s390_vpksh: // PACKS
5934 case Intrinsic::s390_vpksf:
5935 case Intrinsic::s390_vpksg:
5936 case Intrinsic::s390_vpkshs: // PACKS_CC
5937 case Intrinsic::s390_vpksfs:
5938 case Intrinsic::s390_vpksgs:
5939 case Intrinsic::s390_vpklsh: // PACKLS
5940 case Intrinsic::s390_vpklsf:
5941 case Intrinsic::s390_vpklsg:
5942 case Intrinsic::s390_vpklshs: // PACKLS_CC
5943 case Intrinsic::s390_vpklsfs:
5944 case Intrinsic::s390_vpklsgs:
5945 case Intrinsic::s390_vpdi:
5946 case Intrinsic::s390_vsldb:
5947 case Intrinsic::s390_vperm:
5948 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
5949 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
5950 case Intrinsic::s390_vuphh:
5951 case Intrinsic::s390_vuphf:
5952 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
5953 case Intrinsic::s390_vuplhw:
5954 case Intrinsic::s390_vuplf: {
5955 SDValue PackedOp = Op.getOperand(1);
5956 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
5957 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
5958 EVT VT = Op.getValueType();
5959 unsigned VTBits = VT.getScalarSizeInBits();
5960 Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
5961 return Tmp;
5962 }
5963 default:
5964 break;
5965 }
5966 } else {
5967 switch (Opcode) {
5968 case SystemZISD::SELECT_CCMASK:
5969 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
5970 default:
5971 break;
5972 }
5973 }
5974
5975 return 1;
5976 }
5977
5978 //===----------------------------------------------------------------------===//
5979 // Custom insertion
5980 //===----------------------------------------------------------------------===//
5981
5982 // Create a new basic block after MBB.
emitBlockAfter(MachineBasicBlock * MBB)5983 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
5984 MachineFunction &MF = *MBB->getParent();
5985 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
5986 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
5987 return NewMBB;
5988 }
5989
5990 // Split MBB after MI and return the new block (the one that contains
5991 // instructions after MI).
splitBlockAfter(MachineBasicBlock::iterator MI,MachineBasicBlock * MBB)5992 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
5993 MachineBasicBlock *MBB) {
5994 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
5995 NewMBB->splice(NewMBB->begin(), MBB,
5996 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
5997 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
5998 return NewMBB;
5999 }
6000
6001 // Split MBB before MI and return the new block (the one that contains MI).
splitBlockBefore(MachineBasicBlock::iterator MI,MachineBasicBlock * MBB)6002 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
6003 MachineBasicBlock *MBB) {
6004 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6005 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
6006 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6007 return NewMBB;
6008 }
6009
6010 // Force base value Base into a register before MI. Return the register.
forceReg(MachineInstr & MI,MachineOperand & Base,const SystemZInstrInfo * TII)6011 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base,
6012 const SystemZInstrInfo *TII) {
6013 if (Base.isReg())
6014 return Base.getReg();
6015
6016 MachineBasicBlock *MBB = MI.getParent();
6017 MachineFunction &MF = *MBB->getParent();
6018 MachineRegisterInfo &MRI = MF.getRegInfo();
6019
6020 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6021 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
6022 .add(Base)
6023 .addImm(0)
6024 .addReg(0);
6025 return Reg;
6026 }
6027
6028 // The CC operand of MI might be missing a kill marker because there
6029 // were multiple uses of CC, and ISel didn't know which to mark.
6030 // Figure out whether MI should have had a kill marker.
checkCCKill(MachineInstr & MI,MachineBasicBlock * MBB)6031 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
6032 // Scan forward through BB for a use/def of CC.
6033 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
6034 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
6035 const MachineInstr& mi = *miI;
6036 if (mi.readsRegister(SystemZ::CC))
6037 return false;
6038 if (mi.definesRegister(SystemZ::CC))
6039 break; // Should have kill-flag - update below.
6040 }
6041
6042 // If we hit the end of the block, check whether CC is live into a
6043 // successor.
6044 if (miI == MBB->end()) {
6045 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
6046 if ((*SI)->isLiveIn(SystemZ::CC))
6047 return false;
6048 }
6049
6050 return true;
6051 }
6052
6053 // Return true if it is OK for this Select pseudo-opcode to be cascaded
6054 // together with other Select pseudo-opcodes into a single basic-block with
6055 // a conditional jump around it.
isSelectPseudo(MachineInstr & MI)6056 static bool isSelectPseudo(MachineInstr &MI) {
6057 switch (MI.getOpcode()) {
6058 case SystemZ::Select32:
6059 case SystemZ::Select64:
6060 case SystemZ::SelectF32:
6061 case SystemZ::SelectF64:
6062 case SystemZ::SelectF128:
6063 case SystemZ::SelectVR32:
6064 case SystemZ::SelectVR64:
6065 case SystemZ::SelectVR128:
6066 return true;
6067
6068 default:
6069 return false;
6070 }
6071 }
6072
6073 // Helper function, which inserts PHI functions into SinkMBB:
6074 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
6075 // where %FalseValue(i) and %TrueValue(i) are taken from the consequent Selects
6076 // in [MIItBegin, MIItEnd) range.
createPHIsForSelects(MachineBasicBlock::iterator MIItBegin,MachineBasicBlock::iterator MIItEnd,MachineBasicBlock * TrueMBB,MachineBasicBlock * FalseMBB,MachineBasicBlock * SinkMBB)6077 static void createPHIsForSelects(MachineBasicBlock::iterator MIItBegin,
6078 MachineBasicBlock::iterator MIItEnd,
6079 MachineBasicBlock *TrueMBB,
6080 MachineBasicBlock *FalseMBB,
6081 MachineBasicBlock *SinkMBB) {
6082 MachineFunction *MF = TrueMBB->getParent();
6083 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
6084
6085 unsigned CCValid = MIItBegin->getOperand(3).getImm();
6086 unsigned CCMask = MIItBegin->getOperand(4).getImm();
6087 DebugLoc DL = MIItBegin->getDebugLoc();
6088
6089 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
6090
6091 // As we are creating the PHIs, we have to be careful if there is more than
6092 // one. Later Selects may reference the results of earlier Selects, but later
6093 // PHIs have to reference the individual true/false inputs from earlier PHIs.
6094 // That also means that PHI construction must work forward from earlier to
6095 // later, and that the code must maintain a mapping from earlier PHI's
6096 // destination registers, and the registers that went into the PHI.
6097 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
6098
6099 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
6100 unsigned DestReg = MIIt->getOperand(0).getReg();
6101 unsigned TrueReg = MIIt->getOperand(1).getReg();
6102 unsigned FalseReg = MIIt->getOperand(2).getReg();
6103
6104 // If this Select we are generating is the opposite condition from
6105 // the jump we generated, then we have to swap the operands for the
6106 // PHI that is going to be generated.
6107 if (MIIt->getOperand(4).getImm() == (CCValid ^ CCMask))
6108 std::swap(TrueReg, FalseReg);
6109
6110 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
6111 TrueReg = RegRewriteTable[TrueReg].first;
6112
6113 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
6114 FalseReg = RegRewriteTable[FalseReg].second;
6115
6116 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
6117 .addReg(TrueReg).addMBB(TrueMBB)
6118 .addReg(FalseReg).addMBB(FalseMBB);
6119
6120 // Add this PHI to the rewrite table.
6121 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
6122 }
6123 }
6124
6125 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
6126 MachineBasicBlock *
emitSelect(MachineInstr & MI,MachineBasicBlock * MBB) const6127 SystemZTargetLowering::emitSelect(MachineInstr &MI,
6128 MachineBasicBlock *MBB) const {
6129 const SystemZInstrInfo *TII =
6130 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6131
6132 unsigned CCValid = MI.getOperand(3).getImm();
6133 unsigned CCMask = MI.getOperand(4).getImm();
6134 DebugLoc DL = MI.getDebugLoc();
6135
6136 // If we have a sequence of Select* pseudo instructions using the
6137 // same condition code value, we want to expand all of them into
6138 // a single pair of basic blocks using the same condition.
6139 MachineInstr *LastMI = &MI;
6140 MachineBasicBlock::iterator NextMIIt =
6141 std::next(MachineBasicBlock::iterator(MI));
6142
6143 if (isSelectPseudo(MI))
6144 while (NextMIIt != MBB->end() && isSelectPseudo(*NextMIIt) &&
6145 NextMIIt->getOperand(3).getImm() == CCValid &&
6146 (NextMIIt->getOperand(4).getImm() == CCMask ||
6147 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask))) {
6148 LastMI = &*NextMIIt;
6149 ++NextMIIt;
6150 }
6151
6152 MachineBasicBlock *StartMBB = MBB;
6153 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
6154 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6155
6156 // Unless CC was killed in the last Select instruction, mark it as
6157 // live-in to both FalseMBB and JoinMBB.
6158 if (!LastMI->killsRegister(SystemZ::CC) && !checkCCKill(*LastMI, JoinMBB)) {
6159 FalseMBB->addLiveIn(SystemZ::CC);
6160 JoinMBB->addLiveIn(SystemZ::CC);
6161 }
6162
6163 // StartMBB:
6164 // BRC CCMask, JoinMBB
6165 // # fallthrough to FalseMBB
6166 MBB = StartMBB;
6167 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6168 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6169 MBB->addSuccessor(JoinMBB);
6170 MBB->addSuccessor(FalseMBB);
6171
6172 // FalseMBB:
6173 // # fallthrough to JoinMBB
6174 MBB = FalseMBB;
6175 MBB->addSuccessor(JoinMBB);
6176
6177 // JoinMBB:
6178 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
6179 // ...
6180 MBB = JoinMBB;
6181 MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
6182 MachineBasicBlock::iterator MIItEnd =
6183 std::next(MachineBasicBlock::iterator(LastMI));
6184 createPHIsForSelects(MIItBegin, MIItEnd, StartMBB, FalseMBB, MBB);
6185
6186 StartMBB->erase(MIItBegin, MIItEnd);
6187 return JoinMBB;
6188 }
6189
6190 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
6191 // StoreOpcode is the store to use and Invert says whether the store should
6192 // happen when the condition is false rather than true. If a STORE ON
6193 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
emitCondStore(MachineInstr & MI,MachineBasicBlock * MBB,unsigned StoreOpcode,unsigned STOCOpcode,bool Invert) const6194 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
6195 MachineBasicBlock *MBB,
6196 unsigned StoreOpcode,
6197 unsigned STOCOpcode,
6198 bool Invert) const {
6199 const SystemZInstrInfo *TII =
6200 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6201
6202 unsigned SrcReg = MI.getOperand(0).getReg();
6203 MachineOperand Base = MI.getOperand(1);
6204 int64_t Disp = MI.getOperand(2).getImm();
6205 unsigned IndexReg = MI.getOperand(3).getReg();
6206 unsigned CCValid = MI.getOperand(4).getImm();
6207 unsigned CCMask = MI.getOperand(5).getImm();
6208 DebugLoc DL = MI.getDebugLoc();
6209
6210 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
6211
6212 // Use STOCOpcode if possible. We could use different store patterns in
6213 // order to avoid matching the index register, but the performance trade-offs
6214 // might be more complicated in that case.
6215 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
6216 if (Invert)
6217 CCMask ^= CCValid;
6218
6219 // ISel pattern matching also adds a load memory operand of the same
6220 // address, so take special care to find the storing memory operand.
6221 MachineMemOperand *MMO = nullptr;
6222 for (auto *I : MI.memoperands())
6223 if (I->isStore()) {
6224 MMO = I;
6225 break;
6226 }
6227
6228 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
6229 .addReg(SrcReg)
6230 .add(Base)
6231 .addImm(Disp)
6232 .addImm(CCValid)
6233 .addImm(CCMask)
6234 .addMemOperand(MMO);
6235
6236 MI.eraseFromParent();
6237 return MBB;
6238 }
6239
6240 // Get the condition needed to branch around the store.
6241 if (!Invert)
6242 CCMask ^= CCValid;
6243
6244 MachineBasicBlock *StartMBB = MBB;
6245 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
6246 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6247
6248 // Unless CC was killed in the CondStore instruction, mark it as
6249 // live-in to both FalseMBB and JoinMBB.
6250 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
6251 FalseMBB->addLiveIn(SystemZ::CC);
6252 JoinMBB->addLiveIn(SystemZ::CC);
6253 }
6254
6255 // StartMBB:
6256 // BRC CCMask, JoinMBB
6257 // # fallthrough to FalseMBB
6258 MBB = StartMBB;
6259 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6260 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6261 MBB->addSuccessor(JoinMBB);
6262 MBB->addSuccessor(FalseMBB);
6263
6264 // FalseMBB:
6265 // store %SrcReg, %Disp(%Index,%Base)
6266 // # fallthrough to JoinMBB
6267 MBB = FalseMBB;
6268 BuildMI(MBB, DL, TII->get(StoreOpcode))
6269 .addReg(SrcReg)
6270 .add(Base)
6271 .addImm(Disp)
6272 .addReg(IndexReg);
6273 MBB->addSuccessor(JoinMBB);
6274
6275 MI.eraseFromParent();
6276 return JoinMBB;
6277 }
6278
6279 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
6280 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that
6281 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
6282 // BitSize is the width of the field in bits, or 0 if this is a partword
6283 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
6284 // is one of the operands. Invert says whether the field should be
6285 // inverted after performing BinOpcode (e.g. for NAND).
emitAtomicLoadBinary(MachineInstr & MI,MachineBasicBlock * MBB,unsigned BinOpcode,unsigned BitSize,bool Invert) const6286 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
6287 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
6288 unsigned BitSize, bool Invert) const {
6289 MachineFunction &MF = *MBB->getParent();
6290 const SystemZInstrInfo *TII =
6291 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6292 MachineRegisterInfo &MRI = MF.getRegInfo();
6293 bool IsSubWord = (BitSize < 32);
6294
6295 // Extract the operands. Base can be a register or a frame index.
6296 // Src2 can be a register or immediate.
6297 unsigned Dest = MI.getOperand(0).getReg();
6298 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6299 int64_t Disp = MI.getOperand(2).getImm();
6300 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
6301 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
6302 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
6303 DebugLoc DL = MI.getDebugLoc();
6304 if (IsSubWord)
6305 BitSize = MI.getOperand(6).getImm();
6306
6307 // Subword operations use 32-bit registers.
6308 const TargetRegisterClass *RC = (BitSize <= 32 ?
6309 &SystemZ::GR32BitRegClass :
6310 &SystemZ::GR64BitRegClass);
6311 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
6312 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
6313
6314 // Get the right opcodes for the displacement.
6315 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
6316 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
6317 assert(LOpcode && CSOpcode && "Displacement out of range");
6318
6319 // Create virtual registers for temporary results.
6320 unsigned OrigVal = MRI.createVirtualRegister(RC);
6321 unsigned OldVal = MRI.createVirtualRegister(RC);
6322 unsigned NewVal = (BinOpcode || IsSubWord ?
6323 MRI.createVirtualRegister(RC) : Src2.getReg());
6324 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
6325 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
6326
6327 // Insert a basic block for the main loop.
6328 MachineBasicBlock *StartMBB = MBB;
6329 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6330 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6331
6332 // StartMBB:
6333 // ...
6334 // %OrigVal = L Disp(%Base)
6335 // # fall through to LoopMMB
6336 MBB = StartMBB;
6337 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
6338 MBB->addSuccessor(LoopMBB);
6339
6340 // LoopMBB:
6341 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
6342 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
6343 // %RotatedNewVal = OP %RotatedOldVal, %Src2
6344 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
6345 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
6346 // JNE LoopMBB
6347 // # fall through to DoneMMB
6348 MBB = LoopMBB;
6349 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6350 .addReg(OrigVal).addMBB(StartMBB)
6351 .addReg(Dest).addMBB(LoopMBB);
6352 if (IsSubWord)
6353 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
6354 .addReg(OldVal).addReg(BitShift).addImm(0);
6355 if (Invert) {
6356 // Perform the operation normally and then invert every bit of the field.
6357 unsigned Tmp = MRI.createVirtualRegister(RC);
6358 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
6359 if (BitSize <= 32)
6360 // XILF with the upper BitSize bits set.
6361 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
6362 .addReg(Tmp).addImm(-1U << (32 - BitSize));
6363 else {
6364 // Use LCGR and add -1 to the result, which is more compact than
6365 // an XILF, XILH pair.
6366 unsigned Tmp2 = MRI.createVirtualRegister(RC);
6367 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
6368 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
6369 .addReg(Tmp2).addImm(-1);
6370 }
6371 } else if (BinOpcode)
6372 // A simply binary operation.
6373 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
6374 .addReg(RotatedOldVal)
6375 .add(Src2);
6376 else if (IsSubWord)
6377 // Use RISBG to rotate Src2 into position and use it to replace the
6378 // field in RotatedOldVal.
6379 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
6380 .addReg(RotatedOldVal).addReg(Src2.getReg())
6381 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
6382 if (IsSubWord)
6383 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
6384 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
6385 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
6386 .addReg(OldVal)
6387 .addReg(NewVal)
6388 .add(Base)
6389 .addImm(Disp);
6390 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6391 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6392 MBB->addSuccessor(LoopMBB);
6393 MBB->addSuccessor(DoneMBB);
6394
6395 MI.eraseFromParent();
6396 return DoneMBB;
6397 }
6398
6399 // Implement EmitInstrWithCustomInserter for pseudo
6400 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the
6401 // instruction that should be used to compare the current field with the
6402 // minimum or maximum value. KeepOldMask is the BRC condition-code mask
6403 // for when the current field should be kept. BitSize is the width of
6404 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
emitAtomicLoadMinMax(MachineInstr & MI,MachineBasicBlock * MBB,unsigned CompareOpcode,unsigned KeepOldMask,unsigned BitSize) const6405 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
6406 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
6407 unsigned KeepOldMask, unsigned BitSize) const {
6408 MachineFunction &MF = *MBB->getParent();
6409 const SystemZInstrInfo *TII =
6410 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6411 MachineRegisterInfo &MRI = MF.getRegInfo();
6412 bool IsSubWord = (BitSize < 32);
6413
6414 // Extract the operands. Base can be a register or a frame index.
6415 unsigned Dest = MI.getOperand(0).getReg();
6416 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6417 int64_t Disp = MI.getOperand(2).getImm();
6418 unsigned Src2 = MI.getOperand(3).getReg();
6419 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
6420 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
6421 DebugLoc DL = MI.getDebugLoc();
6422 if (IsSubWord)
6423 BitSize = MI.getOperand(6).getImm();
6424
6425 // Subword operations use 32-bit registers.
6426 const TargetRegisterClass *RC = (BitSize <= 32 ?
6427 &SystemZ::GR32BitRegClass :
6428 &SystemZ::GR64BitRegClass);
6429 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
6430 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
6431
6432 // Get the right opcodes for the displacement.
6433 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
6434 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
6435 assert(LOpcode && CSOpcode && "Displacement out of range");
6436
6437 // Create virtual registers for temporary results.
6438 unsigned OrigVal = MRI.createVirtualRegister(RC);
6439 unsigned OldVal = MRI.createVirtualRegister(RC);
6440 unsigned NewVal = MRI.createVirtualRegister(RC);
6441 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
6442 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
6443 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
6444
6445 // Insert 3 basic blocks for the loop.
6446 MachineBasicBlock *StartMBB = MBB;
6447 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6448 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6449 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
6450 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
6451
6452 // StartMBB:
6453 // ...
6454 // %OrigVal = L Disp(%Base)
6455 // # fall through to LoopMMB
6456 MBB = StartMBB;
6457 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
6458 MBB->addSuccessor(LoopMBB);
6459
6460 // LoopMBB:
6461 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
6462 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
6463 // CompareOpcode %RotatedOldVal, %Src2
6464 // BRC KeepOldMask, UpdateMBB
6465 MBB = LoopMBB;
6466 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6467 .addReg(OrigVal).addMBB(StartMBB)
6468 .addReg(Dest).addMBB(UpdateMBB);
6469 if (IsSubWord)
6470 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
6471 .addReg(OldVal).addReg(BitShift).addImm(0);
6472 BuildMI(MBB, DL, TII->get(CompareOpcode))
6473 .addReg(RotatedOldVal).addReg(Src2);
6474 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6475 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
6476 MBB->addSuccessor(UpdateMBB);
6477 MBB->addSuccessor(UseAltMBB);
6478
6479 // UseAltMBB:
6480 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
6481 // # fall through to UpdateMMB
6482 MBB = UseAltMBB;
6483 if (IsSubWord)
6484 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
6485 .addReg(RotatedOldVal).addReg(Src2)
6486 .addImm(32).addImm(31 + BitSize).addImm(0);
6487 MBB->addSuccessor(UpdateMBB);
6488
6489 // UpdateMBB:
6490 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
6491 // [ %RotatedAltVal, UseAltMBB ]
6492 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
6493 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
6494 // JNE LoopMBB
6495 // # fall through to DoneMMB
6496 MBB = UpdateMBB;
6497 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
6498 .addReg(RotatedOldVal).addMBB(LoopMBB)
6499 .addReg(RotatedAltVal).addMBB(UseAltMBB);
6500 if (IsSubWord)
6501 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
6502 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
6503 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
6504 .addReg(OldVal)
6505 .addReg(NewVal)
6506 .add(Base)
6507 .addImm(Disp);
6508 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6509 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6510 MBB->addSuccessor(LoopMBB);
6511 MBB->addSuccessor(DoneMBB);
6512
6513 MI.eraseFromParent();
6514 return DoneMBB;
6515 }
6516
6517 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
6518 // instruction MI.
6519 MachineBasicBlock *
emitAtomicCmpSwapW(MachineInstr & MI,MachineBasicBlock * MBB) const6520 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
6521 MachineBasicBlock *MBB) const {
6522
6523 MachineFunction &MF = *MBB->getParent();
6524 const SystemZInstrInfo *TII =
6525 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6526 MachineRegisterInfo &MRI = MF.getRegInfo();
6527
6528 // Extract the operands. Base can be a register or a frame index.
6529 unsigned Dest = MI.getOperand(0).getReg();
6530 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6531 int64_t Disp = MI.getOperand(2).getImm();
6532 unsigned OrigCmpVal = MI.getOperand(3).getReg();
6533 unsigned OrigSwapVal = MI.getOperand(4).getReg();
6534 unsigned BitShift = MI.getOperand(5).getReg();
6535 unsigned NegBitShift = MI.getOperand(6).getReg();
6536 int64_t BitSize = MI.getOperand(7).getImm();
6537 DebugLoc DL = MI.getDebugLoc();
6538
6539 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
6540
6541 // Get the right opcodes for the displacement.
6542 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
6543 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
6544 assert(LOpcode && CSOpcode && "Displacement out of range");
6545
6546 // Create virtual registers for temporary results.
6547 unsigned OrigOldVal = MRI.createVirtualRegister(RC);
6548 unsigned OldVal = MRI.createVirtualRegister(RC);
6549 unsigned CmpVal = MRI.createVirtualRegister(RC);
6550 unsigned SwapVal = MRI.createVirtualRegister(RC);
6551 unsigned StoreVal = MRI.createVirtualRegister(RC);
6552 unsigned RetryOldVal = MRI.createVirtualRegister(RC);
6553 unsigned RetryCmpVal = MRI.createVirtualRegister(RC);
6554 unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
6555
6556 // Insert 2 basic blocks for the loop.
6557 MachineBasicBlock *StartMBB = MBB;
6558 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6559 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6560 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB);
6561
6562 // StartMBB:
6563 // ...
6564 // %OrigOldVal = L Disp(%Base)
6565 // # fall through to LoopMMB
6566 MBB = StartMBB;
6567 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
6568 .add(Base)
6569 .addImm(Disp)
6570 .addReg(0);
6571 MBB->addSuccessor(LoopMBB);
6572
6573 // LoopMBB:
6574 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
6575 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
6576 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
6577 // %Dest = RLL %OldVal, BitSize(%BitShift)
6578 // ^^ The low BitSize bits contain the field
6579 // of interest.
6580 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
6581 // ^^ Replace the upper 32-BitSize bits of the
6582 // comparison value with those that we loaded,
6583 // so that we can use a full word comparison.
6584 // CR %Dest, %RetryCmpVal
6585 // JNE DoneMBB
6586 // # Fall through to SetMBB
6587 MBB = LoopMBB;
6588 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6589 .addReg(OrigOldVal).addMBB(StartMBB)
6590 .addReg(RetryOldVal).addMBB(SetMBB);
6591 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
6592 .addReg(OrigCmpVal).addMBB(StartMBB)
6593 .addReg(RetryCmpVal).addMBB(SetMBB);
6594 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
6595 .addReg(OrigSwapVal).addMBB(StartMBB)
6596 .addReg(RetrySwapVal).addMBB(SetMBB);
6597 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
6598 .addReg(OldVal).addReg(BitShift).addImm(BitSize);
6599 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
6600 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
6601 BuildMI(MBB, DL, TII->get(SystemZ::CR))
6602 .addReg(Dest).addReg(RetryCmpVal);
6603 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6604 .addImm(SystemZ::CCMASK_ICMP)
6605 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
6606 MBB->addSuccessor(DoneMBB);
6607 MBB->addSuccessor(SetMBB);
6608
6609 // SetMBB:
6610 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
6611 // ^^ Replace the upper 32-BitSize bits of the new
6612 // value with those that we loaded.
6613 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift)
6614 // ^^ Rotate the new field to its proper position.
6615 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
6616 // JNE LoopMBB
6617 // # fall through to ExitMMB
6618 MBB = SetMBB;
6619 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
6620 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
6621 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
6622 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
6623 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
6624 .addReg(OldVal)
6625 .addReg(StoreVal)
6626 .add(Base)
6627 .addImm(Disp);
6628 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6629 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6630 MBB->addSuccessor(LoopMBB);
6631 MBB->addSuccessor(DoneMBB);
6632
6633 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
6634 // to the block after the loop. At this point, CC may have been defined
6635 // either by the CR in LoopMBB or by the CS in SetMBB.
6636 if (!MI.registerDefIsDead(SystemZ::CC))
6637 DoneMBB->addLiveIn(SystemZ::CC);
6638
6639 MI.eraseFromParent();
6640 return DoneMBB;
6641 }
6642
6643 // Emit a move from two GR64s to a GR128.
6644 MachineBasicBlock *
emitPair128(MachineInstr & MI,MachineBasicBlock * MBB) const6645 SystemZTargetLowering::emitPair128(MachineInstr &MI,
6646 MachineBasicBlock *MBB) const {
6647 MachineFunction &MF = *MBB->getParent();
6648 const SystemZInstrInfo *TII =
6649 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6650 MachineRegisterInfo &MRI = MF.getRegInfo();
6651 DebugLoc DL = MI.getDebugLoc();
6652
6653 unsigned Dest = MI.getOperand(0).getReg();
6654 unsigned Hi = MI.getOperand(1).getReg();
6655 unsigned Lo = MI.getOperand(2).getReg();
6656 unsigned Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6657 unsigned Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6658
6659 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
6660 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
6661 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
6662 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6663 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
6664
6665 MI.eraseFromParent();
6666 return MBB;
6667 }
6668
6669 // Emit an extension from a GR64 to a GR128. ClearEven is true
6670 // if the high register of the GR128 value must be cleared or false if
6671 // it's "don't care".
emitExt128(MachineInstr & MI,MachineBasicBlock * MBB,bool ClearEven) const6672 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
6673 MachineBasicBlock *MBB,
6674 bool ClearEven) const {
6675 MachineFunction &MF = *MBB->getParent();
6676 const SystemZInstrInfo *TII =
6677 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6678 MachineRegisterInfo &MRI = MF.getRegInfo();
6679 DebugLoc DL = MI.getDebugLoc();
6680
6681 unsigned Dest = MI.getOperand(0).getReg();
6682 unsigned Src = MI.getOperand(1).getReg();
6683 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6684
6685 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
6686 if (ClearEven) {
6687 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6688 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
6689
6690 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
6691 .addImm(0);
6692 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
6693 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
6694 In128 = NewIn128;
6695 }
6696 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6697 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
6698
6699 MI.eraseFromParent();
6700 return MBB;
6701 }
6702
emitMemMemWrapper(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode) const6703 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
6704 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6705 MachineFunction &MF = *MBB->getParent();
6706 const SystemZInstrInfo *TII =
6707 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6708 MachineRegisterInfo &MRI = MF.getRegInfo();
6709 DebugLoc DL = MI.getDebugLoc();
6710
6711 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
6712 uint64_t DestDisp = MI.getOperand(1).getImm();
6713 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
6714 uint64_t SrcDisp = MI.getOperand(3).getImm();
6715 uint64_t Length = MI.getOperand(4).getImm();
6716
6717 // When generating more than one CLC, all but the last will need to
6718 // branch to the end when a difference is found.
6719 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
6720 splitBlockAfter(MI, MBB) : nullptr);
6721
6722 // Check for the loop form, in which operand 5 is the trip count.
6723 if (MI.getNumExplicitOperands() > 5) {
6724 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
6725
6726 uint64_t StartCountReg = MI.getOperand(5).getReg();
6727 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII);
6728 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg :
6729 forceReg(MI, DestBase, TII));
6730
6731 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
6732 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC);
6733 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
6734 MRI.createVirtualRegister(RC));
6735 uint64_t NextSrcReg = MRI.createVirtualRegister(RC);
6736 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
6737 MRI.createVirtualRegister(RC));
6738
6739 RC = &SystemZ::GR64BitRegClass;
6740 uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
6741 uint64_t NextCountReg = MRI.createVirtualRegister(RC);
6742
6743 MachineBasicBlock *StartMBB = MBB;
6744 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6745 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6746 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
6747
6748 // StartMBB:
6749 // # fall through to LoopMMB
6750 MBB->addSuccessor(LoopMBB);
6751
6752 // LoopMBB:
6753 // %ThisDestReg = phi [ %StartDestReg, StartMBB ],
6754 // [ %NextDestReg, NextMBB ]
6755 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
6756 // [ %NextSrcReg, NextMBB ]
6757 // %ThisCountReg = phi [ %StartCountReg, StartMBB ],
6758 // [ %NextCountReg, NextMBB ]
6759 // ( PFD 2, 768+DestDisp(%ThisDestReg) )
6760 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
6761 // ( JLH EndMBB )
6762 //
6763 // The prefetch is used only for MVC. The JLH is used only for CLC.
6764 MBB = LoopMBB;
6765
6766 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
6767 .addReg(StartDestReg).addMBB(StartMBB)
6768 .addReg(NextDestReg).addMBB(NextMBB);
6769 if (!HaveSingleBase)
6770 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
6771 .addReg(StartSrcReg).addMBB(StartMBB)
6772 .addReg(NextSrcReg).addMBB(NextMBB);
6773 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
6774 .addReg(StartCountReg).addMBB(StartMBB)
6775 .addReg(NextCountReg).addMBB(NextMBB);
6776 if (Opcode == SystemZ::MVC)
6777 BuildMI(MBB, DL, TII->get(SystemZ::PFD))
6778 .addImm(SystemZ::PFD_WRITE)
6779 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
6780 BuildMI(MBB, DL, TII->get(Opcode))
6781 .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
6782 .addReg(ThisSrcReg).addImm(SrcDisp);
6783 if (EndMBB) {
6784 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6785 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6786 .addMBB(EndMBB);
6787 MBB->addSuccessor(EndMBB);
6788 MBB->addSuccessor(NextMBB);
6789 }
6790
6791 // NextMBB:
6792 // %NextDestReg = LA 256(%ThisDestReg)
6793 // %NextSrcReg = LA 256(%ThisSrcReg)
6794 // %NextCountReg = AGHI %ThisCountReg, -1
6795 // CGHI %NextCountReg, 0
6796 // JLH LoopMBB
6797 // # fall through to DoneMMB
6798 //
6799 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
6800 MBB = NextMBB;
6801
6802 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
6803 .addReg(ThisDestReg).addImm(256).addReg(0);
6804 if (!HaveSingleBase)
6805 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
6806 .addReg(ThisSrcReg).addImm(256).addReg(0);
6807 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
6808 .addReg(ThisCountReg).addImm(-1);
6809 BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
6810 .addReg(NextCountReg).addImm(0);
6811 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6812 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6813 .addMBB(LoopMBB);
6814 MBB->addSuccessor(LoopMBB);
6815 MBB->addSuccessor(DoneMBB);
6816
6817 DestBase = MachineOperand::CreateReg(NextDestReg, false);
6818 SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
6819 Length &= 255;
6820 if (EndMBB && !Length)
6821 // If the loop handled the whole CLC range, DoneMBB will be empty with
6822 // CC live-through into EndMBB, so add it as live-in.
6823 DoneMBB->addLiveIn(SystemZ::CC);
6824 MBB = DoneMBB;
6825 }
6826 // Handle any remaining bytes with straight-line code.
6827 while (Length > 0) {
6828 uint64_t ThisLength = std::min(Length, uint64_t(256));
6829 // The previous iteration might have created out-of-range displacements.
6830 // Apply them using LAY if so.
6831 if (!isUInt<12>(DestDisp)) {
6832 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6833 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
6834 .add(DestBase)
6835 .addImm(DestDisp)
6836 .addReg(0);
6837 DestBase = MachineOperand::CreateReg(Reg, false);
6838 DestDisp = 0;
6839 }
6840 if (!isUInt<12>(SrcDisp)) {
6841 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6842 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
6843 .add(SrcBase)
6844 .addImm(SrcDisp)
6845 .addReg(0);
6846 SrcBase = MachineOperand::CreateReg(Reg, false);
6847 SrcDisp = 0;
6848 }
6849 BuildMI(*MBB, MI, DL, TII->get(Opcode))
6850 .add(DestBase)
6851 .addImm(DestDisp)
6852 .addImm(ThisLength)
6853 .add(SrcBase)
6854 .addImm(SrcDisp)
6855 ->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
6856 DestDisp += ThisLength;
6857 SrcDisp += ThisLength;
6858 Length -= ThisLength;
6859 // If there's another CLC to go, branch to the end if a difference
6860 // was found.
6861 if (EndMBB && Length > 0) {
6862 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
6863 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6864 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6865 .addMBB(EndMBB);
6866 MBB->addSuccessor(EndMBB);
6867 MBB->addSuccessor(NextMBB);
6868 MBB = NextMBB;
6869 }
6870 }
6871 if (EndMBB) {
6872 MBB->addSuccessor(EndMBB);
6873 MBB = EndMBB;
6874 MBB->addLiveIn(SystemZ::CC);
6875 }
6876
6877 MI.eraseFromParent();
6878 return MBB;
6879 }
6880
6881 // Decompose string pseudo-instruction MI into a loop that continually performs
6882 // Opcode until CC != 3.
emitStringWrapper(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode) const6883 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
6884 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6885 MachineFunction &MF = *MBB->getParent();
6886 const SystemZInstrInfo *TII =
6887 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6888 MachineRegisterInfo &MRI = MF.getRegInfo();
6889 DebugLoc DL = MI.getDebugLoc();
6890
6891 uint64_t End1Reg = MI.getOperand(0).getReg();
6892 uint64_t Start1Reg = MI.getOperand(1).getReg();
6893 uint64_t Start2Reg = MI.getOperand(2).getReg();
6894 uint64_t CharReg = MI.getOperand(3).getReg();
6895
6896 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
6897 uint64_t This1Reg = MRI.createVirtualRegister(RC);
6898 uint64_t This2Reg = MRI.createVirtualRegister(RC);
6899 uint64_t End2Reg = MRI.createVirtualRegister(RC);
6900
6901 MachineBasicBlock *StartMBB = MBB;
6902 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6903 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6904
6905 // StartMBB:
6906 // # fall through to LoopMMB
6907 MBB->addSuccessor(LoopMBB);
6908
6909 // LoopMBB:
6910 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
6911 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
6912 // R0L = %CharReg
6913 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
6914 // JO LoopMBB
6915 // # fall through to DoneMMB
6916 //
6917 // The load of R0L can be hoisted by post-RA LICM.
6918 MBB = LoopMBB;
6919
6920 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
6921 .addReg(Start1Reg).addMBB(StartMBB)
6922 .addReg(End1Reg).addMBB(LoopMBB);
6923 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
6924 .addReg(Start2Reg).addMBB(StartMBB)
6925 .addReg(End2Reg).addMBB(LoopMBB);
6926 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
6927 BuildMI(MBB, DL, TII->get(Opcode))
6928 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
6929 .addReg(This1Reg).addReg(This2Reg);
6930 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6931 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
6932 MBB->addSuccessor(LoopMBB);
6933 MBB->addSuccessor(DoneMBB);
6934
6935 DoneMBB->addLiveIn(SystemZ::CC);
6936
6937 MI.eraseFromParent();
6938 return DoneMBB;
6939 }
6940
6941 // Update TBEGIN instruction with final opcode and register clobbers.
emitTransactionBegin(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode,bool NoFloat) const6942 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
6943 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
6944 bool NoFloat) const {
6945 MachineFunction &MF = *MBB->getParent();
6946 const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
6947 const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
6948
6949 // Update opcode.
6950 MI.setDesc(TII->get(Opcode));
6951
6952 // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
6953 // Make sure to add the corresponding GRSM bits if they are missing.
6954 uint64_t Control = MI.getOperand(2).getImm();
6955 static const unsigned GPRControlBit[16] = {
6956 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
6957 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
6958 };
6959 Control |= GPRControlBit[15];
6960 if (TFI->hasFP(MF))
6961 Control |= GPRControlBit[11];
6962 MI.getOperand(2).setImm(Control);
6963
6964 // Add GPR clobbers.
6965 for (int I = 0; I < 16; I++) {
6966 if ((Control & GPRControlBit[I]) == 0) {
6967 unsigned Reg = SystemZMC::GR64Regs[I];
6968 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
6969 }
6970 }
6971
6972 // Add FPR/VR clobbers.
6973 if (!NoFloat && (Control & 4) != 0) {
6974 if (Subtarget.hasVector()) {
6975 for (int I = 0; I < 32; I++) {
6976 unsigned Reg = SystemZMC::VR128Regs[I];
6977 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
6978 }
6979 } else {
6980 for (int I = 0; I < 16; I++) {
6981 unsigned Reg = SystemZMC::FP64Regs[I];
6982 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
6983 }
6984 }
6985 }
6986
6987 return MBB;
6988 }
6989
emitLoadAndTestCmp0(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode) const6990 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
6991 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6992 MachineFunction &MF = *MBB->getParent();
6993 MachineRegisterInfo *MRI = &MF.getRegInfo();
6994 const SystemZInstrInfo *TII =
6995 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6996 DebugLoc DL = MI.getDebugLoc();
6997
6998 unsigned SrcReg = MI.getOperand(0).getReg();
6999
7000 // Create new virtual register of the same class as source.
7001 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
7002 unsigned DstReg = MRI->createVirtualRegister(RC);
7003
7004 // Replace pseudo with a normal load-and-test that models the def as
7005 // well.
7006 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
7007 .addReg(SrcReg);
7008 MI.eraseFromParent();
7009
7010 return MBB;
7011 }
7012
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * MBB) const7013 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
7014 MachineInstr &MI, MachineBasicBlock *MBB) const {
7015 switch (MI.getOpcode()) {
7016 case SystemZ::Select32:
7017 case SystemZ::Select64:
7018 case SystemZ::SelectF32:
7019 case SystemZ::SelectF64:
7020 case SystemZ::SelectF128:
7021 case SystemZ::SelectVR32:
7022 case SystemZ::SelectVR64:
7023 case SystemZ::SelectVR128:
7024 return emitSelect(MI, MBB);
7025
7026 case SystemZ::CondStore8Mux:
7027 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
7028 case SystemZ::CondStore8MuxInv:
7029 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
7030 case SystemZ::CondStore16Mux:
7031 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
7032 case SystemZ::CondStore16MuxInv:
7033 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
7034 case SystemZ::CondStore32Mux:
7035 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
7036 case SystemZ::CondStore32MuxInv:
7037 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
7038 case SystemZ::CondStore8:
7039 return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
7040 case SystemZ::CondStore8Inv:
7041 return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
7042 case SystemZ::CondStore16:
7043 return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
7044 case SystemZ::CondStore16Inv:
7045 return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
7046 case SystemZ::CondStore32:
7047 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
7048 case SystemZ::CondStore32Inv:
7049 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
7050 case SystemZ::CondStore64:
7051 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
7052 case SystemZ::CondStore64Inv:
7053 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
7054 case SystemZ::CondStoreF32:
7055 return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
7056 case SystemZ::CondStoreF32Inv:
7057 return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
7058 case SystemZ::CondStoreF64:
7059 return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
7060 case SystemZ::CondStoreF64Inv:
7061 return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
7062
7063 case SystemZ::PAIR128:
7064 return emitPair128(MI, MBB);
7065 case SystemZ::AEXT128:
7066 return emitExt128(MI, MBB, false);
7067 case SystemZ::ZEXT128:
7068 return emitExt128(MI, MBB, true);
7069
7070 case SystemZ::ATOMIC_SWAPW:
7071 return emitAtomicLoadBinary(MI, MBB, 0, 0);
7072 case SystemZ::ATOMIC_SWAP_32:
7073 return emitAtomicLoadBinary(MI, MBB, 0, 32);
7074 case SystemZ::ATOMIC_SWAP_64:
7075 return emitAtomicLoadBinary(MI, MBB, 0, 64);
7076
7077 case SystemZ::ATOMIC_LOADW_AR:
7078 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
7079 case SystemZ::ATOMIC_LOADW_AFI:
7080 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
7081 case SystemZ::ATOMIC_LOAD_AR:
7082 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
7083 case SystemZ::ATOMIC_LOAD_AHI:
7084 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
7085 case SystemZ::ATOMIC_LOAD_AFI:
7086 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
7087 case SystemZ::ATOMIC_LOAD_AGR:
7088 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
7089 case SystemZ::ATOMIC_LOAD_AGHI:
7090 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
7091 case SystemZ::ATOMIC_LOAD_AGFI:
7092 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
7093
7094 case SystemZ::ATOMIC_LOADW_SR:
7095 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
7096 case SystemZ::ATOMIC_LOAD_SR:
7097 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
7098 case SystemZ::ATOMIC_LOAD_SGR:
7099 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
7100
7101 case SystemZ::ATOMIC_LOADW_NR:
7102 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
7103 case SystemZ::ATOMIC_LOADW_NILH:
7104 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
7105 case SystemZ::ATOMIC_LOAD_NR:
7106 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
7107 case SystemZ::ATOMIC_LOAD_NILL:
7108 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
7109 case SystemZ::ATOMIC_LOAD_NILH:
7110 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
7111 case SystemZ::ATOMIC_LOAD_NILF:
7112 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
7113 case SystemZ::ATOMIC_LOAD_NGR:
7114 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
7115 case SystemZ::ATOMIC_LOAD_NILL64:
7116 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
7117 case SystemZ::ATOMIC_LOAD_NILH64:
7118 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
7119 case SystemZ::ATOMIC_LOAD_NIHL64:
7120 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
7121 case SystemZ::ATOMIC_LOAD_NIHH64:
7122 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
7123 case SystemZ::ATOMIC_LOAD_NILF64:
7124 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
7125 case SystemZ::ATOMIC_LOAD_NIHF64:
7126 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
7127
7128 case SystemZ::ATOMIC_LOADW_OR:
7129 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
7130 case SystemZ::ATOMIC_LOADW_OILH:
7131 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
7132 case SystemZ::ATOMIC_LOAD_OR:
7133 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
7134 case SystemZ::ATOMIC_LOAD_OILL:
7135 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
7136 case SystemZ::ATOMIC_LOAD_OILH:
7137 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
7138 case SystemZ::ATOMIC_LOAD_OILF:
7139 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
7140 case SystemZ::ATOMIC_LOAD_OGR:
7141 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
7142 case SystemZ::ATOMIC_LOAD_OILL64:
7143 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
7144 case SystemZ::ATOMIC_LOAD_OILH64:
7145 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
7146 case SystemZ::ATOMIC_LOAD_OIHL64:
7147 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
7148 case SystemZ::ATOMIC_LOAD_OIHH64:
7149 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
7150 case SystemZ::ATOMIC_LOAD_OILF64:
7151 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
7152 case SystemZ::ATOMIC_LOAD_OIHF64:
7153 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
7154
7155 case SystemZ::ATOMIC_LOADW_XR:
7156 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
7157 case SystemZ::ATOMIC_LOADW_XILF:
7158 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
7159 case SystemZ::ATOMIC_LOAD_XR:
7160 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
7161 case SystemZ::ATOMIC_LOAD_XILF:
7162 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
7163 case SystemZ::ATOMIC_LOAD_XGR:
7164 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
7165 case SystemZ::ATOMIC_LOAD_XILF64:
7166 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
7167 case SystemZ::ATOMIC_LOAD_XIHF64:
7168 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
7169
7170 case SystemZ::ATOMIC_LOADW_NRi:
7171 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
7172 case SystemZ::ATOMIC_LOADW_NILHi:
7173 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
7174 case SystemZ::ATOMIC_LOAD_NRi:
7175 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
7176 case SystemZ::ATOMIC_LOAD_NILLi:
7177 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
7178 case SystemZ::ATOMIC_LOAD_NILHi:
7179 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
7180 case SystemZ::ATOMIC_LOAD_NILFi:
7181 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
7182 case SystemZ::ATOMIC_LOAD_NGRi:
7183 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
7184 case SystemZ::ATOMIC_LOAD_NILL64i:
7185 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
7186 case SystemZ::ATOMIC_LOAD_NILH64i:
7187 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
7188 case SystemZ::ATOMIC_LOAD_NIHL64i:
7189 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
7190 case SystemZ::ATOMIC_LOAD_NIHH64i:
7191 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
7192 case SystemZ::ATOMIC_LOAD_NILF64i:
7193 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
7194 case SystemZ::ATOMIC_LOAD_NIHF64i:
7195 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
7196
7197 case SystemZ::ATOMIC_LOADW_MIN:
7198 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7199 SystemZ::CCMASK_CMP_LE, 0);
7200 case SystemZ::ATOMIC_LOAD_MIN_32:
7201 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7202 SystemZ::CCMASK_CMP_LE, 32);
7203 case SystemZ::ATOMIC_LOAD_MIN_64:
7204 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7205 SystemZ::CCMASK_CMP_LE, 64);
7206
7207 case SystemZ::ATOMIC_LOADW_MAX:
7208 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7209 SystemZ::CCMASK_CMP_GE, 0);
7210 case SystemZ::ATOMIC_LOAD_MAX_32:
7211 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7212 SystemZ::CCMASK_CMP_GE, 32);
7213 case SystemZ::ATOMIC_LOAD_MAX_64:
7214 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7215 SystemZ::CCMASK_CMP_GE, 64);
7216
7217 case SystemZ::ATOMIC_LOADW_UMIN:
7218 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7219 SystemZ::CCMASK_CMP_LE, 0);
7220 case SystemZ::ATOMIC_LOAD_UMIN_32:
7221 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7222 SystemZ::CCMASK_CMP_LE, 32);
7223 case SystemZ::ATOMIC_LOAD_UMIN_64:
7224 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7225 SystemZ::CCMASK_CMP_LE, 64);
7226
7227 case SystemZ::ATOMIC_LOADW_UMAX:
7228 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7229 SystemZ::CCMASK_CMP_GE, 0);
7230 case SystemZ::ATOMIC_LOAD_UMAX_32:
7231 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7232 SystemZ::CCMASK_CMP_GE, 32);
7233 case SystemZ::ATOMIC_LOAD_UMAX_64:
7234 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7235 SystemZ::CCMASK_CMP_GE, 64);
7236
7237 case SystemZ::ATOMIC_CMP_SWAPW:
7238 return emitAtomicCmpSwapW(MI, MBB);
7239 case SystemZ::MVCSequence:
7240 case SystemZ::MVCLoop:
7241 return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
7242 case SystemZ::NCSequence:
7243 case SystemZ::NCLoop:
7244 return emitMemMemWrapper(MI, MBB, SystemZ::NC);
7245 case SystemZ::OCSequence:
7246 case SystemZ::OCLoop:
7247 return emitMemMemWrapper(MI, MBB, SystemZ::OC);
7248 case SystemZ::XCSequence:
7249 case SystemZ::XCLoop:
7250 return emitMemMemWrapper(MI, MBB, SystemZ::XC);
7251 case SystemZ::CLCSequence:
7252 case SystemZ::CLCLoop:
7253 return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
7254 case SystemZ::CLSTLoop:
7255 return emitStringWrapper(MI, MBB, SystemZ::CLST);
7256 case SystemZ::MVSTLoop:
7257 return emitStringWrapper(MI, MBB, SystemZ::MVST);
7258 case SystemZ::SRSTLoop:
7259 return emitStringWrapper(MI, MBB, SystemZ::SRST);
7260 case SystemZ::TBEGIN:
7261 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
7262 case SystemZ::TBEGIN_nofloat:
7263 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
7264 case SystemZ::TBEGINC:
7265 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
7266 case SystemZ::LTEBRCompare_VecPseudo:
7267 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
7268 case SystemZ::LTDBRCompare_VecPseudo:
7269 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
7270 case SystemZ::LTXBRCompare_VecPseudo:
7271 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
7272
7273 case TargetOpcode::STACKMAP:
7274 case TargetOpcode::PATCHPOINT:
7275 return emitPatchPoint(MI, MBB);
7276
7277 default:
7278 llvm_unreachable("Unexpected instr type to insert");
7279 }
7280 }
7281
7282 // This is only used by the isel schedulers, and is needed only to prevent
7283 // compiler from crashing when list-ilp is used.
7284 const TargetRegisterClass *
getRepRegClassFor(MVT VT) const7285 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
7286 if (VT == MVT::Untyped)
7287 return &SystemZ::ADDR128BitRegClass;
7288 return TargetLowering::getRepRegClassFor(VT);
7289 }
7290