1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SystemZTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SystemZISelLowering.h"
15 #include "SystemZCallingConv.h"
16 #include "SystemZConstantPoolValue.h"
17 #include "SystemZMachineFunctionInfo.h"
18 #include "SystemZTargetMachine.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
Comparison__anonc28d03810111::Comparison36   Comparison(SDValue Op0In, SDValue Op1In)
37     : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
38 
39   // The operands to the comparison.
40   SDValue Op0, Op1;
41 
42   // The opcode that should be used to compare Op0 and Op1.
43   unsigned Opcode;
44 
45   // A SystemZICMP value.  Only used for integer comparisons.
46   unsigned ICmpType;
47 
48   // The mask of CC values that Opcode can produce.
49   unsigned CCValid;
50 
51   // The mask of CC values for which the original condition is true.
52   unsigned CCMask;
53 };
54 } // end anonymous namespace
55 
56 // Classify VT as either 32 or 64 bit.
is32Bit(EVT VT)57 static bool is32Bit(EVT VT) {
58   switch (VT.getSimpleVT().SimpleTy) {
59   case MVT::i32:
60     return true;
61   case MVT::i64:
62     return false;
63   default:
64     llvm_unreachable("Unsupported type");
65   }
66 }
67 
68 // Return a version of MachineOperand that can be safely used before the
69 // final use.
earlyUseOperand(MachineOperand Op)70 static MachineOperand earlyUseOperand(MachineOperand Op) {
71   if (Op.isReg())
72     Op.setIsKill(false);
73   return Op;
74 }
75 
SystemZTargetLowering(const TargetMachine & TM,const SystemZSubtarget & STI)76 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
77                                              const SystemZSubtarget &STI)
78     : TargetLowering(TM), Subtarget(STI) {
79   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
80 
81   // Set up the register classes.
82   if (Subtarget.hasHighWord())
83     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
84   else
85     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
86   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
87   if (Subtarget.hasVector()) {
88     addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
89     addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
90   } else {
91     addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
92     addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
93   }
94   if (Subtarget.hasVectorEnhancements1())
95     addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
96   else
97     addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
98 
99   if (Subtarget.hasVector()) {
100     addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
101     addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
102     addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
103     addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
104     addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
105     addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
106   }
107 
108   // Compute derived properties from the register classes
109   computeRegisterProperties(Subtarget.getRegisterInfo());
110 
111   // Set up special registers.
112   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
113 
114   // TODO: It may be better to default to latency-oriented scheduling, however
115   // LLVM's current latency-oriented scheduler can't handle physreg definitions
116   // such as SystemZ has with CC, so set this to the register-pressure
117   // scheduler, because it can.
118   setSchedulingPreference(Sched::RegPressure);
119 
120   setBooleanContents(ZeroOrOneBooleanContent);
121   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
122 
123   // Instructions are strings of 2-byte aligned 2-byte values.
124   setMinFunctionAlignment(2);
125   // For performance reasons we prefer 16-byte alignment.
126   setPrefFunctionAlignment(4);
127 
128   // Handle operations that are handled in a similar way for all types.
129   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
130        I <= MVT::LAST_FP_VALUETYPE;
131        ++I) {
132     MVT VT = MVT::SimpleValueType(I);
133     if (isTypeLegal(VT)) {
134       // Lower SET_CC into an IPM-based sequence.
135       setOperationAction(ISD::SETCC, VT, Custom);
136 
137       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
138       setOperationAction(ISD::SELECT, VT, Expand);
139 
140       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
141       setOperationAction(ISD::SELECT_CC, VT, Custom);
142       setOperationAction(ISD::BR_CC,     VT, Custom);
143     }
144   }
145 
146   // Expand jump table branches as address arithmetic followed by an
147   // indirect jump.
148   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
149 
150   // Expand BRCOND into a BR_CC (see above).
151   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
152 
153   // Handle integer types.
154   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
155        I <= MVT::LAST_INTEGER_VALUETYPE;
156        ++I) {
157     MVT VT = MVT::SimpleValueType(I);
158     if (isTypeLegal(VT)) {
159       // Expand individual DIV and REMs into DIVREMs.
160       setOperationAction(ISD::SDIV, VT, Expand);
161       setOperationAction(ISD::UDIV, VT, Expand);
162       setOperationAction(ISD::SREM, VT, Expand);
163       setOperationAction(ISD::UREM, VT, Expand);
164       setOperationAction(ISD::SDIVREM, VT, Custom);
165       setOperationAction(ISD::UDIVREM, VT, Custom);
166 
167       // Support addition/subtraction with overflow.
168       setOperationAction(ISD::SADDO, VT, Custom);
169       setOperationAction(ISD::SSUBO, VT, Custom);
170 
171       // Support addition/subtraction with carry.
172       setOperationAction(ISD::UADDO, VT, Custom);
173       setOperationAction(ISD::USUBO, VT, Custom);
174 
175       // Support carry in as value rather than glue.
176       setOperationAction(ISD::ADDCARRY, VT, Custom);
177       setOperationAction(ISD::SUBCARRY, VT, Custom);
178 
179       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
180       // stores, putting a serialization instruction after the stores.
181       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
182       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
183 
184       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
185       // available, or if the operand is constant.
186       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
187 
188       // Use POPCNT on z196 and above.
189       if (Subtarget.hasPopulationCount())
190         setOperationAction(ISD::CTPOP, VT, Custom);
191       else
192         setOperationAction(ISD::CTPOP, VT, Expand);
193 
194       // No special instructions for these.
195       setOperationAction(ISD::CTTZ,            VT, Expand);
196       setOperationAction(ISD::ROTR,            VT, Expand);
197 
198       // Use *MUL_LOHI where possible instead of MULH*.
199       setOperationAction(ISD::MULHS, VT, Expand);
200       setOperationAction(ISD::MULHU, VT, Expand);
201       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
202       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
203 
204       // Only z196 and above have native support for conversions to unsigned.
205       // On z10, promoting to i64 doesn't generate an inexact condition for
206       // values that are outside the i32 range but in the i64 range, so use
207       // the default expansion.
208       if (!Subtarget.hasFPExtension())
209         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
210     }
211   }
212 
213   // Type legalization will convert 8- and 16-bit atomic operations into
214   // forms that operate on i32s (but still keeping the original memory VT).
215   // Lower them into full i32 operations.
216   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
217   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
218   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
219   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
220   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
221   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
222   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
223   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
224   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
225   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
226   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
227 
228   // Even though i128 is not a legal type, we still need to custom lower
229   // the atomic operations in order to exploit SystemZ instructions.
230   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
231   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
232 
233   // We can use the CC result of compare-and-swap to implement
234   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
235   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
236   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
237   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
238 
239   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
240 
241   // Traps are legal, as we will convert them to "j .+2".
242   setOperationAction(ISD::TRAP, MVT::Other, Legal);
243 
244   // z10 has instructions for signed but not unsigned FP conversion.
245   // Handle unsigned 32-bit types as signed 64-bit types.
246   if (!Subtarget.hasFPExtension()) {
247     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
248     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
249   }
250 
251   // We have native support for a 64-bit CTLZ, via FLOGR.
252   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
253   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
254 
255   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
256   setOperationAction(ISD::OR, MVT::i64, Custom);
257 
258   // FIXME: Can we support these natively?
259   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
260   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
261   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
262 
263   // We have native instructions for i8, i16 and i32 extensions, but not i1.
264   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
265   for (MVT VT : MVT::integer_valuetypes()) {
266     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
267     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
268     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
269   }
270 
271   // Handle the various types of symbolic address.
272   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
273   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
274   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
275   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
276   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
277 
278   // We need to handle dynamic allocations specially because of the
279   // 160-byte area at the bottom of the stack.
280   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
281   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
282 
283   // Use custom expanders so that we can force the function to use
284   // a frame pointer.
285   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
286   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
287 
288   // Handle prefetches with PFD or PFDRL.
289   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
290 
291   for (MVT VT : MVT::vector_valuetypes()) {
292     // Assume by default that all vector operations need to be expanded.
293     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
294       if (getOperationAction(Opcode, VT) == Legal)
295         setOperationAction(Opcode, VT, Expand);
296 
297     // Likewise all truncating stores and extending loads.
298     for (MVT InnerVT : MVT::vector_valuetypes()) {
299       setTruncStoreAction(VT, InnerVT, Expand);
300       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
301       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
302       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
303     }
304 
305     if (isTypeLegal(VT)) {
306       // These operations are legal for anything that can be stored in a
307       // vector register, even if there is no native support for the format
308       // as such.  In particular, we can do these for v4f32 even though there
309       // are no specific instructions for that format.
310       setOperationAction(ISD::LOAD, VT, Legal);
311       setOperationAction(ISD::STORE, VT, Legal);
312       setOperationAction(ISD::VSELECT, VT, Legal);
313       setOperationAction(ISD::BITCAST, VT, Legal);
314       setOperationAction(ISD::UNDEF, VT, Legal);
315 
316       // Likewise, except that we need to replace the nodes with something
317       // more specific.
318       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
319       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
320     }
321   }
322 
323   // Handle integer vector types.
324   for (MVT VT : MVT::integer_vector_valuetypes()) {
325     if (isTypeLegal(VT)) {
326       // These operations have direct equivalents.
327       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
328       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
329       setOperationAction(ISD::ADD, VT, Legal);
330       setOperationAction(ISD::SUB, VT, Legal);
331       if (VT != MVT::v2i64)
332         setOperationAction(ISD::MUL, VT, Legal);
333       setOperationAction(ISD::AND, VT, Legal);
334       setOperationAction(ISD::OR, VT, Legal);
335       setOperationAction(ISD::XOR, VT, Legal);
336       if (Subtarget.hasVectorEnhancements1())
337         setOperationAction(ISD::CTPOP, VT, Legal);
338       else
339         setOperationAction(ISD::CTPOP, VT, Custom);
340       setOperationAction(ISD::CTTZ, VT, Legal);
341       setOperationAction(ISD::CTLZ, VT, Legal);
342 
343       // Convert a GPR scalar to a vector by inserting it into element 0.
344       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
345 
346       // Use a series of unpacks for extensions.
347       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
348       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
349 
350       // Detect shifts by a scalar amount and convert them into
351       // V*_BY_SCALAR.
352       setOperationAction(ISD::SHL, VT, Custom);
353       setOperationAction(ISD::SRA, VT, Custom);
354       setOperationAction(ISD::SRL, VT, Custom);
355 
356       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
357       // converted into ROTL.
358       setOperationAction(ISD::ROTL, VT, Expand);
359       setOperationAction(ISD::ROTR, VT, Expand);
360 
361       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
362       // and inverting the result as necessary.
363       setOperationAction(ISD::SETCC, VT, Custom);
364     }
365   }
366 
367   if (Subtarget.hasVector()) {
368     // There should be no need to check for float types other than v2f64
369     // since <2 x f32> isn't a legal type.
370     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
371     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
372     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
373     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
374     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
375     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
376     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
377     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
378   }
379 
380   // Handle floating-point types.
381   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
382        I <= MVT::LAST_FP_VALUETYPE;
383        ++I) {
384     MVT VT = MVT::SimpleValueType(I);
385     if (isTypeLegal(VT)) {
386       // We can use FI for FRINT.
387       setOperationAction(ISD::FRINT, VT, Legal);
388 
389       // We can use the extended form of FI for other rounding operations.
390       if (Subtarget.hasFPExtension()) {
391         setOperationAction(ISD::FNEARBYINT, VT, Legal);
392         setOperationAction(ISD::FFLOOR, VT, Legal);
393         setOperationAction(ISD::FCEIL, VT, Legal);
394         setOperationAction(ISD::FTRUNC, VT, Legal);
395         setOperationAction(ISD::FROUND, VT, Legal);
396       }
397 
398       // No special instructions for these.
399       setOperationAction(ISD::FSIN, VT, Expand);
400       setOperationAction(ISD::FCOS, VT, Expand);
401       setOperationAction(ISD::FSINCOS, VT, Expand);
402       setOperationAction(ISD::FREM, VT, Expand);
403       setOperationAction(ISD::FPOW, VT, Expand);
404     }
405   }
406 
407   // Handle floating-point vector types.
408   if (Subtarget.hasVector()) {
409     // Scalar-to-vector conversion is just a subreg.
410     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
411     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
412 
413     // Some insertions and extractions can be done directly but others
414     // need to go via integers.
415     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
416     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
417     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
418     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
419 
420     // These operations have direct equivalents.
421     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
422     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
423     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
424     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
425     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
426     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
427     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
428     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
429     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
430     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
431     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
432     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
433     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
434     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
435   }
436 
437   // The vector enhancements facility 1 has instructions for these.
438   if (Subtarget.hasVectorEnhancements1()) {
439     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
440     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
441     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
442     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
443     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
444     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
445     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
446     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
447     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
448     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
449     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
450     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
451     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
452     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
453 
454     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
455     setOperationAction(ISD::FMAXNAN, MVT::f64, Legal);
456     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
457     setOperationAction(ISD::FMINNAN, MVT::f64, Legal);
458 
459     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
460     setOperationAction(ISD::FMAXNAN, MVT::v2f64, Legal);
461     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
462     setOperationAction(ISD::FMINNAN, MVT::v2f64, Legal);
463 
464     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
465     setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
466     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
467     setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
468 
469     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
470     setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
471     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
472     setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
473 
474     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
475     setOperationAction(ISD::FMAXNAN, MVT::f128, Legal);
476     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
477     setOperationAction(ISD::FMINNAN, MVT::f128, Legal);
478   }
479 
480   // We have fused multiply-addition for f32 and f64 but not f128.
481   setOperationAction(ISD::FMA, MVT::f32,  Legal);
482   setOperationAction(ISD::FMA, MVT::f64,  Legal);
483   if (Subtarget.hasVectorEnhancements1())
484     setOperationAction(ISD::FMA, MVT::f128, Legal);
485   else
486     setOperationAction(ISD::FMA, MVT::f128, Expand);
487 
488   // We don't have a copysign instruction on vector registers.
489   if (Subtarget.hasVectorEnhancements1())
490     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
491 
492   // Needed so that we don't try to implement f128 constant loads using
493   // a load-and-extend of a f80 constant (in cases where the constant
494   // would fit in an f80).
495   for (MVT VT : MVT::fp_valuetypes())
496     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
497 
498   // We don't have extending load instruction on vector registers.
499   if (Subtarget.hasVectorEnhancements1()) {
500     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
501     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
502   }
503 
504   // Floating-point truncation and stores need to be done separately.
505   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
506   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
507   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
508 
509   // We have 64-bit FPR<->GPR moves, but need special handling for
510   // 32-bit forms.
511   if (!Subtarget.hasVector()) {
512     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
513     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
514   }
515 
516   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
517   // structure, but VAEND is a no-op.
518   setOperationAction(ISD::VASTART, MVT::Other, Custom);
519   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
520   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
521 
522   // Codes for which we want to perform some z-specific combinations.
523   setTargetDAGCombine(ISD::ZERO_EXTEND);
524   setTargetDAGCombine(ISD::SIGN_EXTEND);
525   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
526   setTargetDAGCombine(ISD::STORE);
527   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
528   setTargetDAGCombine(ISD::FP_ROUND);
529   setTargetDAGCombine(ISD::BSWAP);
530 
531   // Handle intrinsics.
532   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
533   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
534 
535   // We want to use MVC in preference to even a single load/store pair.
536   MaxStoresPerMemcpy = 0;
537   MaxStoresPerMemcpyOptSize = 0;
538 
539   // The main memset sequence is a byte store followed by an MVC.
540   // Two STC or MV..I stores win over that, but the kind of fused stores
541   // generated by target-independent code don't when the byte value is
542   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
543   // than "STC;MVC".  Handle the choice in target-specific code instead.
544   MaxStoresPerMemset = 0;
545   MaxStoresPerMemsetOptSize = 0;
546 }
547 
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const548 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
549                                               LLVMContext &, EVT VT) const {
550   if (!VT.isVector())
551     return MVT::i32;
552   return VT.changeVectorElementTypeToInteger();
553 }
554 
isFMAFasterThanFMulAndFAdd(EVT VT) const555 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
556   VT = VT.getScalarType();
557 
558   if (!VT.isSimple())
559     return false;
560 
561   switch (VT.getSimpleVT().SimpleTy) {
562   case MVT::f32:
563   case MVT::f64:
564     return true;
565   case MVT::f128:
566     return Subtarget.hasVectorEnhancements1();
567   default:
568     break;
569   }
570 
571   return false;
572 }
573 
isFPImmLegal(const APFloat & Imm,EVT VT) const574 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
575   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
576   return Imm.isZero() || Imm.isNegZero();
577 }
578 
isLegalICmpImmediate(int64_t Imm) const579 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
580   // We can use CGFI or CLGFI.
581   return isInt<32>(Imm) || isUInt<32>(Imm);
582 }
583 
isLegalAddImmediate(int64_t Imm) const584 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
585   // We can use ALGFI or SLGFI.
586   return isUInt<32>(Imm) || isUInt<32>(-Imm);
587 }
588 
allowsMisalignedMemoryAccesses(EVT VT,unsigned,unsigned,bool * Fast) const589 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
590                                                            unsigned,
591                                                            unsigned,
592                                                            bool *Fast) const {
593   // Unaligned accesses should never be slower than the expanded version.
594   // We check specifically for aligned accesses in the few cases where
595   // they are required.
596   if (Fast)
597     *Fast = true;
598   return true;
599 }
600 
601 // Information about the addressing mode for a memory access.
602 struct AddressingMode {
603   // True if a long displacement is supported.
604   bool LongDisplacement;
605 
606   // True if use of index register is supported.
607   bool IndexReg;
608 
AddressingModeAddressingMode609   AddressingMode(bool LongDispl, bool IdxReg) :
610     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
611 };
612 
613 // Return the desired addressing mode for a Load which has only one use (in
614 // the same block) which is a Store.
getLoadStoreAddrMode(bool HasVector,Type * Ty)615 static AddressingMode getLoadStoreAddrMode(bool HasVector,
616                                           Type *Ty) {
617   // With vector support a Load->Store combination may be combined to either
618   // an MVC or vector operations and it seems to work best to allow the
619   // vector addressing mode.
620   if (HasVector)
621     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
622 
623   // Otherwise only the MVC case is special.
624   bool MVC = Ty->isIntegerTy(8);
625   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
626 }
627 
628 // Return the addressing mode which seems most desirable given an LLVM
629 // Instruction pointer.
630 static AddressingMode
supportedAddressingMode(Instruction * I,bool HasVector)631 supportedAddressingMode(Instruction *I, bool HasVector) {
632   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
633     switch (II->getIntrinsicID()) {
634     default: break;
635     case Intrinsic::memset:
636     case Intrinsic::memmove:
637     case Intrinsic::memcpy:
638       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
639     }
640   }
641 
642   if (isa<LoadInst>(I) && I->hasOneUse()) {
643     auto *SingleUser = dyn_cast<Instruction>(*I->user_begin());
644     if (SingleUser->getParent() == I->getParent()) {
645       if (isa<ICmpInst>(SingleUser)) {
646         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
647           if (C->getBitWidth() <= 64 &&
648               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
649             // Comparison of memory with 16 bit signed / unsigned immediate
650             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
651       } else if (isa<StoreInst>(SingleUser))
652         // Load->Store
653         return getLoadStoreAddrMode(HasVector, I->getType());
654     }
655   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
656     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
657       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
658         // Load->Store
659         return getLoadStoreAddrMode(HasVector, LoadI->getType());
660   }
661 
662   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
663 
664     // * Use LDE instead of LE/LEY for z13 to avoid partial register
665     //   dependencies (LDE only supports small offsets).
666     // * Utilize the vector registers to hold floating point
667     //   values (vector load / store instructions only support small
668     //   offsets).
669 
670     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
671                          I->getOperand(0)->getType());
672     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
673     bool IsVectorAccess = MemAccessTy->isVectorTy();
674 
675     // A store of an extracted vector element will be combined into a VSTE type
676     // instruction.
677     if (!IsVectorAccess && isa<StoreInst>(I)) {
678       Value *DataOp = I->getOperand(0);
679       if (isa<ExtractElementInst>(DataOp))
680         IsVectorAccess = true;
681     }
682 
683     // A load which gets inserted into a vector element will be combined into a
684     // VLE type instruction.
685     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
686       User *LoadUser = *I->user_begin();
687       if (isa<InsertElementInst>(LoadUser))
688         IsVectorAccess = true;
689     }
690 
691     if (IsFPAccess || IsVectorAccess)
692       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
693   }
694 
695   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
696 }
697 
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const698 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
699        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
700   // Punt on globals for now, although they can be used in limited
701   // RELATIVE LONG cases.
702   if (AM.BaseGV)
703     return false;
704 
705   // Require a 20-bit signed offset.
706   if (!isInt<20>(AM.BaseOffs))
707     return false;
708 
709   AddressingMode SupportedAM(true, true);
710   if (I != nullptr)
711     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
712 
713   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
714     return false;
715 
716   if (!SupportedAM.IndexReg)
717     // No indexing allowed.
718     return AM.Scale == 0;
719   else
720     // Indexing is OK but no scale factor can be applied.
721     return AM.Scale == 0 || AM.Scale == 1;
722 }
723 
isTruncateFree(Type * FromType,Type * ToType) const724 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
725   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
726     return false;
727   unsigned FromBits = FromType->getPrimitiveSizeInBits();
728   unsigned ToBits = ToType->getPrimitiveSizeInBits();
729   return FromBits > ToBits;
730 }
731 
isTruncateFree(EVT FromVT,EVT ToVT) const732 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
733   if (!FromVT.isInteger() || !ToVT.isInteger())
734     return false;
735   unsigned FromBits = FromVT.getSizeInBits();
736   unsigned ToBits = ToVT.getSizeInBits();
737   return FromBits > ToBits;
738 }
739 
740 //===----------------------------------------------------------------------===//
741 // Inline asm support
742 //===----------------------------------------------------------------------===//
743 
744 TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const745 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
746   if (Constraint.size() == 1) {
747     switch (Constraint[0]) {
748     case 'a': // Address register
749     case 'd': // Data register (equivalent to 'r')
750     case 'f': // Floating-point register
751     case 'h': // High-part register
752     case 'r': // General-purpose register
753     case 'v': // Vector register
754       return C_RegisterClass;
755 
756     case 'Q': // Memory with base and unsigned 12-bit displacement
757     case 'R': // Likewise, plus an index
758     case 'S': // Memory with base and signed 20-bit displacement
759     case 'T': // Likewise, plus an index
760     case 'm': // Equivalent to 'T'.
761       return C_Memory;
762 
763     case 'I': // Unsigned 8-bit constant
764     case 'J': // Unsigned 12-bit constant
765     case 'K': // Signed 16-bit constant
766     case 'L': // Signed 20-bit displacement (on all targets we support)
767     case 'M': // 0x7fffffff
768       return C_Other;
769 
770     default:
771       break;
772     }
773   }
774   return TargetLowering::getConstraintType(Constraint);
775 }
776 
777 TargetLowering::ConstraintWeight SystemZTargetLowering::
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const778 getSingleConstraintMatchWeight(AsmOperandInfo &info,
779                                const char *constraint) const {
780   ConstraintWeight weight = CW_Invalid;
781   Value *CallOperandVal = info.CallOperandVal;
782   // If we don't have a value, we can't do a match,
783   // but allow it at the lowest weight.
784   if (!CallOperandVal)
785     return CW_Default;
786   Type *type = CallOperandVal->getType();
787   // Look at the constraint type.
788   switch (*constraint) {
789   default:
790     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
791     break;
792 
793   case 'a': // Address register
794   case 'd': // Data register (equivalent to 'r')
795   case 'h': // High-part register
796   case 'r': // General-purpose register
797     if (CallOperandVal->getType()->isIntegerTy())
798       weight = CW_Register;
799     break;
800 
801   case 'f': // Floating-point register
802     if (type->isFloatingPointTy())
803       weight = CW_Register;
804     break;
805 
806   case 'v': // Vector register
807     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
808         Subtarget.hasVector())
809       weight = CW_Register;
810     break;
811 
812   case 'I': // Unsigned 8-bit constant
813     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
814       if (isUInt<8>(C->getZExtValue()))
815         weight = CW_Constant;
816     break;
817 
818   case 'J': // Unsigned 12-bit constant
819     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
820       if (isUInt<12>(C->getZExtValue()))
821         weight = CW_Constant;
822     break;
823 
824   case 'K': // Signed 16-bit constant
825     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
826       if (isInt<16>(C->getSExtValue()))
827         weight = CW_Constant;
828     break;
829 
830   case 'L': // Signed 20-bit displacement (on all targets we support)
831     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
832       if (isInt<20>(C->getSExtValue()))
833         weight = CW_Constant;
834     break;
835 
836   case 'M': // 0x7fffffff
837     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
838       if (C->getZExtValue() == 0x7fffffff)
839         weight = CW_Constant;
840     break;
841   }
842   return weight;
843 }
844 
845 // Parse a "{tNNN}" register constraint for which the register type "t"
846 // has already been verified.  MC is the class associated with "t" and
847 // Map maps 0-based register numbers to LLVM register numbers.
848 static std::pair<unsigned, const TargetRegisterClass *>
parseRegisterNumber(StringRef Constraint,const TargetRegisterClass * RC,const unsigned * Map,unsigned Size)849 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
850                     const unsigned *Map, unsigned Size) {
851   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
852   if (isdigit(Constraint[2])) {
853     unsigned Index;
854     bool Failed =
855         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
856     if (!Failed && Index < Size && Map[Index])
857       return std::make_pair(Map[Index], RC);
858   }
859   return std::make_pair(0U, nullptr);
860 }
861 
862 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const863 SystemZTargetLowering::getRegForInlineAsmConstraint(
864     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
865   if (Constraint.size() == 1) {
866     // GCC Constraint Letters
867     switch (Constraint[0]) {
868     default: break;
869     case 'd': // Data register (equivalent to 'r')
870     case 'r': // General-purpose register
871       if (VT == MVT::i64)
872         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
873       else if (VT == MVT::i128)
874         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
875       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
876 
877     case 'a': // Address register
878       if (VT == MVT::i64)
879         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
880       else if (VT == MVT::i128)
881         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
882       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
883 
884     case 'h': // High-part register (an LLVM extension)
885       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
886 
887     case 'f': // Floating-point register
888       if (VT == MVT::f64)
889         return std::make_pair(0U, &SystemZ::FP64BitRegClass);
890       else if (VT == MVT::f128)
891         return std::make_pair(0U, &SystemZ::FP128BitRegClass);
892       return std::make_pair(0U, &SystemZ::FP32BitRegClass);
893 
894     case 'v': // Vector register
895       if (Subtarget.hasVector()) {
896         if (VT == MVT::f32)
897           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
898         if (VT == MVT::f64)
899           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
900         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
901       }
902       break;
903     }
904   }
905   if (Constraint.size() > 0 && Constraint[0] == '{') {
906     // We need to override the default register parsing for GPRs and FPRs
907     // because the interpretation depends on VT.  The internal names of
908     // the registers are also different from the external names
909     // (F0D and F0S instead of F0, etc.).
910     if (Constraint[1] == 'r') {
911       if (VT == MVT::i32)
912         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
913                                    SystemZMC::GR32Regs, 16);
914       if (VT == MVT::i128)
915         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
916                                    SystemZMC::GR128Regs, 16);
917       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
918                                  SystemZMC::GR64Regs, 16);
919     }
920     if (Constraint[1] == 'f') {
921       if (VT == MVT::f32)
922         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
923                                    SystemZMC::FP32Regs, 16);
924       if (VT == MVT::f128)
925         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
926                                    SystemZMC::FP128Regs, 16);
927       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
928                                  SystemZMC::FP64Regs, 16);
929     }
930     if (Constraint[1] == 'v') {
931       if (VT == MVT::f32)
932         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
933                                    SystemZMC::VR32Regs, 32);
934       if (VT == MVT::f64)
935         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
936                                    SystemZMC::VR64Regs, 32);
937       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
938                                  SystemZMC::VR128Regs, 32);
939     }
940   }
941   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
942 }
943 
944 void SystemZTargetLowering::
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const945 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
946                              std::vector<SDValue> &Ops,
947                              SelectionDAG &DAG) const {
948   // Only support length 1 constraints for now.
949   if (Constraint.length() == 1) {
950     switch (Constraint[0]) {
951     case 'I': // Unsigned 8-bit constant
952       if (auto *C = dyn_cast<ConstantSDNode>(Op))
953         if (isUInt<8>(C->getZExtValue()))
954           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
955                                               Op.getValueType()));
956       return;
957 
958     case 'J': // Unsigned 12-bit constant
959       if (auto *C = dyn_cast<ConstantSDNode>(Op))
960         if (isUInt<12>(C->getZExtValue()))
961           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
962                                               Op.getValueType()));
963       return;
964 
965     case 'K': // Signed 16-bit constant
966       if (auto *C = dyn_cast<ConstantSDNode>(Op))
967         if (isInt<16>(C->getSExtValue()))
968           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
969                                               Op.getValueType()));
970       return;
971 
972     case 'L': // Signed 20-bit displacement (on all targets we support)
973       if (auto *C = dyn_cast<ConstantSDNode>(Op))
974         if (isInt<20>(C->getSExtValue()))
975           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
976                                               Op.getValueType()));
977       return;
978 
979     case 'M': // 0x7fffffff
980       if (auto *C = dyn_cast<ConstantSDNode>(Op))
981         if (C->getZExtValue() == 0x7fffffff)
982           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
983                                               Op.getValueType()));
984       return;
985     }
986   }
987   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
988 }
989 
990 //===----------------------------------------------------------------------===//
991 // Calling conventions
992 //===----------------------------------------------------------------------===//
993 
994 #include "SystemZGenCallingConv.inc"
995 
getScratchRegisters(CallingConv::ID) const996 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
997   CallingConv::ID) const {
998   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
999                                            SystemZ::R14D, 0 };
1000   return ScratchRegs;
1001 }
1002 
allowTruncateForTailCall(Type * FromType,Type * ToType) const1003 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1004                                                      Type *ToType) const {
1005   return isTruncateFree(FromType, ToType);
1006 }
1007 
mayBeEmittedAsTailCall(const CallInst * CI) const1008 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1009   return CI->isTailCall();
1010 }
1011 
1012 // We do not yet support 128-bit single-element vector types.  If the user
1013 // attempts to use such types as function argument or return type, prefer
1014 // to error out instead of emitting code violating the ABI.
VerifyVectorType(MVT VT,EVT ArgVT)1015 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1016   if (ArgVT.isVector() && !VT.isVector())
1017     report_fatal_error("Unsupported vector argument or return type");
1018 }
1019 
VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> & Ins)1020 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1021   for (unsigned i = 0; i < Ins.size(); ++i)
1022     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1023 }
1024 
VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> & Outs)1025 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1026   for (unsigned i = 0; i < Outs.size(); ++i)
1027     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1028 }
1029 
1030 // Value is a value that has been passed to us in the location described by VA
1031 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1032 // any loads onto Chain.
convertLocVTToValVT(SelectionDAG & DAG,const SDLoc & DL,CCValAssign & VA,SDValue Chain,SDValue Value)1033 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1034                                    CCValAssign &VA, SDValue Chain,
1035                                    SDValue Value) {
1036   // If the argument has been promoted from a smaller type, insert an
1037   // assertion to capture this.
1038   if (VA.getLocInfo() == CCValAssign::SExt)
1039     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1040                         DAG.getValueType(VA.getValVT()));
1041   else if (VA.getLocInfo() == CCValAssign::ZExt)
1042     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1043                         DAG.getValueType(VA.getValVT()));
1044 
1045   if (VA.isExtInLoc())
1046     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1047   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1048     // If this is a short vector argument loaded from the stack,
1049     // extend from i64 to full vector size and then bitcast.
1050     assert(VA.getLocVT() == MVT::i64);
1051     assert(VA.getValVT().isVector());
1052     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1053     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1054   } else
1055     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1056   return Value;
1057 }
1058 
1059 // Value is a value of type VA.getValVT() that we need to copy into
1060 // the location described by VA.  Return a copy of Value converted to
1061 // VA.getValVT().  The caller is responsible for handling indirect values.
convertValVTToLocVT(SelectionDAG & DAG,const SDLoc & DL,CCValAssign & VA,SDValue Value)1062 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1063                                    CCValAssign &VA, SDValue Value) {
1064   switch (VA.getLocInfo()) {
1065   case CCValAssign::SExt:
1066     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1067   case CCValAssign::ZExt:
1068     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1069   case CCValAssign::AExt:
1070     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1071   case CCValAssign::BCvt:
1072     // If this is a short vector argument to be stored to the stack,
1073     // bitcast to v2i64 and then extract first element.
1074     assert(VA.getLocVT() == MVT::i64);
1075     assert(VA.getValVT().isVector());
1076     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1077     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1078                        DAG.getConstant(0, DL, MVT::i32));
1079   case CCValAssign::Full:
1080     return Value;
1081   default:
1082     llvm_unreachable("Unhandled getLocInfo()");
1083   }
1084 }
1085 
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1086 SDValue SystemZTargetLowering::LowerFormalArguments(
1087     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1088     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1089     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1090   MachineFunction &MF = DAG.getMachineFunction();
1091   MachineFrameInfo &MFI = MF.getFrameInfo();
1092   MachineRegisterInfo &MRI = MF.getRegInfo();
1093   SystemZMachineFunctionInfo *FuncInfo =
1094       MF.getInfo<SystemZMachineFunctionInfo>();
1095   auto *TFL =
1096       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1097   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1098 
1099   // Detect unsupported vector argument types.
1100   if (Subtarget.hasVector())
1101     VerifyVectorTypes(Ins);
1102 
1103   // Assign locations to all of the incoming arguments.
1104   SmallVector<CCValAssign, 16> ArgLocs;
1105   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1106   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1107 
1108   unsigned NumFixedGPRs = 0;
1109   unsigned NumFixedFPRs = 0;
1110   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1111     SDValue ArgValue;
1112     CCValAssign &VA = ArgLocs[I];
1113     EVT LocVT = VA.getLocVT();
1114     if (VA.isRegLoc()) {
1115       // Arguments passed in registers
1116       const TargetRegisterClass *RC;
1117       switch (LocVT.getSimpleVT().SimpleTy) {
1118       default:
1119         // Integers smaller than i64 should be promoted to i64.
1120         llvm_unreachable("Unexpected argument type");
1121       case MVT::i32:
1122         NumFixedGPRs += 1;
1123         RC = &SystemZ::GR32BitRegClass;
1124         break;
1125       case MVT::i64:
1126         NumFixedGPRs += 1;
1127         RC = &SystemZ::GR64BitRegClass;
1128         break;
1129       case MVT::f32:
1130         NumFixedFPRs += 1;
1131         RC = &SystemZ::FP32BitRegClass;
1132         break;
1133       case MVT::f64:
1134         NumFixedFPRs += 1;
1135         RC = &SystemZ::FP64BitRegClass;
1136         break;
1137       case MVT::v16i8:
1138       case MVT::v8i16:
1139       case MVT::v4i32:
1140       case MVT::v2i64:
1141       case MVT::v4f32:
1142       case MVT::v2f64:
1143         RC = &SystemZ::VR128BitRegClass;
1144         break;
1145       }
1146 
1147       unsigned VReg = MRI.createVirtualRegister(RC);
1148       MRI.addLiveIn(VA.getLocReg(), VReg);
1149       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1150     } else {
1151       assert(VA.isMemLoc() && "Argument not register or memory");
1152 
1153       // Create the frame index object for this incoming parameter.
1154       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1155                                      VA.getLocMemOffset(), true);
1156 
1157       // Create the SelectionDAG nodes corresponding to a load
1158       // from this parameter.  Unpromoted ints and floats are
1159       // passed as right-justified 8-byte values.
1160       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1161       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1162         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1163                           DAG.getIntPtrConstant(4, DL));
1164       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1165                              MachinePointerInfo::getFixedStack(MF, FI));
1166     }
1167 
1168     // Convert the value of the argument register into the value that's
1169     // being passed.
1170     if (VA.getLocInfo() == CCValAssign::Indirect) {
1171       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1172                                    MachinePointerInfo()));
1173       // If the original argument was split (e.g. i128), we need
1174       // to load all parts of it here (using the same address).
1175       unsigned ArgIndex = Ins[I].OrigArgIndex;
1176       assert (Ins[I].PartOffset == 0);
1177       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1178         CCValAssign &PartVA = ArgLocs[I + 1];
1179         unsigned PartOffset = Ins[I + 1].PartOffset;
1180         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1181                                       DAG.getIntPtrConstant(PartOffset, DL));
1182         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1183                                      MachinePointerInfo()));
1184         ++I;
1185       }
1186     } else
1187       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1188   }
1189 
1190   if (IsVarArg) {
1191     // Save the number of non-varargs registers for later use by va_start, etc.
1192     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1193     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1194 
1195     // Likewise the address (in the form of a frame index) of where the
1196     // first stack vararg would be.  The 1-byte size here is arbitrary.
1197     int64_t StackSize = CCInfo.getNextStackOffset();
1198     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1199 
1200     // ...and a similar frame index for the caller-allocated save area
1201     // that will be used to store the incoming registers.
1202     int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
1203     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1204     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1205 
1206     // Store the FPR varargs in the reserved frame slots.  (We store the
1207     // GPRs as part of the prologue.)
1208     if (NumFixedFPRs < SystemZ::NumArgFPRs) {
1209       SDValue MemOps[SystemZ::NumArgFPRs];
1210       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1211         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
1212         int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
1213         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1214         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1215                                      &SystemZ::FP64BitRegClass);
1216         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1217         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1218                                  MachinePointerInfo::getFixedStack(MF, FI));
1219       }
1220       // Join the stores, which are independent of one another.
1221       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1222                           makeArrayRef(&MemOps[NumFixedFPRs],
1223                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1224     }
1225   }
1226 
1227   return Chain;
1228 }
1229 
canUseSiblingCall(const CCState & ArgCCInfo,SmallVectorImpl<CCValAssign> & ArgLocs,SmallVectorImpl<ISD::OutputArg> & Outs)1230 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1231                               SmallVectorImpl<CCValAssign> &ArgLocs,
1232                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1233   // Punt if there are any indirect or stack arguments, or if the call
1234   // needs the callee-saved argument register R6, or if the call uses
1235   // the callee-saved register arguments SwiftSelf and SwiftError.
1236   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1237     CCValAssign &VA = ArgLocs[I];
1238     if (VA.getLocInfo() == CCValAssign::Indirect)
1239       return false;
1240     if (!VA.isRegLoc())
1241       return false;
1242     unsigned Reg = VA.getLocReg();
1243     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1244       return false;
1245     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1246       return false;
1247   }
1248   return true;
1249 }
1250 
1251 SDValue
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1252 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1253                                  SmallVectorImpl<SDValue> &InVals) const {
1254   SelectionDAG &DAG = CLI.DAG;
1255   SDLoc &DL = CLI.DL;
1256   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1257   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1258   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1259   SDValue Chain = CLI.Chain;
1260   SDValue Callee = CLI.Callee;
1261   bool &IsTailCall = CLI.IsTailCall;
1262   CallingConv::ID CallConv = CLI.CallConv;
1263   bool IsVarArg = CLI.IsVarArg;
1264   MachineFunction &MF = DAG.getMachineFunction();
1265   EVT PtrVT = getPointerTy(MF.getDataLayout());
1266 
1267   // Detect unsupported vector argument and return types.
1268   if (Subtarget.hasVector()) {
1269     VerifyVectorTypes(Outs);
1270     VerifyVectorTypes(Ins);
1271   }
1272 
1273   // Analyze the operands of the call, assigning locations to each operand.
1274   SmallVector<CCValAssign, 16> ArgLocs;
1275   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1276   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1277 
1278   // We don't support GuaranteedTailCallOpt, only automatically-detected
1279   // sibling calls.
1280   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1281     IsTailCall = false;
1282 
1283   // Get a count of how many bytes are to be pushed on the stack.
1284   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1285 
1286   // Mark the start of the call.
1287   if (!IsTailCall)
1288     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1289 
1290   // Copy argument values to their designated locations.
1291   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1292   SmallVector<SDValue, 8> MemOpChains;
1293   SDValue StackPtr;
1294   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1295     CCValAssign &VA = ArgLocs[I];
1296     SDValue ArgValue = OutVals[I];
1297 
1298     if (VA.getLocInfo() == CCValAssign::Indirect) {
1299       // Store the argument in a stack slot and pass its address.
1300       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1301       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1302       MemOpChains.push_back(
1303           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1304                        MachinePointerInfo::getFixedStack(MF, FI)));
1305       // If the original argument was split (e.g. i128), we need
1306       // to store all parts of it here (and pass just one address).
1307       unsigned ArgIndex = Outs[I].OrigArgIndex;
1308       assert (Outs[I].PartOffset == 0);
1309       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1310         SDValue PartValue = OutVals[I + 1];
1311         unsigned PartOffset = Outs[I + 1].PartOffset;
1312         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1313                                       DAG.getIntPtrConstant(PartOffset, DL));
1314         MemOpChains.push_back(
1315             DAG.getStore(Chain, DL, PartValue, Address,
1316                          MachinePointerInfo::getFixedStack(MF, FI)));
1317         ++I;
1318       }
1319       ArgValue = SpillSlot;
1320     } else
1321       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1322 
1323     if (VA.isRegLoc())
1324       // Queue up the argument copies and emit them at the end.
1325       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1326     else {
1327       assert(VA.isMemLoc() && "Argument not register or memory");
1328 
1329       // Work out the address of the stack slot.  Unpromoted ints and
1330       // floats are passed as right-justified 8-byte values.
1331       if (!StackPtr.getNode())
1332         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1333       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1334       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1335         Offset += 4;
1336       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1337                                     DAG.getIntPtrConstant(Offset, DL));
1338 
1339       // Emit the store.
1340       MemOpChains.push_back(
1341           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1342     }
1343   }
1344 
1345   // Join the stores, which are independent of one another.
1346   if (!MemOpChains.empty())
1347     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1348 
1349   // Accept direct calls by converting symbolic call addresses to the
1350   // associated Target* opcodes.  Force %r1 to be used for indirect
1351   // tail calls.
1352   SDValue Glue;
1353   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1354     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1355     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1356   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1357     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1358     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1359   } else if (IsTailCall) {
1360     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1361     Glue = Chain.getValue(1);
1362     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1363   }
1364 
1365   // Build a sequence of copy-to-reg nodes, chained and glued together.
1366   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1367     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1368                              RegsToPass[I].second, Glue);
1369     Glue = Chain.getValue(1);
1370   }
1371 
1372   // The first call operand is the chain and the second is the target address.
1373   SmallVector<SDValue, 8> Ops;
1374   Ops.push_back(Chain);
1375   Ops.push_back(Callee);
1376 
1377   // Add argument registers to the end of the list so that they are
1378   // known live into the call.
1379   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1380     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1381                                   RegsToPass[I].second.getValueType()));
1382 
1383   // Add a register mask operand representing the call-preserved registers.
1384   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1385   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1386   assert(Mask && "Missing call preserved mask for calling convention");
1387   Ops.push_back(DAG.getRegisterMask(Mask));
1388 
1389   // Glue the call to the argument copies, if any.
1390   if (Glue.getNode())
1391     Ops.push_back(Glue);
1392 
1393   // Emit the call.
1394   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1395   if (IsTailCall)
1396     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1397   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1398   Glue = Chain.getValue(1);
1399 
1400   // Mark the end of the call, which is glued to the call itself.
1401   Chain = DAG.getCALLSEQ_END(Chain,
1402                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1403                              DAG.getConstant(0, DL, PtrVT, true),
1404                              Glue, DL);
1405   Glue = Chain.getValue(1);
1406 
1407   // Assign locations to each value returned by this call.
1408   SmallVector<CCValAssign, 16> RetLocs;
1409   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1410   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1411 
1412   // Copy all of the result registers out of their specified physreg.
1413   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1414     CCValAssign &VA = RetLocs[I];
1415 
1416     // Copy the value out, gluing the copy to the end of the call sequence.
1417     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1418                                           VA.getLocVT(), Glue);
1419     Chain = RetValue.getValue(1);
1420     Glue = RetValue.getValue(2);
1421 
1422     // Convert the value of the return register into the value that's
1423     // being returned.
1424     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1425   }
1426 
1427   return Chain;
1428 }
1429 
1430 bool SystemZTargetLowering::
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const1431 CanLowerReturn(CallingConv::ID CallConv,
1432                MachineFunction &MF, bool isVarArg,
1433                const SmallVectorImpl<ISD::OutputArg> &Outs,
1434                LLVMContext &Context) const {
1435   // Detect unsupported vector return types.
1436   if (Subtarget.hasVector())
1437     VerifyVectorTypes(Outs);
1438 
1439   // Special case that we cannot easily detect in RetCC_SystemZ since
1440   // i128 is not a legal type.
1441   for (auto &Out : Outs)
1442     if (Out.ArgVT == MVT::i128)
1443       return false;
1444 
1445   SmallVector<CCValAssign, 16> RetLocs;
1446   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1447   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1448 }
1449 
1450 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const1451 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1452                                    bool IsVarArg,
1453                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1454                                    const SmallVectorImpl<SDValue> &OutVals,
1455                                    const SDLoc &DL, SelectionDAG &DAG) const {
1456   MachineFunction &MF = DAG.getMachineFunction();
1457 
1458   // Detect unsupported vector return types.
1459   if (Subtarget.hasVector())
1460     VerifyVectorTypes(Outs);
1461 
1462   // Assign locations to each returned value.
1463   SmallVector<CCValAssign, 16> RetLocs;
1464   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1465   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1466 
1467   // Quick exit for void returns
1468   if (RetLocs.empty())
1469     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1470 
1471   // Copy the result values into the output registers.
1472   SDValue Glue;
1473   SmallVector<SDValue, 4> RetOps;
1474   RetOps.push_back(Chain);
1475   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1476     CCValAssign &VA = RetLocs[I];
1477     SDValue RetValue = OutVals[I];
1478 
1479     // Make the return register live on exit.
1480     assert(VA.isRegLoc() && "Can only return in registers!");
1481 
1482     // Promote the value as required.
1483     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1484 
1485     // Chain and glue the copies together.
1486     unsigned Reg = VA.getLocReg();
1487     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1488     Glue = Chain.getValue(1);
1489     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1490   }
1491 
1492   // Update chain and glue.
1493   RetOps[0] = Chain;
1494   if (Glue.getNode())
1495     RetOps.push_back(Glue);
1496 
1497   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1498 }
1499 
1500 // Return true if Op is an intrinsic node with chain that returns the CC value
1501 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1502 // the mask of valid CC values if so.
isIntrinsicWithCCAndChain(SDValue Op,unsigned & Opcode,unsigned & CCValid)1503 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1504                                       unsigned &CCValid) {
1505   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1506   switch (Id) {
1507   case Intrinsic::s390_tbegin:
1508     Opcode = SystemZISD::TBEGIN;
1509     CCValid = SystemZ::CCMASK_TBEGIN;
1510     return true;
1511 
1512   case Intrinsic::s390_tbegin_nofloat:
1513     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1514     CCValid = SystemZ::CCMASK_TBEGIN;
1515     return true;
1516 
1517   case Intrinsic::s390_tend:
1518     Opcode = SystemZISD::TEND;
1519     CCValid = SystemZ::CCMASK_TEND;
1520     return true;
1521 
1522   default:
1523     return false;
1524   }
1525 }
1526 
1527 // Return true if Op is an intrinsic node without chain that returns the
1528 // CC value as its final argument.  Provide the associated SystemZISD
1529 // opcode and the mask of valid CC values if so.
isIntrinsicWithCC(SDValue Op,unsigned & Opcode,unsigned & CCValid)1530 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1531   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1532   switch (Id) {
1533   case Intrinsic::s390_vpkshs:
1534   case Intrinsic::s390_vpksfs:
1535   case Intrinsic::s390_vpksgs:
1536     Opcode = SystemZISD::PACKS_CC;
1537     CCValid = SystemZ::CCMASK_VCMP;
1538     return true;
1539 
1540   case Intrinsic::s390_vpklshs:
1541   case Intrinsic::s390_vpklsfs:
1542   case Intrinsic::s390_vpklsgs:
1543     Opcode = SystemZISD::PACKLS_CC;
1544     CCValid = SystemZ::CCMASK_VCMP;
1545     return true;
1546 
1547   case Intrinsic::s390_vceqbs:
1548   case Intrinsic::s390_vceqhs:
1549   case Intrinsic::s390_vceqfs:
1550   case Intrinsic::s390_vceqgs:
1551     Opcode = SystemZISD::VICMPES;
1552     CCValid = SystemZ::CCMASK_VCMP;
1553     return true;
1554 
1555   case Intrinsic::s390_vchbs:
1556   case Intrinsic::s390_vchhs:
1557   case Intrinsic::s390_vchfs:
1558   case Intrinsic::s390_vchgs:
1559     Opcode = SystemZISD::VICMPHS;
1560     CCValid = SystemZ::CCMASK_VCMP;
1561     return true;
1562 
1563   case Intrinsic::s390_vchlbs:
1564   case Intrinsic::s390_vchlhs:
1565   case Intrinsic::s390_vchlfs:
1566   case Intrinsic::s390_vchlgs:
1567     Opcode = SystemZISD::VICMPHLS;
1568     CCValid = SystemZ::CCMASK_VCMP;
1569     return true;
1570 
1571   case Intrinsic::s390_vtm:
1572     Opcode = SystemZISD::VTM;
1573     CCValid = SystemZ::CCMASK_VCMP;
1574     return true;
1575 
1576   case Intrinsic::s390_vfaebs:
1577   case Intrinsic::s390_vfaehs:
1578   case Intrinsic::s390_vfaefs:
1579     Opcode = SystemZISD::VFAE_CC;
1580     CCValid = SystemZ::CCMASK_ANY;
1581     return true;
1582 
1583   case Intrinsic::s390_vfaezbs:
1584   case Intrinsic::s390_vfaezhs:
1585   case Intrinsic::s390_vfaezfs:
1586     Opcode = SystemZISD::VFAEZ_CC;
1587     CCValid = SystemZ::CCMASK_ANY;
1588     return true;
1589 
1590   case Intrinsic::s390_vfeebs:
1591   case Intrinsic::s390_vfeehs:
1592   case Intrinsic::s390_vfeefs:
1593     Opcode = SystemZISD::VFEE_CC;
1594     CCValid = SystemZ::CCMASK_ANY;
1595     return true;
1596 
1597   case Intrinsic::s390_vfeezbs:
1598   case Intrinsic::s390_vfeezhs:
1599   case Intrinsic::s390_vfeezfs:
1600     Opcode = SystemZISD::VFEEZ_CC;
1601     CCValid = SystemZ::CCMASK_ANY;
1602     return true;
1603 
1604   case Intrinsic::s390_vfenebs:
1605   case Intrinsic::s390_vfenehs:
1606   case Intrinsic::s390_vfenefs:
1607     Opcode = SystemZISD::VFENE_CC;
1608     CCValid = SystemZ::CCMASK_ANY;
1609     return true;
1610 
1611   case Intrinsic::s390_vfenezbs:
1612   case Intrinsic::s390_vfenezhs:
1613   case Intrinsic::s390_vfenezfs:
1614     Opcode = SystemZISD::VFENEZ_CC;
1615     CCValid = SystemZ::CCMASK_ANY;
1616     return true;
1617 
1618   case Intrinsic::s390_vistrbs:
1619   case Intrinsic::s390_vistrhs:
1620   case Intrinsic::s390_vistrfs:
1621     Opcode = SystemZISD::VISTR_CC;
1622     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1623     return true;
1624 
1625   case Intrinsic::s390_vstrcbs:
1626   case Intrinsic::s390_vstrchs:
1627   case Intrinsic::s390_vstrcfs:
1628     Opcode = SystemZISD::VSTRC_CC;
1629     CCValid = SystemZ::CCMASK_ANY;
1630     return true;
1631 
1632   case Intrinsic::s390_vstrczbs:
1633   case Intrinsic::s390_vstrczhs:
1634   case Intrinsic::s390_vstrczfs:
1635     Opcode = SystemZISD::VSTRCZ_CC;
1636     CCValid = SystemZ::CCMASK_ANY;
1637     return true;
1638 
1639   case Intrinsic::s390_vfcedbs:
1640   case Intrinsic::s390_vfcesbs:
1641     Opcode = SystemZISD::VFCMPES;
1642     CCValid = SystemZ::CCMASK_VCMP;
1643     return true;
1644 
1645   case Intrinsic::s390_vfchdbs:
1646   case Intrinsic::s390_vfchsbs:
1647     Opcode = SystemZISD::VFCMPHS;
1648     CCValid = SystemZ::CCMASK_VCMP;
1649     return true;
1650 
1651   case Intrinsic::s390_vfchedbs:
1652   case Intrinsic::s390_vfchesbs:
1653     Opcode = SystemZISD::VFCMPHES;
1654     CCValid = SystemZ::CCMASK_VCMP;
1655     return true;
1656 
1657   case Intrinsic::s390_vftcidb:
1658   case Intrinsic::s390_vftcisb:
1659     Opcode = SystemZISD::VFTCI;
1660     CCValid = SystemZ::CCMASK_VCMP;
1661     return true;
1662 
1663   case Intrinsic::s390_tdc:
1664     Opcode = SystemZISD::TDC;
1665     CCValid = SystemZ::CCMASK_TDC;
1666     return true;
1667 
1668   default:
1669     return false;
1670   }
1671 }
1672 
1673 // Emit an intrinsic with chain and an explicit CC register result.
emitIntrinsicWithCCAndChain(SelectionDAG & DAG,SDValue Op,unsigned Opcode)1674 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1675                                            unsigned Opcode) {
1676   // Copy all operands except the intrinsic ID.
1677   unsigned NumOps = Op.getNumOperands();
1678   SmallVector<SDValue, 6> Ops;
1679   Ops.reserve(NumOps - 1);
1680   Ops.push_back(Op.getOperand(0));
1681   for (unsigned I = 2; I < NumOps; ++I)
1682     Ops.push_back(Op.getOperand(I));
1683 
1684   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1685   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
1686   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1687   SDValue OldChain = SDValue(Op.getNode(), 1);
1688   SDValue NewChain = SDValue(Intr.getNode(), 1);
1689   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1690   return Intr.getNode();
1691 }
1692 
1693 // Emit an intrinsic with an explicit CC register result.
emitIntrinsicWithCC(SelectionDAG & DAG,SDValue Op,unsigned Opcode)1694 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
1695                                    unsigned Opcode) {
1696   // Copy all operands except the intrinsic ID.
1697   unsigned NumOps = Op.getNumOperands();
1698   SmallVector<SDValue, 6> Ops;
1699   Ops.reserve(NumOps - 1);
1700   for (unsigned I = 1; I < NumOps; ++I)
1701     Ops.push_back(Op.getOperand(I));
1702 
1703   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
1704   return Intr.getNode();
1705 }
1706 
1707 // CC is a comparison that will be implemented using an integer or
1708 // floating-point comparison.  Return the condition code mask for
1709 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1710 // unsigned comparisons and clear for signed ones.  In the floating-point
1711 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
CCMaskForCondCode(ISD::CondCode CC)1712 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1713 #define CONV(X) \
1714   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1715   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1716   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1717 
1718   switch (CC) {
1719   default:
1720     llvm_unreachable("Invalid integer condition!");
1721 
1722   CONV(EQ);
1723   CONV(NE);
1724   CONV(GT);
1725   CONV(GE);
1726   CONV(LT);
1727   CONV(LE);
1728 
1729   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
1730   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1731   }
1732 #undef CONV
1733 }
1734 
1735 // If C can be converted to a comparison against zero, adjust the operands
1736 // as necessary.
adjustZeroCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)1737 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
1738   if (C.ICmpType == SystemZICMP::UnsignedOnly)
1739     return;
1740 
1741   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1742   if (!ConstOp1)
1743     return;
1744 
1745   int64_t Value = ConstOp1->getSExtValue();
1746   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1747       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1748       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1749       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1750     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1751     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
1752   }
1753 }
1754 
1755 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1756 // adjust the operands as necessary.
adjustSubwordCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)1757 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
1758                              Comparison &C) {
1759   // For us to make any changes, it must a comparison between a single-use
1760   // load and a constant.
1761   if (!C.Op0.hasOneUse() ||
1762       C.Op0.getOpcode() != ISD::LOAD ||
1763       C.Op1.getOpcode() != ISD::Constant)
1764     return;
1765 
1766   // We must have an 8- or 16-bit load.
1767   auto *Load = cast<LoadSDNode>(C.Op0);
1768   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1769   if (NumBits != 8 && NumBits != 16)
1770     return;
1771 
1772   // The load must be an extending one and the constant must be within the
1773   // range of the unextended value.
1774   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1775   uint64_t Value = ConstOp1->getZExtValue();
1776   uint64_t Mask = (1 << NumBits) - 1;
1777   if (Load->getExtensionType() == ISD::SEXTLOAD) {
1778     // Make sure that ConstOp1 is in range of C.Op0.
1779     int64_t SignedValue = ConstOp1->getSExtValue();
1780     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
1781       return;
1782     if (C.ICmpType != SystemZICMP::SignedOnly) {
1783       // Unsigned comparison between two sign-extended values is equivalent
1784       // to unsigned comparison between two zero-extended values.
1785       Value &= Mask;
1786     } else if (NumBits == 8) {
1787       // Try to treat the comparison as unsigned, so that we can use CLI.
1788       // Adjust CCMask and Value as necessary.
1789       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
1790         // Test whether the high bit of the byte is set.
1791         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1792       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
1793         // Test whether the high bit of the byte is clear.
1794         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
1795       else
1796         // No instruction exists for this combination.
1797         return;
1798       C.ICmpType = SystemZICMP::UnsignedOnly;
1799     }
1800   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1801     if (Value > Mask)
1802       return;
1803     // If the constant is in range, we can use any comparison.
1804     C.ICmpType = SystemZICMP::Any;
1805   } else
1806     return;
1807 
1808   // Make sure that the first operand is an i32 of the right extension type.
1809   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1810                               ISD::SEXTLOAD :
1811                               ISD::ZEXTLOAD);
1812   if (C.Op0.getValueType() != MVT::i32 ||
1813       Load->getExtensionType() != ExtType) {
1814     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
1815                            Load->getBasePtr(), Load->getPointerInfo(),
1816                            Load->getMemoryVT(), Load->getAlignment(),
1817                            Load->getMemOperand()->getFlags());
1818     // Update the chain uses.
1819     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
1820   }
1821 
1822   // Make sure that the second operand is an i32 with the right value.
1823   if (C.Op1.getValueType() != MVT::i32 ||
1824       Value != ConstOp1->getZExtValue())
1825     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
1826 }
1827 
1828 // Return true if Op is either an unextended load, or a load suitable
1829 // for integer register-memory comparisons of type ICmpType.
isNaturalMemoryOperand(SDValue Op,unsigned ICmpType)1830 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1831   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
1832   if (Load) {
1833     // There are no instructions to compare a register with a memory byte.
1834     if (Load->getMemoryVT() == MVT::i8)
1835       return false;
1836     // Otherwise decide on extension type.
1837     switch (Load->getExtensionType()) {
1838     case ISD::NON_EXTLOAD:
1839       return true;
1840     case ISD::SEXTLOAD:
1841       return ICmpType != SystemZICMP::UnsignedOnly;
1842     case ISD::ZEXTLOAD:
1843       return ICmpType != SystemZICMP::SignedOnly;
1844     default:
1845       break;
1846     }
1847   }
1848   return false;
1849 }
1850 
1851 // Return true if it is better to swap the operands of C.
shouldSwapCmpOperands(const Comparison & C)1852 static bool shouldSwapCmpOperands(const Comparison &C) {
1853   // Leave f128 comparisons alone, since they have no memory forms.
1854   if (C.Op0.getValueType() == MVT::f128)
1855     return false;
1856 
1857   // Always keep a floating-point constant second, since comparisons with
1858   // zero can use LOAD TEST and comparisons with other constants make a
1859   // natural memory operand.
1860   if (isa<ConstantFPSDNode>(C.Op1))
1861     return false;
1862 
1863   // Never swap comparisons with zero since there are many ways to optimize
1864   // those later.
1865   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1866   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
1867     return false;
1868 
1869   // Also keep natural memory operands second if the loaded value is
1870   // only used here.  Several comparisons have memory forms.
1871   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
1872     return false;
1873 
1874   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1875   // In that case we generally prefer the memory to be second.
1876   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
1877     // The only exceptions are when the second operand is a constant and
1878     // we can use things like CHHSI.
1879     if (!ConstOp1)
1880       return true;
1881     // The unsigned memory-immediate instructions can handle 16-bit
1882     // unsigned integers.
1883     if (C.ICmpType != SystemZICMP::SignedOnly &&
1884         isUInt<16>(ConstOp1->getZExtValue()))
1885       return false;
1886     // The signed memory-immediate instructions can handle 16-bit
1887     // signed integers.
1888     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1889         isInt<16>(ConstOp1->getSExtValue()))
1890       return false;
1891     return true;
1892   }
1893 
1894   // Try to promote the use of CGFR and CLGFR.
1895   unsigned Opcode0 = C.Op0.getOpcode();
1896   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
1897     return true;
1898   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
1899     return true;
1900   if (C.ICmpType != SystemZICMP::SignedOnly &&
1901       Opcode0 == ISD::AND &&
1902       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1903       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
1904     return true;
1905 
1906   return false;
1907 }
1908 
1909 // Return a version of comparison CC mask CCMask in which the LT and GT
1910 // actions are swapped.
reverseCCMask(unsigned CCMask)1911 static unsigned reverseCCMask(unsigned CCMask) {
1912   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1913           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1914           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1915           (CCMask & SystemZ::CCMASK_CMP_UO));
1916 }
1917 
1918 // Check whether C tests for equality between X and Y and whether X - Y
1919 // or Y - X is also computed.  In that case it's better to compare the
1920 // result of the subtraction against zero.
adjustForSubtraction(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)1921 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
1922                                  Comparison &C) {
1923   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1924       C.CCMask == SystemZ::CCMASK_CMP_NE) {
1925     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1926       SDNode *N = *I;
1927       if (N->getOpcode() == ISD::SUB &&
1928           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1929            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1930         C.Op0 = SDValue(N, 0);
1931         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
1932         return;
1933       }
1934     }
1935   }
1936 }
1937 
1938 // Check whether C compares a floating-point value with zero and if that
1939 // floating-point value is also negated.  In this case we can use the
1940 // negation to set CC, so avoiding separate LOAD AND TEST and
1941 // LOAD (NEGATIVE/COMPLEMENT) instructions.
adjustForFNeg(Comparison & C)1942 static void adjustForFNeg(Comparison &C) {
1943   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
1944   if (C1 && C1->isZero()) {
1945     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1946       SDNode *N = *I;
1947       if (N->getOpcode() == ISD::FNEG) {
1948         C.Op0 = SDValue(N, 0);
1949         C.CCMask = reverseCCMask(C.CCMask);
1950         return;
1951       }
1952     }
1953   }
1954 }
1955 
1956 // Check whether C compares (shl X, 32) with 0 and whether X is
1957 // also sign-extended.  In that case it is better to test the result
1958 // of the sign extension using LTGFR.
1959 //
1960 // This case is important because InstCombine transforms a comparison
1961 // with (sext (trunc X)) into a comparison with (shl X, 32).
adjustForLTGFR(Comparison & C)1962 static void adjustForLTGFR(Comparison &C) {
1963   // Check for a comparison between (shl X, 32) and 0.
1964   if (C.Op0.getOpcode() == ISD::SHL &&
1965       C.Op0.getValueType() == MVT::i64 &&
1966       C.Op1.getOpcode() == ISD::Constant &&
1967       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1968     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
1969     if (C1 && C1->getZExtValue() == 32) {
1970       SDValue ShlOp0 = C.Op0.getOperand(0);
1971       // See whether X has any SIGN_EXTEND_INREG uses.
1972       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
1973         SDNode *N = *I;
1974         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
1975             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
1976           C.Op0 = SDValue(N, 0);
1977           return;
1978         }
1979       }
1980     }
1981   }
1982 }
1983 
1984 // If C compares the truncation of an extending load, try to compare
1985 // the untruncated value instead.  This exposes more opportunities to
1986 // reuse CC.
adjustICmpTruncate(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)1987 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
1988                                Comparison &C) {
1989   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
1990       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
1991       C.Op1.getOpcode() == ISD::Constant &&
1992       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1993     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
1994     if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
1995       unsigned Type = L->getExtensionType();
1996       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
1997           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
1998         C.Op0 = C.Op0.getOperand(0);
1999         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2000       }
2001     }
2002   }
2003 }
2004 
2005 // Return true if shift operation N has an in-range constant shift value.
2006 // Store it in ShiftVal if so.
isSimpleShift(SDValue N,unsigned & ShiftVal)2007 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2008   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2009   if (!Shift)
2010     return false;
2011 
2012   uint64_t Amount = Shift->getZExtValue();
2013   if (Amount >= N.getValueSizeInBits())
2014     return false;
2015 
2016   ShiftVal = Amount;
2017   return true;
2018 }
2019 
2020 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2021 // instruction and whether the CC value is descriptive enough to handle
2022 // a comparison of type Opcode between the AND result and CmpVal.
2023 // CCMask says which comparison result is being tested and BitSize is
2024 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2025 // return the corresponding CC mask, otherwise return 0.
getTestUnderMaskCond(unsigned BitSize,unsigned CCMask,uint64_t Mask,uint64_t CmpVal,unsigned ICmpType)2026 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2027                                      uint64_t Mask, uint64_t CmpVal,
2028                                      unsigned ICmpType) {
2029   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2030 
2031   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2032   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2033       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2034     return 0;
2035 
2036   // Work out the masks for the lowest and highest bits.
2037   unsigned HighShift = 63 - countLeadingZeros(Mask);
2038   uint64_t High = uint64_t(1) << HighShift;
2039   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2040 
2041   // Signed ordered comparisons are effectively unsigned if the sign
2042   // bit is dropped.
2043   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2044 
2045   // Check for equality comparisons with 0, or the equivalent.
2046   if (CmpVal == 0) {
2047     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2048       return SystemZ::CCMASK_TM_ALL_0;
2049     if (CCMask == SystemZ::CCMASK_CMP_NE)
2050       return SystemZ::CCMASK_TM_SOME_1;
2051   }
2052   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2053     if (CCMask == SystemZ::CCMASK_CMP_LT)
2054       return SystemZ::CCMASK_TM_ALL_0;
2055     if (CCMask == SystemZ::CCMASK_CMP_GE)
2056       return SystemZ::CCMASK_TM_SOME_1;
2057   }
2058   if (EffectivelyUnsigned && CmpVal < Low) {
2059     if (CCMask == SystemZ::CCMASK_CMP_LE)
2060       return SystemZ::CCMASK_TM_ALL_0;
2061     if (CCMask == SystemZ::CCMASK_CMP_GT)
2062       return SystemZ::CCMASK_TM_SOME_1;
2063   }
2064 
2065   // Check for equality comparisons with the mask, or the equivalent.
2066   if (CmpVal == Mask) {
2067     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2068       return SystemZ::CCMASK_TM_ALL_1;
2069     if (CCMask == SystemZ::CCMASK_CMP_NE)
2070       return SystemZ::CCMASK_TM_SOME_0;
2071   }
2072   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2073     if (CCMask == SystemZ::CCMASK_CMP_GT)
2074       return SystemZ::CCMASK_TM_ALL_1;
2075     if (CCMask == SystemZ::CCMASK_CMP_LE)
2076       return SystemZ::CCMASK_TM_SOME_0;
2077   }
2078   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2079     if (CCMask == SystemZ::CCMASK_CMP_GE)
2080       return SystemZ::CCMASK_TM_ALL_1;
2081     if (CCMask == SystemZ::CCMASK_CMP_LT)
2082       return SystemZ::CCMASK_TM_SOME_0;
2083   }
2084 
2085   // Check for ordered comparisons with the top bit.
2086   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2087     if (CCMask == SystemZ::CCMASK_CMP_LE)
2088       return SystemZ::CCMASK_TM_MSB_0;
2089     if (CCMask == SystemZ::CCMASK_CMP_GT)
2090       return SystemZ::CCMASK_TM_MSB_1;
2091   }
2092   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2093     if (CCMask == SystemZ::CCMASK_CMP_LT)
2094       return SystemZ::CCMASK_TM_MSB_0;
2095     if (CCMask == SystemZ::CCMASK_CMP_GE)
2096       return SystemZ::CCMASK_TM_MSB_1;
2097   }
2098 
2099   // If there are just two bits, we can do equality checks for Low and High
2100   // as well.
2101   if (Mask == Low + High) {
2102     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2103       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2104     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2105       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2106     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2107       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2108     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2109       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2110   }
2111 
2112   // Looks like we've exhausted our options.
2113   return 0;
2114 }
2115 
2116 // See whether C can be implemented as a TEST UNDER MASK instruction.
2117 // Update the arguments with the TM version if so.
adjustForTestUnderMask(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2118 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2119                                    Comparison &C) {
2120   // Check that we have a comparison with a constant.
2121   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2122   if (!ConstOp1)
2123     return;
2124   uint64_t CmpVal = ConstOp1->getZExtValue();
2125 
2126   // Check whether the nonconstant input is an AND with a constant mask.
2127   Comparison NewC(C);
2128   uint64_t MaskVal;
2129   ConstantSDNode *Mask = nullptr;
2130   if (C.Op0.getOpcode() == ISD::AND) {
2131     NewC.Op0 = C.Op0.getOperand(0);
2132     NewC.Op1 = C.Op0.getOperand(1);
2133     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2134     if (!Mask)
2135       return;
2136     MaskVal = Mask->getZExtValue();
2137   } else {
2138     // There is no instruction to compare with a 64-bit immediate
2139     // so use TMHH instead if possible.  We need an unsigned ordered
2140     // comparison with an i64 immediate.
2141     if (NewC.Op0.getValueType() != MVT::i64 ||
2142         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2143         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2144         NewC.ICmpType == SystemZICMP::SignedOnly)
2145       return;
2146     // Convert LE and GT comparisons into LT and GE.
2147     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2148         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2149       if (CmpVal == uint64_t(-1))
2150         return;
2151       CmpVal += 1;
2152       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2153     }
2154     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2155     // be masked off without changing the result.
2156     MaskVal = -(CmpVal & -CmpVal);
2157     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2158   }
2159   if (!MaskVal)
2160     return;
2161 
2162   // Check whether the combination of mask, comparison value and comparison
2163   // type are suitable.
2164   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2165   unsigned NewCCMask, ShiftVal;
2166   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2167       NewC.Op0.getOpcode() == ISD::SHL &&
2168       isSimpleShift(NewC.Op0, ShiftVal) &&
2169       (MaskVal >> ShiftVal != 0) &&
2170       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2171       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2172                                         MaskVal >> ShiftVal,
2173                                         CmpVal >> ShiftVal,
2174                                         SystemZICMP::Any))) {
2175     NewC.Op0 = NewC.Op0.getOperand(0);
2176     MaskVal >>= ShiftVal;
2177   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2178              NewC.Op0.getOpcode() == ISD::SRL &&
2179              isSimpleShift(NewC.Op0, ShiftVal) &&
2180              (MaskVal << ShiftVal != 0) &&
2181              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2182              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2183                                                MaskVal << ShiftVal,
2184                                                CmpVal << ShiftVal,
2185                                                SystemZICMP::UnsignedOnly))) {
2186     NewC.Op0 = NewC.Op0.getOperand(0);
2187     MaskVal <<= ShiftVal;
2188   } else {
2189     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2190                                      NewC.ICmpType);
2191     if (!NewCCMask)
2192       return;
2193   }
2194 
2195   // Go ahead and make the change.
2196   C.Opcode = SystemZISD::TM;
2197   C.Op0 = NewC.Op0;
2198   if (Mask && Mask->getZExtValue() == MaskVal)
2199     C.Op1 = SDValue(Mask, 0);
2200   else
2201     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2202   C.CCValid = SystemZ::CCMASK_TM;
2203   C.CCMask = NewCCMask;
2204 }
2205 
2206 // See whether the comparison argument contains a redundant AND
2207 // and remove it if so.  This sometimes happens due to the generic
2208 // BRCOND expansion.
adjustForRedundantAnd(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2209 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2210                                   Comparison &C) {
2211   if (C.Op0.getOpcode() != ISD::AND)
2212     return;
2213   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2214   if (!Mask)
2215     return;
2216   KnownBits Known;
2217   DAG.computeKnownBits(C.Op0.getOperand(0), Known);
2218   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2219     return;
2220 
2221   C.Op0 = C.Op0.getOperand(0);
2222 }
2223 
2224 // Return a Comparison that tests the condition-code result of intrinsic
2225 // node Call against constant integer CC using comparison code Cond.
2226 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2227 // and CCValid is the set of possible condition-code results.
getIntrinsicCmp(SelectionDAG & DAG,unsigned Opcode,SDValue Call,unsigned CCValid,uint64_t CC,ISD::CondCode Cond)2228 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2229                                   SDValue Call, unsigned CCValid, uint64_t CC,
2230                                   ISD::CondCode Cond) {
2231   Comparison C(Call, SDValue());
2232   C.Opcode = Opcode;
2233   C.CCValid = CCValid;
2234   if (Cond == ISD::SETEQ)
2235     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2236     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2237   else if (Cond == ISD::SETNE)
2238     // ...and the inverse of that.
2239     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2240   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2241     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2242     // always true for CC>3.
2243     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2244   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2245     // ...and the inverse of that.
2246     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2247   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2248     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2249     // always true for CC>3.
2250     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2251   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2252     // ...and the inverse of that.
2253     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2254   else
2255     llvm_unreachable("Unexpected integer comparison type");
2256   C.CCMask &= CCValid;
2257   return C;
2258 }
2259 
2260 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
getCmp(SelectionDAG & DAG,SDValue CmpOp0,SDValue CmpOp1,ISD::CondCode Cond,const SDLoc & DL)2261 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2262                          ISD::CondCode Cond, const SDLoc &DL) {
2263   if (CmpOp1.getOpcode() == ISD::Constant) {
2264     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2265     unsigned Opcode, CCValid;
2266     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2267         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2268         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2269       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2270     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2271         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2272         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2273       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2274   }
2275   Comparison C(CmpOp0, CmpOp1);
2276   C.CCMask = CCMaskForCondCode(Cond);
2277   if (C.Op0.getValueType().isFloatingPoint()) {
2278     C.CCValid = SystemZ::CCMASK_FCMP;
2279     C.Opcode = SystemZISD::FCMP;
2280     adjustForFNeg(C);
2281   } else {
2282     C.CCValid = SystemZ::CCMASK_ICMP;
2283     C.Opcode = SystemZISD::ICMP;
2284     // Choose the type of comparison.  Equality and inequality tests can
2285     // use either signed or unsigned comparisons.  The choice also doesn't
2286     // matter if both sign bits are known to be clear.  In those cases we
2287     // want to give the main isel code the freedom to choose whichever
2288     // form fits best.
2289     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2290         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2291         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2292       C.ICmpType = SystemZICMP::Any;
2293     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2294       C.ICmpType = SystemZICMP::UnsignedOnly;
2295     else
2296       C.ICmpType = SystemZICMP::SignedOnly;
2297     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2298     adjustForRedundantAnd(DAG, DL, C);
2299     adjustZeroCmp(DAG, DL, C);
2300     adjustSubwordCmp(DAG, DL, C);
2301     adjustForSubtraction(DAG, DL, C);
2302     adjustForLTGFR(C);
2303     adjustICmpTruncate(DAG, DL, C);
2304   }
2305 
2306   if (shouldSwapCmpOperands(C)) {
2307     std::swap(C.Op0, C.Op1);
2308     C.CCMask = reverseCCMask(C.CCMask);
2309   }
2310 
2311   adjustForTestUnderMask(DAG, DL, C);
2312   return C;
2313 }
2314 
2315 // Emit the comparison instruction described by C.
emitCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2316 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2317   if (!C.Op1.getNode()) {
2318     SDNode *Node;
2319     switch (C.Op0.getOpcode()) {
2320     case ISD::INTRINSIC_W_CHAIN:
2321       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2322       return SDValue(Node, 0);
2323     case ISD::INTRINSIC_WO_CHAIN:
2324       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2325       return SDValue(Node, Node->getNumValues() - 1);
2326     default:
2327       llvm_unreachable("Invalid comparison operands");
2328     }
2329   }
2330   if (C.Opcode == SystemZISD::ICMP)
2331     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2332                        DAG.getConstant(C.ICmpType, DL, MVT::i32));
2333   if (C.Opcode == SystemZISD::TM) {
2334     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2335                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2336     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2337                        DAG.getConstant(RegisterOnly, DL, MVT::i32));
2338   }
2339   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2340 }
2341 
2342 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2343 // 64 bits.  Extend is the extension type to use.  Store the high part
2344 // in Hi and the low part in Lo.
lowerMUL_LOHI32(SelectionDAG & DAG,const SDLoc & DL,unsigned Extend,SDValue Op0,SDValue Op1,SDValue & Hi,SDValue & Lo)2345 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2346                             SDValue Op0, SDValue Op1, SDValue &Hi,
2347                             SDValue &Lo) {
2348   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2349   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2350   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2351   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2352                    DAG.getConstant(32, DL, MVT::i64));
2353   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2354   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2355 }
2356 
2357 // Lower a binary operation that produces two VT results, one in each
2358 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2359 // and Opcode performs the GR128 operation.  Store the even register result
2360 // in Even and the odd register result in Odd.
lowerGR128Binary(SelectionDAG & DAG,const SDLoc & DL,EVT VT,unsigned Opcode,SDValue Op0,SDValue Op1,SDValue & Even,SDValue & Odd)2361 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2362                              unsigned Opcode, SDValue Op0, SDValue Op1,
2363                              SDValue &Even, SDValue &Odd) {
2364   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2365   bool Is32Bit = is32Bit(VT);
2366   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2367   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2368 }
2369 
2370 // Return an i32 value that is 1 if the CC value produced by CCReg is
2371 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2372 // in CCValid, so other values can be ignored.
emitSETCC(SelectionDAG & DAG,const SDLoc & DL,SDValue CCReg,unsigned CCValid,unsigned CCMask)2373 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2374                          unsigned CCValid, unsigned CCMask) {
2375   SDValue Ops[] = { DAG.getConstant(1, DL, MVT::i32),
2376                     DAG.getConstant(0, DL, MVT::i32),
2377                     DAG.getConstant(CCValid, DL, MVT::i32),
2378                     DAG.getConstant(CCMask, DL, MVT::i32), CCReg };
2379   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2380 }
2381 
2382 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2383 // be done directly.  IsFP is true if CC is for a floating-point rather than
2384 // integer comparison.
getVectorComparison(ISD::CondCode CC,bool IsFP)2385 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
2386   switch (CC) {
2387   case ISD::SETOEQ:
2388   case ISD::SETEQ:
2389     return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
2390 
2391   case ISD::SETOGE:
2392   case ISD::SETGE:
2393     return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
2394 
2395   case ISD::SETOGT:
2396   case ISD::SETGT:
2397     return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
2398 
2399   case ISD::SETUGT:
2400     return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
2401 
2402   default:
2403     return 0;
2404   }
2405 }
2406 
2407 // Return the SystemZISD vector comparison operation for CC or its inverse,
2408 // or 0 if neither can be done directly.  Indicate in Invert whether the
2409 // result is for the inverse of CC.  IsFP is true if CC is for a
2410 // floating-point rather than integer comparison.
getVectorComparisonOrInvert(ISD::CondCode CC,bool IsFP,bool & Invert)2411 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
2412                                             bool &Invert) {
2413   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2414     Invert = false;
2415     return Opcode;
2416   }
2417 
2418   CC = ISD::getSetCCInverse(CC, !IsFP);
2419   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2420     Invert = true;
2421     return Opcode;
2422   }
2423 
2424   return 0;
2425 }
2426 
2427 // Return a v2f64 that contains the extended form of elements Start and Start+1
2428 // of v4f32 value Op.
expandV4F32ToV2F64(SelectionDAG & DAG,int Start,const SDLoc & DL,SDValue Op)2429 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2430                                   SDValue Op) {
2431   int Mask[] = { Start, -1, Start + 1, -1 };
2432   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2433   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2434 }
2435 
2436 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2437 // producing a result of type VT.
getVectorCmp(SelectionDAG & DAG,unsigned Opcode,const SDLoc & DL,EVT VT,SDValue CmpOp0,SDValue CmpOp1) const2438 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2439                                             const SDLoc &DL, EVT VT,
2440                                             SDValue CmpOp0,
2441                                             SDValue CmpOp1) const {
2442   // There is no hardware support for v4f32 (unless we have the vector
2443   // enhancements facility 1), so extend the vector into two v2f64s
2444   // and compare those.
2445   if (CmpOp0.getValueType() == MVT::v4f32 &&
2446       !Subtarget.hasVectorEnhancements1()) {
2447     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
2448     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
2449     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
2450     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
2451     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2452     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2453     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2454   }
2455   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2456 }
2457 
2458 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2459 // an integer mask of type VT.
lowerVectorSETCC(SelectionDAG & DAG,const SDLoc & DL,EVT VT,ISD::CondCode CC,SDValue CmpOp0,SDValue CmpOp1) const2460 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2461                                                 const SDLoc &DL, EVT VT,
2462                                                 ISD::CondCode CC,
2463                                                 SDValue CmpOp0,
2464                                                 SDValue CmpOp1) const {
2465   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2466   bool Invert = false;
2467   SDValue Cmp;
2468   switch (CC) {
2469     // Handle tests for order using (or (ogt y x) (oge x y)).
2470   case ISD::SETUO:
2471     Invert = true;
2472     LLVM_FALLTHROUGH;
2473   case ISD::SETO: {
2474     assert(IsFP && "Unexpected integer comparison");
2475     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2476     SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
2477     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2478     break;
2479   }
2480 
2481     // Handle <> tests using (or (ogt y x) (ogt x y)).
2482   case ISD::SETUEQ:
2483     Invert = true;
2484     LLVM_FALLTHROUGH;
2485   case ISD::SETONE: {
2486     assert(IsFP && "Unexpected integer comparison");
2487     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2488     SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
2489     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2490     break;
2491   }
2492 
2493     // Otherwise a single comparison is enough.  It doesn't really
2494     // matter whether we try the inversion or the swap first, since
2495     // there are no cases where both work.
2496   default:
2497     if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2498       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
2499     else {
2500       CC = ISD::getSetCCSwappedOperands(CC);
2501       if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2502         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
2503       else
2504         llvm_unreachable("Unhandled comparison");
2505     }
2506     break;
2507   }
2508   if (Invert) {
2509     SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
2510                                DAG.getConstant(65535, DL, MVT::i32));
2511     Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask);
2512     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2513   }
2514   return Cmp;
2515 }
2516 
lowerSETCC(SDValue Op,SelectionDAG & DAG) const2517 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2518                                           SelectionDAG &DAG) const {
2519   SDValue CmpOp0   = Op.getOperand(0);
2520   SDValue CmpOp1   = Op.getOperand(1);
2521   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2522   SDLoc DL(Op);
2523   EVT VT = Op.getValueType();
2524   if (VT.isVector())
2525     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2526 
2527   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2528   SDValue CCReg = emitCmp(DAG, DL, C);
2529   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2530 }
2531 
lowerBR_CC(SDValue Op,SelectionDAG & DAG) const2532 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2533   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2534   SDValue CmpOp0   = Op.getOperand(2);
2535   SDValue CmpOp1   = Op.getOperand(3);
2536   SDValue Dest     = Op.getOperand(4);
2537   SDLoc DL(Op);
2538 
2539   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2540   SDValue CCReg = emitCmp(DAG, DL, C);
2541   return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
2542                      Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
2543                      DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2544 }
2545 
2546 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2547 // allowing Pos and Neg to be wider than CmpOp.
isAbsolute(SDValue CmpOp,SDValue Pos,SDValue Neg)2548 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2549   return (Neg.getOpcode() == ISD::SUB &&
2550           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2551           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2552           Neg.getOperand(1) == Pos &&
2553           (Pos == CmpOp ||
2554            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2555             Pos.getOperand(0) == CmpOp)));
2556 }
2557 
2558 // Return the absolute or negative absolute of Op; IsNegative decides which.
getAbsolute(SelectionDAG & DAG,const SDLoc & DL,SDValue Op,bool IsNegative)2559 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2560                            bool IsNegative) {
2561   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2562   if (IsNegative)
2563     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2564                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2565   return Op;
2566 }
2567 
lowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const2568 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2569                                               SelectionDAG &DAG) const {
2570   SDValue CmpOp0   = Op.getOperand(0);
2571   SDValue CmpOp1   = Op.getOperand(1);
2572   SDValue TrueOp   = Op.getOperand(2);
2573   SDValue FalseOp  = Op.getOperand(3);
2574   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2575   SDLoc DL(Op);
2576 
2577   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2578 
2579   // Check for absolute and negative-absolute selections, including those
2580   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2581   // This check supplements the one in DAGCombiner.
2582   if (C.Opcode == SystemZISD::ICMP &&
2583       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2584       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2585       C.Op1.getOpcode() == ISD::Constant &&
2586       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2587     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2588       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2589     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2590       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2591   }
2592 
2593   SDValue CCReg = emitCmp(DAG, DL, C);
2594   SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
2595                    DAG.getConstant(C.CCMask, DL, MVT::i32), CCReg};
2596 
2597   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
2598 }
2599 
lowerGlobalAddress(GlobalAddressSDNode * Node,SelectionDAG & DAG) const2600 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2601                                                   SelectionDAG &DAG) const {
2602   SDLoc DL(Node);
2603   const GlobalValue *GV = Node->getGlobal();
2604   int64_t Offset = Node->getOffset();
2605   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2606   CodeModel::Model CM = DAG.getTarget().getCodeModel();
2607 
2608   SDValue Result;
2609   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
2610     // Assign anchors at 1<<12 byte boundaries.
2611     uint64_t Anchor = Offset & ~uint64_t(0xfff);
2612     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2613     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2614 
2615     // The offset can be folded into the address if it is aligned to a halfword.
2616     Offset -= Anchor;
2617     if (Offset != 0 && (Offset & 1) == 0) {
2618       SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2619       Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
2620       Offset = 0;
2621     }
2622   } else {
2623     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2624     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2625     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2626                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2627   }
2628 
2629   // If there was a non-zero offset that we didn't fold, create an explicit
2630   // addition for it.
2631   if (Offset != 0)
2632     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
2633                          DAG.getConstant(Offset, DL, PtrVT));
2634 
2635   return Result;
2636 }
2637 
lowerTLSGetOffset(GlobalAddressSDNode * Node,SelectionDAG & DAG,unsigned Opcode,SDValue GOTOffset) const2638 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
2639                                                  SelectionDAG &DAG,
2640                                                  unsigned Opcode,
2641                                                  SDValue GOTOffset) const {
2642   SDLoc DL(Node);
2643   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2644   SDValue Chain = DAG.getEntryNode();
2645   SDValue Glue;
2646 
2647   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
2648   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2649   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
2650   Glue = Chain.getValue(1);
2651   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
2652   Glue = Chain.getValue(1);
2653 
2654   // The first call operand is the chain and the second is the TLS symbol.
2655   SmallVector<SDValue, 8> Ops;
2656   Ops.push_back(Chain);
2657   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
2658                                            Node->getValueType(0),
2659                                            0, 0));
2660 
2661   // Add argument registers to the end of the list so that they are
2662   // known live into the call.
2663   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
2664   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
2665 
2666   // Add a register mask operand representing the call-preserved registers.
2667   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2668   const uint32_t *Mask =
2669       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
2670   assert(Mask && "Missing call preserved mask for calling convention");
2671   Ops.push_back(DAG.getRegisterMask(Mask));
2672 
2673   // Glue the call to the argument copies.
2674   Ops.push_back(Glue);
2675 
2676   // Emit the call.
2677   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2678   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
2679   Glue = Chain.getValue(1);
2680 
2681   // Copy the return value from %r2.
2682   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
2683 }
2684 
lowerThreadPointer(const SDLoc & DL,SelectionDAG & DAG) const2685 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
2686                                                   SelectionDAG &DAG) const {
2687   SDValue Chain = DAG.getEntryNode();
2688   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2689 
2690   // The high part of the thread pointer is in access register 0.
2691   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
2692   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
2693 
2694   // The low part of the thread pointer is in access register 1.
2695   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
2696   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
2697 
2698   // Merge them into a single 64-bit address.
2699   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
2700                                     DAG.getConstant(32, DL, PtrVT));
2701   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
2702 }
2703 
lowerGlobalTLSAddress(GlobalAddressSDNode * Node,SelectionDAG & DAG) const2704 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
2705                                                      SelectionDAG &DAG) const {
2706   if (DAG.getTarget().useEmulatedTLS())
2707     return LowerToTLSEmulatedModel(Node, DAG);
2708   SDLoc DL(Node);
2709   const GlobalValue *GV = Node->getGlobal();
2710   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2711   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
2712 
2713   SDValue TP = lowerThreadPointer(DL, DAG);
2714 
2715   // Get the offset of GA from the thread pointer, based on the TLS model.
2716   SDValue Offset;
2717   switch (model) {
2718     case TLSModel::GeneralDynamic: {
2719       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
2720       SystemZConstantPoolValue *CPV =
2721         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
2722 
2723       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2724       Offset = DAG.getLoad(
2725           PtrVT, DL, DAG.getEntryNode(), Offset,
2726           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2727 
2728       // Call __tls_get_offset to retrieve the offset.
2729       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
2730       break;
2731     }
2732 
2733     case TLSModel::LocalDynamic: {
2734       // Load the GOT offset of the module ID.
2735       SystemZConstantPoolValue *CPV =
2736         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
2737 
2738       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2739       Offset = DAG.getLoad(
2740           PtrVT, DL, DAG.getEntryNode(), Offset,
2741           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2742 
2743       // Call __tls_get_offset to retrieve the module base offset.
2744       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
2745 
2746       // Note: The SystemZLDCleanupPass will remove redundant computations
2747       // of the module base offset.  Count total number of local-dynamic
2748       // accesses to trigger execution of that pass.
2749       SystemZMachineFunctionInfo* MFI =
2750         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
2751       MFI->incNumLocalDynamicTLSAccesses();
2752 
2753       // Add the per-symbol offset.
2754       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
2755 
2756       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
2757       DTPOffset = DAG.getLoad(
2758           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
2759           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2760 
2761       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
2762       break;
2763     }
2764 
2765     case TLSModel::InitialExec: {
2766       // Load the offset from the GOT.
2767       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2768                                           SystemZII::MO_INDNTPOFF);
2769       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
2770       Offset =
2771           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
2772                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2773       break;
2774     }
2775 
2776     case TLSModel::LocalExec: {
2777       // Force the offset into the constant pool and load it from there.
2778       SystemZConstantPoolValue *CPV =
2779         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
2780 
2781       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2782       Offset = DAG.getLoad(
2783           PtrVT, DL, DAG.getEntryNode(), Offset,
2784           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2785       break;
2786     }
2787   }
2788 
2789   // Add the base and offset together.
2790   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
2791 }
2792 
lowerBlockAddress(BlockAddressSDNode * Node,SelectionDAG & DAG) const2793 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
2794                                                  SelectionDAG &DAG) const {
2795   SDLoc DL(Node);
2796   const BlockAddress *BA = Node->getBlockAddress();
2797   int64_t Offset = Node->getOffset();
2798   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2799 
2800   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
2801   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2802   return Result;
2803 }
2804 
lowerJumpTable(JumpTableSDNode * JT,SelectionDAG & DAG) const2805 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
2806                                               SelectionDAG &DAG) const {
2807   SDLoc DL(JT);
2808   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2809   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2810 
2811   // Use LARL to load the address of the table.
2812   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2813 }
2814 
lowerConstantPool(ConstantPoolSDNode * CP,SelectionDAG & DAG) const2815 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
2816                                                  SelectionDAG &DAG) const {
2817   SDLoc DL(CP);
2818   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2819 
2820   SDValue Result;
2821   if (CP->isMachineConstantPoolEntry())
2822     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2823                                        CP->getAlignment());
2824   else
2825     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2826                                        CP->getAlignment(), CP->getOffset());
2827 
2828   // Use LARL to load the address of the constant pool entry.
2829   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2830 }
2831 
lowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const2832 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
2833                                               SelectionDAG &DAG) const {
2834   MachineFunction &MF = DAG.getMachineFunction();
2835   MachineFrameInfo &MFI = MF.getFrameInfo();
2836   MFI.setFrameAddressIsTaken(true);
2837 
2838   SDLoc DL(Op);
2839   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2840   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2841 
2842   // If the back chain frame index has not been allocated yet, do so.
2843   SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>();
2844   int BackChainIdx = FI->getFramePointerSaveIndex();
2845   if (!BackChainIdx) {
2846     // By definition, the frame address is the address of the back chain.
2847     BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false);
2848     FI->setFramePointerSaveIndex(BackChainIdx);
2849   }
2850   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
2851 
2852   // FIXME The frontend should detect this case.
2853   if (Depth > 0) {
2854     report_fatal_error("Unsupported stack frame traversal count");
2855   }
2856 
2857   return BackChain;
2858 }
2859 
lowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const2860 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
2861                                                SelectionDAG &DAG) const {
2862   MachineFunction &MF = DAG.getMachineFunction();
2863   MachineFrameInfo &MFI = MF.getFrameInfo();
2864   MFI.setReturnAddressIsTaken(true);
2865 
2866   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2867     return SDValue();
2868 
2869   SDLoc DL(Op);
2870   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2871   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2872 
2873   // FIXME The frontend should detect this case.
2874   if (Depth > 0) {
2875     report_fatal_error("Unsupported stack frame traversal count");
2876   }
2877 
2878   // Return R14D, which has the return address. Mark it an implicit live-in.
2879   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
2880   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
2881 }
2882 
lowerBITCAST(SDValue Op,SelectionDAG & DAG) const2883 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
2884                                             SelectionDAG &DAG) const {
2885   SDLoc DL(Op);
2886   SDValue In = Op.getOperand(0);
2887   EVT InVT = In.getValueType();
2888   EVT ResVT = Op.getValueType();
2889 
2890   // Convert loads directly.  This is normally done by DAGCombiner,
2891   // but we need this case for bitcasts that are created during lowering
2892   // and which are then lowered themselves.
2893   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
2894     if (ISD::isNormalLoad(LoadN)) {
2895       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
2896                                     LoadN->getBasePtr(), LoadN->getMemOperand());
2897       // Update the chain uses.
2898       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
2899       return NewLoad;
2900     }
2901 
2902   if (InVT == MVT::i32 && ResVT == MVT::f32) {
2903     SDValue In64;
2904     if (Subtarget.hasHighWord()) {
2905       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
2906                                        MVT::i64);
2907       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
2908                                        MVT::i64, SDValue(U64, 0), In);
2909     } else {
2910       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
2911       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
2912                          DAG.getConstant(32, DL, MVT::i64));
2913     }
2914     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
2915     return DAG.getTargetExtractSubreg(SystemZ::subreg_r32,
2916                                       DL, MVT::f32, Out64);
2917   }
2918   if (InVT == MVT::f32 && ResVT == MVT::i32) {
2919     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
2920     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL,
2921                                              MVT::f64, SDValue(U64, 0), In);
2922     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
2923     if (Subtarget.hasHighWord())
2924       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
2925                                         MVT::i32, Out64);
2926     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
2927                                 DAG.getConstant(32, DL, MVT::i64));
2928     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
2929   }
2930   llvm_unreachable("Unexpected bitcast combination");
2931 }
2932 
lowerVASTART(SDValue Op,SelectionDAG & DAG) const2933 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
2934                                             SelectionDAG &DAG) const {
2935   MachineFunction &MF = DAG.getMachineFunction();
2936   SystemZMachineFunctionInfo *FuncInfo =
2937     MF.getInfo<SystemZMachineFunctionInfo>();
2938   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2939 
2940   SDValue Chain   = Op.getOperand(0);
2941   SDValue Addr    = Op.getOperand(1);
2942   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2943   SDLoc DL(Op);
2944 
2945   // The initial values of each field.
2946   const unsigned NumFields = 4;
2947   SDValue Fields[NumFields] = {
2948     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
2949     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
2950     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
2951     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
2952   };
2953 
2954   // Store each field into its respective slot.
2955   SDValue MemOps[NumFields];
2956   unsigned Offset = 0;
2957   for (unsigned I = 0; I < NumFields; ++I) {
2958     SDValue FieldAddr = Addr;
2959     if (Offset != 0)
2960       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
2961                               DAG.getIntPtrConstant(Offset, DL));
2962     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
2963                              MachinePointerInfo(SV, Offset));
2964     Offset += 8;
2965   }
2966   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2967 }
2968 
lowerVACOPY(SDValue Op,SelectionDAG & DAG) const2969 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
2970                                            SelectionDAG &DAG) const {
2971   SDValue Chain      = Op.getOperand(0);
2972   SDValue DstPtr     = Op.getOperand(1);
2973   SDValue SrcPtr     = Op.getOperand(2);
2974   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2975   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
2976   SDLoc DL(Op);
2977 
2978   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
2979                        /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
2980                        /*isTailCall*/false,
2981                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
2982 }
2983 
2984 SDValue SystemZTargetLowering::
lowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const2985 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
2986   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
2987   MachineFunction &MF = DAG.getMachineFunction();
2988   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
2989   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
2990 
2991   SDValue Chain = Op.getOperand(0);
2992   SDValue Size  = Op.getOperand(1);
2993   SDValue Align = Op.getOperand(2);
2994   SDLoc DL(Op);
2995 
2996   // If user has set the no alignment function attribute, ignore
2997   // alloca alignments.
2998   uint64_t AlignVal = (RealignOpt ?
2999                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3000 
3001   uint64_t StackAlign = TFI->getStackAlignment();
3002   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3003   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3004 
3005   unsigned SPReg = getStackPointerRegisterToSaveRestore();
3006   SDValue NeededSpace = Size;
3007 
3008   // Get a reference to the stack pointer.
3009   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3010 
3011   // If we need a backchain, save it now.
3012   SDValue Backchain;
3013   if (StoreBackchain)
3014     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3015 
3016   // Add extra space for alignment if needed.
3017   if (ExtraAlignSpace)
3018     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3019                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3020 
3021   // Get the new stack pointer value.
3022   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3023 
3024   // Copy the new stack pointer back.
3025   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3026 
3027   // The allocated data lives above the 160 bytes allocated for the standard
3028   // frame, plus any outgoing stack arguments.  We don't know how much that
3029   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3030   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3031   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3032 
3033   // Dynamically realign if needed.
3034   if (RequiredAlign > StackAlign) {
3035     Result =
3036       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3037                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3038     Result =
3039       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3040                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3041   }
3042 
3043   if (StoreBackchain)
3044     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3045 
3046   SDValue Ops[2] = { Result, Chain };
3047   return DAG.getMergeValues(Ops, DL);
3048 }
3049 
lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,SelectionDAG & DAG) const3050 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3051     SDValue Op, SelectionDAG &DAG) const {
3052   SDLoc DL(Op);
3053 
3054   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3055 }
3056 
lowerSMUL_LOHI(SDValue Op,SelectionDAG & DAG) const3057 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3058                                               SelectionDAG &DAG) const {
3059   EVT VT = Op.getValueType();
3060   SDLoc DL(Op);
3061   SDValue Ops[2];
3062   if (is32Bit(VT))
3063     // Just do a normal 64-bit multiplication and extract the results.
3064     // We define this so that it can be used for constant division.
3065     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3066                     Op.getOperand(1), Ops[1], Ops[0]);
3067   else if (Subtarget.hasMiscellaneousExtensions2())
3068     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3069     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3070     // return the low half first, so the results are in reverse order.
3071     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3072                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3073   else {
3074     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3075     //
3076     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3077     //
3078     // but using the fact that the upper halves are either all zeros
3079     // or all ones:
3080     //
3081     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3082     //
3083     // and grouping the right terms together since they are quicker than the
3084     // multiplication:
3085     //
3086     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3087     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3088     SDValue LL = Op.getOperand(0);
3089     SDValue RL = Op.getOperand(1);
3090     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3091     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3092     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3093     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3094     // return the low half first, so the results are in reverse order.
3095     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3096                      LL, RL, Ops[1], Ops[0]);
3097     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3098     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3099     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3100     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3101   }
3102   return DAG.getMergeValues(Ops, DL);
3103 }
3104 
lowerUMUL_LOHI(SDValue Op,SelectionDAG & DAG) const3105 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3106                                               SelectionDAG &DAG) const {
3107   EVT VT = Op.getValueType();
3108   SDLoc DL(Op);
3109   SDValue Ops[2];
3110   if (is32Bit(VT))
3111     // Just do a normal 64-bit multiplication and extract the results.
3112     // We define this so that it can be used for constant division.
3113     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3114                     Op.getOperand(1), Ops[1], Ops[0]);
3115   else
3116     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3117     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3118     // return the low half first, so the results are in reverse order.
3119     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3120                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3121   return DAG.getMergeValues(Ops, DL);
3122 }
3123 
lowerSDIVREM(SDValue Op,SelectionDAG & DAG) const3124 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3125                                             SelectionDAG &DAG) const {
3126   SDValue Op0 = Op.getOperand(0);
3127   SDValue Op1 = Op.getOperand(1);
3128   EVT VT = Op.getValueType();
3129   SDLoc DL(Op);
3130 
3131   // We use DSGF for 32-bit division.  This means the first operand must
3132   // always be 64-bit, and the second operand should be 32-bit whenever
3133   // that is possible, to improve performance.
3134   if (is32Bit(VT))
3135     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3136   else if (DAG.ComputeNumSignBits(Op1) > 32)
3137     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3138 
3139   // DSG(F) returns the remainder in the even register and the
3140   // quotient in the odd register.
3141   SDValue Ops[2];
3142   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3143   return DAG.getMergeValues(Ops, DL);
3144 }
3145 
lowerUDIVREM(SDValue Op,SelectionDAG & DAG) const3146 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3147                                             SelectionDAG &DAG) const {
3148   EVT VT = Op.getValueType();
3149   SDLoc DL(Op);
3150 
3151   // DL(G) returns the remainder in the even register and the
3152   // quotient in the odd register.
3153   SDValue Ops[2];
3154   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3155                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3156   return DAG.getMergeValues(Ops, DL);
3157 }
3158 
lowerOR(SDValue Op,SelectionDAG & DAG) const3159 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3160   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3161 
3162   // Get the known-zero masks for each operand.
3163   SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
3164   KnownBits Known[2];
3165   DAG.computeKnownBits(Ops[0], Known[0]);
3166   DAG.computeKnownBits(Ops[1], Known[1]);
3167 
3168   // See if the upper 32 bits of one operand and the lower 32 bits of the
3169   // other are known zero.  They are the low and high operands respectively.
3170   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3171                        Known[1].Zero.getZExtValue() };
3172   unsigned High, Low;
3173   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3174     High = 1, Low = 0;
3175   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3176     High = 0, Low = 1;
3177   else
3178     return Op;
3179 
3180   SDValue LowOp = Ops[Low];
3181   SDValue HighOp = Ops[High];
3182 
3183   // If the high part is a constant, we're better off using IILH.
3184   if (HighOp.getOpcode() == ISD::Constant)
3185     return Op;
3186 
3187   // If the low part is a constant that is outside the range of LHI,
3188   // then we're better off using IILF.
3189   if (LowOp.getOpcode() == ISD::Constant) {
3190     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3191     if (!isInt<16>(Value))
3192       return Op;
3193   }
3194 
3195   // Check whether the high part is an AND that doesn't change the
3196   // high 32 bits and just masks out low bits.  We can skip it if so.
3197   if (HighOp.getOpcode() == ISD::AND &&
3198       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3199     SDValue HighOp0 = HighOp.getOperand(0);
3200     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3201     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3202       HighOp = HighOp0;
3203   }
3204 
3205   // Take advantage of the fact that all GR32 operations only change the
3206   // low 32 bits by truncating Low to an i32 and inserting it directly
3207   // using a subreg.  The interesting cases are those where the truncation
3208   // can be folded.
3209   SDLoc DL(Op);
3210   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3211   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3212                                    MVT::i64, HighOp, Low32);
3213 }
3214 
3215 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
lowerXALUO(SDValue Op,SelectionDAG & DAG) const3216 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3217                                           SelectionDAG &DAG) const {
3218   SDNode *N = Op.getNode();
3219   SDValue LHS = N->getOperand(0);
3220   SDValue RHS = N->getOperand(1);
3221   SDLoc DL(N);
3222   unsigned BaseOp = 0;
3223   unsigned CCValid = 0;
3224   unsigned CCMask = 0;
3225 
3226   switch (Op.getOpcode()) {
3227   default: llvm_unreachable("Unknown instruction!");
3228   case ISD::SADDO:
3229     BaseOp = SystemZISD::SADDO;
3230     CCValid = SystemZ::CCMASK_ARITH;
3231     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3232     break;
3233   case ISD::SSUBO:
3234     BaseOp = SystemZISD::SSUBO;
3235     CCValid = SystemZ::CCMASK_ARITH;
3236     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3237     break;
3238   case ISD::UADDO:
3239     BaseOp = SystemZISD::UADDO;
3240     CCValid = SystemZ::CCMASK_LOGICAL;
3241     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3242     break;
3243   case ISD::USUBO:
3244     BaseOp = SystemZISD::USUBO;
3245     CCValid = SystemZ::CCMASK_LOGICAL;
3246     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3247     break;
3248   }
3249 
3250   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3251   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3252 
3253   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3254   if (N->getValueType(1) == MVT::i1)
3255     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3256 
3257   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3258 }
3259 
3260 // Lower ADDCARRY/SUBCARRY nodes.
lowerADDSUBCARRY(SDValue Op,SelectionDAG & DAG) const3261 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3262                                                 SelectionDAG &DAG) const {
3263 
3264   SDNode *N = Op.getNode();
3265   MVT VT = N->getSimpleValueType(0);
3266 
3267   // Let legalize expand this if it isn't a legal type yet.
3268   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3269     return SDValue();
3270 
3271   SDValue LHS = N->getOperand(0);
3272   SDValue RHS = N->getOperand(1);
3273   SDValue Carry = Op.getOperand(2);
3274   SDLoc DL(N);
3275   unsigned BaseOp = 0;
3276   unsigned CCValid = 0;
3277   unsigned CCMask = 0;
3278 
3279   switch (Op.getOpcode()) {
3280   default: llvm_unreachable("Unknown instruction!");
3281   case ISD::ADDCARRY:
3282     BaseOp = SystemZISD::ADDCARRY;
3283     CCValid = SystemZ::CCMASK_LOGICAL;
3284     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3285     break;
3286   case ISD::SUBCARRY:
3287     BaseOp = SystemZISD::SUBCARRY;
3288     CCValid = SystemZ::CCMASK_LOGICAL;
3289     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3290     break;
3291   }
3292 
3293   // Set the condition code from the carry flag.
3294   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3295                       DAG.getConstant(CCValid, DL, MVT::i32),
3296                       DAG.getConstant(CCMask, DL, MVT::i32));
3297 
3298   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3299   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3300 
3301   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3302   if (N->getValueType(1) == MVT::i1)
3303     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3304 
3305   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3306 }
3307 
lowerCTPOP(SDValue Op,SelectionDAG & DAG) const3308 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3309                                           SelectionDAG &DAG) const {
3310   EVT VT = Op.getValueType();
3311   SDLoc DL(Op);
3312   Op = Op.getOperand(0);
3313 
3314   // Handle vector types via VPOPCT.
3315   if (VT.isVector()) {
3316     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3317     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3318     switch (VT.getScalarSizeInBits()) {
3319     case 8:
3320       break;
3321     case 16: {
3322       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3323       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3324       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3325       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3326       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3327       break;
3328     }
3329     case 32: {
3330       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3331                                 DAG.getConstant(0, DL, MVT::i32));
3332       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3333       break;
3334     }
3335     case 64: {
3336       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3337                                 DAG.getConstant(0, DL, MVT::i32));
3338       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3339       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3340       break;
3341     }
3342     default:
3343       llvm_unreachable("Unexpected type");
3344     }
3345     return Op;
3346   }
3347 
3348   // Get the known-zero mask for the operand.
3349   KnownBits Known;
3350   DAG.computeKnownBits(Op, Known);
3351   unsigned NumSignificantBits = (~Known.Zero).getActiveBits();
3352   if (NumSignificantBits == 0)
3353     return DAG.getConstant(0, DL, VT);
3354 
3355   // Skip known-zero high parts of the operand.
3356   int64_t OrigBitSize = VT.getSizeInBits();
3357   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3358   BitSize = std::min(BitSize, OrigBitSize);
3359 
3360   // The POPCNT instruction counts the number of bits in each byte.
3361   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3362   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3363   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3364 
3365   // Add up per-byte counts in a binary tree.  All bits of Op at
3366   // position larger than BitSize remain zero throughout.
3367   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3368     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3369     if (BitSize != OrigBitSize)
3370       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3371                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3372     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3373   }
3374 
3375   // Extract overall result from high byte.
3376   if (BitSize > 8)
3377     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3378                      DAG.getConstant(BitSize - 8, DL, VT));
3379 
3380   return Op;
3381 }
3382 
lowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG) const3383 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3384                                                  SelectionDAG &DAG) const {
3385   SDLoc DL(Op);
3386   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3387     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3388   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3389     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3390 
3391   // The only fence that needs an instruction is a sequentially-consistent
3392   // cross-thread fence.
3393   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3394       FenceSSID == SyncScope::System) {
3395     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3396                                       Op.getOperand(0)),
3397                    0);
3398   }
3399 
3400   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3401   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3402 }
3403 
3404 // Op is an atomic load.  Lower it into a normal volatile load.
lowerATOMIC_LOAD(SDValue Op,SelectionDAG & DAG) const3405 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3406                                                 SelectionDAG &DAG) const {
3407   auto *Node = cast<AtomicSDNode>(Op.getNode());
3408   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3409                         Node->getChain(), Node->getBasePtr(),
3410                         Node->getMemoryVT(), Node->getMemOperand());
3411 }
3412 
3413 // Op is an atomic store.  Lower it into a normal volatile store.
lowerATOMIC_STORE(SDValue Op,SelectionDAG & DAG) const3414 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3415                                                  SelectionDAG &DAG) const {
3416   auto *Node = cast<AtomicSDNode>(Op.getNode());
3417   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3418                                     Node->getBasePtr(), Node->getMemoryVT(),
3419                                     Node->getMemOperand());
3420   // We have to enforce sequential consistency by performing a
3421   // serialization operation after the store.
3422   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3423     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3424                                        MVT::Other, Chain), 0);
3425   return Chain;
3426 }
3427 
3428 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3429 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
lowerATOMIC_LOAD_OP(SDValue Op,SelectionDAG & DAG,unsigned Opcode) const3430 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3431                                                    SelectionDAG &DAG,
3432                                                    unsigned Opcode) const {
3433   auto *Node = cast<AtomicSDNode>(Op.getNode());
3434 
3435   // 32-bit operations need no code outside the main loop.
3436   EVT NarrowVT = Node->getMemoryVT();
3437   EVT WideVT = MVT::i32;
3438   if (NarrowVT == WideVT)
3439     return Op;
3440 
3441   int64_t BitSize = NarrowVT.getSizeInBits();
3442   SDValue ChainIn = Node->getChain();
3443   SDValue Addr = Node->getBasePtr();
3444   SDValue Src2 = Node->getVal();
3445   MachineMemOperand *MMO = Node->getMemOperand();
3446   SDLoc DL(Node);
3447   EVT PtrVT = Addr.getValueType();
3448 
3449   // Convert atomic subtracts of constants into additions.
3450   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3451     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3452       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3453       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3454     }
3455 
3456   // Get the address of the containing word.
3457   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3458                                     DAG.getConstant(-4, DL, PtrVT));
3459 
3460   // Get the number of bits that the word must be rotated left in order
3461   // to bring the field to the top bits of a GR32.
3462   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3463                                  DAG.getConstant(3, DL, PtrVT));
3464   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3465 
3466   // Get the complementing shift amount, for rotating a field in the top
3467   // bits back to its proper position.
3468   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3469                                     DAG.getConstant(0, DL, WideVT), BitShift);
3470 
3471   // Extend the source operand to 32 bits and prepare it for the inner loop.
3472   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3473   // operations require the source to be shifted in advance.  (This shift
3474   // can be folded if the source is constant.)  For AND and NAND, the lower
3475   // bits must be set, while for other opcodes they should be left clear.
3476   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3477     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3478                        DAG.getConstant(32 - BitSize, DL, WideVT));
3479   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3480       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3481     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3482                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3483 
3484   // Construct the ATOMIC_LOADW_* node.
3485   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3486   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3487                     DAG.getConstant(BitSize, DL, WideVT) };
3488   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3489                                              NarrowVT, MMO);
3490 
3491   // Rotate the result of the final CS so that the field is in the lower
3492   // bits of a GR32, then truncate it.
3493   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3494                                     DAG.getConstant(BitSize, DL, WideVT));
3495   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3496 
3497   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3498   return DAG.getMergeValues(RetOps, DL);
3499 }
3500 
3501 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3502 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3503 // operations into additions.
lowerATOMIC_LOAD_SUB(SDValue Op,SelectionDAG & DAG) const3504 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3505                                                     SelectionDAG &DAG) const {
3506   auto *Node = cast<AtomicSDNode>(Op.getNode());
3507   EVT MemVT = Node->getMemoryVT();
3508   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3509     // A full-width operation.
3510     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3511     SDValue Src2 = Node->getVal();
3512     SDValue NegSrc2;
3513     SDLoc DL(Src2);
3514 
3515     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3516       // Use an addition if the operand is constant and either LAA(G) is
3517       // available or the negative value is in the range of A(G)FHI.
3518       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3519       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3520         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3521     } else if (Subtarget.hasInterlockedAccess1())
3522       // Use LAA(G) if available.
3523       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3524                             Src2);
3525 
3526     if (NegSrc2.getNode())
3527       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3528                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3529                            Node->getMemOperand());
3530 
3531     // Use the node as-is.
3532     return Op;
3533   }
3534 
3535   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3536 }
3537 
3538 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
lowerATOMIC_CMP_SWAP(SDValue Op,SelectionDAG & DAG) const3539 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3540                                                     SelectionDAG &DAG) const {
3541   auto *Node = cast<AtomicSDNode>(Op.getNode());
3542   SDValue ChainIn = Node->getOperand(0);
3543   SDValue Addr = Node->getOperand(1);
3544   SDValue CmpVal = Node->getOperand(2);
3545   SDValue SwapVal = Node->getOperand(3);
3546   MachineMemOperand *MMO = Node->getMemOperand();
3547   SDLoc DL(Node);
3548 
3549   // We have native support for 32-bit and 64-bit compare and swap, but we
3550   // still need to expand extracting the "success" result from the CC.
3551   EVT NarrowVT = Node->getMemoryVT();
3552   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3553   if (NarrowVT == WideVT) {
3554     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3555     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3556     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
3557                                                DL, Tys, Ops, NarrowVT, MMO);
3558     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3559                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
3560 
3561     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3562     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3563     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3564     return SDValue();
3565   }
3566 
3567   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
3568   // via a fullword ATOMIC_CMP_SWAPW operation.
3569   int64_t BitSize = NarrowVT.getSizeInBits();
3570   EVT PtrVT = Addr.getValueType();
3571 
3572   // Get the address of the containing word.
3573   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3574                                     DAG.getConstant(-4, DL, PtrVT));
3575 
3576   // Get the number of bits that the word must be rotated left in order
3577   // to bring the field to the top bits of a GR32.
3578   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3579                                  DAG.getConstant(3, DL, PtrVT));
3580   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3581 
3582   // Get the complementing shift amount, for rotating a field in the top
3583   // bits back to its proper position.
3584   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3585                                     DAG.getConstant(0, DL, WideVT), BitShift);
3586 
3587   // Construct the ATOMIC_CMP_SWAPW node.
3588   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3589   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3590                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
3591   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
3592                                              VTList, Ops, NarrowVT, MMO);
3593   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3594                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
3595 
3596   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3597   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3598   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3599   return SDValue();
3600 }
3601 
lowerSTACKSAVE(SDValue Op,SelectionDAG & DAG) const3602 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
3603                                               SelectionDAG &DAG) const {
3604   MachineFunction &MF = DAG.getMachineFunction();
3605   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3606   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
3607                             SystemZ::R15D, Op.getValueType());
3608 }
3609 
lowerSTACKRESTORE(SDValue Op,SelectionDAG & DAG) const3610 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
3611                                                  SelectionDAG &DAG) const {
3612   MachineFunction &MF = DAG.getMachineFunction();
3613   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3614   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3615 
3616   SDValue Chain = Op.getOperand(0);
3617   SDValue NewSP = Op.getOperand(1);
3618   SDValue Backchain;
3619   SDLoc DL(Op);
3620 
3621   if (StoreBackchain) {
3622     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
3623     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3624   }
3625 
3626   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
3627 
3628   if (StoreBackchain)
3629     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3630 
3631   return Chain;
3632 }
3633 
lowerPREFETCH(SDValue Op,SelectionDAG & DAG) const3634 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
3635                                              SelectionDAG &DAG) const {
3636   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3637   if (!IsData)
3638     // Just preserve the chain.
3639     return Op.getOperand(0);
3640 
3641   SDLoc DL(Op);
3642   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3643   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
3644   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
3645   SDValue Ops[] = {
3646     Op.getOperand(0),
3647     DAG.getConstant(Code, DL, MVT::i32),
3648     Op.getOperand(1)
3649   };
3650   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
3651                                  Node->getVTList(), Ops,
3652                                  Node->getMemoryVT(), Node->getMemOperand());
3653 }
3654 
3655 // Convert condition code in CCReg to an i32 value.
getCCResult(SelectionDAG & DAG,SDValue CCReg)3656 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
3657   SDLoc DL(CCReg);
3658   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
3659   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
3660                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
3661 }
3662 
3663 SDValue
lowerINTRINSIC_W_CHAIN(SDValue Op,SelectionDAG & DAG) const3664 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
3665                                               SelectionDAG &DAG) const {
3666   unsigned Opcode, CCValid;
3667   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
3668     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
3669     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
3670     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
3671     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
3672     return SDValue();
3673   }
3674 
3675   return SDValue();
3676 }
3677 
3678 SDValue
lowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const3679 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
3680                                                SelectionDAG &DAG) const {
3681   unsigned Opcode, CCValid;
3682   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
3683     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
3684     if (Op->getNumValues() == 1)
3685       return getCCResult(DAG, SDValue(Node, 0));
3686     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
3687     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
3688                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
3689   }
3690 
3691   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3692   switch (Id) {
3693   case Intrinsic::thread_pointer:
3694     return lowerThreadPointer(SDLoc(Op), DAG);
3695 
3696   case Intrinsic::s390_vpdi:
3697     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
3698                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3699 
3700   case Intrinsic::s390_vperm:
3701     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
3702                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3703 
3704   case Intrinsic::s390_vuphb:
3705   case Intrinsic::s390_vuphh:
3706   case Intrinsic::s390_vuphf:
3707     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
3708                        Op.getOperand(1));
3709 
3710   case Intrinsic::s390_vuplhb:
3711   case Intrinsic::s390_vuplhh:
3712   case Intrinsic::s390_vuplhf:
3713     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
3714                        Op.getOperand(1));
3715 
3716   case Intrinsic::s390_vuplb:
3717   case Intrinsic::s390_vuplhw:
3718   case Intrinsic::s390_vuplf:
3719     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
3720                        Op.getOperand(1));
3721 
3722   case Intrinsic::s390_vupllb:
3723   case Intrinsic::s390_vupllh:
3724   case Intrinsic::s390_vupllf:
3725     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
3726                        Op.getOperand(1));
3727 
3728   case Intrinsic::s390_vsumb:
3729   case Intrinsic::s390_vsumh:
3730   case Intrinsic::s390_vsumgh:
3731   case Intrinsic::s390_vsumgf:
3732   case Intrinsic::s390_vsumqf:
3733   case Intrinsic::s390_vsumqg:
3734     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
3735                        Op.getOperand(1), Op.getOperand(2));
3736   }
3737 
3738   return SDValue();
3739 }
3740 
3741 namespace {
3742 // Says that SystemZISD operation Opcode can be used to perform the equivalent
3743 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
3744 // Operand is the constant third operand, otherwise it is the number of
3745 // bytes in each element of the result.
3746 struct Permute {
3747   unsigned Opcode;
3748   unsigned Operand;
3749   unsigned char Bytes[SystemZ::VectorBytes];
3750 };
3751 }
3752 
3753 static const Permute PermuteForms[] = {
3754   // VMRHG
3755   { SystemZISD::MERGE_HIGH, 8,
3756     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
3757   // VMRHF
3758   { SystemZISD::MERGE_HIGH, 4,
3759     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
3760   // VMRHH
3761   { SystemZISD::MERGE_HIGH, 2,
3762     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
3763   // VMRHB
3764   { SystemZISD::MERGE_HIGH, 1,
3765     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
3766   // VMRLG
3767   { SystemZISD::MERGE_LOW, 8,
3768     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
3769   // VMRLF
3770   { SystemZISD::MERGE_LOW, 4,
3771     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
3772   // VMRLH
3773   { SystemZISD::MERGE_LOW, 2,
3774     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
3775   // VMRLB
3776   { SystemZISD::MERGE_LOW, 1,
3777     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
3778   // VPKG
3779   { SystemZISD::PACK, 4,
3780     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
3781   // VPKF
3782   { SystemZISD::PACK, 2,
3783     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
3784   // VPKH
3785   { SystemZISD::PACK, 1,
3786     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
3787   // VPDI V1, V2, 4  (low half of V1, high half of V2)
3788   { SystemZISD::PERMUTE_DWORDS, 4,
3789     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
3790   // VPDI V1, V2, 1  (high half of V1, low half of V2)
3791   { SystemZISD::PERMUTE_DWORDS, 1,
3792     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
3793 };
3794 
3795 // Called after matching a vector shuffle against a particular pattern.
3796 // Both the original shuffle and the pattern have two vector operands.
3797 // OpNos[0] is the operand of the original shuffle that should be used for
3798 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
3799 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
3800 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
3801 // for operands 0 and 1 of the pattern.
chooseShuffleOpNos(int * OpNos,unsigned & OpNo0,unsigned & OpNo1)3802 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
3803   if (OpNos[0] < 0) {
3804     if (OpNos[1] < 0)
3805       return false;
3806     OpNo0 = OpNo1 = OpNos[1];
3807   } else if (OpNos[1] < 0) {
3808     OpNo0 = OpNo1 = OpNos[0];
3809   } else {
3810     OpNo0 = OpNos[0];
3811     OpNo1 = OpNos[1];
3812   }
3813   return true;
3814 }
3815 
3816 // Bytes is a VPERM-like permute vector, except that -1 is used for
3817 // undefined bytes.  Return true if the VPERM can be implemented using P.
3818 // When returning true set OpNo0 to the VPERM operand that should be
3819 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
3820 //
3821 // For example, if swapping the VPERM operands allows P to match, OpNo0
3822 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
3823 // operand, but rewriting it to use two duplicated operands allows it to
3824 // match P, then OpNo0 and OpNo1 will be the same.
matchPermute(const SmallVectorImpl<int> & Bytes,const Permute & P,unsigned & OpNo0,unsigned & OpNo1)3825 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
3826                          unsigned &OpNo0, unsigned &OpNo1) {
3827   int OpNos[] = { -1, -1 };
3828   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
3829     int Elt = Bytes[I];
3830     if (Elt >= 0) {
3831       // Make sure that the two permute vectors use the same suboperand
3832       // byte number.  Only the operand numbers (the high bits) are
3833       // allowed to differ.
3834       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
3835         return false;
3836       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
3837       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
3838       // Make sure that the operand mappings are consistent with previous
3839       // elements.
3840       if (OpNos[ModelOpNo] == 1 - RealOpNo)
3841         return false;
3842       OpNos[ModelOpNo] = RealOpNo;
3843     }
3844   }
3845   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3846 }
3847 
3848 // As above, but search for a matching permute.
matchPermute(const SmallVectorImpl<int> & Bytes,unsigned & OpNo0,unsigned & OpNo1)3849 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
3850                                    unsigned &OpNo0, unsigned &OpNo1) {
3851   for (auto &P : PermuteForms)
3852     if (matchPermute(Bytes, P, OpNo0, OpNo1))
3853       return &P;
3854   return nullptr;
3855 }
3856 
3857 // Bytes is a VPERM-like permute vector, except that -1 is used for
3858 // undefined bytes.  This permute is an operand of an outer permute.
3859 // See whether redistributing the -1 bytes gives a shuffle that can be
3860 // implemented using P.  If so, set Transform to a VPERM-like permute vector
3861 // that, when applied to the result of P, gives the original permute in Bytes.
matchDoublePermute(const SmallVectorImpl<int> & Bytes,const Permute & P,SmallVectorImpl<int> & Transform)3862 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3863                                const Permute &P,
3864                                SmallVectorImpl<int> &Transform) {
3865   unsigned To = 0;
3866   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
3867     int Elt = Bytes[From];
3868     if (Elt < 0)
3869       // Byte number From of the result is undefined.
3870       Transform[From] = -1;
3871     else {
3872       while (P.Bytes[To] != Elt) {
3873         To += 1;
3874         if (To == SystemZ::VectorBytes)
3875           return false;
3876       }
3877       Transform[From] = To;
3878     }
3879   }
3880   return true;
3881 }
3882 
3883 // As above, but search for a matching permute.
matchDoublePermute(const SmallVectorImpl<int> & Bytes,SmallVectorImpl<int> & Transform)3884 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3885                                          SmallVectorImpl<int> &Transform) {
3886   for (auto &P : PermuteForms)
3887     if (matchDoublePermute(Bytes, P, Transform))
3888       return &P;
3889   return nullptr;
3890 }
3891 
3892 // Convert the mask of the given shuffle op into a byte-level mask,
3893 // as if it had type vNi8.
getVPermMask(SDValue ShuffleOp,SmallVectorImpl<int> & Bytes)3894 static bool getVPermMask(SDValue ShuffleOp,
3895                          SmallVectorImpl<int> &Bytes) {
3896   EVT VT = ShuffleOp.getValueType();
3897   unsigned NumElements = VT.getVectorNumElements();
3898   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3899 
3900   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
3901     Bytes.resize(NumElements * BytesPerElement, -1);
3902     for (unsigned I = 0; I < NumElements; ++I) {
3903       int Index = VSN->getMaskElt(I);
3904       if (Index >= 0)
3905         for (unsigned J = 0; J < BytesPerElement; ++J)
3906           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
3907     }
3908     return true;
3909   }
3910   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
3911       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
3912     unsigned Index = ShuffleOp.getConstantOperandVal(1);
3913     Bytes.resize(NumElements * BytesPerElement, -1);
3914     for (unsigned I = 0; I < NumElements; ++I)
3915       for (unsigned J = 0; J < BytesPerElement; ++J)
3916         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
3917     return true;
3918   }
3919   return false;
3920 }
3921 
3922 // Bytes is a VPERM-like permute vector, except that -1 is used for
3923 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
3924 // the result come from a contiguous sequence of bytes from one input.
3925 // Set Base to the selector for the first byte if so.
getShuffleInput(const SmallVectorImpl<int> & Bytes,unsigned Start,unsigned BytesPerElement,int & Base)3926 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
3927                             unsigned BytesPerElement, int &Base) {
3928   Base = -1;
3929   for (unsigned I = 0; I < BytesPerElement; ++I) {
3930     if (Bytes[Start + I] >= 0) {
3931       unsigned Elem = Bytes[Start + I];
3932       if (Base < 0) {
3933         Base = Elem - I;
3934         // Make sure the bytes would come from one input operand.
3935         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
3936           return false;
3937       } else if (unsigned(Base) != Elem - I)
3938         return false;
3939     }
3940   }
3941   return true;
3942 }
3943 
3944 // Bytes is a VPERM-like permute vector, except that -1 is used for
3945 // undefined bytes.  Return true if it can be performed using VSLDI.
3946 // When returning true, set StartIndex to the shift amount and OpNo0
3947 // and OpNo1 to the VPERM operands that should be used as the first
3948 // and second shift operand respectively.
isShlDoublePermute(const SmallVectorImpl<int> & Bytes,unsigned & StartIndex,unsigned & OpNo0,unsigned & OpNo1)3949 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
3950                                unsigned &StartIndex, unsigned &OpNo0,
3951                                unsigned &OpNo1) {
3952   int OpNos[] = { -1, -1 };
3953   int Shift = -1;
3954   for (unsigned I = 0; I < 16; ++I) {
3955     int Index = Bytes[I];
3956     if (Index >= 0) {
3957       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
3958       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
3959       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
3960       if (Shift < 0)
3961         Shift = ExpectedShift;
3962       else if (Shift != ExpectedShift)
3963         return false;
3964       // Make sure that the operand mappings are consistent with previous
3965       // elements.
3966       if (OpNos[ModelOpNo] == 1 - RealOpNo)
3967         return false;
3968       OpNos[ModelOpNo] = RealOpNo;
3969     }
3970   }
3971   StartIndex = Shift;
3972   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3973 }
3974 
3975 // Create a node that performs P on operands Op0 and Op1, casting the
3976 // operands to the appropriate type.  The type of the result is determined by P.
getPermuteNode(SelectionDAG & DAG,const SDLoc & DL,const Permute & P,SDValue Op0,SDValue Op1)3977 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3978                               const Permute &P, SDValue Op0, SDValue Op1) {
3979   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
3980   // elements of a PACK are twice as wide as the outputs.
3981   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
3982                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
3983                       P.Operand);
3984   // Cast both operands to the appropriate type.
3985   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
3986                               SystemZ::VectorBytes / InBytes);
3987   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
3988   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
3989   SDValue Op;
3990   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
3991     SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
3992     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
3993   } else if (P.Opcode == SystemZISD::PACK) {
3994     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
3995                                  SystemZ::VectorBytes / P.Operand);
3996     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
3997   } else {
3998     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
3999   }
4000   return Op;
4001 }
4002 
4003 // Bytes is a VPERM-like permute vector, except that -1 is used for
4004 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4005 // VSLDI or VPERM.
getGeneralPermuteNode(SelectionDAG & DAG,const SDLoc & DL,SDValue * Ops,const SmallVectorImpl<int> & Bytes)4006 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4007                                      SDValue *Ops,
4008                                      const SmallVectorImpl<int> &Bytes) {
4009   for (unsigned I = 0; I < 2; ++I)
4010     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4011 
4012   // First see whether VSLDI can be used.
4013   unsigned StartIndex, OpNo0, OpNo1;
4014   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4015     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4016                        Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
4017 
4018   // Fall back on VPERM.  Construct an SDNode for the permute vector.
4019   SDValue IndexNodes[SystemZ::VectorBytes];
4020   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4021     if (Bytes[I] >= 0)
4022       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4023     else
4024       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4025   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4026   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
4027 }
4028 
4029 namespace {
4030 // Describes a general N-operand vector shuffle.
4031 struct GeneralShuffle {
GeneralShuffle__anonc28d03810311::GeneralShuffle4032   GeneralShuffle(EVT vt) : VT(vt) {}
4033   void addUndef();
4034   bool add(SDValue, unsigned);
4035   SDValue getNode(SelectionDAG &, const SDLoc &);
4036 
4037   // The operands of the shuffle.
4038   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4039 
4040   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4041   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4042   // Bytes[I] / SystemZ::VectorBytes.
4043   SmallVector<int, SystemZ::VectorBytes> Bytes;
4044 
4045   // The type of the shuffle result.
4046   EVT VT;
4047 };
4048 }
4049 
4050 // Add an extra undefined element to the shuffle.
addUndef()4051 void GeneralShuffle::addUndef() {
4052   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4053   for (unsigned I = 0; I < BytesPerElement; ++I)
4054     Bytes.push_back(-1);
4055 }
4056 
4057 // Add an extra element to the shuffle, taking it from element Elem of Op.
4058 // A null Op indicates a vector input whose value will be calculated later;
4059 // there is at most one such input per shuffle and it always has the same
4060 // type as the result. Aborts and returns false if the source vector elements
4061 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4062 // LLVM they become implicitly extended, but this is rare and not optimized.
add(SDValue Op,unsigned Elem)4063 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4064   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4065 
4066   // The source vector can have wider elements than the result,
4067   // either through an explicit TRUNCATE or because of type legalization.
4068   // We want the least significant part.
4069   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4070   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4071 
4072   // Return false if the source elements are smaller than their destination
4073   // elements.
4074   if (FromBytesPerElement < BytesPerElement)
4075     return false;
4076 
4077   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4078                    (FromBytesPerElement - BytesPerElement));
4079 
4080   // Look through things like shuffles and bitcasts.
4081   while (Op.getNode()) {
4082     if (Op.getOpcode() == ISD::BITCAST)
4083       Op = Op.getOperand(0);
4084     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4085       // See whether the bytes we need come from a contiguous part of one
4086       // operand.
4087       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4088       if (!getVPermMask(Op, OpBytes))
4089         break;
4090       int NewByte;
4091       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4092         break;
4093       if (NewByte < 0) {
4094         addUndef();
4095         return true;
4096       }
4097       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4098       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4099     } else if (Op.isUndef()) {
4100       addUndef();
4101       return true;
4102     } else
4103       break;
4104   }
4105 
4106   // Make sure that the source of the extraction is in Ops.
4107   unsigned OpNo = 0;
4108   for (; OpNo < Ops.size(); ++OpNo)
4109     if (Ops[OpNo] == Op)
4110       break;
4111   if (OpNo == Ops.size())
4112     Ops.push_back(Op);
4113 
4114   // Add the element to Bytes.
4115   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4116   for (unsigned I = 0; I < BytesPerElement; ++I)
4117     Bytes.push_back(Base + I);
4118 
4119   return true;
4120 }
4121 
4122 // Return SDNodes for the completed shuffle.
getNode(SelectionDAG & DAG,const SDLoc & DL)4123 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4124   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4125 
4126   if (Ops.size() == 0)
4127     return DAG.getUNDEF(VT);
4128 
4129   // Make sure that there are at least two shuffle operands.
4130   if (Ops.size() == 1)
4131     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4132 
4133   // Create a tree of shuffles, deferring root node until after the loop.
4134   // Try to redistribute the undefined elements of non-root nodes so that
4135   // the non-root shuffles match something like a pack or merge, then adjust
4136   // the parent node's permute vector to compensate for the new order.
4137   // Among other things, this copes with vectors like <2 x i16> that were
4138   // padded with undefined elements during type legalization.
4139   //
4140   // In the best case this redistribution will lead to the whole tree
4141   // using packs and merges.  It should rarely be a loss in other cases.
4142   unsigned Stride = 1;
4143   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4144     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4145       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4146 
4147       // Create a mask for just these two operands.
4148       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4149       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4150         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4151         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4152         if (OpNo == I)
4153           NewBytes[J] = Byte;
4154         else if (OpNo == I + Stride)
4155           NewBytes[J] = SystemZ::VectorBytes + Byte;
4156         else
4157           NewBytes[J] = -1;
4158       }
4159       // See if it would be better to reorganize NewMask to avoid using VPERM.
4160       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4161       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4162         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4163         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4164         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4165           if (NewBytes[J] >= 0) {
4166             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4167                    "Invalid double permute");
4168             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4169           } else
4170             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4171         }
4172       } else {
4173         // Just use NewBytes on the operands.
4174         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4175         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4176           if (NewBytes[J] >= 0)
4177             Bytes[J] = I * SystemZ::VectorBytes + J;
4178       }
4179     }
4180   }
4181 
4182   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4183   if (Stride > 1) {
4184     Ops[1] = Ops[Stride];
4185     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4186       if (Bytes[I] >= int(SystemZ::VectorBytes))
4187         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4188   }
4189 
4190   // Look for an instruction that can do the permute without resorting
4191   // to VPERM.
4192   unsigned OpNo0, OpNo1;
4193   SDValue Op;
4194   if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4195     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4196   else
4197     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4198   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4199 }
4200 
4201 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
isScalarToVector(SDValue Op)4202 static bool isScalarToVector(SDValue Op) {
4203   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4204     if (!Op.getOperand(I).isUndef())
4205       return false;
4206   return true;
4207 }
4208 
4209 // Return a vector of type VT that contains Value in the first element.
4210 // The other elements don't matter.
buildScalarToVector(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SDValue Value)4211 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4212                                    SDValue Value) {
4213   // If we have a constant, replicate it to all elements and let the
4214   // BUILD_VECTOR lowering take care of it.
4215   if (Value.getOpcode() == ISD::Constant ||
4216       Value.getOpcode() == ISD::ConstantFP) {
4217     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4218     return DAG.getBuildVector(VT, DL, Ops);
4219   }
4220   if (Value.isUndef())
4221     return DAG.getUNDEF(VT);
4222   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4223 }
4224 
4225 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4226 // element 1.  Used for cases in which replication is cheap.
buildMergeScalars(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SDValue Op0,SDValue Op1)4227 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4228                                  SDValue Op0, SDValue Op1) {
4229   if (Op0.isUndef()) {
4230     if (Op1.isUndef())
4231       return DAG.getUNDEF(VT);
4232     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4233   }
4234   if (Op1.isUndef())
4235     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4236   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4237                      buildScalarToVector(DAG, DL, VT, Op0),
4238                      buildScalarToVector(DAG, DL, VT, Op1));
4239 }
4240 
4241 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4242 // vector for them.
joinDwords(SelectionDAG & DAG,const SDLoc & DL,SDValue Op0,SDValue Op1)4243 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4244                           SDValue Op1) {
4245   if (Op0.isUndef() && Op1.isUndef())
4246     return DAG.getUNDEF(MVT::v2i64);
4247   // If one of the two inputs is undefined then replicate the other one,
4248   // in order to avoid using another register unnecessarily.
4249   if (Op0.isUndef())
4250     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4251   else if (Op1.isUndef())
4252     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4253   else {
4254     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4255     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4256   }
4257   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4258 }
4259 
4260 // Try to represent constant BUILD_VECTOR node BVN using a
4261 // SystemZISD::BYTE_MASK-style mask.  Store the mask value in Mask
4262 // on success.
tryBuildVectorByteMask(BuildVectorSDNode * BVN,uint64_t & Mask)4263 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) {
4264   EVT ElemVT = BVN->getValueType(0).getVectorElementType();
4265   unsigned BytesPerElement = ElemVT.getStoreSize();
4266   for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) {
4267     SDValue Op = BVN->getOperand(I);
4268     if (!Op.isUndef()) {
4269       uint64_t Value;
4270       if (Op.getOpcode() == ISD::Constant)
4271         Value = cast<ConstantSDNode>(Op)->getZExtValue();
4272       else if (Op.getOpcode() == ISD::ConstantFP)
4273         Value = (cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()
4274                  .getZExtValue());
4275       else
4276         return false;
4277       for (unsigned J = 0; J < BytesPerElement; ++J) {
4278         uint64_t Byte = (Value >> (J * 8)) & 0xff;
4279         if (Byte == 0xff)
4280           Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J);
4281         else if (Byte != 0)
4282           return false;
4283       }
4284     }
4285   }
4286   return true;
4287 }
4288 
4289 // Try to load a vector constant in which BitsPerElement-bit value Value
4290 // is replicated to fill the vector.  VT is the type of the resulting
4291 // constant, which may have elements of a different size from BitsPerElement.
4292 // Return the SDValue of the constant on success, otherwise return
4293 // an empty value.
tryBuildVectorReplicate(SelectionDAG & DAG,const SystemZInstrInfo * TII,const SDLoc & DL,EVT VT,uint64_t Value,unsigned BitsPerElement)4294 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG,
4295                                        const SystemZInstrInfo *TII,
4296                                        const SDLoc &DL, EVT VT, uint64_t Value,
4297                                        unsigned BitsPerElement) {
4298   // Signed 16-bit values can be replicated using VREPI.
4299   // Mark the constants as opaque or DAGCombiner will convert back to
4300   // BUILD_VECTOR.
4301   int64_t SignedValue = SignExtend64(Value, BitsPerElement);
4302   if (isInt<16>(SignedValue)) {
4303     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4304                                  SystemZ::VectorBits / BitsPerElement);
4305     SDValue Op = DAG.getNode(
4306         SystemZISD::REPLICATE, DL, VecVT,
4307         DAG.getConstant(SignedValue, DL, MVT::i32, false, true /*isOpaque*/));
4308     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4309   }
4310   // See whether rotating the constant left some N places gives a value that
4311   // is one less than a power of 2 (i.e. all zeros followed by all ones).
4312   // If so we can use VGM.
4313   unsigned Start, End;
4314   if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) {
4315     // isRxSBGMask returns the bit numbers for a full 64-bit value,
4316     // with 0 denoting 1 << 63 and 63 denoting 1.  Convert them to
4317     // bit numbers for an BitsPerElement value, so that 0 denotes
4318     // 1 << (BitsPerElement-1).
4319     Start -= 64 - BitsPerElement;
4320     End -= 64 - BitsPerElement;
4321     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4322                                  SystemZ::VectorBits / BitsPerElement);
4323     SDValue Op = DAG.getNode(
4324         SystemZISD::ROTATE_MASK, DL, VecVT,
4325         DAG.getConstant(Start, DL, MVT::i32, false, true /*isOpaque*/),
4326         DAG.getConstant(End, DL, MVT::i32, false, true /*isOpaque*/));
4327     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4328   }
4329   return SDValue();
4330 }
4331 
4332 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4333 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4334 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4335 // would benefit from this representation and return it if so.
tryBuildVectorShuffle(SelectionDAG & DAG,BuildVectorSDNode * BVN)4336 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4337                                      BuildVectorSDNode *BVN) {
4338   EVT VT = BVN->getValueType(0);
4339   unsigned NumElements = VT.getVectorNumElements();
4340 
4341   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4342   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4343   // need a BUILD_VECTOR, add an additional placeholder operand for that
4344   // BUILD_VECTOR and store its operands in ResidueOps.
4345   GeneralShuffle GS(VT);
4346   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4347   bool FoundOne = false;
4348   for (unsigned I = 0; I < NumElements; ++I) {
4349     SDValue Op = BVN->getOperand(I);
4350     if (Op.getOpcode() == ISD::TRUNCATE)
4351       Op = Op.getOperand(0);
4352     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4353         Op.getOperand(1).getOpcode() == ISD::Constant) {
4354       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4355       if (!GS.add(Op.getOperand(0), Elem))
4356         return SDValue();
4357       FoundOne = true;
4358     } else if (Op.isUndef()) {
4359       GS.addUndef();
4360     } else {
4361       if (!GS.add(SDValue(), ResidueOps.size()))
4362         return SDValue();
4363       ResidueOps.push_back(BVN->getOperand(I));
4364     }
4365   }
4366 
4367   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4368   if (!FoundOne)
4369     return SDValue();
4370 
4371   // Create the BUILD_VECTOR for the remaining elements, if any.
4372   if (!ResidueOps.empty()) {
4373     while (ResidueOps.size() < NumElements)
4374       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4375     for (auto &Op : GS.Ops) {
4376       if (!Op.getNode()) {
4377         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4378         break;
4379       }
4380     }
4381   }
4382   return GS.getNode(DAG, SDLoc(BVN));
4383 }
4384 
4385 // Combine GPR scalar values Elems into a vector of type VT.
buildVector(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SmallVectorImpl<SDValue> & Elems)4386 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4387                            SmallVectorImpl<SDValue> &Elems) {
4388   // See whether there is a single replicated value.
4389   SDValue Single;
4390   unsigned int NumElements = Elems.size();
4391   unsigned int Count = 0;
4392   for (auto Elem : Elems) {
4393     if (!Elem.isUndef()) {
4394       if (!Single.getNode())
4395         Single = Elem;
4396       else if (Elem != Single) {
4397         Single = SDValue();
4398         break;
4399       }
4400       Count += 1;
4401     }
4402   }
4403   // There are three cases here:
4404   //
4405   // - if the only defined element is a loaded one, the best sequence
4406   //   is a replicating load.
4407   //
4408   // - otherwise, if the only defined element is an i64 value, we will
4409   //   end up with the same VLVGP sequence regardless of whether we short-cut
4410   //   for replication or fall through to the later code.
4411   //
4412   // - otherwise, if the only defined element is an i32 or smaller value,
4413   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4414   //   This is only a win if the single defined element is used more than once.
4415   //   In other cases we're better off using a single VLVGx.
4416   if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD))
4417     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4418 
4419   // If all elements are loads, use VLREP/VLEs (below).
4420   bool AllLoads = true;
4421   for (auto Elem : Elems)
4422     if (Elem.getOpcode() != ISD::LOAD || cast<LoadSDNode>(Elem)->isIndexed()) {
4423       AllLoads = false;
4424       break;
4425     }
4426 
4427   // The best way of building a v2i64 from two i64s is to use VLVGP.
4428   if (VT == MVT::v2i64 && !AllLoads)
4429     return joinDwords(DAG, DL, Elems[0], Elems[1]);
4430 
4431   // Use a 64-bit merge high to combine two doubles.
4432   if (VT == MVT::v2f64 && !AllLoads)
4433     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4434 
4435   // Build v4f32 values directly from the FPRs:
4436   //
4437   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4438   //         V              V         VMRHF
4439   //      <ABxx>         <CDxx>
4440   //                V                 VMRHG
4441   //              <ABCD>
4442   if (VT == MVT::v4f32 && !AllLoads) {
4443     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4444     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4445     // Avoid unnecessary undefs by reusing the other operand.
4446     if (Op01.isUndef())
4447       Op01 = Op23;
4448     else if (Op23.isUndef())
4449       Op23 = Op01;
4450     // Merging identical replications is a no-op.
4451     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4452       return Op01;
4453     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4454     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4455     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4456                              DL, MVT::v2i64, Op01, Op23);
4457     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4458   }
4459 
4460   // Collect the constant terms.
4461   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4462   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4463 
4464   unsigned NumConstants = 0;
4465   for (unsigned I = 0; I < NumElements; ++I) {
4466     SDValue Elem = Elems[I];
4467     if (Elem.getOpcode() == ISD::Constant ||
4468         Elem.getOpcode() == ISD::ConstantFP) {
4469       NumConstants += 1;
4470       Constants[I] = Elem;
4471       Done[I] = true;
4472     }
4473   }
4474   // If there was at least one constant, fill in the other elements of
4475   // Constants with undefs to get a full vector constant and use that
4476   // as the starting point.
4477   SDValue Result;
4478   if (NumConstants > 0) {
4479     for (unsigned I = 0; I < NumElements; ++I)
4480       if (!Constants[I].getNode())
4481         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4482     Result = DAG.getBuildVector(VT, DL, Constants);
4483   } else {
4484     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
4485     // avoid a false dependency on any previous contents of the vector
4486     // register.
4487 
4488     // Use a VLREP if at least one element is a load.
4489     unsigned LoadElIdx = UINT_MAX;
4490     for (unsigned I = 0; I < NumElements; ++I)
4491       if (Elems[I].getOpcode() == ISD::LOAD &&
4492           cast<LoadSDNode>(Elems[I])->isUnindexed()) {
4493         LoadElIdx = I;
4494         break;
4495       }
4496     if (LoadElIdx != UINT_MAX) {
4497       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, Elems[LoadElIdx]);
4498       Done[LoadElIdx] = true;
4499     } else {
4500       // Try to use VLVGP.
4501       unsigned I1 = NumElements / 2 - 1;
4502       unsigned I2 = NumElements - 1;
4503       bool Def1 = !Elems[I1].isUndef();
4504       bool Def2 = !Elems[I2].isUndef();
4505       if (Def1 || Def2) {
4506         SDValue Elem1 = Elems[Def1 ? I1 : I2];
4507         SDValue Elem2 = Elems[Def2 ? I2 : I1];
4508         Result = DAG.getNode(ISD::BITCAST, DL, VT,
4509                              joinDwords(DAG, DL, Elem1, Elem2));
4510         Done[I1] = true;
4511         Done[I2] = true;
4512       } else
4513         Result = DAG.getUNDEF(VT);
4514     }
4515   }
4516 
4517   // Use VLVGx to insert the other elements.
4518   for (unsigned I = 0; I < NumElements; ++I)
4519     if (!Done[I] && !Elems[I].isUndef())
4520       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4521                            DAG.getConstant(I, DL, MVT::i32));
4522   return Result;
4523 }
4524 
lowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const4525 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4526                                                  SelectionDAG &DAG) const {
4527   const SystemZInstrInfo *TII =
4528     static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
4529   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4530   SDLoc DL(Op);
4531   EVT VT = Op.getValueType();
4532 
4533   if (BVN->isConstant()) {
4534     // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
4535     // preferred way of creating all-zero and all-one vectors so give it
4536     // priority over other methods below.
4537     uint64_t Mask = 0;
4538     if (tryBuildVectorByteMask(BVN, Mask)) {
4539       SDValue Op = DAG.getNode(
4540           SystemZISD::BYTE_MASK, DL, MVT::v16i8,
4541           DAG.getConstant(Mask, DL, MVT::i32, false, true /*isOpaque*/));
4542       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4543     }
4544 
4545     // Try using some form of replication.
4546     APInt SplatBits, SplatUndef;
4547     unsigned SplatBitSize;
4548     bool HasAnyUndefs;
4549     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4550                              8, true) &&
4551         SplatBitSize <= 64) {
4552       // First try assuming that any undefined bits above the highest set bit
4553       // and below the lowest set bit are 1s.  This increases the likelihood of
4554       // being able to use a sign-extended element value in VECTOR REPLICATE
4555       // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
4556       uint64_t SplatBitsZ = SplatBits.getZExtValue();
4557       uint64_t SplatUndefZ = SplatUndef.getZExtValue();
4558       uint64_t Lower = (SplatUndefZ
4559                         & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
4560       uint64_t Upper = (SplatUndefZ
4561                         & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
4562       uint64_t Value = SplatBitsZ | Upper | Lower;
4563       SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value,
4564                                            SplatBitSize);
4565       if (Op.getNode())
4566         return Op;
4567 
4568       // Now try assuming that any undefined bits between the first and
4569       // last defined set bits are set.  This increases the chances of
4570       // using a non-wraparound mask.
4571       uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
4572       Value = SplatBitsZ | Middle;
4573       Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize);
4574       if (Op.getNode())
4575         return Op;
4576     }
4577 
4578     // Fall back to loading it from memory.
4579     return SDValue();
4580   }
4581 
4582   // See if we should use shuffles to construct the vector from other vectors.
4583   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4584     return Res;
4585 
4586   // Detect SCALAR_TO_VECTOR conversions.
4587   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4588     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4589 
4590   // Otherwise use buildVector to build the vector up from GPRs.
4591   unsigned NumElements = Op.getNumOperands();
4592   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4593   for (unsigned I = 0; I < NumElements; ++I)
4594     Ops[I] = Op.getOperand(I);
4595   return buildVector(DAG, DL, VT, Ops);
4596 }
4597 
lowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const4598 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4599                                                    SelectionDAG &DAG) const {
4600   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4601   SDLoc DL(Op);
4602   EVT VT = Op.getValueType();
4603   unsigned NumElements = VT.getVectorNumElements();
4604 
4605   if (VSN->isSplat()) {
4606     SDValue Op0 = Op.getOperand(0);
4607     unsigned Index = VSN->getSplatIndex();
4608     assert(Index < VT.getVectorNumElements() &&
4609            "Splat index should be defined and in first operand");
4610     // See whether the value we're splatting is directly available as a scalar.
4611     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4612         Op0.getOpcode() == ISD::BUILD_VECTOR)
4613       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4614     // Otherwise keep it as a vector-to-vector operation.
4615     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4616                        DAG.getConstant(Index, DL, MVT::i32));
4617   }
4618 
4619   GeneralShuffle GS(VT);
4620   for (unsigned I = 0; I < NumElements; ++I) {
4621     int Elt = VSN->getMaskElt(I);
4622     if (Elt < 0)
4623       GS.addUndef();
4624     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4625                      unsigned(Elt) % NumElements))
4626       return SDValue();
4627   }
4628   return GS.getNode(DAG, SDLoc(VSN));
4629 }
4630 
lowerSCALAR_TO_VECTOR(SDValue Op,SelectionDAG & DAG) const4631 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4632                                                      SelectionDAG &DAG) const {
4633   SDLoc DL(Op);
4634   // Just insert the scalar into element 0 of an undefined vector.
4635   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4636                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4637                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4638 }
4639 
lowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const4640 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4641                                                       SelectionDAG &DAG) const {
4642   // Handle insertions of floating-point values.
4643   SDLoc DL(Op);
4644   SDValue Op0 = Op.getOperand(0);
4645   SDValue Op1 = Op.getOperand(1);
4646   SDValue Op2 = Op.getOperand(2);
4647   EVT VT = Op.getValueType();
4648 
4649   // Insertions into constant indices of a v2f64 can be done using VPDI.
4650   // However, if the inserted value is a bitcast or a constant then it's
4651   // better to use GPRs, as below.
4652   if (VT == MVT::v2f64 &&
4653       Op1.getOpcode() != ISD::BITCAST &&
4654       Op1.getOpcode() != ISD::ConstantFP &&
4655       Op2.getOpcode() == ISD::Constant) {
4656     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
4657     unsigned Mask = VT.getVectorNumElements() - 1;
4658     if (Index <= Mask)
4659       return Op;
4660   }
4661 
4662   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4663   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
4664   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4665   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4666                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4667                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4668   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4669 }
4670 
4671 SDValue
lowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const4672 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4673                                                SelectionDAG &DAG) const {
4674   // Handle extractions of floating-point values.
4675   SDLoc DL(Op);
4676   SDValue Op0 = Op.getOperand(0);
4677   SDValue Op1 = Op.getOperand(1);
4678   EVT VT = Op.getValueType();
4679   EVT VecVT = Op0.getValueType();
4680 
4681   // Extractions of constant indices can be done directly.
4682   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
4683     uint64_t Index = CIndexN->getZExtValue();
4684     unsigned Mask = VecVT.getVectorNumElements() - 1;
4685     if (Index <= Mask)
4686       return Op;
4687   }
4688 
4689   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
4690   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
4691   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
4692   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
4693                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
4694   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4695 }
4696 
4697 SDValue
lowerExtendVectorInreg(SDValue Op,SelectionDAG & DAG,unsigned UnpackHigh) const4698 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
4699                                               unsigned UnpackHigh) const {
4700   SDValue PackedOp = Op.getOperand(0);
4701   EVT OutVT = Op.getValueType();
4702   EVT InVT = PackedOp.getValueType();
4703   unsigned ToBits = OutVT.getScalarSizeInBits();
4704   unsigned FromBits = InVT.getScalarSizeInBits();
4705   do {
4706     FromBits *= 2;
4707     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
4708                                  SystemZ::VectorBits / FromBits);
4709     PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
4710   } while (FromBits != ToBits);
4711   return PackedOp;
4712 }
4713 
lowerShift(SDValue Op,SelectionDAG & DAG,unsigned ByScalar) const4714 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
4715                                           unsigned ByScalar) const {
4716   // Look for cases where a vector shift can use the *_BY_SCALAR form.
4717   SDValue Op0 = Op.getOperand(0);
4718   SDValue Op1 = Op.getOperand(1);
4719   SDLoc DL(Op);
4720   EVT VT = Op.getValueType();
4721   unsigned ElemBitSize = VT.getScalarSizeInBits();
4722 
4723   // See whether the shift vector is a splat represented as BUILD_VECTOR.
4724   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
4725     APInt SplatBits, SplatUndef;
4726     unsigned SplatBitSize;
4727     bool HasAnyUndefs;
4728     // Check for constant splats.  Use ElemBitSize as the minimum element
4729     // width and reject splats that need wider elements.
4730     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4731                              ElemBitSize, true) &&
4732         SplatBitSize == ElemBitSize) {
4733       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
4734                                       DL, MVT::i32);
4735       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4736     }
4737     // Check for variable splats.
4738     BitVector UndefElements;
4739     SDValue Splat = BVN->getSplatValue(&UndefElements);
4740     if (Splat) {
4741       // Since i32 is the smallest legal type, we either need a no-op
4742       // or a truncation.
4743       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
4744       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4745     }
4746   }
4747 
4748   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
4749   // and the shift amount is directly available in a GPR.
4750   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
4751     if (VSN->isSplat()) {
4752       SDValue VSNOp0 = VSN->getOperand(0);
4753       unsigned Index = VSN->getSplatIndex();
4754       assert(Index < VT.getVectorNumElements() &&
4755              "Splat index should be defined and in first operand");
4756       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4757           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
4758         // Since i32 is the smallest legal type, we either need a no-op
4759         // or a truncation.
4760         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
4761                                     VSNOp0.getOperand(Index));
4762         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4763       }
4764     }
4765   }
4766 
4767   // Otherwise just treat the current form as legal.
4768   return Op;
4769 }
4770 
LowerOperation(SDValue Op,SelectionDAG & DAG) const4771 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
4772                                               SelectionDAG &DAG) const {
4773   switch (Op.getOpcode()) {
4774   case ISD::FRAMEADDR:
4775     return lowerFRAMEADDR(Op, DAG);
4776   case ISD::RETURNADDR:
4777     return lowerRETURNADDR(Op, DAG);
4778   case ISD::BR_CC:
4779     return lowerBR_CC(Op, DAG);
4780   case ISD::SELECT_CC:
4781     return lowerSELECT_CC(Op, DAG);
4782   case ISD::SETCC:
4783     return lowerSETCC(Op, DAG);
4784   case ISD::GlobalAddress:
4785     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
4786   case ISD::GlobalTLSAddress:
4787     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
4788   case ISD::BlockAddress:
4789     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
4790   case ISD::JumpTable:
4791     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
4792   case ISD::ConstantPool:
4793     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
4794   case ISD::BITCAST:
4795     return lowerBITCAST(Op, DAG);
4796   case ISD::VASTART:
4797     return lowerVASTART(Op, DAG);
4798   case ISD::VACOPY:
4799     return lowerVACOPY(Op, DAG);
4800   case ISD::DYNAMIC_STACKALLOC:
4801     return lowerDYNAMIC_STACKALLOC(Op, DAG);
4802   case ISD::GET_DYNAMIC_AREA_OFFSET:
4803     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
4804   case ISD::SMUL_LOHI:
4805     return lowerSMUL_LOHI(Op, DAG);
4806   case ISD::UMUL_LOHI:
4807     return lowerUMUL_LOHI(Op, DAG);
4808   case ISD::SDIVREM:
4809     return lowerSDIVREM(Op, DAG);
4810   case ISD::UDIVREM:
4811     return lowerUDIVREM(Op, DAG);
4812   case ISD::SADDO:
4813   case ISD::SSUBO:
4814   case ISD::UADDO:
4815   case ISD::USUBO:
4816     return lowerXALUO(Op, DAG);
4817   case ISD::ADDCARRY:
4818   case ISD::SUBCARRY:
4819     return lowerADDSUBCARRY(Op, DAG);
4820   case ISD::OR:
4821     return lowerOR(Op, DAG);
4822   case ISD::CTPOP:
4823     return lowerCTPOP(Op, DAG);
4824   case ISD::ATOMIC_FENCE:
4825     return lowerATOMIC_FENCE(Op, DAG);
4826   case ISD::ATOMIC_SWAP:
4827     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
4828   case ISD::ATOMIC_STORE:
4829     return lowerATOMIC_STORE(Op, DAG);
4830   case ISD::ATOMIC_LOAD:
4831     return lowerATOMIC_LOAD(Op, DAG);
4832   case ISD::ATOMIC_LOAD_ADD:
4833     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
4834   case ISD::ATOMIC_LOAD_SUB:
4835     return lowerATOMIC_LOAD_SUB(Op, DAG);
4836   case ISD::ATOMIC_LOAD_AND:
4837     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
4838   case ISD::ATOMIC_LOAD_OR:
4839     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
4840   case ISD::ATOMIC_LOAD_XOR:
4841     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
4842   case ISD::ATOMIC_LOAD_NAND:
4843     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
4844   case ISD::ATOMIC_LOAD_MIN:
4845     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
4846   case ISD::ATOMIC_LOAD_MAX:
4847     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
4848   case ISD::ATOMIC_LOAD_UMIN:
4849     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
4850   case ISD::ATOMIC_LOAD_UMAX:
4851     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
4852   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4853     return lowerATOMIC_CMP_SWAP(Op, DAG);
4854   case ISD::STACKSAVE:
4855     return lowerSTACKSAVE(Op, DAG);
4856   case ISD::STACKRESTORE:
4857     return lowerSTACKRESTORE(Op, DAG);
4858   case ISD::PREFETCH:
4859     return lowerPREFETCH(Op, DAG);
4860   case ISD::INTRINSIC_W_CHAIN:
4861     return lowerINTRINSIC_W_CHAIN(Op, DAG);
4862   case ISD::INTRINSIC_WO_CHAIN:
4863     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
4864   case ISD::BUILD_VECTOR:
4865     return lowerBUILD_VECTOR(Op, DAG);
4866   case ISD::VECTOR_SHUFFLE:
4867     return lowerVECTOR_SHUFFLE(Op, DAG);
4868   case ISD::SCALAR_TO_VECTOR:
4869     return lowerSCALAR_TO_VECTOR(Op, DAG);
4870   case ISD::INSERT_VECTOR_ELT:
4871     return lowerINSERT_VECTOR_ELT(Op, DAG);
4872   case ISD::EXTRACT_VECTOR_ELT:
4873     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4874   case ISD::SIGN_EXTEND_VECTOR_INREG:
4875     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
4876   case ISD::ZERO_EXTEND_VECTOR_INREG:
4877     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
4878   case ISD::SHL:
4879     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
4880   case ISD::SRL:
4881     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
4882   case ISD::SRA:
4883     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
4884   default:
4885     llvm_unreachable("Unexpected node to lower");
4886   }
4887 }
4888 
4889 // Lower operations with invalid operand or result types (currently used
4890 // only for 128-bit integer types).
4891 
lowerI128ToGR128(SelectionDAG & DAG,SDValue In)4892 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
4893   SDLoc DL(In);
4894   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4895                            DAG.getIntPtrConstant(0, DL));
4896   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4897                            DAG.getIntPtrConstant(1, DL));
4898   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
4899                                     MVT::Untyped, Hi, Lo);
4900   return SDValue(Pair, 0);
4901 }
4902 
lowerGR128ToI128(SelectionDAG & DAG,SDValue In)4903 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
4904   SDLoc DL(In);
4905   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
4906                                           DL, MVT::i64, In);
4907   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
4908                                           DL, MVT::i64, In);
4909   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
4910 }
4911 
4912 void
LowerOperationWrapper(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const4913 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
4914                                              SmallVectorImpl<SDValue> &Results,
4915                                              SelectionDAG &DAG) const {
4916   switch (N->getOpcode()) {
4917   case ISD::ATOMIC_LOAD: {
4918     SDLoc DL(N);
4919     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
4920     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
4921     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4922     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
4923                                           DL, Tys, Ops, MVT::i128, MMO);
4924     Results.push_back(lowerGR128ToI128(DAG, Res));
4925     Results.push_back(Res.getValue(1));
4926     break;
4927   }
4928   case ISD::ATOMIC_STORE: {
4929     SDLoc DL(N);
4930     SDVTList Tys = DAG.getVTList(MVT::Other);
4931     SDValue Ops[] = { N->getOperand(0),
4932                       lowerI128ToGR128(DAG, N->getOperand(2)),
4933                       N->getOperand(1) };
4934     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4935     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
4936                                           DL, Tys, Ops, MVT::i128, MMO);
4937     // We have to enforce sequential consistency by performing a
4938     // serialization operation after the store.
4939     if (cast<AtomicSDNode>(N)->getOrdering() ==
4940         AtomicOrdering::SequentiallyConsistent)
4941       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
4942                                        MVT::Other, Res), 0);
4943     Results.push_back(Res);
4944     break;
4945   }
4946   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
4947     SDLoc DL(N);
4948     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
4949     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
4950                       lowerI128ToGR128(DAG, N->getOperand(2)),
4951                       lowerI128ToGR128(DAG, N->getOperand(3)) };
4952     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4953     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
4954                                           DL, Tys, Ops, MVT::i128, MMO);
4955     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
4956                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4957     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
4958     Results.push_back(lowerGR128ToI128(DAG, Res));
4959     Results.push_back(Success);
4960     Results.push_back(Res.getValue(2));
4961     break;
4962   }
4963   default:
4964     llvm_unreachable("Unexpected node to lower");
4965   }
4966 }
4967 
4968 void
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const4969 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
4970                                           SmallVectorImpl<SDValue> &Results,
4971                                           SelectionDAG &DAG) const {
4972   return LowerOperationWrapper(N, Results, DAG);
4973 }
4974 
getTargetNodeName(unsigned Opcode) const4975 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
4976 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
4977   switch ((SystemZISD::NodeType)Opcode) {
4978     case SystemZISD::FIRST_NUMBER: break;
4979     OPCODE(RET_FLAG);
4980     OPCODE(CALL);
4981     OPCODE(SIBCALL);
4982     OPCODE(TLS_GDCALL);
4983     OPCODE(TLS_LDCALL);
4984     OPCODE(PCREL_WRAPPER);
4985     OPCODE(PCREL_OFFSET);
4986     OPCODE(IABS);
4987     OPCODE(ICMP);
4988     OPCODE(FCMP);
4989     OPCODE(TM);
4990     OPCODE(BR_CCMASK);
4991     OPCODE(SELECT_CCMASK);
4992     OPCODE(ADJDYNALLOC);
4993     OPCODE(POPCNT);
4994     OPCODE(SMUL_LOHI);
4995     OPCODE(UMUL_LOHI);
4996     OPCODE(SDIVREM);
4997     OPCODE(UDIVREM);
4998     OPCODE(SADDO);
4999     OPCODE(SSUBO);
5000     OPCODE(UADDO);
5001     OPCODE(USUBO);
5002     OPCODE(ADDCARRY);
5003     OPCODE(SUBCARRY);
5004     OPCODE(GET_CCMASK);
5005     OPCODE(MVC);
5006     OPCODE(MVC_LOOP);
5007     OPCODE(NC);
5008     OPCODE(NC_LOOP);
5009     OPCODE(OC);
5010     OPCODE(OC_LOOP);
5011     OPCODE(XC);
5012     OPCODE(XC_LOOP);
5013     OPCODE(CLC);
5014     OPCODE(CLC_LOOP);
5015     OPCODE(STPCPY);
5016     OPCODE(STRCMP);
5017     OPCODE(SEARCH_STRING);
5018     OPCODE(IPM);
5019     OPCODE(MEMBARRIER);
5020     OPCODE(TBEGIN);
5021     OPCODE(TBEGIN_NOFLOAT);
5022     OPCODE(TEND);
5023     OPCODE(BYTE_MASK);
5024     OPCODE(ROTATE_MASK);
5025     OPCODE(REPLICATE);
5026     OPCODE(JOIN_DWORDS);
5027     OPCODE(SPLAT);
5028     OPCODE(MERGE_HIGH);
5029     OPCODE(MERGE_LOW);
5030     OPCODE(SHL_DOUBLE);
5031     OPCODE(PERMUTE_DWORDS);
5032     OPCODE(PERMUTE);
5033     OPCODE(PACK);
5034     OPCODE(PACKS_CC);
5035     OPCODE(PACKLS_CC);
5036     OPCODE(UNPACK_HIGH);
5037     OPCODE(UNPACKL_HIGH);
5038     OPCODE(UNPACK_LOW);
5039     OPCODE(UNPACKL_LOW);
5040     OPCODE(VSHL_BY_SCALAR);
5041     OPCODE(VSRL_BY_SCALAR);
5042     OPCODE(VSRA_BY_SCALAR);
5043     OPCODE(VSUM);
5044     OPCODE(VICMPE);
5045     OPCODE(VICMPH);
5046     OPCODE(VICMPHL);
5047     OPCODE(VICMPES);
5048     OPCODE(VICMPHS);
5049     OPCODE(VICMPHLS);
5050     OPCODE(VFCMPE);
5051     OPCODE(VFCMPH);
5052     OPCODE(VFCMPHE);
5053     OPCODE(VFCMPES);
5054     OPCODE(VFCMPHS);
5055     OPCODE(VFCMPHES);
5056     OPCODE(VFTCI);
5057     OPCODE(VEXTEND);
5058     OPCODE(VROUND);
5059     OPCODE(VTM);
5060     OPCODE(VFAE_CC);
5061     OPCODE(VFAEZ_CC);
5062     OPCODE(VFEE_CC);
5063     OPCODE(VFEEZ_CC);
5064     OPCODE(VFENE_CC);
5065     OPCODE(VFENEZ_CC);
5066     OPCODE(VISTR_CC);
5067     OPCODE(VSTRC_CC);
5068     OPCODE(VSTRCZ_CC);
5069     OPCODE(TDC);
5070     OPCODE(ATOMIC_SWAPW);
5071     OPCODE(ATOMIC_LOADW_ADD);
5072     OPCODE(ATOMIC_LOADW_SUB);
5073     OPCODE(ATOMIC_LOADW_AND);
5074     OPCODE(ATOMIC_LOADW_OR);
5075     OPCODE(ATOMIC_LOADW_XOR);
5076     OPCODE(ATOMIC_LOADW_NAND);
5077     OPCODE(ATOMIC_LOADW_MIN);
5078     OPCODE(ATOMIC_LOADW_MAX);
5079     OPCODE(ATOMIC_LOADW_UMIN);
5080     OPCODE(ATOMIC_LOADW_UMAX);
5081     OPCODE(ATOMIC_CMP_SWAPW);
5082     OPCODE(ATOMIC_CMP_SWAP);
5083     OPCODE(ATOMIC_LOAD_128);
5084     OPCODE(ATOMIC_STORE_128);
5085     OPCODE(ATOMIC_CMP_SWAP_128);
5086     OPCODE(LRV);
5087     OPCODE(STRV);
5088     OPCODE(PREFETCH);
5089   }
5090   return nullptr;
5091 #undef OPCODE
5092 }
5093 
5094 // Return true if VT is a vector whose elements are a whole number of bytes
5095 // in width. Also check for presence of vector support.
canTreatAsByteVector(EVT VT) const5096 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5097   if (!Subtarget.hasVector())
5098     return false;
5099 
5100   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5101 }
5102 
5103 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5104 // producing a result of type ResVT.  Op is a possibly bitcast version
5105 // of the input vector and Index is the index (based on type VecVT) that
5106 // should be extracted.  Return the new extraction if a simplification
5107 // was possible or if Force is true.
combineExtract(const SDLoc & DL,EVT ResVT,EVT VecVT,SDValue Op,unsigned Index,DAGCombinerInfo & DCI,bool Force) const5108 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5109                                               EVT VecVT, SDValue Op,
5110                                               unsigned Index,
5111                                               DAGCombinerInfo &DCI,
5112                                               bool Force) const {
5113   SelectionDAG &DAG = DCI.DAG;
5114 
5115   // The number of bytes being extracted.
5116   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5117 
5118   for (;;) {
5119     unsigned Opcode = Op.getOpcode();
5120     if (Opcode == ISD::BITCAST)
5121       // Look through bitcasts.
5122       Op = Op.getOperand(0);
5123     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5124              canTreatAsByteVector(Op.getValueType())) {
5125       // Get a VPERM-like permute mask and see whether the bytes covered
5126       // by the extracted element are a contiguous sequence from one
5127       // source operand.
5128       SmallVector<int, SystemZ::VectorBytes> Bytes;
5129       if (!getVPermMask(Op, Bytes))
5130         break;
5131       int First;
5132       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5133                            BytesPerElement, First))
5134         break;
5135       if (First < 0)
5136         return DAG.getUNDEF(ResVT);
5137       // Make sure the contiguous sequence starts at a multiple of the
5138       // original element size.
5139       unsigned Byte = unsigned(First) % Bytes.size();
5140       if (Byte % BytesPerElement != 0)
5141         break;
5142       // We can get the extracted value directly from an input.
5143       Index = Byte / BytesPerElement;
5144       Op = Op.getOperand(unsigned(First) / Bytes.size());
5145       Force = true;
5146     } else if (Opcode == ISD::BUILD_VECTOR &&
5147                canTreatAsByteVector(Op.getValueType())) {
5148       // We can only optimize this case if the BUILD_VECTOR elements are
5149       // at least as wide as the extracted value.
5150       EVT OpVT = Op.getValueType();
5151       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5152       if (OpBytesPerElement < BytesPerElement)
5153         break;
5154       // Make sure that the least-significant bit of the extracted value
5155       // is the least significant bit of an input.
5156       unsigned End = (Index + 1) * BytesPerElement;
5157       if (End % OpBytesPerElement != 0)
5158         break;
5159       // We're extracting the low part of one operand of the BUILD_VECTOR.
5160       Op = Op.getOperand(End / OpBytesPerElement - 1);
5161       if (!Op.getValueType().isInteger()) {
5162         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5163         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5164         DCI.AddToWorklist(Op.getNode());
5165       }
5166       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5167       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5168       if (VT != ResVT) {
5169         DCI.AddToWorklist(Op.getNode());
5170         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5171       }
5172       return Op;
5173     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5174                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5175                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5176                canTreatAsByteVector(Op.getValueType()) &&
5177                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5178       // Make sure that only the unextended bits are significant.
5179       EVT ExtVT = Op.getValueType();
5180       EVT OpVT = Op.getOperand(0).getValueType();
5181       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5182       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5183       unsigned Byte = Index * BytesPerElement;
5184       unsigned SubByte = Byte % ExtBytesPerElement;
5185       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5186       if (SubByte < MinSubByte ||
5187           SubByte + BytesPerElement > ExtBytesPerElement)
5188         break;
5189       // Get the byte offset of the unextended element
5190       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5191       // ...then add the byte offset relative to that element.
5192       Byte += SubByte - MinSubByte;
5193       if (Byte % BytesPerElement != 0)
5194         break;
5195       Op = Op.getOperand(0);
5196       Index = Byte / BytesPerElement;
5197       Force = true;
5198     } else
5199       break;
5200   }
5201   if (Force) {
5202     if (Op.getValueType() != VecVT) {
5203       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5204       DCI.AddToWorklist(Op.getNode());
5205     }
5206     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5207                        DAG.getConstant(Index, DL, MVT::i32));
5208   }
5209   return SDValue();
5210 }
5211 
5212 // Optimize vector operations in scalar value Op on the basis that Op
5213 // is truncated to TruncVT.
combineTruncateExtract(const SDLoc & DL,EVT TruncVT,SDValue Op,DAGCombinerInfo & DCI) const5214 SDValue SystemZTargetLowering::combineTruncateExtract(
5215     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5216   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5217   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5218   // of type TruncVT.
5219   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5220       TruncVT.getSizeInBits() % 8 == 0) {
5221     SDValue Vec = Op.getOperand(0);
5222     EVT VecVT = Vec.getValueType();
5223     if (canTreatAsByteVector(VecVT)) {
5224       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5225         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5226         unsigned TruncBytes = TruncVT.getStoreSize();
5227         if (BytesPerElement % TruncBytes == 0) {
5228           // Calculate the value of Y' in the above description.  We are
5229           // splitting the original elements into Scale equal-sized pieces
5230           // and for truncation purposes want the last (least-significant)
5231           // of these pieces for IndexN.  This is easiest to do by calculating
5232           // the start index of the following element and then subtracting 1.
5233           unsigned Scale = BytesPerElement / TruncBytes;
5234           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5235 
5236           // Defer the creation of the bitcast from X to combineExtract,
5237           // which might be able to optimize the extraction.
5238           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5239                                    VecVT.getStoreSize() / TruncBytes);
5240           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5241           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5242         }
5243       }
5244     }
5245   }
5246   return SDValue();
5247 }
5248 
combineZERO_EXTEND(SDNode * N,DAGCombinerInfo & DCI) const5249 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5250     SDNode *N, DAGCombinerInfo &DCI) const {
5251   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5252   SelectionDAG &DAG = DCI.DAG;
5253   SDValue N0 = N->getOperand(0);
5254   EVT VT = N->getValueType(0);
5255   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5256     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5257     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5258     if (TrueOp && FalseOp) {
5259       SDLoc DL(N0);
5260       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5261                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5262                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5263       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5264       // If N0 has multiple uses, change other uses as well.
5265       if (!N0.hasOneUse()) {
5266         SDValue TruncSelect =
5267           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5268         DCI.CombineTo(N0.getNode(), TruncSelect);
5269       }
5270       return NewSelect;
5271     }
5272   }
5273   return SDValue();
5274 }
5275 
combineSIGN_EXTEND_INREG(SDNode * N,DAGCombinerInfo & DCI) const5276 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5277     SDNode *N, DAGCombinerInfo &DCI) const {
5278   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5279   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5280   // into (select_cc LHS, RHS, -1, 0, COND)
5281   SelectionDAG &DAG = DCI.DAG;
5282   SDValue N0 = N->getOperand(0);
5283   EVT VT = N->getValueType(0);
5284   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5285   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5286     N0 = N0.getOperand(0);
5287   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5288     SDLoc DL(N0);
5289     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5290                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5291                       N0.getOperand(2) };
5292     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5293   }
5294   return SDValue();
5295 }
5296 
combineSIGN_EXTEND(SDNode * N,DAGCombinerInfo & DCI) const5297 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5298     SDNode *N, DAGCombinerInfo &DCI) const {
5299   // Convert (sext (ashr (shl X, C1), C2)) to
5300   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5301   // cheap as narrower ones.
5302   SelectionDAG &DAG = DCI.DAG;
5303   SDValue N0 = N->getOperand(0);
5304   EVT VT = N->getValueType(0);
5305   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5306     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5307     SDValue Inner = N0.getOperand(0);
5308     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5309       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5310         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5311         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5312         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5313         EVT ShiftVT = N0.getOperand(1).getValueType();
5314         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5315                                   Inner.getOperand(0));
5316         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5317                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5318                                                   ShiftVT));
5319         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5320                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5321       }
5322     }
5323   }
5324   return SDValue();
5325 }
5326 
combineMERGE(SDNode * N,DAGCombinerInfo & DCI) const5327 SDValue SystemZTargetLowering::combineMERGE(
5328     SDNode *N, DAGCombinerInfo &DCI) const {
5329   SelectionDAG &DAG = DCI.DAG;
5330   unsigned Opcode = N->getOpcode();
5331   SDValue Op0 = N->getOperand(0);
5332   SDValue Op1 = N->getOperand(1);
5333   if (Op0.getOpcode() == ISD::BITCAST)
5334     Op0 = Op0.getOperand(0);
5335   if (Op0.getOpcode() == SystemZISD::BYTE_MASK &&
5336       cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) {
5337     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5338     // for v4f32.
5339     if (Op1 == N->getOperand(0))
5340       return Op1;
5341     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5342     EVT VT = Op1.getValueType();
5343     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5344     if (ElemBytes <= 4) {
5345       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5346                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5347       EVT InVT = VT.changeVectorElementTypeToInteger();
5348       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5349                                    SystemZ::VectorBytes / ElemBytes / 2);
5350       if (VT != InVT) {
5351         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5352         DCI.AddToWorklist(Op1.getNode());
5353       }
5354       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5355       DCI.AddToWorklist(Op.getNode());
5356       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5357     }
5358   }
5359   return SDValue();
5360 }
5361 
combineSTORE(SDNode * N,DAGCombinerInfo & DCI) const5362 SDValue SystemZTargetLowering::combineSTORE(
5363     SDNode *N, DAGCombinerInfo &DCI) const {
5364   SelectionDAG &DAG = DCI.DAG;
5365   auto *SN = cast<StoreSDNode>(N);
5366   auto &Op1 = N->getOperand(1);
5367   EVT MemVT = SN->getMemoryVT();
5368   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
5369   // for the extraction to be done on a vMiN value, so that we can use VSTE.
5370   // If X has wider elements then convert it to:
5371   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
5372   if (MemVT.isInteger() && SN->isTruncatingStore()) {
5373     if (SDValue Value =
5374             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
5375       DCI.AddToWorklist(Value.getNode());
5376 
5377       // Rewrite the store with the new form of stored value.
5378       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
5379                                SN->getBasePtr(), SN->getMemoryVT(),
5380                                SN->getMemOperand());
5381     }
5382   }
5383   // Combine STORE (BSWAP) into STRVH/STRV/STRVG
5384   if (!SN->isTruncatingStore() &&
5385       Op1.getOpcode() == ISD::BSWAP &&
5386       Op1.getNode()->hasOneUse() &&
5387       (Op1.getValueType() == MVT::i16 ||
5388        Op1.getValueType() == MVT::i32 ||
5389        Op1.getValueType() == MVT::i64)) {
5390 
5391       SDValue BSwapOp = Op1.getOperand(0);
5392 
5393       if (BSwapOp.getValueType() == MVT::i16)
5394         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
5395 
5396       SDValue Ops[] = {
5397         N->getOperand(0), BSwapOp, N->getOperand(2),
5398         DAG.getValueType(Op1.getValueType())
5399       };
5400 
5401       return
5402         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
5403                                 Ops, MemVT, SN->getMemOperand());
5404     }
5405   return SDValue();
5406 }
5407 
combineEXTRACT_VECTOR_ELT(SDNode * N,DAGCombinerInfo & DCI) const5408 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
5409     SDNode *N, DAGCombinerInfo &DCI) const {
5410 
5411   if (!Subtarget.hasVector())
5412     return SDValue();
5413 
5414   // Try to simplify a vector extraction.
5415   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
5416     SDValue Op0 = N->getOperand(0);
5417     EVT VecVT = Op0.getValueType();
5418     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
5419                           IndexN->getZExtValue(), DCI, false);
5420   }
5421   return SDValue();
5422 }
5423 
combineJOIN_DWORDS(SDNode * N,DAGCombinerInfo & DCI) const5424 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
5425     SDNode *N, DAGCombinerInfo &DCI) const {
5426   SelectionDAG &DAG = DCI.DAG;
5427   // (join_dwords X, X) == (replicate X)
5428   if (N->getOperand(0) == N->getOperand(1))
5429     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
5430                        N->getOperand(0));
5431   return SDValue();
5432 }
5433 
combineFP_ROUND(SDNode * N,DAGCombinerInfo & DCI) const5434 SDValue SystemZTargetLowering::combineFP_ROUND(
5435     SDNode *N, DAGCombinerInfo &DCI) const {
5436   // (fpround (extract_vector_elt X 0))
5437   // (fpround (extract_vector_elt X 1)) ->
5438   // (extract_vector_elt (VROUND X) 0)
5439   // (extract_vector_elt (VROUND X) 1)
5440   //
5441   // This is a special case since the target doesn't really support v2f32s.
5442   SelectionDAG &DAG = DCI.DAG;
5443   SDValue Op0 = N->getOperand(0);
5444   if (N->getValueType(0) == MVT::f32 &&
5445       Op0.hasOneUse() &&
5446       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5447       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5448       Op0.getOperand(1).getOpcode() == ISD::Constant &&
5449       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5450     SDValue Vec = Op0.getOperand(0);
5451     for (auto *U : Vec->uses()) {
5452       if (U != Op0.getNode() &&
5453           U->hasOneUse() &&
5454           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5455           U->getOperand(0) == Vec &&
5456           U->getOperand(1).getOpcode() == ISD::Constant &&
5457           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5458         SDValue OtherRound = SDValue(*U->use_begin(), 0);
5459         if (OtherRound.getOpcode() == ISD::FP_ROUND &&
5460             OtherRound.getOperand(0) == SDValue(U, 0) &&
5461             OtherRound.getValueType() == MVT::f32) {
5462           SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5463                                        MVT::v4f32, Vec);
5464           DCI.AddToWorklist(VRound.getNode());
5465           SDValue Extract1 =
5466             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5467                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5468           DCI.AddToWorklist(Extract1.getNode());
5469           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5470           SDValue Extract0 =
5471             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5472                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5473           return Extract0;
5474         }
5475       }
5476     }
5477   }
5478   return SDValue();
5479 }
5480 
combineBSWAP(SDNode * N,DAGCombinerInfo & DCI) const5481 SDValue SystemZTargetLowering::combineBSWAP(
5482     SDNode *N, DAGCombinerInfo &DCI) const {
5483   SelectionDAG &DAG = DCI.DAG;
5484   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG
5485   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5486       N->getOperand(0).hasOneUse() &&
5487       (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 ||
5488        N->getValueType(0) == MVT::i64)) {
5489       SDValue Load = N->getOperand(0);
5490       LoadSDNode *LD = cast<LoadSDNode>(Load);
5491 
5492       // Create the byte-swapping load.
5493       SDValue Ops[] = {
5494         LD->getChain(),    // Chain
5495         LD->getBasePtr(),  // Ptr
5496         DAG.getValueType(N->getValueType(0)) // VT
5497       };
5498       SDValue BSLoad =
5499         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
5500                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
5501                                               MVT::i64 : MVT::i32, MVT::Other),
5502                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
5503 
5504       // If this is an i16 load, insert the truncate.
5505       SDValue ResVal = BSLoad;
5506       if (N->getValueType(0) == MVT::i16)
5507         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
5508 
5509       // First, combine the bswap away.  This makes the value produced by the
5510       // load dead.
5511       DCI.CombineTo(N, ResVal);
5512 
5513       // Next, combine the load away, we give it a bogus result value but a real
5514       // chain result.  The result value is dead because the bswap is dead.
5515       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5516 
5517       // Return N so it doesn't get rechecked!
5518       return SDValue(N, 0);
5519     }
5520   return SDValue();
5521 }
5522 
combineCCMask(SDValue & CCReg,int & CCValid,int & CCMask)5523 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
5524   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
5525   // set by the CCReg instruction using the CCValid / CCMask masks,
5526   // If the CCReg instruction is itself a (ICMP (SELECT_CCMASK)) testing
5527   // the condition code set by some other instruction, see whether we
5528   // can directly use that condition code.
5529   bool Invert = false;
5530 
5531   // Verify that we have an appropriate mask for a EQ or NE comparison.
5532   if (CCValid != SystemZ::CCMASK_ICMP)
5533     return false;
5534   if (CCMask == SystemZ::CCMASK_CMP_NE)
5535     Invert = !Invert;
5536   else if (CCMask != SystemZ::CCMASK_CMP_EQ)
5537     return false;
5538 
5539   // Verify that we have an ICMP that is the user of a SELECT_CCMASK.
5540   SDNode *ICmp = CCReg.getNode();
5541   if (ICmp->getOpcode() != SystemZISD::ICMP)
5542     return false;
5543   SDNode *Select = ICmp->getOperand(0).getNode();
5544   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
5545     return false;
5546 
5547   // Verify that the ICMP compares against one of select values.
5548   auto *CompareVal = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
5549   if (!CompareVal)
5550     return false;
5551   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
5552   if (!TrueVal)
5553     return false;
5554   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
5555   if (!FalseVal)
5556     return false;
5557   if (CompareVal->getZExtValue() == FalseVal->getZExtValue())
5558     Invert = !Invert;
5559   else if (CompareVal->getZExtValue() != TrueVal->getZExtValue())
5560     return false;
5561 
5562   // Compute the effective CC mask for the new branch or select.
5563   auto *NewCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
5564   auto *NewCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
5565   if (!NewCCValid || !NewCCMask)
5566     return false;
5567   CCValid = NewCCValid->getZExtValue();
5568   CCMask = NewCCMask->getZExtValue();
5569   if (Invert)
5570     CCMask ^= CCValid;
5571 
5572   // Return the updated CCReg link.
5573   CCReg = Select->getOperand(4);
5574   return true;
5575 }
5576 
combineBR_CCMASK(SDNode * N,DAGCombinerInfo & DCI) const5577 SDValue SystemZTargetLowering::combineBR_CCMASK(
5578     SDNode *N, DAGCombinerInfo &DCI) const {
5579   SelectionDAG &DAG = DCI.DAG;
5580 
5581   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
5582   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
5583   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
5584   if (!CCValid || !CCMask)
5585     return SDValue();
5586 
5587   int CCValidVal = CCValid->getZExtValue();
5588   int CCMaskVal = CCMask->getZExtValue();
5589   SDValue Chain = N->getOperand(0);
5590   SDValue CCReg = N->getOperand(4);
5591 
5592   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
5593     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
5594                        Chain,
5595                        DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
5596                        DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
5597                        N->getOperand(3), CCReg);
5598   return SDValue();
5599 }
5600 
combineSELECT_CCMASK(SDNode * N,DAGCombinerInfo & DCI) const5601 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
5602     SDNode *N, DAGCombinerInfo &DCI) const {
5603   SelectionDAG &DAG = DCI.DAG;
5604 
5605   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
5606   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
5607   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
5608   if (!CCValid || !CCMask)
5609     return SDValue();
5610 
5611   int CCValidVal = CCValid->getZExtValue();
5612   int CCMaskVal = CCMask->getZExtValue();
5613   SDValue CCReg = N->getOperand(4);
5614 
5615   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
5616     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
5617                        N->getOperand(0),
5618                        N->getOperand(1),
5619                        DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
5620                        DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
5621                        CCReg);
5622   return SDValue();
5623 }
5624 
5625 
combineGET_CCMASK(SDNode * N,DAGCombinerInfo & DCI) const5626 SDValue SystemZTargetLowering::combineGET_CCMASK(
5627     SDNode *N, DAGCombinerInfo &DCI) const {
5628 
5629   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
5630   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
5631   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
5632   if (!CCValid || !CCMask)
5633     return SDValue();
5634   int CCValidVal = CCValid->getZExtValue();
5635   int CCMaskVal = CCMask->getZExtValue();
5636 
5637   SDValue Select = N->getOperand(0);
5638   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
5639     return SDValue();
5640 
5641   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
5642   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
5643   if (!SelectCCValid || !SelectCCMask)
5644     return SDValue();
5645   int SelectCCValidVal = SelectCCValid->getZExtValue();
5646   int SelectCCMaskVal = SelectCCMask->getZExtValue();
5647 
5648   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
5649   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
5650   if (!TrueVal || !FalseVal)
5651     return SDValue();
5652   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
5653     ;
5654   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
5655     SelectCCMaskVal ^= SelectCCValidVal;
5656   else
5657     return SDValue();
5658 
5659   if (SelectCCValidVal & ~CCValidVal)
5660     return SDValue();
5661   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
5662     return SDValue();
5663 
5664   return Select->getOperand(4);
5665 }
5666 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const5667 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
5668                                                  DAGCombinerInfo &DCI) const {
5669   switch(N->getOpcode()) {
5670   default: break;
5671   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
5672   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
5673   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
5674   case SystemZISD::MERGE_HIGH:
5675   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
5676   case ISD::STORE:              return combineSTORE(N, DCI);
5677   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
5678   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
5679   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
5680   case ISD::BSWAP:              return combineBSWAP(N, DCI);
5681   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
5682   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
5683   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
5684   }
5685 
5686   return SDValue();
5687 }
5688 
5689 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
5690 // are for Op.
getDemandedSrcElements(SDValue Op,const APInt & DemandedElts,unsigned OpNo)5691 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
5692                                     unsigned OpNo) {
5693   EVT VT = Op.getValueType();
5694   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
5695   APInt SrcDemE;
5696   unsigned Opcode = Op.getOpcode();
5697   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
5698     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5699     switch (Id) {
5700     case Intrinsic::s390_vpksh:   // PACKS
5701     case Intrinsic::s390_vpksf:
5702     case Intrinsic::s390_vpksg:
5703     case Intrinsic::s390_vpkshs:  // PACKS_CC
5704     case Intrinsic::s390_vpksfs:
5705     case Intrinsic::s390_vpksgs:
5706     case Intrinsic::s390_vpklsh:  // PACKLS
5707     case Intrinsic::s390_vpklsf:
5708     case Intrinsic::s390_vpklsg:
5709     case Intrinsic::s390_vpklshs: // PACKLS_CC
5710     case Intrinsic::s390_vpklsfs:
5711     case Intrinsic::s390_vpklsgs:
5712       // VECTOR PACK truncates the elements of two source vectors into one.
5713       SrcDemE = DemandedElts;
5714       if (OpNo == 2)
5715         SrcDemE.lshrInPlace(NumElts / 2);
5716       SrcDemE = SrcDemE.trunc(NumElts / 2);
5717       break;
5718       // VECTOR UNPACK extends half the elements of the source vector.
5719     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
5720     case Intrinsic::s390_vuphh:
5721     case Intrinsic::s390_vuphf:
5722     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
5723     case Intrinsic::s390_vuplhh:
5724     case Intrinsic::s390_vuplhf:
5725       SrcDemE = APInt(NumElts * 2, 0);
5726       SrcDemE.insertBits(DemandedElts, 0);
5727       break;
5728     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
5729     case Intrinsic::s390_vuplhw:
5730     case Intrinsic::s390_vuplf:
5731     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
5732     case Intrinsic::s390_vupllh:
5733     case Intrinsic::s390_vupllf:
5734       SrcDemE = APInt(NumElts * 2, 0);
5735       SrcDemE.insertBits(DemandedElts, NumElts);
5736       break;
5737     case Intrinsic::s390_vpdi: {
5738       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
5739       SrcDemE = APInt(NumElts, 0);
5740       if (!DemandedElts[OpNo - 1])
5741         break;
5742       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
5743       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
5744       // Demand input element 0 or 1, given by the mask bit value.
5745       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
5746       break;
5747     }
5748     case Intrinsic::s390_vsldb: {
5749       // VECTOR SHIFT LEFT DOUBLE BY BYTE
5750       assert(VT == MVT::v16i8 && "Unexpected type.");
5751       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
5752       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
5753       unsigned NumSrc0Els = 16 - FirstIdx;
5754       SrcDemE = APInt(NumElts, 0);
5755       if (OpNo == 1) {
5756         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
5757         SrcDemE.insertBits(DemEls, FirstIdx);
5758       } else {
5759         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
5760         SrcDemE.insertBits(DemEls, 0);
5761       }
5762       break;
5763     }
5764     case Intrinsic::s390_vperm:
5765       SrcDemE = APInt(NumElts, 1);
5766       break;
5767     default:
5768       llvm_unreachable("Unhandled intrinsic.");
5769       break;
5770     }
5771   } else {
5772     switch (Opcode) {
5773     case SystemZISD::JOIN_DWORDS:
5774       // Scalar operand.
5775       SrcDemE = APInt(1, 1);
5776       break;
5777     case SystemZISD::SELECT_CCMASK:
5778       SrcDemE = DemandedElts;
5779       break;
5780     default:
5781       llvm_unreachable("Unhandled opcode.");
5782       break;
5783     }
5784   }
5785   return SrcDemE;
5786 }
5787 
computeKnownBitsBinOp(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth,unsigned OpNo)5788 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
5789                                   const APInt &DemandedElts,
5790                                   const SelectionDAG &DAG, unsigned Depth,
5791                                   unsigned OpNo) {
5792   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
5793   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
5794   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
5795   KnownBits LHSKnown(SrcBitWidth), RHSKnown(SrcBitWidth);
5796   DAG.computeKnownBits(Op.getOperand(OpNo), LHSKnown, Src0DemE, Depth + 1);
5797   DAG.computeKnownBits(Op.getOperand(OpNo + 1), RHSKnown, Src1DemE, Depth + 1);
5798   Known.Zero = LHSKnown.Zero & RHSKnown.Zero;
5799   Known.One = LHSKnown.One & RHSKnown.One;
5800 }
5801 
5802 void
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const5803 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
5804                                                      KnownBits &Known,
5805                                                      const APInt &DemandedElts,
5806                                                      const SelectionDAG &DAG,
5807                                                      unsigned Depth) const {
5808   Known.resetAll();
5809 
5810   // Intrinsic CC result is returned in the two low bits.
5811   unsigned tmp0, tmp1; // not used
5812   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
5813     Known.Zero.setBitsFrom(2);
5814     return;
5815   }
5816   EVT VT = Op.getValueType();
5817   if (Op.getResNo() != 0 || VT == MVT::Untyped)
5818     return;
5819   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
5820           "KnownBits does not match VT in bitwidth");
5821   assert ((!VT.isVector() ||
5822            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
5823           "DemandedElts does not match VT number of elements");
5824   unsigned BitWidth = Known.getBitWidth();
5825   unsigned Opcode = Op.getOpcode();
5826   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
5827     bool IsLogical = false;
5828     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5829     switch (Id) {
5830     case Intrinsic::s390_vpksh:   // PACKS
5831     case Intrinsic::s390_vpksf:
5832     case Intrinsic::s390_vpksg:
5833     case Intrinsic::s390_vpkshs:  // PACKS_CC
5834     case Intrinsic::s390_vpksfs:
5835     case Intrinsic::s390_vpksgs:
5836     case Intrinsic::s390_vpklsh:  // PACKLS
5837     case Intrinsic::s390_vpklsf:
5838     case Intrinsic::s390_vpklsg:
5839     case Intrinsic::s390_vpklshs: // PACKLS_CC
5840     case Intrinsic::s390_vpklsfs:
5841     case Intrinsic::s390_vpklsgs:
5842     case Intrinsic::s390_vpdi:
5843     case Intrinsic::s390_vsldb:
5844     case Intrinsic::s390_vperm:
5845       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
5846       break;
5847     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
5848     case Intrinsic::s390_vuplhh:
5849     case Intrinsic::s390_vuplhf:
5850     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
5851     case Intrinsic::s390_vupllh:
5852     case Intrinsic::s390_vupllf:
5853       IsLogical = true;
5854       LLVM_FALLTHROUGH;
5855     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
5856     case Intrinsic::s390_vuphh:
5857     case Intrinsic::s390_vuphf:
5858     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
5859     case Intrinsic::s390_vuplhw:
5860     case Intrinsic::s390_vuplf: {
5861       SDValue SrcOp = Op.getOperand(1);
5862       unsigned SrcBitWidth = SrcOp.getScalarValueSizeInBits();
5863       Known = KnownBits(SrcBitWidth);
5864       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
5865       DAG.computeKnownBits(SrcOp, Known, SrcDemE, Depth + 1);
5866       if (IsLogical) {
5867         Known = Known.zext(BitWidth);
5868         Known.Zero.setBitsFrom(SrcBitWidth);
5869       } else
5870         Known = Known.sext(BitWidth);
5871       break;
5872     }
5873     default:
5874       break;
5875     }
5876   } else {
5877     switch (Opcode) {
5878     case SystemZISD::JOIN_DWORDS:
5879     case SystemZISD::SELECT_CCMASK:
5880       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
5881       break;
5882     case SystemZISD::REPLICATE: {
5883       SDValue SrcOp = Op.getOperand(0);
5884       DAG.computeKnownBits(SrcOp, Known, Depth + 1);
5885       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
5886         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
5887       break;
5888     }
5889     default:
5890       break;
5891     }
5892   }
5893 
5894   // Known has the width of the source operand(s). Adjust if needed to match
5895   // the passed bitwidth.
5896   if (Known.getBitWidth() != BitWidth)
5897     Known = Known.zextOrTrunc(BitWidth);
5898 }
5899 
computeNumSignBitsBinOp(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth,unsigned OpNo)5900 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
5901                                         const SelectionDAG &DAG, unsigned Depth,
5902                                         unsigned OpNo) {
5903   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
5904   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
5905   if (LHS == 1) return 1; // Early out.
5906   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
5907   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
5908   if (RHS == 1) return 1; // Early out.
5909   unsigned Common = std::min(LHS, RHS);
5910   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
5911   EVT VT = Op.getValueType();
5912   unsigned VTBits = VT.getScalarSizeInBits();
5913   if (SrcBitWidth > VTBits) { // PACK
5914     unsigned SrcExtraBits = SrcBitWidth - VTBits;
5915     if (Common > SrcExtraBits)
5916       return (Common - SrcExtraBits);
5917     return 1;
5918   }
5919   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
5920   return Common;
5921 }
5922 
5923 unsigned
ComputeNumSignBitsForTargetNode(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const5924 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
5925     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
5926     unsigned Depth) const {
5927   if (Op.getResNo() != 0)
5928     return 1;
5929   unsigned Opcode = Op.getOpcode();
5930   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
5931     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5932     switch (Id) {
5933     case Intrinsic::s390_vpksh:   // PACKS
5934     case Intrinsic::s390_vpksf:
5935     case Intrinsic::s390_vpksg:
5936     case Intrinsic::s390_vpkshs:  // PACKS_CC
5937     case Intrinsic::s390_vpksfs:
5938     case Intrinsic::s390_vpksgs:
5939     case Intrinsic::s390_vpklsh:  // PACKLS
5940     case Intrinsic::s390_vpklsf:
5941     case Intrinsic::s390_vpklsg:
5942     case Intrinsic::s390_vpklshs: // PACKLS_CC
5943     case Intrinsic::s390_vpklsfs:
5944     case Intrinsic::s390_vpklsgs:
5945     case Intrinsic::s390_vpdi:
5946     case Intrinsic::s390_vsldb:
5947     case Intrinsic::s390_vperm:
5948       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
5949     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
5950     case Intrinsic::s390_vuphh:
5951     case Intrinsic::s390_vuphf:
5952     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
5953     case Intrinsic::s390_vuplhw:
5954     case Intrinsic::s390_vuplf: {
5955       SDValue PackedOp = Op.getOperand(1);
5956       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
5957       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
5958       EVT VT = Op.getValueType();
5959       unsigned VTBits = VT.getScalarSizeInBits();
5960       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
5961       return Tmp;
5962     }
5963     default:
5964       break;
5965     }
5966   } else {
5967     switch (Opcode) {
5968     case SystemZISD::SELECT_CCMASK:
5969       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
5970     default:
5971       break;
5972     }
5973   }
5974 
5975   return 1;
5976 }
5977 
5978 //===----------------------------------------------------------------------===//
5979 // Custom insertion
5980 //===----------------------------------------------------------------------===//
5981 
5982 // Create a new basic block after MBB.
emitBlockAfter(MachineBasicBlock * MBB)5983 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
5984   MachineFunction &MF = *MBB->getParent();
5985   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
5986   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
5987   return NewMBB;
5988 }
5989 
5990 // Split MBB after MI and return the new block (the one that contains
5991 // instructions after MI).
splitBlockAfter(MachineBasicBlock::iterator MI,MachineBasicBlock * MBB)5992 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
5993                                           MachineBasicBlock *MBB) {
5994   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
5995   NewMBB->splice(NewMBB->begin(), MBB,
5996                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
5997   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
5998   return NewMBB;
5999 }
6000 
6001 // Split MBB before MI and return the new block (the one that contains MI).
splitBlockBefore(MachineBasicBlock::iterator MI,MachineBasicBlock * MBB)6002 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
6003                                            MachineBasicBlock *MBB) {
6004   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6005   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
6006   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6007   return NewMBB;
6008 }
6009 
6010 // Force base value Base into a register before MI.  Return the register.
forceReg(MachineInstr & MI,MachineOperand & Base,const SystemZInstrInfo * TII)6011 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base,
6012                          const SystemZInstrInfo *TII) {
6013   if (Base.isReg())
6014     return Base.getReg();
6015 
6016   MachineBasicBlock *MBB = MI.getParent();
6017   MachineFunction &MF = *MBB->getParent();
6018   MachineRegisterInfo &MRI = MF.getRegInfo();
6019 
6020   unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6021   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
6022       .add(Base)
6023       .addImm(0)
6024       .addReg(0);
6025   return Reg;
6026 }
6027 
6028 // The CC operand of MI might be missing a kill marker because there
6029 // were multiple uses of CC, and ISel didn't know which to mark.
6030 // Figure out whether MI should have had a kill marker.
checkCCKill(MachineInstr & MI,MachineBasicBlock * MBB)6031 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
6032   // Scan forward through BB for a use/def of CC.
6033   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
6034   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
6035     const MachineInstr& mi = *miI;
6036     if (mi.readsRegister(SystemZ::CC))
6037       return false;
6038     if (mi.definesRegister(SystemZ::CC))
6039       break; // Should have kill-flag - update below.
6040   }
6041 
6042   // If we hit the end of the block, check whether CC is live into a
6043   // successor.
6044   if (miI == MBB->end()) {
6045     for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
6046       if ((*SI)->isLiveIn(SystemZ::CC))
6047         return false;
6048   }
6049 
6050   return true;
6051 }
6052 
6053 // Return true if it is OK for this Select pseudo-opcode to be cascaded
6054 // together with other Select pseudo-opcodes into a single basic-block with
6055 // a conditional jump around it.
isSelectPseudo(MachineInstr & MI)6056 static bool isSelectPseudo(MachineInstr &MI) {
6057   switch (MI.getOpcode()) {
6058   case SystemZ::Select32:
6059   case SystemZ::Select64:
6060   case SystemZ::SelectF32:
6061   case SystemZ::SelectF64:
6062   case SystemZ::SelectF128:
6063   case SystemZ::SelectVR32:
6064   case SystemZ::SelectVR64:
6065   case SystemZ::SelectVR128:
6066     return true;
6067 
6068   default:
6069     return false;
6070   }
6071 }
6072 
6073 // Helper function, which inserts PHI functions into SinkMBB:
6074 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
6075 // where %FalseValue(i) and %TrueValue(i) are taken from the consequent Selects
6076 // in [MIItBegin, MIItEnd) range.
createPHIsForSelects(MachineBasicBlock::iterator MIItBegin,MachineBasicBlock::iterator MIItEnd,MachineBasicBlock * TrueMBB,MachineBasicBlock * FalseMBB,MachineBasicBlock * SinkMBB)6077 static void createPHIsForSelects(MachineBasicBlock::iterator MIItBegin,
6078                                  MachineBasicBlock::iterator MIItEnd,
6079                                  MachineBasicBlock *TrueMBB,
6080                                  MachineBasicBlock *FalseMBB,
6081                                  MachineBasicBlock *SinkMBB) {
6082   MachineFunction *MF = TrueMBB->getParent();
6083   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
6084 
6085   unsigned CCValid = MIItBegin->getOperand(3).getImm();
6086   unsigned CCMask = MIItBegin->getOperand(4).getImm();
6087   DebugLoc DL = MIItBegin->getDebugLoc();
6088 
6089   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
6090 
6091   // As we are creating the PHIs, we have to be careful if there is more than
6092   // one.  Later Selects may reference the results of earlier Selects, but later
6093   // PHIs have to reference the individual true/false inputs from earlier PHIs.
6094   // That also means that PHI construction must work forward from earlier to
6095   // later, and that the code must maintain a mapping from earlier PHI's
6096   // destination registers, and the registers that went into the PHI.
6097   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
6098 
6099   for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
6100     unsigned DestReg = MIIt->getOperand(0).getReg();
6101     unsigned TrueReg = MIIt->getOperand(1).getReg();
6102     unsigned FalseReg = MIIt->getOperand(2).getReg();
6103 
6104     // If this Select we are generating is the opposite condition from
6105     // the jump we generated, then we have to swap the operands for the
6106     // PHI that is going to be generated.
6107     if (MIIt->getOperand(4).getImm() == (CCValid ^ CCMask))
6108       std::swap(TrueReg, FalseReg);
6109 
6110     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
6111       TrueReg = RegRewriteTable[TrueReg].first;
6112 
6113     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
6114       FalseReg = RegRewriteTable[FalseReg].second;
6115 
6116     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
6117       .addReg(TrueReg).addMBB(TrueMBB)
6118       .addReg(FalseReg).addMBB(FalseMBB);
6119 
6120     // Add this PHI to the rewrite table.
6121     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
6122   }
6123 }
6124 
6125 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
6126 MachineBasicBlock *
emitSelect(MachineInstr & MI,MachineBasicBlock * MBB) const6127 SystemZTargetLowering::emitSelect(MachineInstr &MI,
6128                                   MachineBasicBlock *MBB) const {
6129   const SystemZInstrInfo *TII =
6130       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6131 
6132   unsigned CCValid = MI.getOperand(3).getImm();
6133   unsigned CCMask = MI.getOperand(4).getImm();
6134   DebugLoc DL = MI.getDebugLoc();
6135 
6136   // If we have a sequence of Select* pseudo instructions using the
6137   // same condition code value, we want to expand all of them into
6138   // a single pair of basic blocks using the same condition.
6139   MachineInstr *LastMI = &MI;
6140   MachineBasicBlock::iterator NextMIIt =
6141       std::next(MachineBasicBlock::iterator(MI));
6142 
6143   if (isSelectPseudo(MI))
6144     while (NextMIIt != MBB->end() && isSelectPseudo(*NextMIIt) &&
6145            NextMIIt->getOperand(3).getImm() == CCValid &&
6146            (NextMIIt->getOperand(4).getImm() == CCMask ||
6147             NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask))) {
6148       LastMI = &*NextMIIt;
6149       ++NextMIIt;
6150     }
6151 
6152   MachineBasicBlock *StartMBB = MBB;
6153   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
6154   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6155 
6156   // Unless CC was killed in the last Select instruction, mark it as
6157   // live-in to both FalseMBB and JoinMBB.
6158   if (!LastMI->killsRegister(SystemZ::CC) && !checkCCKill(*LastMI, JoinMBB)) {
6159     FalseMBB->addLiveIn(SystemZ::CC);
6160     JoinMBB->addLiveIn(SystemZ::CC);
6161   }
6162 
6163   //  StartMBB:
6164   //   BRC CCMask, JoinMBB
6165   //   # fallthrough to FalseMBB
6166   MBB = StartMBB;
6167   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6168     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6169   MBB->addSuccessor(JoinMBB);
6170   MBB->addSuccessor(FalseMBB);
6171 
6172   //  FalseMBB:
6173   //   # fallthrough to JoinMBB
6174   MBB = FalseMBB;
6175   MBB->addSuccessor(JoinMBB);
6176 
6177   //  JoinMBB:
6178   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
6179   //  ...
6180   MBB = JoinMBB;
6181   MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
6182   MachineBasicBlock::iterator MIItEnd =
6183       std::next(MachineBasicBlock::iterator(LastMI));
6184   createPHIsForSelects(MIItBegin, MIItEnd, StartMBB, FalseMBB, MBB);
6185 
6186   StartMBB->erase(MIItBegin, MIItEnd);
6187   return JoinMBB;
6188 }
6189 
6190 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
6191 // StoreOpcode is the store to use and Invert says whether the store should
6192 // happen when the condition is false rather than true.  If a STORE ON
6193 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
emitCondStore(MachineInstr & MI,MachineBasicBlock * MBB,unsigned StoreOpcode,unsigned STOCOpcode,bool Invert) const6194 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
6195                                                         MachineBasicBlock *MBB,
6196                                                         unsigned StoreOpcode,
6197                                                         unsigned STOCOpcode,
6198                                                         bool Invert) const {
6199   const SystemZInstrInfo *TII =
6200       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6201 
6202   unsigned SrcReg = MI.getOperand(0).getReg();
6203   MachineOperand Base = MI.getOperand(1);
6204   int64_t Disp = MI.getOperand(2).getImm();
6205   unsigned IndexReg = MI.getOperand(3).getReg();
6206   unsigned CCValid = MI.getOperand(4).getImm();
6207   unsigned CCMask = MI.getOperand(5).getImm();
6208   DebugLoc DL = MI.getDebugLoc();
6209 
6210   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
6211 
6212   // Use STOCOpcode if possible.  We could use different store patterns in
6213   // order to avoid matching the index register, but the performance trade-offs
6214   // might be more complicated in that case.
6215   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
6216     if (Invert)
6217       CCMask ^= CCValid;
6218 
6219     // ISel pattern matching also adds a load memory operand of the same
6220     // address, so take special care to find the storing memory operand.
6221     MachineMemOperand *MMO = nullptr;
6222     for (auto *I : MI.memoperands())
6223       if (I->isStore()) {
6224           MMO = I;
6225           break;
6226         }
6227 
6228     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
6229       .addReg(SrcReg)
6230       .add(Base)
6231       .addImm(Disp)
6232       .addImm(CCValid)
6233       .addImm(CCMask)
6234       .addMemOperand(MMO);
6235 
6236     MI.eraseFromParent();
6237     return MBB;
6238   }
6239 
6240   // Get the condition needed to branch around the store.
6241   if (!Invert)
6242     CCMask ^= CCValid;
6243 
6244   MachineBasicBlock *StartMBB = MBB;
6245   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
6246   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6247 
6248   // Unless CC was killed in the CondStore instruction, mark it as
6249   // live-in to both FalseMBB and JoinMBB.
6250   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
6251     FalseMBB->addLiveIn(SystemZ::CC);
6252     JoinMBB->addLiveIn(SystemZ::CC);
6253   }
6254 
6255   //  StartMBB:
6256   //   BRC CCMask, JoinMBB
6257   //   # fallthrough to FalseMBB
6258   MBB = StartMBB;
6259   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6260     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6261   MBB->addSuccessor(JoinMBB);
6262   MBB->addSuccessor(FalseMBB);
6263 
6264   //  FalseMBB:
6265   //   store %SrcReg, %Disp(%Index,%Base)
6266   //   # fallthrough to JoinMBB
6267   MBB = FalseMBB;
6268   BuildMI(MBB, DL, TII->get(StoreOpcode))
6269       .addReg(SrcReg)
6270       .add(Base)
6271       .addImm(Disp)
6272       .addReg(IndexReg);
6273   MBB->addSuccessor(JoinMBB);
6274 
6275   MI.eraseFromParent();
6276   return JoinMBB;
6277 }
6278 
6279 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
6280 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
6281 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
6282 // BitSize is the width of the field in bits, or 0 if this is a partword
6283 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
6284 // is one of the operands.  Invert says whether the field should be
6285 // inverted after performing BinOpcode (e.g. for NAND).
emitAtomicLoadBinary(MachineInstr & MI,MachineBasicBlock * MBB,unsigned BinOpcode,unsigned BitSize,bool Invert) const6286 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
6287     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
6288     unsigned BitSize, bool Invert) const {
6289   MachineFunction &MF = *MBB->getParent();
6290   const SystemZInstrInfo *TII =
6291       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6292   MachineRegisterInfo &MRI = MF.getRegInfo();
6293   bool IsSubWord = (BitSize < 32);
6294 
6295   // Extract the operands.  Base can be a register or a frame index.
6296   // Src2 can be a register or immediate.
6297   unsigned Dest = MI.getOperand(0).getReg();
6298   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6299   int64_t Disp = MI.getOperand(2).getImm();
6300   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
6301   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
6302   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
6303   DebugLoc DL = MI.getDebugLoc();
6304   if (IsSubWord)
6305     BitSize = MI.getOperand(6).getImm();
6306 
6307   // Subword operations use 32-bit registers.
6308   const TargetRegisterClass *RC = (BitSize <= 32 ?
6309                                    &SystemZ::GR32BitRegClass :
6310                                    &SystemZ::GR64BitRegClass);
6311   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
6312   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
6313 
6314   // Get the right opcodes for the displacement.
6315   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
6316   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
6317   assert(LOpcode && CSOpcode && "Displacement out of range");
6318 
6319   // Create virtual registers for temporary results.
6320   unsigned OrigVal       = MRI.createVirtualRegister(RC);
6321   unsigned OldVal        = MRI.createVirtualRegister(RC);
6322   unsigned NewVal        = (BinOpcode || IsSubWord ?
6323                             MRI.createVirtualRegister(RC) : Src2.getReg());
6324   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
6325   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
6326 
6327   // Insert a basic block for the main loop.
6328   MachineBasicBlock *StartMBB = MBB;
6329   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
6330   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
6331 
6332   //  StartMBB:
6333   //   ...
6334   //   %OrigVal = L Disp(%Base)
6335   //   # fall through to LoopMMB
6336   MBB = StartMBB;
6337   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
6338   MBB->addSuccessor(LoopMBB);
6339 
6340   //  LoopMBB:
6341   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
6342   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
6343   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
6344   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
6345   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
6346   //   JNE LoopMBB
6347   //   # fall through to DoneMMB
6348   MBB = LoopMBB;
6349   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6350     .addReg(OrigVal).addMBB(StartMBB)
6351     .addReg(Dest).addMBB(LoopMBB);
6352   if (IsSubWord)
6353     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
6354       .addReg(OldVal).addReg(BitShift).addImm(0);
6355   if (Invert) {
6356     // Perform the operation normally and then invert every bit of the field.
6357     unsigned Tmp = MRI.createVirtualRegister(RC);
6358     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
6359     if (BitSize <= 32)
6360       // XILF with the upper BitSize bits set.
6361       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
6362         .addReg(Tmp).addImm(-1U << (32 - BitSize));
6363     else {
6364       // Use LCGR and add -1 to the result, which is more compact than
6365       // an XILF, XILH pair.
6366       unsigned Tmp2 = MRI.createVirtualRegister(RC);
6367       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
6368       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
6369         .addReg(Tmp2).addImm(-1);
6370     }
6371   } else if (BinOpcode)
6372     // A simply binary operation.
6373     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
6374         .addReg(RotatedOldVal)
6375         .add(Src2);
6376   else if (IsSubWord)
6377     // Use RISBG to rotate Src2 into position and use it to replace the
6378     // field in RotatedOldVal.
6379     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
6380       .addReg(RotatedOldVal).addReg(Src2.getReg())
6381       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
6382   if (IsSubWord)
6383     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
6384       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
6385   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
6386       .addReg(OldVal)
6387       .addReg(NewVal)
6388       .add(Base)
6389       .addImm(Disp);
6390   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6391     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6392   MBB->addSuccessor(LoopMBB);
6393   MBB->addSuccessor(DoneMBB);
6394 
6395   MI.eraseFromParent();
6396   return DoneMBB;
6397 }
6398 
6399 // Implement EmitInstrWithCustomInserter for pseudo
6400 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
6401 // instruction that should be used to compare the current field with the
6402 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
6403 // for when the current field should be kept.  BitSize is the width of
6404 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
emitAtomicLoadMinMax(MachineInstr & MI,MachineBasicBlock * MBB,unsigned CompareOpcode,unsigned KeepOldMask,unsigned BitSize) const6405 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
6406     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
6407     unsigned KeepOldMask, unsigned BitSize) const {
6408   MachineFunction &MF = *MBB->getParent();
6409   const SystemZInstrInfo *TII =
6410       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6411   MachineRegisterInfo &MRI = MF.getRegInfo();
6412   bool IsSubWord = (BitSize < 32);
6413 
6414   // Extract the operands.  Base can be a register or a frame index.
6415   unsigned Dest = MI.getOperand(0).getReg();
6416   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6417   int64_t Disp = MI.getOperand(2).getImm();
6418   unsigned Src2 = MI.getOperand(3).getReg();
6419   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
6420   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
6421   DebugLoc DL = MI.getDebugLoc();
6422   if (IsSubWord)
6423     BitSize = MI.getOperand(6).getImm();
6424 
6425   // Subword operations use 32-bit registers.
6426   const TargetRegisterClass *RC = (BitSize <= 32 ?
6427                                    &SystemZ::GR32BitRegClass :
6428                                    &SystemZ::GR64BitRegClass);
6429   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
6430   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
6431 
6432   // Get the right opcodes for the displacement.
6433   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
6434   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
6435   assert(LOpcode && CSOpcode && "Displacement out of range");
6436 
6437   // Create virtual registers for temporary results.
6438   unsigned OrigVal       = MRI.createVirtualRegister(RC);
6439   unsigned OldVal        = MRI.createVirtualRegister(RC);
6440   unsigned NewVal        = MRI.createVirtualRegister(RC);
6441   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
6442   unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
6443   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
6444 
6445   // Insert 3 basic blocks for the loop.
6446   MachineBasicBlock *StartMBB  = MBB;
6447   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
6448   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
6449   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
6450   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
6451 
6452   //  StartMBB:
6453   //   ...
6454   //   %OrigVal     = L Disp(%Base)
6455   //   # fall through to LoopMMB
6456   MBB = StartMBB;
6457   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
6458   MBB->addSuccessor(LoopMBB);
6459 
6460   //  LoopMBB:
6461   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
6462   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
6463   //   CompareOpcode %RotatedOldVal, %Src2
6464   //   BRC KeepOldMask, UpdateMBB
6465   MBB = LoopMBB;
6466   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6467     .addReg(OrigVal).addMBB(StartMBB)
6468     .addReg(Dest).addMBB(UpdateMBB);
6469   if (IsSubWord)
6470     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
6471       .addReg(OldVal).addReg(BitShift).addImm(0);
6472   BuildMI(MBB, DL, TII->get(CompareOpcode))
6473     .addReg(RotatedOldVal).addReg(Src2);
6474   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6475     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
6476   MBB->addSuccessor(UpdateMBB);
6477   MBB->addSuccessor(UseAltMBB);
6478 
6479   //  UseAltMBB:
6480   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
6481   //   # fall through to UpdateMMB
6482   MBB = UseAltMBB;
6483   if (IsSubWord)
6484     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
6485       .addReg(RotatedOldVal).addReg(Src2)
6486       .addImm(32).addImm(31 + BitSize).addImm(0);
6487   MBB->addSuccessor(UpdateMBB);
6488 
6489   //  UpdateMBB:
6490   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
6491   //                        [ %RotatedAltVal, UseAltMBB ]
6492   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
6493   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
6494   //   JNE LoopMBB
6495   //   # fall through to DoneMMB
6496   MBB = UpdateMBB;
6497   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
6498     .addReg(RotatedOldVal).addMBB(LoopMBB)
6499     .addReg(RotatedAltVal).addMBB(UseAltMBB);
6500   if (IsSubWord)
6501     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
6502       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
6503   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
6504       .addReg(OldVal)
6505       .addReg(NewVal)
6506       .add(Base)
6507       .addImm(Disp);
6508   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6509     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6510   MBB->addSuccessor(LoopMBB);
6511   MBB->addSuccessor(DoneMBB);
6512 
6513   MI.eraseFromParent();
6514   return DoneMBB;
6515 }
6516 
6517 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
6518 // instruction MI.
6519 MachineBasicBlock *
emitAtomicCmpSwapW(MachineInstr & MI,MachineBasicBlock * MBB) const6520 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
6521                                           MachineBasicBlock *MBB) const {
6522 
6523   MachineFunction &MF = *MBB->getParent();
6524   const SystemZInstrInfo *TII =
6525       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6526   MachineRegisterInfo &MRI = MF.getRegInfo();
6527 
6528   // Extract the operands.  Base can be a register or a frame index.
6529   unsigned Dest = MI.getOperand(0).getReg();
6530   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6531   int64_t Disp = MI.getOperand(2).getImm();
6532   unsigned OrigCmpVal = MI.getOperand(3).getReg();
6533   unsigned OrigSwapVal = MI.getOperand(4).getReg();
6534   unsigned BitShift = MI.getOperand(5).getReg();
6535   unsigned NegBitShift = MI.getOperand(6).getReg();
6536   int64_t BitSize = MI.getOperand(7).getImm();
6537   DebugLoc DL = MI.getDebugLoc();
6538 
6539   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
6540 
6541   // Get the right opcodes for the displacement.
6542   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
6543   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
6544   assert(LOpcode && CSOpcode && "Displacement out of range");
6545 
6546   // Create virtual registers for temporary results.
6547   unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
6548   unsigned OldVal       = MRI.createVirtualRegister(RC);
6549   unsigned CmpVal       = MRI.createVirtualRegister(RC);
6550   unsigned SwapVal      = MRI.createVirtualRegister(RC);
6551   unsigned StoreVal     = MRI.createVirtualRegister(RC);
6552   unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
6553   unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
6554   unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
6555 
6556   // Insert 2 basic blocks for the loop.
6557   MachineBasicBlock *StartMBB = MBB;
6558   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
6559   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
6560   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
6561 
6562   //  StartMBB:
6563   //   ...
6564   //   %OrigOldVal     = L Disp(%Base)
6565   //   # fall through to LoopMMB
6566   MBB = StartMBB;
6567   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
6568       .add(Base)
6569       .addImm(Disp)
6570       .addReg(0);
6571   MBB->addSuccessor(LoopMBB);
6572 
6573   //  LoopMBB:
6574   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
6575   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
6576   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
6577   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
6578   //                      ^^ The low BitSize bits contain the field
6579   //                         of interest.
6580   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
6581   //                      ^^ Replace the upper 32-BitSize bits of the
6582   //                         comparison value with those that we loaded,
6583   //                         so that we can use a full word comparison.
6584   //   CR %Dest, %RetryCmpVal
6585   //   JNE DoneMBB
6586   //   # Fall through to SetMBB
6587   MBB = LoopMBB;
6588   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6589     .addReg(OrigOldVal).addMBB(StartMBB)
6590     .addReg(RetryOldVal).addMBB(SetMBB);
6591   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
6592     .addReg(OrigCmpVal).addMBB(StartMBB)
6593     .addReg(RetryCmpVal).addMBB(SetMBB);
6594   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
6595     .addReg(OrigSwapVal).addMBB(StartMBB)
6596     .addReg(RetrySwapVal).addMBB(SetMBB);
6597   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
6598     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
6599   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
6600     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
6601   BuildMI(MBB, DL, TII->get(SystemZ::CR))
6602     .addReg(Dest).addReg(RetryCmpVal);
6603   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6604     .addImm(SystemZ::CCMASK_ICMP)
6605     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
6606   MBB->addSuccessor(DoneMBB);
6607   MBB->addSuccessor(SetMBB);
6608 
6609   //  SetMBB:
6610   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
6611   //                      ^^ Replace the upper 32-BitSize bits of the new
6612   //                         value with those that we loaded.
6613   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
6614   //                      ^^ Rotate the new field to its proper position.
6615   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
6616   //   JNE LoopMBB
6617   //   # fall through to ExitMMB
6618   MBB = SetMBB;
6619   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
6620     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
6621   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
6622     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
6623   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
6624       .addReg(OldVal)
6625       .addReg(StoreVal)
6626       .add(Base)
6627       .addImm(Disp);
6628   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6629     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6630   MBB->addSuccessor(LoopMBB);
6631   MBB->addSuccessor(DoneMBB);
6632 
6633   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
6634   // to the block after the loop.  At this point, CC may have been defined
6635   // either by the CR in LoopMBB or by the CS in SetMBB.
6636   if (!MI.registerDefIsDead(SystemZ::CC))
6637     DoneMBB->addLiveIn(SystemZ::CC);
6638 
6639   MI.eraseFromParent();
6640   return DoneMBB;
6641 }
6642 
6643 // Emit a move from two GR64s to a GR128.
6644 MachineBasicBlock *
emitPair128(MachineInstr & MI,MachineBasicBlock * MBB) const6645 SystemZTargetLowering::emitPair128(MachineInstr &MI,
6646                                    MachineBasicBlock *MBB) const {
6647   MachineFunction &MF = *MBB->getParent();
6648   const SystemZInstrInfo *TII =
6649       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6650   MachineRegisterInfo &MRI = MF.getRegInfo();
6651   DebugLoc DL = MI.getDebugLoc();
6652 
6653   unsigned Dest = MI.getOperand(0).getReg();
6654   unsigned Hi = MI.getOperand(1).getReg();
6655   unsigned Lo = MI.getOperand(2).getReg();
6656   unsigned Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6657   unsigned Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6658 
6659   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
6660   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
6661     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
6662   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6663     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
6664 
6665   MI.eraseFromParent();
6666   return MBB;
6667 }
6668 
6669 // Emit an extension from a GR64 to a GR128.  ClearEven is true
6670 // if the high register of the GR128 value must be cleared or false if
6671 // it's "don't care".
emitExt128(MachineInstr & MI,MachineBasicBlock * MBB,bool ClearEven) const6672 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
6673                                                      MachineBasicBlock *MBB,
6674                                                      bool ClearEven) const {
6675   MachineFunction &MF = *MBB->getParent();
6676   const SystemZInstrInfo *TII =
6677       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6678   MachineRegisterInfo &MRI = MF.getRegInfo();
6679   DebugLoc DL = MI.getDebugLoc();
6680 
6681   unsigned Dest = MI.getOperand(0).getReg();
6682   unsigned Src = MI.getOperand(1).getReg();
6683   unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6684 
6685   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
6686   if (ClearEven) {
6687     unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6688     unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
6689 
6690     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
6691       .addImm(0);
6692     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
6693       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
6694     In128 = NewIn128;
6695   }
6696   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6697     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
6698 
6699   MI.eraseFromParent();
6700   return MBB;
6701 }
6702 
emitMemMemWrapper(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode) const6703 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
6704     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6705   MachineFunction &MF = *MBB->getParent();
6706   const SystemZInstrInfo *TII =
6707       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6708   MachineRegisterInfo &MRI = MF.getRegInfo();
6709   DebugLoc DL = MI.getDebugLoc();
6710 
6711   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
6712   uint64_t DestDisp = MI.getOperand(1).getImm();
6713   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
6714   uint64_t SrcDisp = MI.getOperand(3).getImm();
6715   uint64_t Length = MI.getOperand(4).getImm();
6716 
6717   // When generating more than one CLC, all but the last will need to
6718   // branch to the end when a difference is found.
6719   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
6720                                splitBlockAfter(MI, MBB) : nullptr);
6721 
6722   // Check for the loop form, in which operand 5 is the trip count.
6723   if (MI.getNumExplicitOperands() > 5) {
6724     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
6725 
6726     uint64_t StartCountReg = MI.getOperand(5).getReg();
6727     uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
6728     uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
6729                               forceReg(MI, DestBase, TII));
6730 
6731     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
6732     uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
6733     uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
6734                             MRI.createVirtualRegister(RC));
6735     uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
6736     uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
6737                             MRI.createVirtualRegister(RC));
6738 
6739     RC = &SystemZ::GR64BitRegClass;
6740     uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
6741     uint64_t NextCountReg = MRI.createVirtualRegister(RC);
6742 
6743     MachineBasicBlock *StartMBB = MBB;
6744     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6745     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6746     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
6747 
6748     //  StartMBB:
6749     //   # fall through to LoopMMB
6750     MBB->addSuccessor(LoopMBB);
6751 
6752     //  LoopMBB:
6753     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
6754     //                      [ %NextDestReg, NextMBB ]
6755     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
6756     //                     [ %NextSrcReg, NextMBB ]
6757     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
6758     //                       [ %NextCountReg, NextMBB ]
6759     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
6760     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
6761     //   ( JLH EndMBB )
6762     //
6763     // The prefetch is used only for MVC.  The JLH is used only for CLC.
6764     MBB = LoopMBB;
6765 
6766     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
6767       .addReg(StartDestReg).addMBB(StartMBB)
6768       .addReg(NextDestReg).addMBB(NextMBB);
6769     if (!HaveSingleBase)
6770       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
6771         .addReg(StartSrcReg).addMBB(StartMBB)
6772         .addReg(NextSrcReg).addMBB(NextMBB);
6773     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
6774       .addReg(StartCountReg).addMBB(StartMBB)
6775       .addReg(NextCountReg).addMBB(NextMBB);
6776     if (Opcode == SystemZ::MVC)
6777       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
6778         .addImm(SystemZ::PFD_WRITE)
6779         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
6780     BuildMI(MBB, DL, TII->get(Opcode))
6781       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
6782       .addReg(ThisSrcReg).addImm(SrcDisp);
6783     if (EndMBB) {
6784       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6785         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6786         .addMBB(EndMBB);
6787       MBB->addSuccessor(EndMBB);
6788       MBB->addSuccessor(NextMBB);
6789     }
6790 
6791     // NextMBB:
6792     //   %NextDestReg = LA 256(%ThisDestReg)
6793     //   %NextSrcReg = LA 256(%ThisSrcReg)
6794     //   %NextCountReg = AGHI %ThisCountReg, -1
6795     //   CGHI %NextCountReg, 0
6796     //   JLH LoopMBB
6797     //   # fall through to DoneMMB
6798     //
6799     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
6800     MBB = NextMBB;
6801 
6802     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
6803       .addReg(ThisDestReg).addImm(256).addReg(0);
6804     if (!HaveSingleBase)
6805       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
6806         .addReg(ThisSrcReg).addImm(256).addReg(0);
6807     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
6808       .addReg(ThisCountReg).addImm(-1);
6809     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
6810       .addReg(NextCountReg).addImm(0);
6811     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6812       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6813       .addMBB(LoopMBB);
6814     MBB->addSuccessor(LoopMBB);
6815     MBB->addSuccessor(DoneMBB);
6816 
6817     DestBase = MachineOperand::CreateReg(NextDestReg, false);
6818     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
6819     Length &= 255;
6820     if (EndMBB && !Length)
6821       // If the loop handled the whole CLC range, DoneMBB will be empty with
6822       // CC live-through into EndMBB, so add it as live-in.
6823       DoneMBB->addLiveIn(SystemZ::CC);
6824     MBB = DoneMBB;
6825   }
6826   // Handle any remaining bytes with straight-line code.
6827   while (Length > 0) {
6828     uint64_t ThisLength = std::min(Length, uint64_t(256));
6829     // The previous iteration might have created out-of-range displacements.
6830     // Apply them using LAY if so.
6831     if (!isUInt<12>(DestDisp)) {
6832       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6833       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
6834           .add(DestBase)
6835           .addImm(DestDisp)
6836           .addReg(0);
6837       DestBase = MachineOperand::CreateReg(Reg, false);
6838       DestDisp = 0;
6839     }
6840     if (!isUInt<12>(SrcDisp)) {
6841       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6842       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
6843           .add(SrcBase)
6844           .addImm(SrcDisp)
6845           .addReg(0);
6846       SrcBase = MachineOperand::CreateReg(Reg, false);
6847       SrcDisp = 0;
6848     }
6849     BuildMI(*MBB, MI, DL, TII->get(Opcode))
6850         .add(DestBase)
6851         .addImm(DestDisp)
6852         .addImm(ThisLength)
6853         .add(SrcBase)
6854         .addImm(SrcDisp)
6855         ->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
6856     DestDisp += ThisLength;
6857     SrcDisp += ThisLength;
6858     Length -= ThisLength;
6859     // If there's another CLC to go, branch to the end if a difference
6860     // was found.
6861     if (EndMBB && Length > 0) {
6862       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
6863       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6864         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6865         .addMBB(EndMBB);
6866       MBB->addSuccessor(EndMBB);
6867       MBB->addSuccessor(NextMBB);
6868       MBB = NextMBB;
6869     }
6870   }
6871   if (EndMBB) {
6872     MBB->addSuccessor(EndMBB);
6873     MBB = EndMBB;
6874     MBB->addLiveIn(SystemZ::CC);
6875   }
6876 
6877   MI.eraseFromParent();
6878   return MBB;
6879 }
6880 
6881 // Decompose string pseudo-instruction MI into a loop that continually performs
6882 // Opcode until CC != 3.
emitStringWrapper(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode) const6883 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
6884     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6885   MachineFunction &MF = *MBB->getParent();
6886   const SystemZInstrInfo *TII =
6887       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6888   MachineRegisterInfo &MRI = MF.getRegInfo();
6889   DebugLoc DL = MI.getDebugLoc();
6890 
6891   uint64_t End1Reg = MI.getOperand(0).getReg();
6892   uint64_t Start1Reg = MI.getOperand(1).getReg();
6893   uint64_t Start2Reg = MI.getOperand(2).getReg();
6894   uint64_t CharReg = MI.getOperand(3).getReg();
6895 
6896   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
6897   uint64_t This1Reg = MRI.createVirtualRegister(RC);
6898   uint64_t This2Reg = MRI.createVirtualRegister(RC);
6899   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
6900 
6901   MachineBasicBlock *StartMBB = MBB;
6902   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6903   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6904 
6905   //  StartMBB:
6906   //   # fall through to LoopMMB
6907   MBB->addSuccessor(LoopMBB);
6908 
6909   //  LoopMBB:
6910   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
6911   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
6912   //   R0L = %CharReg
6913   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
6914   //   JO LoopMBB
6915   //   # fall through to DoneMMB
6916   //
6917   // The load of R0L can be hoisted by post-RA LICM.
6918   MBB = LoopMBB;
6919 
6920   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
6921     .addReg(Start1Reg).addMBB(StartMBB)
6922     .addReg(End1Reg).addMBB(LoopMBB);
6923   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
6924     .addReg(Start2Reg).addMBB(StartMBB)
6925     .addReg(End2Reg).addMBB(LoopMBB);
6926   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
6927   BuildMI(MBB, DL, TII->get(Opcode))
6928     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
6929     .addReg(This1Reg).addReg(This2Reg);
6930   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6931     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
6932   MBB->addSuccessor(LoopMBB);
6933   MBB->addSuccessor(DoneMBB);
6934 
6935   DoneMBB->addLiveIn(SystemZ::CC);
6936 
6937   MI.eraseFromParent();
6938   return DoneMBB;
6939 }
6940 
6941 // Update TBEGIN instruction with final opcode and register clobbers.
emitTransactionBegin(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode,bool NoFloat) const6942 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
6943     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
6944     bool NoFloat) const {
6945   MachineFunction &MF = *MBB->getParent();
6946   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
6947   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
6948 
6949   // Update opcode.
6950   MI.setDesc(TII->get(Opcode));
6951 
6952   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
6953   // Make sure to add the corresponding GRSM bits if they are missing.
6954   uint64_t Control = MI.getOperand(2).getImm();
6955   static const unsigned GPRControlBit[16] = {
6956     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
6957     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
6958   };
6959   Control |= GPRControlBit[15];
6960   if (TFI->hasFP(MF))
6961     Control |= GPRControlBit[11];
6962   MI.getOperand(2).setImm(Control);
6963 
6964   // Add GPR clobbers.
6965   for (int I = 0; I < 16; I++) {
6966     if ((Control & GPRControlBit[I]) == 0) {
6967       unsigned Reg = SystemZMC::GR64Regs[I];
6968       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
6969     }
6970   }
6971 
6972   // Add FPR/VR clobbers.
6973   if (!NoFloat && (Control & 4) != 0) {
6974     if (Subtarget.hasVector()) {
6975       for (int I = 0; I < 32; I++) {
6976         unsigned Reg = SystemZMC::VR128Regs[I];
6977         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
6978       }
6979     } else {
6980       for (int I = 0; I < 16; I++) {
6981         unsigned Reg = SystemZMC::FP64Regs[I];
6982         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
6983       }
6984     }
6985   }
6986 
6987   return MBB;
6988 }
6989 
emitLoadAndTestCmp0(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode) const6990 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
6991     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6992   MachineFunction &MF = *MBB->getParent();
6993   MachineRegisterInfo *MRI = &MF.getRegInfo();
6994   const SystemZInstrInfo *TII =
6995       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6996   DebugLoc DL = MI.getDebugLoc();
6997 
6998   unsigned SrcReg = MI.getOperand(0).getReg();
6999 
7000   // Create new virtual register of the same class as source.
7001   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
7002   unsigned DstReg = MRI->createVirtualRegister(RC);
7003 
7004   // Replace pseudo with a normal load-and-test that models the def as
7005   // well.
7006   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
7007     .addReg(SrcReg);
7008   MI.eraseFromParent();
7009 
7010   return MBB;
7011 }
7012 
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * MBB) const7013 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
7014     MachineInstr &MI, MachineBasicBlock *MBB) const {
7015   switch (MI.getOpcode()) {
7016   case SystemZ::Select32:
7017   case SystemZ::Select64:
7018   case SystemZ::SelectF32:
7019   case SystemZ::SelectF64:
7020   case SystemZ::SelectF128:
7021   case SystemZ::SelectVR32:
7022   case SystemZ::SelectVR64:
7023   case SystemZ::SelectVR128:
7024     return emitSelect(MI, MBB);
7025 
7026   case SystemZ::CondStore8Mux:
7027     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
7028   case SystemZ::CondStore8MuxInv:
7029     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
7030   case SystemZ::CondStore16Mux:
7031     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
7032   case SystemZ::CondStore16MuxInv:
7033     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
7034   case SystemZ::CondStore32Mux:
7035     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
7036   case SystemZ::CondStore32MuxInv:
7037     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
7038   case SystemZ::CondStore8:
7039     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
7040   case SystemZ::CondStore8Inv:
7041     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
7042   case SystemZ::CondStore16:
7043     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
7044   case SystemZ::CondStore16Inv:
7045     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
7046   case SystemZ::CondStore32:
7047     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
7048   case SystemZ::CondStore32Inv:
7049     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
7050   case SystemZ::CondStore64:
7051     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
7052   case SystemZ::CondStore64Inv:
7053     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
7054   case SystemZ::CondStoreF32:
7055     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
7056   case SystemZ::CondStoreF32Inv:
7057     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
7058   case SystemZ::CondStoreF64:
7059     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
7060   case SystemZ::CondStoreF64Inv:
7061     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
7062 
7063   case SystemZ::PAIR128:
7064     return emitPair128(MI, MBB);
7065   case SystemZ::AEXT128:
7066     return emitExt128(MI, MBB, false);
7067   case SystemZ::ZEXT128:
7068     return emitExt128(MI, MBB, true);
7069 
7070   case SystemZ::ATOMIC_SWAPW:
7071     return emitAtomicLoadBinary(MI, MBB, 0, 0);
7072   case SystemZ::ATOMIC_SWAP_32:
7073     return emitAtomicLoadBinary(MI, MBB, 0, 32);
7074   case SystemZ::ATOMIC_SWAP_64:
7075     return emitAtomicLoadBinary(MI, MBB, 0, 64);
7076 
7077   case SystemZ::ATOMIC_LOADW_AR:
7078     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
7079   case SystemZ::ATOMIC_LOADW_AFI:
7080     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
7081   case SystemZ::ATOMIC_LOAD_AR:
7082     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
7083   case SystemZ::ATOMIC_LOAD_AHI:
7084     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
7085   case SystemZ::ATOMIC_LOAD_AFI:
7086     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
7087   case SystemZ::ATOMIC_LOAD_AGR:
7088     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
7089   case SystemZ::ATOMIC_LOAD_AGHI:
7090     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
7091   case SystemZ::ATOMIC_LOAD_AGFI:
7092     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
7093 
7094   case SystemZ::ATOMIC_LOADW_SR:
7095     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
7096   case SystemZ::ATOMIC_LOAD_SR:
7097     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
7098   case SystemZ::ATOMIC_LOAD_SGR:
7099     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
7100 
7101   case SystemZ::ATOMIC_LOADW_NR:
7102     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
7103   case SystemZ::ATOMIC_LOADW_NILH:
7104     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
7105   case SystemZ::ATOMIC_LOAD_NR:
7106     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
7107   case SystemZ::ATOMIC_LOAD_NILL:
7108     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
7109   case SystemZ::ATOMIC_LOAD_NILH:
7110     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
7111   case SystemZ::ATOMIC_LOAD_NILF:
7112     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
7113   case SystemZ::ATOMIC_LOAD_NGR:
7114     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
7115   case SystemZ::ATOMIC_LOAD_NILL64:
7116     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
7117   case SystemZ::ATOMIC_LOAD_NILH64:
7118     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
7119   case SystemZ::ATOMIC_LOAD_NIHL64:
7120     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
7121   case SystemZ::ATOMIC_LOAD_NIHH64:
7122     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
7123   case SystemZ::ATOMIC_LOAD_NILF64:
7124     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
7125   case SystemZ::ATOMIC_LOAD_NIHF64:
7126     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
7127 
7128   case SystemZ::ATOMIC_LOADW_OR:
7129     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
7130   case SystemZ::ATOMIC_LOADW_OILH:
7131     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
7132   case SystemZ::ATOMIC_LOAD_OR:
7133     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
7134   case SystemZ::ATOMIC_LOAD_OILL:
7135     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
7136   case SystemZ::ATOMIC_LOAD_OILH:
7137     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
7138   case SystemZ::ATOMIC_LOAD_OILF:
7139     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
7140   case SystemZ::ATOMIC_LOAD_OGR:
7141     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
7142   case SystemZ::ATOMIC_LOAD_OILL64:
7143     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
7144   case SystemZ::ATOMIC_LOAD_OILH64:
7145     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
7146   case SystemZ::ATOMIC_LOAD_OIHL64:
7147     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
7148   case SystemZ::ATOMIC_LOAD_OIHH64:
7149     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
7150   case SystemZ::ATOMIC_LOAD_OILF64:
7151     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
7152   case SystemZ::ATOMIC_LOAD_OIHF64:
7153     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
7154 
7155   case SystemZ::ATOMIC_LOADW_XR:
7156     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
7157   case SystemZ::ATOMIC_LOADW_XILF:
7158     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
7159   case SystemZ::ATOMIC_LOAD_XR:
7160     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
7161   case SystemZ::ATOMIC_LOAD_XILF:
7162     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
7163   case SystemZ::ATOMIC_LOAD_XGR:
7164     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
7165   case SystemZ::ATOMIC_LOAD_XILF64:
7166     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
7167   case SystemZ::ATOMIC_LOAD_XIHF64:
7168     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
7169 
7170   case SystemZ::ATOMIC_LOADW_NRi:
7171     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
7172   case SystemZ::ATOMIC_LOADW_NILHi:
7173     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
7174   case SystemZ::ATOMIC_LOAD_NRi:
7175     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
7176   case SystemZ::ATOMIC_LOAD_NILLi:
7177     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
7178   case SystemZ::ATOMIC_LOAD_NILHi:
7179     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
7180   case SystemZ::ATOMIC_LOAD_NILFi:
7181     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
7182   case SystemZ::ATOMIC_LOAD_NGRi:
7183     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
7184   case SystemZ::ATOMIC_LOAD_NILL64i:
7185     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
7186   case SystemZ::ATOMIC_LOAD_NILH64i:
7187     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
7188   case SystemZ::ATOMIC_LOAD_NIHL64i:
7189     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
7190   case SystemZ::ATOMIC_LOAD_NIHH64i:
7191     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
7192   case SystemZ::ATOMIC_LOAD_NILF64i:
7193     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
7194   case SystemZ::ATOMIC_LOAD_NIHF64i:
7195     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
7196 
7197   case SystemZ::ATOMIC_LOADW_MIN:
7198     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7199                                 SystemZ::CCMASK_CMP_LE, 0);
7200   case SystemZ::ATOMIC_LOAD_MIN_32:
7201     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7202                                 SystemZ::CCMASK_CMP_LE, 32);
7203   case SystemZ::ATOMIC_LOAD_MIN_64:
7204     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7205                                 SystemZ::CCMASK_CMP_LE, 64);
7206 
7207   case SystemZ::ATOMIC_LOADW_MAX:
7208     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7209                                 SystemZ::CCMASK_CMP_GE, 0);
7210   case SystemZ::ATOMIC_LOAD_MAX_32:
7211     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7212                                 SystemZ::CCMASK_CMP_GE, 32);
7213   case SystemZ::ATOMIC_LOAD_MAX_64:
7214     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7215                                 SystemZ::CCMASK_CMP_GE, 64);
7216 
7217   case SystemZ::ATOMIC_LOADW_UMIN:
7218     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7219                                 SystemZ::CCMASK_CMP_LE, 0);
7220   case SystemZ::ATOMIC_LOAD_UMIN_32:
7221     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7222                                 SystemZ::CCMASK_CMP_LE, 32);
7223   case SystemZ::ATOMIC_LOAD_UMIN_64:
7224     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7225                                 SystemZ::CCMASK_CMP_LE, 64);
7226 
7227   case SystemZ::ATOMIC_LOADW_UMAX:
7228     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7229                                 SystemZ::CCMASK_CMP_GE, 0);
7230   case SystemZ::ATOMIC_LOAD_UMAX_32:
7231     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7232                                 SystemZ::CCMASK_CMP_GE, 32);
7233   case SystemZ::ATOMIC_LOAD_UMAX_64:
7234     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7235                                 SystemZ::CCMASK_CMP_GE, 64);
7236 
7237   case SystemZ::ATOMIC_CMP_SWAPW:
7238     return emitAtomicCmpSwapW(MI, MBB);
7239   case SystemZ::MVCSequence:
7240   case SystemZ::MVCLoop:
7241     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
7242   case SystemZ::NCSequence:
7243   case SystemZ::NCLoop:
7244     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
7245   case SystemZ::OCSequence:
7246   case SystemZ::OCLoop:
7247     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
7248   case SystemZ::XCSequence:
7249   case SystemZ::XCLoop:
7250     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
7251   case SystemZ::CLCSequence:
7252   case SystemZ::CLCLoop:
7253     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
7254   case SystemZ::CLSTLoop:
7255     return emitStringWrapper(MI, MBB, SystemZ::CLST);
7256   case SystemZ::MVSTLoop:
7257     return emitStringWrapper(MI, MBB, SystemZ::MVST);
7258   case SystemZ::SRSTLoop:
7259     return emitStringWrapper(MI, MBB, SystemZ::SRST);
7260   case SystemZ::TBEGIN:
7261     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
7262   case SystemZ::TBEGIN_nofloat:
7263     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
7264   case SystemZ::TBEGINC:
7265     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
7266   case SystemZ::LTEBRCompare_VecPseudo:
7267     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
7268   case SystemZ::LTDBRCompare_VecPseudo:
7269     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
7270   case SystemZ::LTXBRCompare_VecPseudo:
7271     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
7272 
7273   case TargetOpcode::STACKMAP:
7274   case TargetOpcode::PATCHPOINT:
7275     return emitPatchPoint(MI, MBB);
7276 
7277   default:
7278     llvm_unreachable("Unexpected instr type to insert");
7279   }
7280 }
7281 
7282 // This is only used by the isel schedulers, and is needed only to prevent
7283 // compiler from crashing when list-ilp is used.
7284 const TargetRegisterClass *
getRepRegClassFor(MVT VT) const7285 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
7286   if (VT == MVT::Untyped)
7287     return &SystemZ::ADDR128BitRegClass;
7288   return TargetLowering::getRepRegClassFor(VT);
7289 }
7290