1 //===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that SystemZ uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
16 #define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
17
18 #include "SystemZ.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22
23 namespace llvm {
24 namespace SystemZISD {
25 enum NodeType : unsigned {
26 FIRST_NUMBER = ISD::BUILTIN_OP_END,
27
28 // Return with a flag operand. Operand 0 is the chain operand.
29 RET_FLAG,
30
31 // Calls a function. Operand 0 is the chain operand and operand 1
32 // is the target address. The arguments start at operand 2.
33 // There is an optional glue operand at the end.
34 CALL,
35 SIBCALL,
36
37 // TLS calls. Like regular calls, except operand 1 is the TLS symbol.
38 // (The call target is implicitly __tls_get_offset.)
39 TLS_GDCALL,
40 TLS_LDCALL,
41
42 // Wraps a TargetGlobalAddress that should be loaded using PC-relative
43 // accesses (LARL). Operand 0 is the address.
44 PCREL_WRAPPER,
45
46 // Used in cases where an offset is applied to a TargetGlobalAddress.
47 // Operand 0 is the full TargetGlobalAddress and operand 1 is a
48 // PCREL_WRAPPER for an anchor point. This is used so that we can
49 // cheaply refer to either the full address or the anchor point
50 // as a register base.
51 PCREL_OFFSET,
52
53 // Integer absolute.
54 IABS,
55
56 // Integer comparisons. There are three operands: the two values
57 // to compare, and an integer of type SystemZICMP.
58 ICMP,
59
60 // Floating-point comparisons. The two operands are the values to compare.
61 FCMP,
62
63 // Test under mask. The first operand is ANDed with the second operand
64 // and the condition codes are set on the result. The third operand is
65 // a boolean that is true if the condition codes need to distinguish
66 // between CCMASK_TM_MIXED_MSB_0 and CCMASK_TM_MIXED_MSB_1 (which the
67 // register forms do but the memory forms don't).
68 TM,
69
70 // Branches if a condition is true. Operand 0 is the chain operand;
71 // operand 1 is the 4-bit condition-code mask, with bit N in
72 // big-endian order meaning "branch if CC=N"; operand 2 is the
73 // target block and operand 3 is the flag operand.
74 BR_CCMASK,
75
76 // Selects between operand 0 and operand 1. Operand 2 is the
77 // mask of condition-code values for which operand 0 should be
78 // chosen over operand 1; it has the same form as BR_CCMASK.
79 // Operand 3 is the flag operand.
80 SELECT_CCMASK,
81
82 // Evaluates to the gap between the stack pointer and the
83 // base of the dynamically-allocatable area.
84 ADJDYNALLOC,
85
86 // Count number of bits set in operand 0 per byte.
87 POPCNT,
88
89 // Wrappers around the ISD opcodes of the same name. The output is GR128.
90 // Input operands may be GR64 or GR32, depending on the instruction.
91 SMUL_LOHI,
92 UMUL_LOHI,
93 SDIVREM,
94 UDIVREM,
95
96 // Add/subtract with overflow/carry. These have the same operands as
97 // the corresponding standard operations, except with the carry flag
98 // replaced by a condition code value.
99 SADDO, SSUBO, UADDO, USUBO, ADDCARRY, SUBCARRY,
100
101 // Set the condition code from a boolean value in operand 0.
102 // Operand 1 is a mask of all condition-code values that may result of this
103 // operation, operand 2 is a mask of condition-code values that may result
104 // if the boolean is true.
105 // Note that this operation is always optimized away, we will never
106 // generate any code for it.
107 GET_CCMASK,
108
109 // Use a series of MVCs to copy bytes from one memory location to another.
110 // The operands are:
111 // - the target address
112 // - the source address
113 // - the constant length
114 //
115 // This isn't a memory opcode because we'd need to attach two
116 // MachineMemOperands rather than one.
117 MVC,
118
119 // Like MVC, but implemented as a loop that handles X*256 bytes
120 // followed by straight-line code to handle the rest (if any).
121 // The value of X is passed as an additional operand.
122 MVC_LOOP,
123
124 // Similar to MVC and MVC_LOOP, but for logic operations (AND, OR, XOR).
125 NC,
126 NC_LOOP,
127 OC,
128 OC_LOOP,
129 XC,
130 XC_LOOP,
131
132 // Use CLC to compare two blocks of memory, with the same comments
133 // as for MVC and MVC_LOOP.
134 CLC,
135 CLC_LOOP,
136
137 // Use an MVST-based sequence to implement stpcpy().
138 STPCPY,
139
140 // Use a CLST-based sequence to implement strcmp(). The two input operands
141 // are the addresses of the strings to compare.
142 STRCMP,
143
144 // Use an SRST-based sequence to search a block of memory. The first
145 // operand is the end address, the second is the start, and the third
146 // is the character to search for. CC is set to 1 on success and 2
147 // on failure.
148 SEARCH_STRING,
149
150 // Store the CC value in bits 29 and 28 of an integer.
151 IPM,
152
153 // Compiler barrier only; generate a no-op.
154 MEMBARRIER,
155
156 // Transaction begin. The first operand is the chain, the second
157 // the TDB pointer, and the third the immediate control field.
158 // Returns CC value and chain.
159 TBEGIN,
160 TBEGIN_NOFLOAT,
161
162 // Transaction end. Just the chain operand. Returns CC value and chain.
163 TEND,
164
165 // Create a vector constant by filling byte N of the result with bit
166 // 15-N of the single operand.
167 BYTE_MASK,
168
169 // Create a vector constant by replicating an element-sized RISBG-style mask.
170 // The first operand specifies the starting set bit and the second operand
171 // specifies the ending set bit. Both operands count from the MSB of the
172 // element.
173 ROTATE_MASK,
174
175 // Replicate a GPR scalar value into all elements of a vector.
176 REPLICATE,
177
178 // Create a vector from two i64 GPRs.
179 JOIN_DWORDS,
180
181 // Replicate one element of a vector into all elements. The first operand
182 // is the vector and the second is the index of the element to replicate.
183 SPLAT,
184
185 // Interleave elements from the high half of operand 0 and the high half
186 // of operand 1.
187 MERGE_HIGH,
188
189 // Likewise for the low halves.
190 MERGE_LOW,
191
192 // Concatenate the vectors in the first two operands, shift them left
193 // by the third operand, and take the first half of the result.
194 SHL_DOUBLE,
195
196 // Take one element of the first v2i64 operand and the one element of
197 // the second v2i64 operand and concatenate them to form a v2i64 result.
198 // The third operand is a 4-bit value of the form 0A0B, where A and B
199 // are the element selectors for the first operand and second operands
200 // respectively.
201 PERMUTE_DWORDS,
202
203 // Perform a general vector permute on vector operands 0 and 1.
204 // Each byte of operand 2 controls the corresponding byte of the result,
205 // in the same way as a byte-level VECTOR_SHUFFLE mask.
206 PERMUTE,
207
208 // Pack vector operands 0 and 1 into a single vector with half-sized elements.
209 PACK,
210
211 // Likewise, but saturate the result and set CC. PACKS_CC does signed
212 // saturation and PACKLS_CC does unsigned saturation.
213 PACKS_CC,
214 PACKLS_CC,
215
216 // Unpack the first half of vector operand 0 into double-sized elements.
217 // UNPACK_HIGH sign-extends and UNPACKL_HIGH zero-extends.
218 UNPACK_HIGH,
219 UNPACKL_HIGH,
220
221 // Likewise for the second half.
222 UNPACK_LOW,
223 UNPACKL_LOW,
224
225 // Shift each element of vector operand 0 by the number of bits specified
226 // by scalar operand 1.
227 VSHL_BY_SCALAR,
228 VSRL_BY_SCALAR,
229 VSRA_BY_SCALAR,
230
231 // For each element of the output type, sum across all sub-elements of
232 // operand 0 belonging to the corresponding element, and add in the
233 // rightmost sub-element of the corresponding element of operand 1.
234 VSUM,
235
236 // Compare integer vector operands 0 and 1 to produce the usual 0/-1
237 // vector result. VICMPE is for equality, VICMPH for "signed greater than"
238 // and VICMPHL for "unsigned greater than".
239 VICMPE,
240 VICMPH,
241 VICMPHL,
242
243 // Likewise, but also set the condition codes on the result.
244 VICMPES,
245 VICMPHS,
246 VICMPHLS,
247
248 // Compare floating-point vector operands 0 and 1 to preoduce the usual 0/-1
249 // vector result. VFCMPE is for "ordered and equal", VFCMPH for "ordered and
250 // greater than" and VFCMPHE for "ordered and greater than or equal to".
251 VFCMPE,
252 VFCMPH,
253 VFCMPHE,
254
255 // Likewise, but also set the condition codes on the result.
256 VFCMPES,
257 VFCMPHS,
258 VFCMPHES,
259
260 // Test floating-point data class for vectors.
261 VFTCI,
262
263 // Extend the even f32 elements of vector operand 0 to produce a vector
264 // of f64 elements.
265 VEXTEND,
266
267 // Round the f64 elements of vector operand 0 to f32s and store them in the
268 // even elements of the result.
269 VROUND,
270
271 // AND the two vector operands together and set CC based on the result.
272 VTM,
273
274 // String operations that set CC as a side-effect.
275 VFAE_CC,
276 VFAEZ_CC,
277 VFEE_CC,
278 VFEEZ_CC,
279 VFENE_CC,
280 VFENEZ_CC,
281 VISTR_CC,
282 VSTRC_CC,
283 VSTRCZ_CC,
284
285 // Test Data Class.
286 //
287 // Operand 0: the value to test
288 // Operand 1: the bit mask
289 TDC,
290
291 // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or
292 // ATOMIC_LOAD_<op>.
293 //
294 // Operand 0: the address of the containing 32-bit-aligned field
295 // Operand 1: the second operand of <op>, in the high bits of an i32
296 // for everything except ATOMIC_SWAPW
297 // Operand 2: how many bits to rotate the i32 left to bring the first
298 // operand into the high bits
299 // Operand 3: the negative of operand 2, for rotating the other way
300 // Operand 4: the width of the field in bits (8 or 16)
301 ATOMIC_SWAPW = ISD::FIRST_TARGET_MEMORY_OPCODE,
302 ATOMIC_LOADW_ADD,
303 ATOMIC_LOADW_SUB,
304 ATOMIC_LOADW_AND,
305 ATOMIC_LOADW_OR,
306 ATOMIC_LOADW_XOR,
307 ATOMIC_LOADW_NAND,
308 ATOMIC_LOADW_MIN,
309 ATOMIC_LOADW_MAX,
310 ATOMIC_LOADW_UMIN,
311 ATOMIC_LOADW_UMAX,
312
313 // A wrapper around the inner loop of an ATOMIC_CMP_SWAP.
314 //
315 // Operand 0: the address of the containing 32-bit-aligned field
316 // Operand 1: the compare value, in the low bits of an i32
317 // Operand 2: the swap value, in the low bits of an i32
318 // Operand 3: how many bits to rotate the i32 left to bring the first
319 // operand into the high bits
320 // Operand 4: the negative of operand 2, for rotating the other way
321 // Operand 5: the width of the field in bits (8 or 16)
322 ATOMIC_CMP_SWAPW,
323
324 // Atomic compare-and-swap returning CC value.
325 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
326 ATOMIC_CMP_SWAP,
327
328 // 128-bit atomic load.
329 // Val, OUTCHAIN = ATOMIC_LOAD_128(INCHAIN, ptr)
330 ATOMIC_LOAD_128,
331
332 // 128-bit atomic store.
333 // OUTCHAIN = ATOMIC_STORE_128(INCHAIN, val, ptr)
334 ATOMIC_STORE_128,
335
336 // 128-bit atomic compare-and-swap.
337 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
338 ATOMIC_CMP_SWAP_128,
339
340 // Byte swapping load.
341 //
342 // Operand 0: the address to load from
343 // Operand 1: the type of load (i16, i32, i64)
344 LRV,
345
346 // Byte swapping store.
347 //
348 // Operand 0: the value to store
349 // Operand 1: the address to store to
350 // Operand 2: the type of store (i16, i32, i64)
351 STRV,
352
353 // Prefetch from the second operand using the 4-bit control code in
354 // the first operand. The code is 1 for a load prefetch and 2 for
355 // a store prefetch.
356 PREFETCH
357 };
358
359 // Return true if OPCODE is some kind of PC-relative address.
isPCREL(unsigned Opcode)360 inline bool isPCREL(unsigned Opcode) {
361 return Opcode == PCREL_WRAPPER || Opcode == PCREL_OFFSET;
362 }
363 } // end namespace SystemZISD
364
365 namespace SystemZICMP {
366 // Describes whether an integer comparison needs to be signed or unsigned,
367 // or whether either type is OK.
368 enum {
369 Any,
370 UnsignedOnly,
371 SignedOnly
372 };
373 } // end namespace SystemZICMP
374
375 class SystemZSubtarget;
376 class SystemZTargetMachine;
377
378 class SystemZTargetLowering : public TargetLowering {
379 public:
380 explicit SystemZTargetLowering(const TargetMachine &TM,
381 const SystemZSubtarget &STI);
382
383 // Override TargetLowering.
getScalarShiftAmountTy(const DataLayout &,EVT)384 MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
385 return MVT::i32;
386 }
getVectorIdxTy(const DataLayout & DL)387 MVT getVectorIdxTy(const DataLayout &DL) const override {
388 // Only the lower 12 bits of an element index are used, so we don't
389 // want to clobber the upper 32 bits of a GPR unnecessarily.
390 return MVT::i32;
391 }
getPreferredVectorAction(EVT VT)392 TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(EVT VT)
393 const override {
394 // Widen subvectors to the full width rather than promoting integer
395 // elements. This is better because:
396 //
397 // (a) it means that we can handle the ABI for passing and returning
398 // sub-128 vectors without having to handle them as legal types.
399 //
400 // (b) we don't have instructions to extend on load and truncate on store,
401 // so promoting the integers is less efficient.
402 //
403 // (c) there are no multiplication instructions for the widest integer
404 // type (v2i64).
405 if (VT.getScalarSizeInBits() % 8 == 0)
406 return TypeWidenVector;
407 return TargetLoweringBase::getPreferredVectorAction(VT);
408 }
409 EVT getSetCCResultType(const DataLayout &DL, LLVMContext &,
410 EVT) const override;
411 bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
412 bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
413 bool isLegalICmpImmediate(int64_t Imm) const override;
414 bool isLegalAddImmediate(int64_t Imm) const override;
415 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty,
416 unsigned AS,
417 Instruction *I = nullptr) const override;
418 bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS,
419 unsigned Align,
420 bool *Fast) const override;
421 bool isTruncateFree(Type *, Type *) const override;
422 bool isTruncateFree(EVT, EVT) const override;
423 const char *getTargetNodeName(unsigned Opcode) const override;
424 std::pair<unsigned, const TargetRegisterClass *>
425 getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
426 StringRef Constraint, MVT VT) const override;
427 TargetLowering::ConstraintType
428 getConstraintType(StringRef Constraint) const override;
429 TargetLowering::ConstraintWeight
430 getSingleConstraintMatchWeight(AsmOperandInfo &info,
431 const char *constraint) const override;
432 void LowerAsmOperandForConstraint(SDValue Op,
433 std::string &Constraint,
434 std::vector<SDValue> &Ops,
435 SelectionDAG &DAG) const override;
436
getInlineAsmMemConstraint(StringRef ConstraintCode)437 unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
438 if (ConstraintCode.size() == 1) {
439 switch(ConstraintCode[0]) {
440 default:
441 break;
442 case 'o':
443 return InlineAsm::Constraint_o;
444 case 'Q':
445 return InlineAsm::Constraint_Q;
446 case 'R':
447 return InlineAsm::Constraint_R;
448 case 'S':
449 return InlineAsm::Constraint_S;
450 case 'T':
451 return InlineAsm::Constraint_T;
452 }
453 }
454 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
455 }
456
457 /// If a physical register, this returns the register that receives the
458 /// exception address on entry to an EH pad.
459 unsigned
getExceptionPointerRegister(const Constant * PersonalityFn)460 getExceptionPointerRegister(const Constant *PersonalityFn) const override {
461 return SystemZ::R6D;
462 }
463
464 /// If a physical register, this returns the register that receives the
465 /// exception typeid on entry to a landing pad.
466 unsigned
getExceptionSelectorRegister(const Constant * PersonalityFn)467 getExceptionSelectorRegister(const Constant *PersonalityFn) const override {
468 return SystemZ::R7D;
469 }
470
471 /// Override to support customized stack guard loading.
useLoadStackGuardNode()472 bool useLoadStackGuardNode() const override {
473 return true;
474 }
insertSSPDeclarations(Module & M)475 void insertSSPDeclarations(Module &M) const override {
476 }
477
478 MachineBasicBlock *
479 EmitInstrWithCustomInserter(MachineInstr &MI,
480 MachineBasicBlock *BB) const override;
481 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
482 void LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results,
483 SelectionDAG &DAG) const override;
484 void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
485 SelectionDAG &DAG) const override;
486 const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
487 bool allowTruncateForTailCall(Type *, Type *) const override;
488 bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
489 SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv,
490 bool isVarArg,
491 const SmallVectorImpl<ISD::InputArg> &Ins,
492 const SDLoc &DL, SelectionDAG &DAG,
493 SmallVectorImpl<SDValue> &InVals) const override;
494 SDValue LowerCall(CallLoweringInfo &CLI,
495 SmallVectorImpl<SDValue> &InVals) const override;
496
497 bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
498 bool isVarArg,
499 const SmallVectorImpl<ISD::OutputArg> &Outs,
500 LLVMContext &Context) const override;
501 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
502 const SmallVectorImpl<ISD::OutputArg> &Outs,
503 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
504 SelectionDAG &DAG) const override;
505 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
506
507 /// Determine which of the bits specified in Mask are known to be either
508 /// zero or one and return them in the KnownZero/KnownOne bitsets.
509 void computeKnownBitsForTargetNode(const SDValue Op,
510 KnownBits &Known,
511 const APInt &DemandedElts,
512 const SelectionDAG &DAG,
513 unsigned Depth = 0) const override;
514
515 /// Determine the number of bits in the operation that are sign bits.
516 unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
517 const APInt &DemandedElts,
518 const SelectionDAG &DAG,
519 unsigned Depth) const override;
520
getExtendForAtomicOps()521 ISD::NodeType getExtendForAtomicOps() const override {
522 return ISD::ANY_EXTEND;
523 }
524
supportSwiftError()525 bool supportSwiftError() const override {
526 return true;
527 }
528
529 private:
530 const SystemZSubtarget &Subtarget;
531
532 // Implement LowerOperation for individual opcodes.
533 SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
534 const SDLoc &DL, EVT VT,
535 SDValue CmpOp0, SDValue CmpOp1) const;
536 SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL,
537 EVT VT, ISD::CondCode CC,
538 SDValue CmpOp0, SDValue CmpOp1) const;
539 SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const;
540 SDValue lowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
541 SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
542 SDValue lowerGlobalAddress(GlobalAddressSDNode *Node,
543 SelectionDAG &DAG) const;
544 SDValue lowerTLSGetOffset(GlobalAddressSDNode *Node,
545 SelectionDAG &DAG, unsigned Opcode,
546 SDValue GOTOffset) const;
547 SDValue lowerThreadPointer(const SDLoc &DL, SelectionDAG &DAG) const;
548 SDValue lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
549 SelectionDAG &DAG) const;
550 SDValue lowerBlockAddress(BlockAddressSDNode *Node,
551 SelectionDAG &DAG) const;
552 SDValue lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const;
553 SDValue lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const;
554 SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
555 SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
556 SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
557 SDValue lowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
558 SDValue lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
559 SDValue lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
560 SDValue lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
561 SDValue lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
562 SDValue lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const;
563 SDValue lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const;
564 SDValue lowerXALUO(SDValue Op, SelectionDAG &DAG) const;
565 SDValue lowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) const;
566 SDValue lowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
567 SDValue lowerOR(SDValue Op, SelectionDAG &DAG) const;
568 SDValue lowerCTPOP(SDValue Op, SelectionDAG &DAG) const;
569 SDValue lowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const;
570 SDValue lowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const;
571 SDValue lowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const;
572 SDValue lowerATOMIC_LOAD_OP(SDValue Op, SelectionDAG &DAG,
573 unsigned Opcode) const;
574 SDValue lowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
575 SDValue lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
576 SDValue lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const;
577 SDValue lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
578 SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const;
579 SDValue lowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const;
580 SDValue lowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
581 SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
582 SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
583 SDValue lowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
584 SDValue lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
585 SDValue lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
586 SDValue lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
587 unsigned UnpackHigh) const;
588 SDValue lowerShift(SDValue Op, SelectionDAG &DAG, unsigned ByScalar) const;
589
590 bool canTreatAsByteVector(EVT VT) const;
591 SDValue combineExtract(const SDLoc &DL, EVT ElemVT, EVT VecVT, SDValue OrigOp,
592 unsigned Index, DAGCombinerInfo &DCI,
593 bool Force) const;
594 SDValue combineTruncateExtract(const SDLoc &DL, EVT TruncVT, SDValue Op,
595 DAGCombinerInfo &DCI) const;
596 SDValue combineZERO_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
597 SDValue combineSIGN_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
598 SDValue combineSIGN_EXTEND_INREG(SDNode *N, DAGCombinerInfo &DCI) const;
599 SDValue combineMERGE(SDNode *N, DAGCombinerInfo &DCI) const;
600 SDValue combineSTORE(SDNode *N, DAGCombinerInfo &DCI) const;
601 SDValue combineEXTRACT_VECTOR_ELT(SDNode *N, DAGCombinerInfo &DCI) const;
602 SDValue combineJOIN_DWORDS(SDNode *N, DAGCombinerInfo &DCI) const;
603 SDValue combineFP_ROUND(SDNode *N, DAGCombinerInfo &DCI) const;
604 SDValue combineBSWAP(SDNode *N, DAGCombinerInfo &DCI) const;
605 SDValue combineBR_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
606 SDValue combineSELECT_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
607 SDValue combineGET_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
608
609 // If the last instruction before MBBI in MBB was some form of COMPARE,
610 // try to replace it with a COMPARE AND BRANCH just before MBBI.
611 // CCMask and Target are the BRC-like operands for the branch.
612 // Return true if the change was made.
613 bool convertPrevCompareToBranch(MachineBasicBlock *MBB,
614 MachineBasicBlock::iterator MBBI,
615 unsigned CCMask,
616 MachineBasicBlock *Target) const;
617
618 // Implement EmitInstrWithCustomInserter for individual operation types.
619 MachineBasicBlock *emitSelect(MachineInstr &MI, MachineBasicBlock *BB) const;
620 MachineBasicBlock *emitCondStore(MachineInstr &MI, MachineBasicBlock *BB,
621 unsigned StoreOpcode, unsigned STOCOpcode,
622 bool Invert) const;
623 MachineBasicBlock *emitPair128(MachineInstr &MI,
624 MachineBasicBlock *MBB) const;
625 MachineBasicBlock *emitExt128(MachineInstr &MI, MachineBasicBlock *MBB,
626 bool ClearEven) const;
627 MachineBasicBlock *emitAtomicLoadBinary(MachineInstr &MI,
628 MachineBasicBlock *BB,
629 unsigned BinOpcode, unsigned BitSize,
630 bool Invert = false) const;
631 MachineBasicBlock *emitAtomicLoadMinMax(MachineInstr &MI,
632 MachineBasicBlock *MBB,
633 unsigned CompareOpcode,
634 unsigned KeepOldMask,
635 unsigned BitSize) const;
636 MachineBasicBlock *emitAtomicCmpSwapW(MachineInstr &MI,
637 MachineBasicBlock *BB) const;
638 MachineBasicBlock *emitMemMemWrapper(MachineInstr &MI, MachineBasicBlock *BB,
639 unsigned Opcode) const;
640 MachineBasicBlock *emitStringWrapper(MachineInstr &MI, MachineBasicBlock *BB,
641 unsigned Opcode) const;
642 MachineBasicBlock *emitTransactionBegin(MachineInstr &MI,
643 MachineBasicBlock *MBB,
644 unsigned Opcode, bool NoFloat) const;
645 MachineBasicBlock *emitLoadAndTestCmp0(MachineInstr &MI,
646 MachineBasicBlock *MBB,
647 unsigned Opcode) const;
648
649 const TargetRegisterClass *getRepRegClassFor(MVT VT) const override;
650 };
651 } // end namespace llvm
652
653 #endif
654