1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a TargetTransformInfo analysis pass specific to the
11 // SystemZ target machine. It uses the target's detailed information to provide
12 // more precise answers to certain TTI queries, while letting the target
13 // independent and default TTI implementations handle the rest.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "SystemZTargetTransformInfo.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/CodeGen/BasicTTIImpl.h"
20 #include "llvm/CodeGen/CostTable.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/Support/Debug.h"
24 using namespace llvm;
25
26 #define DEBUG_TYPE "systemztti"
27
28 //===----------------------------------------------------------------------===//
29 //
30 // SystemZ cost model.
31 //
32 //===----------------------------------------------------------------------===//
33
getIntImmCost(const APInt & Imm,Type * Ty)34 int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
35 assert(Ty->isIntegerTy());
36
37 unsigned BitSize = Ty->getPrimitiveSizeInBits();
38 // There is no cost model for constants with a bit size of 0. Return TCC_Free
39 // here, so that constant hoisting will ignore this constant.
40 if (BitSize == 0)
41 return TTI::TCC_Free;
42 // No cost model for operations on integers larger than 64 bit implemented yet.
43 if (BitSize > 64)
44 return TTI::TCC_Free;
45
46 if (Imm == 0)
47 return TTI::TCC_Free;
48
49 if (Imm.getBitWidth() <= 64) {
50 // Constants loaded via lgfi.
51 if (isInt<32>(Imm.getSExtValue()))
52 return TTI::TCC_Basic;
53 // Constants loaded via llilf.
54 if (isUInt<32>(Imm.getZExtValue()))
55 return TTI::TCC_Basic;
56 // Constants loaded via llihf:
57 if ((Imm.getZExtValue() & 0xffffffff) == 0)
58 return TTI::TCC_Basic;
59
60 return 2 * TTI::TCC_Basic;
61 }
62
63 return 4 * TTI::TCC_Basic;
64 }
65
getIntImmCost(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty)66 int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
67 const APInt &Imm, Type *Ty) {
68 assert(Ty->isIntegerTy());
69
70 unsigned BitSize = Ty->getPrimitiveSizeInBits();
71 // There is no cost model for constants with a bit size of 0. Return TCC_Free
72 // here, so that constant hoisting will ignore this constant.
73 if (BitSize == 0)
74 return TTI::TCC_Free;
75 // No cost model for operations on integers larger than 64 bit implemented yet.
76 if (BitSize > 64)
77 return TTI::TCC_Free;
78
79 switch (Opcode) {
80 default:
81 return TTI::TCC_Free;
82 case Instruction::GetElementPtr:
83 // Always hoist the base address of a GetElementPtr. This prevents the
84 // creation of new constants for every base constant that gets constant
85 // folded with the offset.
86 if (Idx == 0)
87 return 2 * TTI::TCC_Basic;
88 return TTI::TCC_Free;
89 case Instruction::Store:
90 if (Idx == 0 && Imm.getBitWidth() <= 64) {
91 // Any 8-bit immediate store can by implemented via mvi.
92 if (BitSize == 8)
93 return TTI::TCC_Free;
94 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
95 if (isInt<16>(Imm.getSExtValue()))
96 return TTI::TCC_Free;
97 }
98 break;
99 case Instruction::ICmp:
100 if (Idx == 1 && Imm.getBitWidth() <= 64) {
101 // Comparisons against signed 32-bit immediates implemented via cgfi.
102 if (isInt<32>(Imm.getSExtValue()))
103 return TTI::TCC_Free;
104 // Comparisons against unsigned 32-bit immediates implemented via clgfi.
105 if (isUInt<32>(Imm.getZExtValue()))
106 return TTI::TCC_Free;
107 }
108 break;
109 case Instruction::Add:
110 case Instruction::Sub:
111 if (Idx == 1 && Imm.getBitWidth() <= 64) {
112 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
113 if (isUInt<32>(Imm.getZExtValue()))
114 return TTI::TCC_Free;
115 // Or their negation, by swapping addition vs. subtraction.
116 if (isUInt<32>(-Imm.getSExtValue()))
117 return TTI::TCC_Free;
118 }
119 break;
120 case Instruction::Mul:
121 if (Idx == 1 && Imm.getBitWidth() <= 64) {
122 // We use msgfi to multiply by 32-bit signed immediates.
123 if (isInt<32>(Imm.getSExtValue()))
124 return TTI::TCC_Free;
125 }
126 break;
127 case Instruction::Or:
128 case Instruction::Xor:
129 if (Idx == 1 && Imm.getBitWidth() <= 64) {
130 // Masks supported by oilf/xilf.
131 if (isUInt<32>(Imm.getZExtValue()))
132 return TTI::TCC_Free;
133 // Masks supported by oihf/xihf.
134 if ((Imm.getZExtValue() & 0xffffffff) == 0)
135 return TTI::TCC_Free;
136 }
137 break;
138 case Instruction::And:
139 if (Idx == 1 && Imm.getBitWidth() <= 64) {
140 // Any 32-bit AND operation can by implemented via nilf.
141 if (BitSize <= 32)
142 return TTI::TCC_Free;
143 // 64-bit masks supported by nilf.
144 if (isUInt<32>(~Imm.getZExtValue()))
145 return TTI::TCC_Free;
146 // 64-bit masks supported by nilh.
147 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
148 return TTI::TCC_Free;
149 // Some 64-bit AND operations can be implemented via risbg.
150 const SystemZInstrInfo *TII = ST->getInstrInfo();
151 unsigned Start, End;
152 if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
153 return TTI::TCC_Free;
154 }
155 break;
156 case Instruction::Shl:
157 case Instruction::LShr:
158 case Instruction::AShr:
159 // Always return TCC_Free for the shift value of a shift instruction.
160 if (Idx == 1)
161 return TTI::TCC_Free;
162 break;
163 case Instruction::UDiv:
164 case Instruction::SDiv:
165 case Instruction::URem:
166 case Instruction::SRem:
167 case Instruction::Trunc:
168 case Instruction::ZExt:
169 case Instruction::SExt:
170 case Instruction::IntToPtr:
171 case Instruction::PtrToInt:
172 case Instruction::BitCast:
173 case Instruction::PHI:
174 case Instruction::Call:
175 case Instruction::Select:
176 case Instruction::Ret:
177 case Instruction::Load:
178 break;
179 }
180
181 return SystemZTTIImpl::getIntImmCost(Imm, Ty);
182 }
183
getIntImmCost(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty)184 int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
185 const APInt &Imm, Type *Ty) {
186 assert(Ty->isIntegerTy());
187
188 unsigned BitSize = Ty->getPrimitiveSizeInBits();
189 // There is no cost model for constants with a bit size of 0. Return TCC_Free
190 // here, so that constant hoisting will ignore this constant.
191 if (BitSize == 0)
192 return TTI::TCC_Free;
193 // No cost model for operations on integers larger than 64 bit implemented yet.
194 if (BitSize > 64)
195 return TTI::TCC_Free;
196
197 switch (IID) {
198 default:
199 return TTI::TCC_Free;
200 case Intrinsic::sadd_with_overflow:
201 case Intrinsic::uadd_with_overflow:
202 case Intrinsic::ssub_with_overflow:
203 case Intrinsic::usub_with_overflow:
204 // These get expanded to include a normal addition/subtraction.
205 if (Idx == 1 && Imm.getBitWidth() <= 64) {
206 if (isUInt<32>(Imm.getZExtValue()))
207 return TTI::TCC_Free;
208 if (isUInt<32>(-Imm.getSExtValue()))
209 return TTI::TCC_Free;
210 }
211 break;
212 case Intrinsic::smul_with_overflow:
213 case Intrinsic::umul_with_overflow:
214 // These get expanded to include a normal multiplication.
215 if (Idx == 1 && Imm.getBitWidth() <= 64) {
216 if (isInt<32>(Imm.getSExtValue()))
217 return TTI::TCC_Free;
218 }
219 break;
220 case Intrinsic::experimental_stackmap:
221 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
222 return TTI::TCC_Free;
223 break;
224 case Intrinsic::experimental_patchpoint_void:
225 case Intrinsic::experimental_patchpoint_i64:
226 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
227 return TTI::TCC_Free;
228 break;
229 }
230 return SystemZTTIImpl::getIntImmCost(Imm, Ty);
231 }
232
233 TargetTransformInfo::PopcntSupportKind
getPopcntSupport(unsigned TyWidth)234 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) {
235 assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2");
236 if (ST->hasPopulationCount() && TyWidth <= 64)
237 return TTI::PSK_FastHardware;
238 return TTI::PSK_Software;
239 }
240
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,TTI::UnrollingPreferences & UP)241 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
242 TTI::UnrollingPreferences &UP) {
243 // Find out if L contains a call, what the machine instruction count
244 // estimate is, and how many stores there are.
245 bool HasCall = false;
246 unsigned NumStores = 0;
247 for (auto &BB : L->blocks())
248 for (auto &I : *BB) {
249 if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
250 ImmutableCallSite CS(&I);
251 if (const Function *F = CS.getCalledFunction()) {
252 if (isLoweredToCall(F))
253 HasCall = true;
254 if (F->getIntrinsicID() == Intrinsic::memcpy ||
255 F->getIntrinsicID() == Intrinsic::memset)
256 NumStores++;
257 } else { // indirect call.
258 HasCall = true;
259 }
260 }
261 if (isa<StoreInst>(&I)) {
262 Type *MemAccessTy = I.getOperand(0)->getType();
263 NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0);
264 }
265 }
266
267 // The z13 processor will run out of store tags if too many stores
268 // are fed into it too quickly. Therefore make sure there are not
269 // too many stores in the resulting unrolled loop.
270 unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX);
271
272 if (HasCall) {
273 // Only allow full unrolling if loop has any calls.
274 UP.FullUnrollMaxCount = Max;
275 UP.MaxCount = 1;
276 return;
277 }
278
279 UP.MaxCount = Max;
280 if (UP.MaxCount <= 1)
281 return;
282
283 // Allow partial and runtime trip count unrolling.
284 UP.Partial = UP.Runtime = true;
285
286 UP.PartialThreshold = 75;
287 UP.DefaultUnrollRuntimeCount = 4;
288
289 // Allow expensive instructions in the pre-header of the loop.
290 UP.AllowExpensiveTripCount = true;
291
292 UP.Force = true;
293 }
294
295
isLSRCostLess(TargetTransformInfo::LSRCost & C1,TargetTransformInfo::LSRCost & C2)296 bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
297 TargetTransformInfo::LSRCost &C2) {
298 // SystemZ specific: check instruction count (first), and don't care about
299 // ImmCost, since offsets are checked explicitly.
300 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
301 C1.NumIVMuls, C1.NumBaseAdds,
302 C1.ScaleCost, C1.SetupCost) <
303 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
304 C2.NumIVMuls, C2.NumBaseAdds,
305 C2.ScaleCost, C2.SetupCost);
306 }
307
getNumberOfRegisters(bool Vector)308 unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) {
309 if (!Vector)
310 // Discount the stack pointer. Also leave out %r0, since it can't
311 // be used in an address.
312 return 14;
313 if (ST->hasVector())
314 return 32;
315 return 0;
316 }
317
getRegisterBitWidth(bool Vector) const318 unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const {
319 if (!Vector)
320 return 64;
321 if (ST->hasVector())
322 return 128;
323 return 0;
324 }
325
hasDivRemOp(Type * DataType,bool IsSigned)326 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
327 EVT VT = TLI->getValueType(DL, DataType);
328 return (VT.isScalarInteger() && TLI->isTypeLegal(VT));
329 }
330
getArithmeticInstrCost(unsigned Opcode,Type * Ty,TTI::OperandValueKind Op1Info,TTI::OperandValueKind Op2Info,TTI::OperandValueProperties Opd1PropInfo,TTI::OperandValueProperties Opd2PropInfo,ArrayRef<const Value * > Args)331 int SystemZTTIImpl::getArithmeticInstrCost(
332 unsigned Opcode, Type *Ty,
333 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
334 TTI::OperandValueProperties Opd1PropInfo,
335 TTI::OperandValueProperties Opd2PropInfo,
336 ArrayRef<const Value *> Args) {
337
338 // TODO: return a good value for BB-VECTORIZER that includes the
339 // immediate loads, which we do not want to count for the loop
340 // vectorizer, since they are hopefully hoisted out of the loop. This
341 // would require a new parameter 'InLoop', but not sure if constant
342 // args are common enough to motivate this.
343
344 unsigned ScalarBits = Ty->getScalarSizeInBits();
345
346 // Div with a constant which is a power of 2 will be converted by
347 // DAGCombiner to use shifts. With vector shift-element instructions, a
348 // vector sdiv costs about as much as a scalar one.
349 const unsigned SDivCostEstimate = 4;
350 bool SDivPow2 = false;
351 bool UDivPow2 = false;
352 if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv) &&
353 Args.size() == 2) {
354 const ConstantInt *CI = nullptr;
355 if (const Constant *C = dyn_cast<Constant>(Args[1])) {
356 if (C->getType()->isVectorTy())
357 CI = dyn_cast_or_null<const ConstantInt>(C->getSplatValue());
358 else
359 CI = dyn_cast<const ConstantInt>(C);
360 }
361 if (CI != nullptr &&
362 (CI->getValue().isPowerOf2() || (-CI->getValue()).isPowerOf2())) {
363 if (Opcode == Instruction::SDiv)
364 SDivPow2 = true;
365 else
366 UDivPow2 = true;
367 }
368 }
369
370 if (Ty->isVectorTy()) {
371 assert (ST->hasVector() && "getArithmeticInstrCost() called with vector type.");
372 unsigned VF = Ty->getVectorNumElements();
373 unsigned NumVectors = getNumberOfParts(Ty);
374
375 // These vector operations are custom handled, but are still supported
376 // with one instruction per vector, regardless of element size.
377 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
378 Opcode == Instruction::AShr || UDivPow2) {
379 return NumVectors;
380 }
381
382 if (SDivPow2)
383 return (NumVectors * SDivCostEstimate);
384
385 // These FP operations are supported with a single vector instruction for
386 // double (base implementation assumes float generally costs 2). For
387 // FP128, the scalar cost is 1, and there is no overhead since the values
388 // are already in scalar registers.
389 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
390 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
391 switch (ScalarBits) {
392 case 32: {
393 // The vector enhancements facility 1 provides v4f32 instructions.
394 if (ST->hasVectorEnhancements1())
395 return NumVectors;
396 // Return the cost of multiple scalar invocation plus the cost of
397 // inserting and extracting the values.
398 unsigned ScalarCost = getArithmeticInstrCost(Opcode, Ty->getScalarType());
399 unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args);
400 // FIXME: VF 2 for these FP operations are currently just as
401 // expensive as for VF 4.
402 if (VF == 2)
403 Cost *= 2;
404 return Cost;
405 }
406 case 64:
407 case 128:
408 return NumVectors;
409 default:
410 break;
411 }
412 }
413
414 // There is no native support for FRem.
415 if (Opcode == Instruction::FRem) {
416 unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args);
417 // FIXME: VF 2 for float is currently just as expensive as for VF 4.
418 if (VF == 2 && ScalarBits == 32)
419 Cost *= 2;
420 return Cost;
421 }
422 }
423 else { // Scalar:
424 // These FP operations are supported with a dedicated instruction for
425 // float, double and fp128 (base implementation assumes float generally
426 // costs 2).
427 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
428 Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
429 return 1;
430
431 // There is no native support for FRem.
432 if (Opcode == Instruction::FRem)
433 return LIBCALL_COST;
434
435 if (Opcode == Instruction::LShr || Opcode == Instruction::AShr)
436 return (ScalarBits >= 32 ? 1 : 2 /*ext*/);
437
438 // Or requires one instruction, although it has custom handling for i64.
439 if (Opcode == Instruction::Or)
440 return 1;
441
442 if (Opcode == Instruction::Xor && ScalarBits == 1)
443 // 2 * ipm sequences ; xor ; shift ; compare
444 return 7;
445
446 if (UDivPow2)
447 return 1;
448 if (SDivPow2)
449 return SDivCostEstimate;
450
451 // An extra extension for narrow types is needed.
452 if ((Opcode == Instruction::SDiv || Opcode == Instruction::SRem))
453 // sext of op(s) for narrow types
454 return (ScalarBits < 32 ? 4 : (ScalarBits == 32 ? 2 : 1));
455
456 if (Opcode == Instruction::UDiv || Opcode == Instruction::URem)
457 // Clearing of low 64 bit reg + sext of op(s) for narrow types + dl[g]r
458 return (ScalarBits < 32 ? 4 : 2);
459 }
460
461 // Fallback to the default implementation.
462 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
463 Opd1PropInfo, Opd2PropInfo, Args);
464 }
465
466
getShuffleCost(TTI::ShuffleKind Kind,Type * Tp,int Index,Type * SubTp)467 int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
468 Type *SubTp) {
469 assert (Tp->isVectorTy());
470 assert (ST->hasVector() && "getShuffleCost() called.");
471 unsigned NumVectors = getNumberOfParts(Tp);
472
473 // TODO: Since fp32 is expanded, the shuffle cost should always be 0.
474
475 // FP128 values are always in scalar registers, so there is no work
476 // involved with a shuffle, except for broadcast. In that case register
477 // moves are done with a single instruction per element.
478 if (Tp->getScalarType()->isFP128Ty())
479 return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0);
480
481 switch (Kind) {
482 case TargetTransformInfo::SK_ExtractSubvector:
483 // ExtractSubvector Index indicates start offset.
484
485 // Extracting a subvector from first index is a noop.
486 return (Index == 0 ? 0 : NumVectors);
487
488 case TargetTransformInfo::SK_Broadcast:
489 // Loop vectorizer calls here to figure out the extra cost of
490 // broadcasting a loaded value to all elements of a vector. Since vlrep
491 // loads and replicates with a single instruction, adjust the returned
492 // value.
493 return NumVectors - 1;
494
495 default:
496
497 // SystemZ supports single instruction permutation / replication.
498 return NumVectors;
499 }
500
501 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
502 }
503
504 // Return the log2 difference of the element sizes of the two vector types.
getElSizeLog2Diff(Type * Ty0,Type * Ty1)505 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) {
506 unsigned Bits0 = Ty0->getScalarSizeInBits();
507 unsigned Bits1 = Ty1->getScalarSizeInBits();
508
509 if (Bits1 > Bits0)
510 return (Log2_32(Bits1) - Log2_32(Bits0));
511
512 return (Log2_32(Bits0) - Log2_32(Bits1));
513 }
514
515 // Return the number of instructions needed to truncate SrcTy to DstTy.
516 unsigned SystemZTTIImpl::
getVectorTruncCost(Type * SrcTy,Type * DstTy)517 getVectorTruncCost(Type *SrcTy, Type *DstTy) {
518 assert (SrcTy->isVectorTy() && DstTy->isVectorTy());
519 assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() &&
520 "Packing must reduce size of vector type.");
521 assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() &&
522 "Packing should not change number of elements.");
523
524 // TODO: Since fp32 is expanded, the extract cost should always be 0.
525
526 unsigned NumParts = getNumberOfParts(SrcTy);
527 if (NumParts <= 2)
528 // Up to 2 vector registers can be truncated efficiently with pack or
529 // permute. The latter requires an immediate mask to be loaded, which
530 // typically gets hoisted out of a loop. TODO: return a good value for
531 // BB-VECTORIZER that includes the immediate loads, which we do not want
532 // to count for the loop vectorizer.
533 return 1;
534
535 unsigned Cost = 0;
536 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
537 unsigned VF = SrcTy->getVectorNumElements();
538 for (unsigned P = 0; P < Log2Diff; ++P) {
539 if (NumParts > 1)
540 NumParts /= 2;
541 Cost += NumParts;
542 }
543
544 // Currently, a general mix of permutes and pack instructions is output by
545 // isel, which follow the cost computation above except for this case which
546 // is one instruction less:
547 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
548 DstTy->getScalarSizeInBits() == 8)
549 Cost--;
550
551 return Cost;
552 }
553
554 // Return the cost of converting a vector bitmask produced by a compare
555 // (SrcTy), to the type of the select or extend instruction (DstTy).
556 unsigned SystemZTTIImpl::
getVectorBitmaskConversionCost(Type * SrcTy,Type * DstTy)557 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) {
558 assert (SrcTy->isVectorTy() && DstTy->isVectorTy() &&
559 "Should only be called with vector types.");
560
561 unsigned PackCost = 0;
562 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
563 unsigned DstScalarBits = DstTy->getScalarSizeInBits();
564 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
565 if (SrcScalarBits > DstScalarBits)
566 // The bitmask will be truncated.
567 PackCost = getVectorTruncCost(SrcTy, DstTy);
568 else if (SrcScalarBits < DstScalarBits) {
569 unsigned DstNumParts = getNumberOfParts(DstTy);
570 // Each vector select needs its part of the bitmask unpacked.
571 PackCost = Log2Diff * DstNumParts;
572 // Extra cost for moving part of mask before unpacking.
573 PackCost += DstNumParts - 1;
574 }
575
576 return PackCost;
577 }
578
579 // Return the type of the compared operands. This is needed to compute the
580 // cost for a Select / ZExt or SExt instruction.
getCmpOpsType(const Instruction * I,unsigned VF=1)581 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) {
582 Type *OpTy = nullptr;
583 if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0)))
584 OpTy = CI->getOperand(0)->getType();
585 else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0)))
586 if (LogicI->getNumOperands() == 2)
587 if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0)))
588 if (isa<CmpInst>(LogicI->getOperand(1)))
589 OpTy = CI0->getOperand(0)->getType();
590
591 if (OpTy != nullptr) {
592 if (VF == 1) {
593 assert (!OpTy->isVectorTy() && "Expected scalar type");
594 return OpTy;
595 }
596 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may
597 // be either scalar or already vectorized with a same or lesser VF.
598 Type *ElTy = OpTy->getScalarType();
599 return VectorType::get(ElTy, VF);
600 }
601
602 return nullptr;
603 }
604
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src,const Instruction * I)605 int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
606 const Instruction *I) {
607 unsigned DstScalarBits = Dst->getScalarSizeInBits();
608 unsigned SrcScalarBits = Src->getScalarSizeInBits();
609
610 if (Src->isVectorTy()) {
611 assert (ST->hasVector() && "getCastInstrCost() called with vector type.");
612 assert (Dst->isVectorTy());
613 unsigned VF = Src->getVectorNumElements();
614 unsigned NumDstVectors = getNumberOfParts(Dst);
615 unsigned NumSrcVectors = getNumberOfParts(Src);
616
617 if (Opcode == Instruction::Trunc) {
618 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
619 return 0; // Check for NOOP conversions.
620 return getVectorTruncCost(Src, Dst);
621 }
622
623 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
624 if (SrcScalarBits >= 8) {
625 // ZExt/SExt will be handled with one unpack per doubling of width.
626 unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst);
627
628 // For types that spans multiple vector registers, some additional
629 // instructions are used to setup the unpacking.
630 unsigned NumSrcVectorOps =
631 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
632 : (NumDstVectors / 2));
633
634 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
635 }
636 else if (SrcScalarBits == 1) {
637 // This should be extension of a compare i1 result.
638 // If we know what the widths of the compared operands, get the
639 // cost of converting it to Dst. Otherwise assume same widths.
640 unsigned Cost = 0;
641 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
642 if (CmpOpTy != nullptr)
643 Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst);
644 if (Opcode == Instruction::ZExt)
645 // One 'vn' per dst vector with an immediate mask.
646 Cost += NumDstVectors;
647 return Cost;
648 }
649 }
650
651 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
652 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
653 // TODO: Fix base implementation which could simplify things a bit here
654 // (seems to miss on differentiating on scalar/vector types).
655
656 // Only 64 bit vector conversions are natively supported.
657 if (SrcScalarBits == 64 && DstScalarBits == 64)
658 return NumDstVectors;
659
660 // Return the cost of multiple scalar invocation plus the cost of
661 // inserting and extracting the values. Base implementation does not
662 // realize float->int gets scalarized.
663 unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(),
664 Src->getScalarType());
665 unsigned TotCost = VF * ScalarCost;
666 bool NeedsInserts = true, NeedsExtracts = true;
667 // FP128 registers do not get inserted or extracted.
668 if (DstScalarBits == 128 &&
669 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
670 NeedsInserts = false;
671 if (SrcScalarBits == 128 &&
672 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
673 NeedsExtracts = false;
674
675 TotCost += getScalarizationOverhead(Dst, NeedsInserts, NeedsExtracts);
676
677 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
678 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
679 TotCost *= 2;
680
681 return TotCost;
682 }
683
684 if (Opcode == Instruction::FPTrunc) {
685 if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements.
686 return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false);
687 else // double -> float
688 return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/);
689 }
690
691 if (Opcode == Instruction::FPExt) {
692 if (SrcScalarBits == 32 && DstScalarBits == 64) {
693 // float -> double is very rare and currently unoptimized. Instead of
694 // using vldeb, which can do two at a time, all conversions are
695 // scalarized.
696 return VF * 2;
697 }
698 // -> fp128. VF * lxdb/lxeb + extraction of elements.
699 return VF + getScalarizationOverhead(Src, false, true);
700 }
701 }
702 else { // Scalar
703 assert (!Dst->isVectorTy());
704
705 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)
706 return (SrcScalarBits >= 32 ? 1 : 2 /*i8/i16 extend*/);
707
708 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
709 Src->isIntegerTy(1)) {
710 // This should be extension of a compare i1 result, which is done with
711 // ipm and a varying sequence of instructions.
712 unsigned Cost = 0;
713 if (Opcode == Instruction::SExt)
714 Cost = (DstScalarBits < 64 ? 3 : 4);
715 if (Opcode == Instruction::ZExt)
716 Cost = 3;
717 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr);
718 if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy())
719 // If operands of an fp-type was compared, this costs +1.
720 Cost++;
721
722 return Cost;
723 }
724 }
725
726 return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
727 }
728
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy,const Instruction * I)729 int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
730 const Instruction *I) {
731 if (ValTy->isVectorTy()) {
732 assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type.");
733 unsigned VF = ValTy->getVectorNumElements();
734
735 // Called with a compare instruction.
736 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
737 unsigned PredicateExtraCost = 0;
738 if (I != nullptr) {
739 // Some predicates cost one or two extra instructions.
740 switch (cast<CmpInst>(I)->getPredicate()) {
741 case CmpInst::Predicate::ICMP_NE:
742 case CmpInst::Predicate::ICMP_UGE:
743 case CmpInst::Predicate::ICMP_ULE:
744 case CmpInst::Predicate::ICMP_SGE:
745 case CmpInst::Predicate::ICMP_SLE:
746 PredicateExtraCost = 1;
747 break;
748 case CmpInst::Predicate::FCMP_ONE:
749 case CmpInst::Predicate::FCMP_ORD:
750 case CmpInst::Predicate::FCMP_UEQ:
751 case CmpInst::Predicate::FCMP_UNO:
752 PredicateExtraCost = 2;
753 break;
754 default:
755 break;
756 }
757 }
758
759 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
760 // floats. FIXME: <2 x float> generates same code as <4 x float>.
761 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
762 unsigned NumVecs_cmp = getNumberOfParts(ValTy);
763
764 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
765 return Cost;
766 }
767 else { // Called with a select instruction.
768 assert (Opcode == Instruction::Select);
769
770 // We can figure out the extra cost of packing / unpacking if the
771 // instruction was passed and the compare instruction is found.
772 unsigned PackCost = 0;
773 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
774 if (CmpOpTy != nullptr)
775 PackCost =
776 getVectorBitmaskConversionCost(CmpOpTy, ValTy);
777
778 return getNumberOfParts(ValTy) /*vsel*/ + PackCost;
779 }
780 }
781 else { // Scalar
782 switch (Opcode) {
783 case Instruction::ICmp: {
784 unsigned Cost = 1;
785 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
786 Cost += 2; // extend both operands
787 return Cost;
788 }
789 case Instruction::Select:
790 if (ValTy->isFloatingPointTy())
791 return 4; // No load on condition for FP, so this costs a conditional jump.
792 return 1; // Load On Condition.
793 }
794 }
795
796 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr);
797 }
798
799 int SystemZTTIImpl::
getVectorInstrCost(unsigned Opcode,Type * Val,unsigned Index)800 getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
801 // vlvgp will insert two grs into a vector register, so only count half the
802 // number of instructions.
803 if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64))
804 return ((Index % 2 == 0) ? 1 : 0);
805
806 if (Opcode == Instruction::ExtractElement) {
807 int Cost = ((Val->getScalarSizeInBits() == 1) ? 2 /*+test-under-mask*/ : 1);
808
809 // Give a slight penalty for moving out of vector pipeline to FXU unit.
810 if (Index == 0 && Val->isIntOrIntVectorTy())
811 Cost += 1;
812
813 return Cost;
814 }
815
816 return BaseT::getVectorInstrCost(Opcode, Val, Index);
817 }
818
getMemoryOpCost(unsigned Opcode,Type * Src,unsigned Alignment,unsigned AddressSpace,const Instruction * I)819 int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
820 unsigned Alignment, unsigned AddressSpace,
821 const Instruction *I) {
822 assert(!Src->isVoidTy() && "Invalid type");
823
824 if (!Src->isVectorTy() && Opcode == Instruction::Load &&
825 I != nullptr && I->hasOneUse()) {
826 const Instruction *UserI = cast<Instruction>(*I->user_begin());
827 unsigned Bits = Src->getScalarSizeInBits();
828 bool FoldsLoad = false;
829 switch (UserI->getOpcode()) {
830 case Instruction::ICmp:
831 case Instruction::Add:
832 case Instruction::Sub:
833 case Instruction::Mul:
834 case Instruction::SDiv:
835 case Instruction::UDiv:
836 case Instruction::And:
837 case Instruction::Or:
838 case Instruction::Xor:
839 // This also makes sense for float operations, but disabled for now due
840 // to regressions.
841 // case Instruction::FCmp:
842 // case Instruction::FAdd:
843 // case Instruction::FSub:
844 // case Instruction::FMul:
845 // case Instruction::FDiv:
846 FoldsLoad = (Bits == 32 || Bits == 64);
847 break;
848 }
849
850 if (FoldsLoad) {
851 assert (UserI->getNumOperands() == 2 &&
852 "Expected to only handle binops.");
853
854 // UserI can't fold two loads, so in that case return 0 cost only
855 // half of the time.
856 for (unsigned i = 0; i < 2; ++i) {
857 if (UserI->getOperand(i) == I)
858 continue;
859 if (LoadInst *LI = dyn_cast<LoadInst>(UserI->getOperand(i))) {
860 if (LI->hasOneUse())
861 return i == 0;
862 }
863 }
864
865 return 0;
866 }
867 }
868
869 unsigned NumOps = getNumberOfParts(Src);
870
871 if (Src->getScalarSizeInBits() == 128)
872 // 128 bit scalars are held in a pair of two 64 bit registers.
873 NumOps *= 2;
874
875 return NumOps;
876 }
877
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,unsigned Alignment,unsigned AddressSpace)878 int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
879 unsigned Factor,
880 ArrayRef<unsigned> Indices,
881 unsigned Alignment,
882 unsigned AddressSpace) {
883 assert(isa<VectorType>(VecTy) &&
884 "Expect a vector type for interleaved memory op");
885
886 unsigned WideBits = (VecTy->isPtrOrPtrVectorTy() ?
887 (64U * VecTy->getVectorNumElements()) : VecTy->getPrimitiveSizeInBits());
888 assert (WideBits > 0 && "Could not compute size of vector");
889 int NumWideParts =
890 ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));
891
892 // How many source vectors are handled to produce a vectorized operand?
893 int NumElsPerVector = (VecTy->getVectorNumElements() / NumWideParts);
894 int NumSrcParts =
895 ((NumWideParts > NumElsPerVector) ? NumElsPerVector : NumWideParts);
896
897 // A Load group may have gaps.
898 unsigned NumOperands =
899 ((Opcode == Instruction::Load) ? Indices.size() : Factor);
900
901 // Each needed permute takes two vectors as input.
902 if (NumSrcParts > 1)
903 NumSrcParts--;
904 int NumPermutes = NumSrcParts * NumOperands;
905
906 // Cost of load/store operations and the permutations needed.
907 return NumWideParts + NumPermutes;
908 }
909