1 //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pass that optimizes call sequences on x86.
11 // Currently, it converts movs of function parameters onto the stack into
12 // pushes. This is beneficial for two main reasons:
13 // 1) The push instruction encoding is much smaller than a stack-ptr-based mov.
14 // 2) It is possible to push memory arguments directly. So, if the
15 //    the transformation is performed pre-reg-alloc, it can help relieve
16 //    register pressure.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "MCTargetDesc/X86BaseInfo.h"
21 #include "X86FrameLowering.h"
22 #include "X86InstrInfo.h"
23 #include "X86MachineFunctionInfo.h"
24 #include "X86RegisterInfo.h"
25 #include "X86Subtarget.h"
26 #include "llvm/ADT/DenseSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/MC/MCDwarf.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include <cassert>
46 #include <cstddef>
47 #include <cstdint>
48 #include <iterator>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "x86-cf-opt"
53 
54 static cl::opt<bool>
55     NoX86CFOpt("no-x86-call-frame-opt",
56                cl::desc("Avoid optimizing x86 call frames for size"),
57                cl::init(false), cl::Hidden);
58 
59 namespace llvm {
60 void initializeX86CallFrameOptimizationPass(PassRegistry &);
61 }
62 
63 namespace {
64 
65 class X86CallFrameOptimization : public MachineFunctionPass {
66 public:
X86CallFrameOptimization()67   X86CallFrameOptimization() : MachineFunctionPass(ID) {
68     initializeX86CallFrameOptimizationPass(
69         *PassRegistry::getPassRegistry());
70   }
71 
72   bool runOnMachineFunction(MachineFunction &MF) override;
73 
74   static char ID;
75 
76 private:
77   // Information we know about a particular call site
78   struct CallContext {
CallContext__anon7ee6d9490111::X86CallFrameOptimization::CallContext79     CallContext() : FrameSetup(nullptr), ArgStoreVector(4, nullptr) {}
80 
81     // Iterator referring to the frame setup instruction
82     MachineBasicBlock::iterator FrameSetup;
83 
84     // Actual call instruction
85     MachineInstr *Call = nullptr;
86 
87     // A copy of the stack pointer
88     MachineInstr *SPCopy = nullptr;
89 
90     // The total displacement of all passed parameters
91     int64_t ExpectedDist = 0;
92 
93     // The sequence of storing instructions used to pass the parameters
94     SmallVector<MachineInstr *, 4> ArgStoreVector;
95 
96     // True if this call site has no stack parameters
97     bool NoStackParams = false;
98 
99     // True if this call site can use push instructions
100     bool UsePush = false;
101   };
102 
103   typedef SmallVector<CallContext, 8> ContextVector;
104 
105   bool isLegal(MachineFunction &MF);
106 
107   bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap);
108 
109   void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
110                        MachineBasicBlock::iterator I, CallContext &Context);
111 
112   void adjustCallSequence(MachineFunction &MF, const CallContext &Context);
113 
114   MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
115                                    unsigned Reg);
116 
117   enum InstClassification { Convert, Skip, Exit };
118 
119   InstClassification classifyInstruction(MachineBasicBlock &MBB,
120                                          MachineBasicBlock::iterator MI,
121                                          const X86RegisterInfo &RegInfo,
122                                          DenseSet<unsigned int> &UsedRegs);
123 
getPassName() const124   StringRef getPassName() const override { return "X86 Optimize Call Frame"; }
125 
126   const X86InstrInfo *TII;
127   const X86FrameLowering *TFL;
128   const X86Subtarget *STI;
129   MachineRegisterInfo *MRI;
130   unsigned SlotSize;
131   unsigned Log2SlotSize;
132 };
133 
134 } // end anonymous namespace
135 char X86CallFrameOptimization::ID = 0;
136 INITIALIZE_PASS(X86CallFrameOptimization, DEBUG_TYPE,
137                 "X86 Call Frame Optimization", false, false)
138 
139 // This checks whether the transformation is legal.
140 // Also returns false in cases where it's potentially legal, but
141 // we don't even want to try.
isLegal(MachineFunction & MF)142 bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
143   if (NoX86CFOpt.getValue())
144     return false;
145 
146   // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset
147   // in the compact unwind encoding that Darwin uses. So, bail if there
148   // is a danger of that being generated.
149   if (STI->isTargetDarwin() &&
150       (!MF.getLandingPads().empty() ||
151        (MF.getFunction().needsUnwindTableEntry() && !TFL->hasFP(MF))))
152     return false;
153 
154   // It is not valid to change the stack pointer outside the prolog/epilog
155   // on 64-bit Windows.
156   if (STI->isTargetWin64())
157     return false;
158 
159   // You would expect straight-line code between call-frame setup and
160   // call-frame destroy. You would be wrong. There are circumstances (e.g.
161   // CMOV_GR8 expansion of a select that feeds a function call!) where we can
162   // end up with the setup and the destroy in different basic blocks.
163   // This is bad, and breaks SP adjustment.
164   // So, check that all of the frames in the function are closed inside
165   // the same block, and, for good measure, that there are no nested frames.
166   unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
167   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
168   for (MachineBasicBlock &BB : MF) {
169     bool InsideFrameSequence = false;
170     for (MachineInstr &MI : BB) {
171       if (MI.getOpcode() == FrameSetupOpcode) {
172         if (InsideFrameSequence)
173           return false;
174         InsideFrameSequence = true;
175       } else if (MI.getOpcode() == FrameDestroyOpcode) {
176         if (!InsideFrameSequence)
177           return false;
178         InsideFrameSequence = false;
179       }
180     }
181 
182     if (InsideFrameSequence)
183       return false;
184   }
185 
186   return true;
187 }
188 
189 // Check whether this transformation is profitable for a particular
190 // function - in terms of code size.
isProfitable(MachineFunction & MF,ContextVector & CallSeqVector)191 bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
192                                             ContextVector &CallSeqVector) {
193   // This transformation is always a win when we do not expect to have
194   // a reserved call frame. Under other circumstances, it may be either
195   // a win or a loss, and requires a heuristic.
196   bool CannotReserveFrame = MF.getFrameInfo().hasVarSizedObjects();
197   if (CannotReserveFrame)
198     return true;
199 
200   unsigned StackAlign = TFL->getStackAlignment();
201 
202   int64_t Advantage = 0;
203   for (auto CC : CallSeqVector) {
204     // Call sites where no parameters are passed on the stack
205     // do not affect the cost, since there needs to be no
206     // stack adjustment.
207     if (CC.NoStackParams)
208       continue;
209 
210     if (!CC.UsePush) {
211       // If we don't use pushes for a particular call site,
212       // we pay for not having a reserved call frame with an
213       // additional sub/add esp pair. The cost is ~3 bytes per instruction,
214       // depending on the size of the constant.
215       // TODO: Callee-pop functions should have a smaller penalty, because
216       // an add is needed even with a reserved call frame.
217       Advantage -= 6;
218     } else {
219       // We can use pushes. First, account for the fixed costs.
220       // We'll need a add after the call.
221       Advantage -= 3;
222       // If we have to realign the stack, we'll also need a sub before
223       if (CC.ExpectedDist % StackAlign)
224         Advantage -= 3;
225       // Now, for each push, we save ~3 bytes. For small constants, we actually,
226       // save more (up to 5 bytes), but 3 should be a good approximation.
227       Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3;
228     }
229   }
230 
231   return Advantage >= 0;
232 }
233 
runOnMachineFunction(MachineFunction & MF)234 bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
235   STI = &MF.getSubtarget<X86Subtarget>();
236   TII = STI->getInstrInfo();
237   TFL = STI->getFrameLowering();
238   MRI = &MF.getRegInfo();
239 
240   const X86RegisterInfo &RegInfo =
241       *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
242   SlotSize = RegInfo.getSlotSize();
243   assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size");
244   Log2SlotSize = Log2_32(SlotSize);
245 
246   if (skipFunction(MF.getFunction()) || !isLegal(MF))
247     return false;
248 
249   unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
250 
251   bool Changed = false;
252 
253   ContextVector CallSeqVector;
254 
255   for (auto &MBB : MF)
256     for (auto &MI : MBB)
257       if (MI.getOpcode() == FrameSetupOpcode) {
258         CallContext Context;
259         collectCallInfo(MF, MBB, MI, Context);
260         CallSeqVector.push_back(Context);
261       }
262 
263   if (!isProfitable(MF, CallSeqVector))
264     return false;
265 
266   for (auto CC : CallSeqVector) {
267     if (CC.UsePush) {
268       adjustCallSequence(MF, CC);
269       Changed = true;
270     }
271   }
272 
273   return Changed;
274 }
275 
276 X86CallFrameOptimization::InstClassification
classifyInstruction(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const X86RegisterInfo & RegInfo,DenseSet<unsigned int> & UsedRegs)277 X86CallFrameOptimization::classifyInstruction(
278     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
279     const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) {
280   if (MI == MBB.end())
281     return Exit;
282 
283   // The instructions we actually care about are movs onto the stack or special
284   // cases of constant-stores to stack
285   switch (MI->getOpcode()) {
286     case X86::AND16mi8:
287     case X86::AND32mi8:
288     case X86::AND64mi8: {
289       MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands);
290       return ImmOp.getImm() == 0 ? Convert : Exit;
291     }
292     case X86::OR16mi8:
293     case X86::OR32mi8:
294     case X86::OR64mi8: {
295       MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands);
296       return ImmOp.getImm() == -1 ? Convert : Exit;
297     }
298     case X86::MOV32mi:
299     case X86::MOV32mr:
300     case X86::MOV64mi32:
301     case X86::MOV64mr:
302       return Convert;
303   }
304 
305   // Not all calling conventions have only stack MOVs between the stack
306   // adjust and the call.
307 
308   // We want to tolerate other instructions, to cover more cases.
309   // In particular:
310   // a) PCrel calls, where we expect an additional COPY of the basereg.
311   // b) Passing frame-index addresses.
312   // c) Calling conventions that have inreg parameters. These generate
313   //    both copies and movs into registers.
314   // To avoid creating lots of special cases, allow any instruction
315   // that does not write into memory, does not def or use the stack
316   // pointer, and does not def any register that was used by a preceding
317   // push.
318   // (Reading from memory is allowed, even if referenced through a
319   // frame index, since these will get adjusted properly in PEI)
320 
321   // The reason for the last condition is that the pushes can't replace
322   // the movs in place, because the order must be reversed.
323   // So if we have a MOV32mr that uses EDX, then an instruction that defs
324   // EDX, and then the call, after the transformation the push will use
325   // the modified version of EDX, and not the original one.
326   // Since we are still in SSA form at this point, we only need to
327   // make sure we don't clobber any *physical* registers that were
328   // used by an earlier mov that will become a push.
329 
330   if (MI->isCall() || MI->mayStore())
331     return Exit;
332 
333   for (const MachineOperand &MO : MI->operands()) {
334     if (!MO.isReg())
335       continue;
336     unsigned int Reg = MO.getReg();
337     if (!RegInfo.isPhysicalRegister(Reg))
338       continue;
339     if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
340       return Exit;
341     if (MO.isDef()) {
342       for (unsigned int U : UsedRegs)
343         if (RegInfo.regsOverlap(Reg, U))
344           return Exit;
345     }
346   }
347 
348   return Skip;
349 }
350 
collectCallInfo(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I,CallContext & Context)351 void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
352                                                MachineBasicBlock &MBB,
353                                                MachineBasicBlock::iterator I,
354                                                CallContext &Context) {
355   // Check that this particular call sequence is amenable to the
356   // transformation.
357   const X86RegisterInfo &RegInfo =
358       *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
359 
360   // We expect to enter this at the beginning of a call sequence
361   assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
362   MachineBasicBlock::iterator FrameSetup = I++;
363   Context.FrameSetup = FrameSetup;
364 
365   // How much do we adjust the stack? This puts an upper bound on
366   // the number of parameters actually passed on it.
367   unsigned int MaxAdjust = TII->getFrameSize(*FrameSetup) >> Log2SlotSize;
368 
369   // A zero adjustment means no stack parameters
370   if (!MaxAdjust) {
371     Context.NoStackParams = true;
372     return;
373   }
374 
375   // Skip over DEBUG_VALUE.
376   // For globals in PIC mode, we can have some LEAs here. Skip them as well.
377   // TODO: Extend this to something that covers more cases.
378   while (I->getOpcode() == X86::LEA32r || I->isDebugInstr())
379     ++I;
380 
381   unsigned StackPtr = RegInfo.getStackRegister();
382   auto StackPtrCopyInst = MBB.end();
383   // SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual
384   // register.  If it's there, use that virtual register as stack pointer
385   // instead. Also, we need to locate this instruction so that we can later
386   // safely ignore it while doing the conservative processing of the call chain.
387   // The COPY can be located anywhere between the call-frame setup
388   // instruction and its first use. We use the call instruction as a boundary
389   // because it is usually cheaper to check if an instruction is a call than
390   // checking if an instruction uses a register.
391   for (auto J = I; !J->isCall(); ++J)
392     if (J->isCopy() && J->getOperand(0).isReg() && J->getOperand(1).isReg() &&
393         J->getOperand(1).getReg() == StackPtr) {
394       StackPtrCopyInst = J;
395       Context.SPCopy = &*J++;
396       StackPtr = Context.SPCopy->getOperand(0).getReg();
397       break;
398     }
399 
400   // Scan the call setup sequence for the pattern we're looking for.
401   // We only handle a simple case - a sequence of store instructions that
402   // push a sequence of stack-slot-aligned values onto the stack, with
403   // no gaps between them.
404   if (MaxAdjust > 4)
405     Context.ArgStoreVector.resize(MaxAdjust, nullptr);
406 
407   DenseSet<unsigned int> UsedRegs;
408 
409   for (InstClassification Classification = Skip; Classification != Exit; ++I) {
410     // If this is the COPY of the stack pointer, it's ok to ignore.
411     if (I == StackPtrCopyInst)
412       continue;
413     Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs);
414     if (Classification != Convert)
415       continue;
416     // We know the instruction has a supported store opcode.
417     // We only want movs of the form:
418     // mov imm/reg, k(%StackPtr)
419     // If we run into something else, bail.
420     // Note that AddrBaseReg may, counter to its name, not be a register,
421     // but rather a frame index.
422     // TODO: Support the fi case. This should probably work now that we
423     // have the infrastructure to track the stack pointer within a call
424     // sequence.
425     if (!I->getOperand(X86::AddrBaseReg).isReg() ||
426         (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
427         !I->getOperand(X86::AddrScaleAmt).isImm() ||
428         (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
429         (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
430         (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
431         !I->getOperand(X86::AddrDisp).isImm())
432       return;
433 
434     int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
435     assert(StackDisp >= 0 &&
436            "Negative stack displacement when passing parameters");
437 
438     // We really don't want to consider the unaligned case.
439     if (StackDisp & (SlotSize - 1))
440       return;
441     StackDisp >>= Log2SlotSize;
442 
443     assert((size_t)StackDisp < Context.ArgStoreVector.size() &&
444            "Function call has more parameters than the stack is adjusted for.");
445 
446     // If the same stack slot is being filled twice, something's fishy.
447     if (Context.ArgStoreVector[StackDisp] != nullptr)
448       return;
449     Context.ArgStoreVector[StackDisp] = &*I;
450 
451     for (const MachineOperand &MO : I->uses()) {
452       if (!MO.isReg())
453         continue;
454       unsigned int Reg = MO.getReg();
455       if (RegInfo.isPhysicalRegister(Reg))
456         UsedRegs.insert(Reg);
457     }
458   }
459 
460   --I;
461 
462   // We now expect the end of the sequence. If we stopped early,
463   // or reached the end of the block without finding a call, bail.
464   if (I == MBB.end() || !I->isCall())
465     return;
466 
467   Context.Call = &*I;
468   if ((++I)->getOpcode() != TII->getCallFrameDestroyOpcode())
469     return;
470 
471   // Now, go through the vector, and see that we don't have any gaps,
472   // but only a series of storing instructions.
473   auto MMI = Context.ArgStoreVector.begin(), MME = Context.ArgStoreVector.end();
474   for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize)
475     if (*MMI == nullptr)
476       break;
477 
478   // If the call had no parameters, do nothing
479   if (MMI == Context.ArgStoreVector.begin())
480     return;
481 
482   // We are either at the last parameter, or a gap.
483   // Make sure it's not a gap
484   for (; MMI != MME; ++MMI)
485     if (*MMI != nullptr)
486       return;
487 
488   Context.UsePush = true;
489 }
490 
adjustCallSequence(MachineFunction & MF,const CallContext & Context)491 void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
492                                                   const CallContext &Context) {
493   // Ok, we can in fact do the transformation for this call.
494   // Do not remove the FrameSetup instruction, but adjust the parameters.
495   // PEI will end up finalizing the handling of this.
496   MachineBasicBlock::iterator FrameSetup = Context.FrameSetup;
497   MachineBasicBlock &MBB = *(FrameSetup->getParent());
498   TII->setFrameAdjustment(*FrameSetup, Context.ExpectedDist);
499 
500   DebugLoc DL = FrameSetup->getDebugLoc();
501   bool Is64Bit = STI->is64Bit();
502   // Now, iterate through the vector in reverse order, and replace the store to
503   // stack with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
504   // replace uses.
505   for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) {
506     MachineBasicBlock::iterator Store = *Context.ArgStoreVector[Idx];
507     MachineOperand PushOp = Store->getOperand(X86::AddrNumOperands);
508     MachineBasicBlock::iterator Push = nullptr;
509     unsigned PushOpcode;
510     switch (Store->getOpcode()) {
511     default:
512       llvm_unreachable("Unexpected Opcode!");
513     case X86::AND16mi8:
514     case X86::AND32mi8:
515     case X86::AND64mi8:
516     case X86::OR16mi8:
517     case X86::OR32mi8:
518     case X86::OR64mi8:
519     case X86::MOV32mi:
520     case X86::MOV64mi32:
521       PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSHi32;
522       // If the operand is a small (8-bit) immediate, we can use a
523       // PUSH instruction with a shorter encoding.
524       // Note that isImm() may fail even though this is a MOVmi, because
525       // the operand can also be a symbol.
526       if (PushOp.isImm()) {
527         int64_t Val = PushOp.getImm();
528         if (isInt<8>(Val))
529           PushOpcode = Is64Bit ? X86::PUSH64i8 : X86::PUSH32i8;
530       }
531       Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).add(PushOp);
532       break;
533     case X86::MOV32mr:
534     case X86::MOV64mr: {
535       unsigned int Reg = PushOp.getReg();
536 
537       // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg
538       // in preparation for the PUSH64. The upper 32 bits can be undef.
539       if (Is64Bit && Store->getOpcode() == X86::MOV32mr) {
540         unsigned UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass);
541         Reg = MRI->createVirtualRegister(&X86::GR64RegClass);
542         BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg);
543         BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg)
544             .addReg(UndefReg)
545             .add(PushOp)
546             .addImm(X86::sub_32bit);
547       }
548 
549       // If PUSHrmm is not slow on this target, try to fold the source of the
550       // push into the instruction.
551       bool SlowPUSHrmm = STI->isAtom() || STI->isSLM();
552 
553       // Check that this is legal to fold. Right now, we're extremely
554       // conservative about that.
555       MachineInstr *DefMov = nullptr;
556       if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
557         PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm;
558         Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode));
559 
560         unsigned NumOps = DefMov->getDesc().getNumOperands();
561         for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
562           Push->addOperand(DefMov->getOperand(i));
563 
564         DefMov->eraseFromParent();
565       } else {
566         PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
567         Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
568                    .addReg(Reg)
569                    .getInstr();
570       }
571       break;
572     }
573     }
574 
575     // For debugging, when using SP-based CFA, we need to adjust the CFA
576     // offset after each push.
577     // TODO: This is needed only if we require precise CFA.
578     if (!TFL->hasFP(MF))
579       TFL->BuildCFI(
580           MBB, std::next(Push), DL,
581           MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize));
582 
583     MBB.erase(Store);
584   }
585 
586   // The stack-pointer copy is no longer used in the call sequences.
587   // There should not be any other users, but we can't commit to that, so:
588   if (Context.SPCopy && MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
589     Context.SPCopy->eraseFromParent();
590 
591   // Once we've done this, we need to make sure PEI doesn't assume a reserved
592   // frame.
593   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
594   FuncInfo->setHasPushSequences(true);
595 }
596 
canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,unsigned Reg)597 MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
598     MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
599   // Do an extremely restricted form of load folding.
600   // ISel will often create patterns like:
601   // movl    4(%edi), %eax
602   // movl    8(%edi), %ecx
603   // movl    12(%edi), %edx
604   // movl    %edx, 8(%esp)
605   // movl    %ecx, 4(%esp)
606   // movl    %eax, (%esp)
607   // call
608   // Get rid of those with prejudice.
609   if (!TargetRegisterInfo::isVirtualRegister(Reg))
610     return nullptr;
611 
612   // Make sure this is the only use of Reg.
613   if (!MRI->hasOneNonDBGUse(Reg))
614     return nullptr;
615 
616   MachineInstr &DefMI = *MRI->getVRegDef(Reg);
617 
618   // Make sure the def is a MOV from memory.
619   // If the def is in another block, give up.
620   if ((DefMI.getOpcode() != X86::MOV32rm &&
621        DefMI.getOpcode() != X86::MOV64rm) ||
622       DefMI.getParent() != FrameSetup->getParent())
623     return nullptr;
624 
625   // Make sure we don't have any instructions between DefMI and the
626   // push that make folding the load illegal.
627   for (MachineBasicBlock::iterator I = DefMI; I != FrameSetup; ++I)
628     if (I->isLoadFoldBarrier())
629       return nullptr;
630 
631   return &DefMI;
632 }
633 
createX86CallFrameOptimization()634 FunctionPass *llvm::createX86CallFrameOptimization() {
635   return new X86CallFrameOptimization();
636 }
637