1//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This describes the calling conventions for the X86-32 and X86-64
11// architectures.
12//
13//===----------------------------------------------------------------------===//
14
15/// CCIfSubtarget - Match if the current subtarget has a feature F.
16class CCIfSubtarget<string F, CCAction A>
17    : CCIf<!strconcat("static_cast<const X86Subtarget&>"
18                       "(State.getMachineFunction().getSubtarget()).", F),
19           A>;
20
21/// CCIfNotSubtarget - Match if the current subtarget doesn't has a feature F.
22class CCIfNotSubtarget<string F, CCAction A>
23    : CCIf<!strconcat("!static_cast<const X86Subtarget&>"
24                       "(State.getMachineFunction().getSubtarget()).", F),
25           A>;
26
27// Register classes for RegCall
28class RC_X86_RegCall {
29  list<Register> GPR_8 = [];
30  list<Register> GPR_16 = [];
31  list<Register> GPR_32 = [];
32  list<Register> GPR_64 = [];
33  list<Register> FP_CALL = [FP0];
34  list<Register> FP_RET = [FP0, FP1];
35  list<Register> XMM = [];
36  list<Register> YMM = [];
37  list<Register> ZMM = [];
38}
39
40// RegCall register classes for 32 bits
41def RC_X86_32_RegCall : RC_X86_RegCall {
42  let GPR_8 = [AL, CL, DL, DIL, SIL];
43  let GPR_16 = [AX, CX, DX, DI, SI];
44  let GPR_32 = [EAX, ECX, EDX, EDI, ESI];
45  let GPR_64 = [RAX]; ///< Not actually used, but AssignToReg can't handle []
46                      ///< \todo Fix AssignToReg to enable empty lists
47  let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7];
48  let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7];
49  let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7];
50}
51
52class RC_X86_64_RegCall : RC_X86_RegCall {
53  let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
54             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15];
55  let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
56             YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15];
57  let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7,
58             ZMM8, ZMM9, ZMM10, ZMM11, ZMM12, ZMM13, ZMM14, ZMM15];
59}
60
61def RC_X86_64_RegCall_Win : RC_X86_64_RegCall {
62  let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R10B, R11B, R12B, R14B, R15B];
63  let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R10W, R11W, R12W, R14W, R15W];
64  let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R10D, R11D, R12D, R14D, R15D];
65  let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R10, R11, R12, R14, R15];
66}
67
68def RC_X86_64_RegCall_SysV : RC_X86_64_RegCall {
69  let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R12B, R13B, R14B, R15B];
70  let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R12W, R13W, R14W, R15W];
71  let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R12D, R13D, R14D, R15D];
72  let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R12, R13, R14, R15];
73}
74
75// X86-64 Intel regcall calling convention.
76multiclass X86_RegCall_base<RC_X86_RegCall RC> {
77def CC_#NAME : CallingConv<[
78  // Handles byval parameters.
79    CCIfSubtarget<"is64Bit()", CCIfByVal<CCPassByVal<8, 8>>>,
80    CCIfByVal<CCPassByVal<4, 4>>,
81
82    // Promote i1/i8/i16/v1i1 arguments to i32.
83    CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
84
85    // Promote v8i1/v16i1/v32i1 arguments to i32.
86    CCIfType<[v8i1, v16i1, v32i1], CCPromoteToType<i32>>,
87
88    // bool, char, int, enum, long, pointer --> GPR
89    CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
90
91    // long long, __int64 --> GPR
92    CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
93
94    // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
95    CCIfType<[v64i1], CCPromoteToType<i64>>,
96    CCIfSubtarget<"is64Bit()", CCIfType<[i64],
97      CCAssignToReg<RC.GPR_64>>>,
98    CCIfSubtarget<"is32Bit()", CCIfType<[i64],
99      CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
100
101    // float, double, float128 --> XMM
102    // In the case of SSE disabled --> save to stack
103    CCIfType<[f32, f64, f128],
104      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
105
106    // long double --> FP
107    CCIfType<[f80], CCAssignToReg<RC.FP_CALL>>,
108
109    // __m128, __m128i, __m128d --> XMM
110    // In the case of SSE disabled --> save to stack
111    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
112      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
113
114    // __m256, __m256i, __m256d --> YMM
115    // In the case of SSE disabled --> save to stack
116    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
117      CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
118
119    // __m512, __m512i, __m512d --> ZMM
120    // In the case of SSE disabled --> save to stack
121    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
122      CCIfSubtarget<"hasAVX512()",CCAssignToReg<RC.ZMM>>>,
123
124    // If no register was found -> assign to stack
125
126    // In 64 bit, assign 64/32 bit values to 8 byte stack
127    CCIfSubtarget<"is64Bit()", CCIfType<[i32, i64, f32, f64],
128      CCAssignToStack<8, 8>>>,
129
130    // In 32 bit, assign 64/32 bit values to 8/4 byte stack
131    CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
132    CCIfType<[i64, f64], CCAssignToStack<8, 4>>,
133
134    // MMX type gets 8 byte slot in stack , while alignment depends on target
135    CCIfSubtarget<"is64Bit()", CCIfType<[x86mmx], CCAssignToStack<8, 8>>>,
136    CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
137
138    // float 128 get stack slots whose size and alignment depends
139    // on the subtarget.
140    CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
141
142    // Vectors get 16-byte stack slots that are 16-byte aligned.
143    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
144      CCAssignToStack<16, 16>>,
145
146    // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
147    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
148      CCAssignToStack<32, 32>>,
149
150    // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
151    CCIfType<[v16i32, v8i64, v16f32, v8f64], CCAssignToStack<64, 64>>
152]>;
153
154def RetCC_#NAME : CallingConv<[
155    // Promote i1, v1i1, v8i1 arguments to i8.
156    CCIfType<[i1, v1i1, v8i1], CCPromoteToType<i8>>,
157
158    // Promote v16i1 arguments to i16.
159    CCIfType<[v16i1], CCPromoteToType<i16>>,
160
161    // Promote v32i1 arguments to i32.
162    CCIfType<[v32i1], CCPromoteToType<i32>>,
163
164    // bool, char, int, enum, long, pointer --> GPR
165    CCIfType<[i8], CCAssignToReg<RC.GPR_8>>,
166    CCIfType<[i16], CCAssignToReg<RC.GPR_16>>,
167    CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
168
169    // long long, __int64 --> GPR
170    CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
171
172    // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
173    CCIfType<[v64i1], CCPromoteToType<i64>>,
174    CCIfSubtarget<"is64Bit()", CCIfType<[i64],
175      CCAssignToReg<RC.GPR_64>>>,
176    CCIfSubtarget<"is32Bit()", CCIfType<[i64],
177      CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
178
179    // long double --> FP
180    CCIfType<[f80], CCAssignToReg<RC.FP_RET>>,
181
182    // float, double, float128 --> XMM
183    CCIfType<[f32, f64, f128],
184      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
185
186    // __m128, __m128i, __m128d --> XMM
187    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
188      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
189
190    // __m256, __m256i, __m256d --> YMM
191    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
192      CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
193
194    // __m512, __m512i, __m512d --> ZMM
195    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
196      CCIfSubtarget<"hasAVX512()", CCAssignToReg<RC.ZMM>>>
197]>;
198}
199
200//===----------------------------------------------------------------------===//
201// Return Value Calling Conventions
202//===----------------------------------------------------------------------===//
203
204// Return-value conventions common to all X86 CC's.
205def RetCC_X86Common : CallingConv<[
206  // Scalar values are returned in AX first, then DX.  For i8, the ABI
207  // requires the values to be in AL and AH, however this code uses AL and DL
208  // instead. This is because using AH for the second register conflicts with
209  // the way LLVM does multiple return values -- a return of {i16,i8} would end
210  // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
211  // for functions that return two i8 values are currently expected to pack the
212  // values into an i16 (which uses AX, and thus AL:AH).
213  //
214  // For code that doesn't care about the ABI, we allow returning more than two
215  // integer values in registers.
216  CCIfType<[v1i1],  CCPromoteToType<i8>>,
217  CCIfType<[i1],  CCPromoteToType<i8>>,
218  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
219  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
220  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
221  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,
222
223  // Boolean vectors of AVX-512 are returned in SIMD registers.
224  // The call from AVX to AVX-512 function should work,
225  // since the boolean types in AVX/AVX2 are promoted by default.
226  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
227  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
228  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
229  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
230  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
231  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
232
233  // Vector types are returned in XMM0 and XMM1, when they fit.  XMM2 and XMM3
234  // can only be used by ABI non-compliant code. If the target doesn't have XMM
235  // registers, it won't have vector types.
236  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
237            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
238
239  // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
240  // can only be used by ABI non-compliant code. This vector type is only
241  // supported while using the AVX target feature.
242  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
243            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
244
245  // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3
246  // can only be used by ABI non-compliant code. This vector type is only
247  // supported while using the AVX-512 target feature.
248  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
249            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
250
251  // MMX vector types are always returned in MM0. If the target doesn't have
252  // MM0, it doesn't support these vector types.
253  CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
254
255  // Long double types are always returned in FP0 (even with SSE),
256  // except on Win64.
257  CCIfNotSubtarget<"isTargetWin64()", CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>>
258]>;
259
260// X86-32 C return-value convention.
261def RetCC_X86_32_C : CallingConv<[
262  // The X86-32 calling convention returns FP values in FP0, unless marked
263  // with "inreg" (used here to distinguish one kind of reg from another,
264  // weirdly; this is really the sse-regparm calling convention) in which
265  // case they use XMM0, otherwise it is the same as the common X86 calling
266  // conv.
267  CCIfInReg<CCIfSubtarget<"hasSSE2()",
268    CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
269  CCIfType<[f32,f64], CCAssignToReg<[FP0, FP1]>>,
270  CCDelegateTo<RetCC_X86Common>
271]>;
272
273// X86-32 FastCC return-value convention.
274def RetCC_X86_32_Fast : CallingConv<[
275  // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
276  // SSE2.
277  // This can happen when a float, 2 x float, or 3 x float vector is split by
278  // target lowering, and is returned in 1-3 sse regs.
279  CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
280  CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
281
282  // For integers, ECX can be used as an extra return register
283  CCIfType<[i8],  CCAssignToReg<[AL, DL, CL]>>,
284  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
285  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
286
287  // Otherwise, it is the same as the common X86 calling convention.
288  CCDelegateTo<RetCC_X86Common>
289]>;
290
291// Intel_OCL_BI return-value convention.
292def RetCC_Intel_OCL_BI : CallingConv<[
293  // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
294  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
295            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
296
297  // 256-bit FP vectors
298  // No more than 4 registers
299  CCIfType<[v8f32, v4f64, v8i32, v4i64],
300            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
301
302  // 512-bit FP vectors
303  CCIfType<[v16f32, v8f64, v16i32, v8i64],
304            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
305
306  // i32, i64 in the standard way
307  CCDelegateTo<RetCC_X86Common>
308]>;
309
310// X86-32 HiPE return-value convention.
311def RetCC_X86_32_HiPE : CallingConv<[
312  // Promote all types to i32
313  CCIfType<[i8, i16], CCPromoteToType<i32>>,
314
315  // Return: HP, P, VAL1, VAL2
316  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
317]>;
318
319// X86-32 Vectorcall return-value convention.
320def RetCC_X86_32_VectorCall : CallingConv<[
321  // Floating Point types are returned in XMM0,XMM1,XMMM2 and XMM3.
322  CCIfType<[f32, f64, f128],
323            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
324
325  // Return integers in the standard way.
326  CCDelegateTo<RetCC_X86Common>
327]>;
328
329// X86-64 C return-value convention.
330def RetCC_X86_64_C : CallingConv<[
331  // The X86-64 calling convention always returns FP values in XMM0.
332  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
333  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
334  CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>,
335
336  // MMX vector types are always returned in XMM0.
337  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
338
339  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
340
341  CCDelegateTo<RetCC_X86Common>
342]>;
343
344// X86-Win64 C return-value convention.
345def RetCC_X86_Win64_C : CallingConv<[
346  // The X86-Win64 calling convention always returns __m64 values in RAX.
347  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
348
349  // Otherwise, everything is the same as 'normal' X86-64 C CC.
350  CCDelegateTo<RetCC_X86_64_C>
351]>;
352
353// X86-64 vectorcall return-value convention.
354def RetCC_X86_64_Vectorcall : CallingConv<[
355  // Vectorcall calling convention always returns FP values in XMMs.
356  CCIfType<[f32, f64, f128],
357    CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
358
359  // Otherwise, everything is the same as Windows X86-64 C CC.
360  CCDelegateTo<RetCC_X86_Win64_C>
361]>;
362
363// X86-64 HiPE return-value convention.
364def RetCC_X86_64_HiPE : CallingConv<[
365  // Promote all types to i64
366  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
367
368  // Return: HP, P, VAL1, VAL2
369  CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>>
370]>;
371
372// X86-64 WebKit_JS return-value convention.
373def RetCC_X86_64_WebKit_JS : CallingConv<[
374  // Promote all types to i64
375  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
376
377  // Return: RAX
378  CCIfType<[i64], CCAssignToReg<[RAX]>>
379]>;
380
381def RetCC_X86_64_Swift : CallingConv<[
382
383  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
384
385  // For integers, ECX, R8D can be used as extra return registers.
386  CCIfType<[v1i1],  CCPromoteToType<i8>>,
387  CCIfType<[i1],  CCPromoteToType<i8>>,
388  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL, R8B]>>,
389  CCIfType<[i16], CCAssignToReg<[AX, DX, CX, R8W]>>,
390  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX, R8D]>>,
391  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX, R8]>>,
392
393  // XMM0, XMM1, XMM2 and XMM3 can be used to return FP values.
394  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
395  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
396  CCIfType<[f128], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
397
398  // MMX vector types are returned in XMM0, XMM1, XMM2 and XMM3.
399  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
400  CCDelegateTo<RetCC_X86Common>
401]>;
402
403// X86-64 AnyReg return-value convention. No explicit register is specified for
404// the return-value. The register allocator is allowed and expected to choose
405// any free register.
406//
407// This calling convention is currently only supported by the stackmap and
408// patchpoint intrinsics. All other uses will result in an assert on Debug
409// builds. On Release builds we fallback to the X86 C calling convention.
410def RetCC_X86_64_AnyReg : CallingConv<[
411  CCCustom<"CC_X86_AnyReg_Error">
412]>;
413
414// X86-64 HHVM return-value convention.
415def RetCC_X86_64_HHVM: CallingConv<[
416  // Promote all types to i64
417  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
418
419  // Return: could return in any GP register save RSP and R12.
420  CCIfType<[i64], CCAssignToReg<[RBX, RBP, RDI, RSI, RDX, RCX, R8, R9,
421                                 RAX, R10, R11, R13, R14, R15]>>
422]>;
423
424
425defm X86_32_RegCall :
426	 X86_RegCall_base<RC_X86_32_RegCall>;
427defm X86_Win64_RegCall :
428     X86_RegCall_base<RC_X86_64_RegCall_Win>;
429defm X86_SysV64_RegCall :
430     X86_RegCall_base<RC_X86_64_RegCall_SysV>;
431
432// This is the root return-value convention for the X86-32 backend.
433def RetCC_X86_32 : CallingConv<[
434  // If FastCC, use RetCC_X86_32_Fast.
435  CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
436  // If HiPE, use RetCC_X86_32_HiPE.
437  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,
438  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_32_VectorCall>>,
439  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_32_RegCall>>,
440
441  // Otherwise, use RetCC_X86_32_C.
442  CCDelegateTo<RetCC_X86_32_C>
443]>;
444
445// This is the root return-value convention for the X86-64 backend.
446def RetCC_X86_64 : CallingConv<[
447  // HiPE uses RetCC_X86_64_HiPE
448  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>,
449
450  // Handle JavaScript calls.
451  CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>,
452  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>,
453
454  // Handle Swift calls.
455  CCIfCC<"CallingConv::Swift", CCDelegateTo<RetCC_X86_64_Swift>>,
456
457  // Handle explicit CC selection
458  CCIfCC<"CallingConv::Win64", CCDelegateTo<RetCC_X86_Win64_C>>,
459  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>,
460
461  // Handle Vectorcall CC
462  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_64_Vectorcall>>,
463
464  // Handle HHVM calls.
465  CCIfCC<"CallingConv::HHVM", CCDelegateTo<RetCC_X86_64_HHVM>>,
466
467  CCIfCC<"CallingConv::X86_RegCall",
468          CCIfSubtarget<"isTargetWin64()",
469                        CCDelegateTo<RetCC_X86_Win64_RegCall>>>,
470  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_SysV64_RegCall>>,
471
472  // Mingw64 and native Win64 use Win64 CC
473  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
474
475  // Otherwise, drop to normal X86-64 CC
476  CCDelegateTo<RetCC_X86_64_C>
477]>;
478
479// This is the return-value convention used for the entire X86 backend.
480def RetCC_X86 : CallingConv<[
481
482  // Check if this is the Intel OpenCL built-ins calling convention
483  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>,
484
485  CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
486  CCDelegateTo<RetCC_X86_32>
487]>;
488
489//===----------------------------------------------------------------------===//
490// X86-64 Argument Calling Conventions
491//===----------------------------------------------------------------------===//
492
493def CC_X86_64_C : CallingConv<[
494  // Handles byval parameters.
495  CCIfByVal<CCPassByVal<8, 8>>,
496
497  // Promote i1/i8/i16/v1i1 arguments to i32.
498  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
499
500  // The 'nest' parameter, if any, is passed in R10.
501  CCIfNest<CCIfSubtarget<"isTarget64BitILP32()", CCAssignToReg<[R10D]>>>,
502  CCIfNest<CCAssignToReg<[R10]>>,
503
504  // Pass SwiftSelf in a callee saved register.
505  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>,
506
507  // A SwiftError is passed in R12.
508  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
509
510  // For Swift Calling Convention, pass sret in %rax.
511  CCIfCC<"CallingConv::Swift",
512    CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>,
513
514  // The first 6 integer arguments are passed in integer registers.
515  CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
516  CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
517
518  // The first 8 MMX vector arguments are passed in XMM registers on Darwin.
519  CCIfType<[x86mmx],
520            CCIfSubtarget<"isTargetDarwin()",
521            CCIfSubtarget<"hasSSE2()",
522            CCPromoteToType<v2i64>>>>,
523
524  // Boolean vectors of AVX-512 are passed in SIMD registers.
525  // The call from AVX to AVX-512 function should work,
526  // since the boolean types in AVX/AVX2 are promoted by default.
527  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
528  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
529  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
530  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
531  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
532  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
533
534  // The first 8 FP/Vector arguments are passed in XMM registers.
535  CCIfType<[f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
536            CCIfSubtarget<"hasSSE1()",
537            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
538
539  // The first 8 256-bit vector arguments are passed in YMM registers, unless
540  // this is a vararg function.
541  // FIXME: This isn't precisely correct; the x86-64 ABI document says that
542  // fixed arguments to vararg functions are supposed to be passed in
543  // registers.  Actually modeling that would be a lot of work, though.
544  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
545                          CCIfSubtarget<"hasAVX()",
546                          CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
547                                         YMM4, YMM5, YMM6, YMM7]>>>>,
548
549  // The first 8 512-bit vector arguments are passed in ZMM registers.
550  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
551            CCIfSubtarget<"hasAVX512()",
552            CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>,
553
554  // Integer/FP values get stored in stack slots that are 8 bytes in size and
555  // 8-byte aligned if there are no more registers to hold them.
556  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
557
558  // Long doubles get stack slots whose size and alignment depends on the
559  // subtarget.
560  CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
561
562  // Vectors get 16-byte stack slots that are 16-byte aligned.
563  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
564
565  // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
566  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
567           CCAssignToStack<32, 32>>,
568
569  // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
570  CCIfType<[v16i32, v8i64, v16f32, v8f64],
571           CCAssignToStack<64, 64>>
572]>;
573
574// Calling convention for X86-64 HHVM.
575def CC_X86_64_HHVM : CallingConv<[
576  // Use all/any GP registers for args, except RSP.
577  CCIfType<[i64], CCAssignToReg<[RBX, R12, RBP, R15,
578                                 RDI, RSI, RDX, RCX, R8, R9,
579                                 RAX, R10, R11, R13, R14]>>
580]>;
581
582// Calling convention for helper functions in HHVM.
583def CC_X86_64_HHVM_C : CallingConv<[
584  // Pass the first argument in RBP.
585  CCIfType<[i64], CCAssignToReg<[RBP]>>,
586
587  // Otherwise it's the same as the regular C calling convention.
588  CCDelegateTo<CC_X86_64_C>
589]>;
590
591// Calling convention used on Win64
592def CC_X86_Win64_C : CallingConv<[
593  // FIXME: Handle byval stuff.
594  // FIXME: Handle varargs.
595
596  // Promote i1/v1i1 arguments to i8.
597  CCIfType<[i1, v1i1], CCPromoteToType<i8>>,
598
599  // The 'nest' parameter, if any, is passed in R10.
600  CCIfNest<CCAssignToReg<[R10]>>,
601
602  // A SwiftError is passed in R12.
603  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
604
605  // 128 bit vectors are passed by pointer
606  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,
607
608
609  // 256 bit vectors are passed by pointer
610  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>,
611
612  // 512 bit vectors are passed by pointer
613  CCIfType<[v16i32, v16f32, v8f64, v8i64], CCPassIndirect<i64>>,
614
615  // Long doubles are passed by pointer
616  CCIfType<[f80], CCPassIndirect<i64>>,
617
618  // The first 4 MMX vector arguments are passed in GPRs.
619  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
620
621  // The first 4 integer arguments are passed in integer registers.
622  CCIfType<[i8 ], CCAssignToRegWithShadow<[CL  , DL  , R8B , R9B ],
623                                          [XMM0, XMM1, XMM2, XMM3]>>,
624  CCIfType<[i16], CCAssignToRegWithShadow<[CX  , DX  , R8W , R9W ],
625                                          [XMM0, XMM1, XMM2, XMM3]>>,
626  CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
627                                          [XMM0, XMM1, XMM2, XMM3]>>,
628
629  // Do not pass the sret argument in RCX, the Win64 thiscall calling
630  // convention requires "this" to be passed in RCX.
631  CCIfCC<"CallingConv::X86_ThisCall",
632    CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8  , R9  ],
633                                                     [XMM1, XMM2, XMM3]>>>>,
634
635  CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8  , R9  ],
636                                          [XMM0, XMM1, XMM2, XMM3]>>,
637
638  // The first 4 FP/Vector arguments are passed in XMM registers.
639  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
640           CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
641                                   [RCX , RDX , R8  , R9  ]>>,
642
643  // Integer/FP values get stored in stack slots that are 8 bytes in size and
644  // 8-byte aligned if there are no more registers to hold them.
645  CCIfType<[i8, i16, i32, i64, f32, f64], CCAssignToStack<8, 8>>
646]>;
647
648def CC_X86_Win64_VectorCall : CallingConv<[
649  CCCustom<"CC_X86_64_VectorCall">,
650
651  // Delegate to fastcall to handle integer types.
652  CCDelegateTo<CC_X86_Win64_C>
653]>;
654
655
656def CC_X86_64_GHC : CallingConv<[
657  // Promote i8/i16/i32 arguments to i64.
658  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
659
660  // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
661  CCIfType<[i64],
662            CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
663
664  // Pass in STG registers: F1, F2, F3, F4, D1, D2
665  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
666            CCIfSubtarget<"hasSSE1()",
667            CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>,
668  // AVX
669  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
670            CCIfSubtarget<"hasAVX()",
671            CCAssignToReg<[YMM1, YMM2, YMM3, YMM4, YMM5, YMM6]>>>,
672  // AVX-512
673  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
674            CCIfSubtarget<"hasAVX512()",
675            CCAssignToReg<[ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6]>>>
676]>;
677
678def CC_X86_64_HiPE : CallingConv<[
679  // Promote i8/i16/i32 arguments to i64.
680  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
681
682  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3
683  CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>,
684
685  // Integer/FP values get stored in stack slots that are 8 bytes in size and
686  // 8-byte aligned if there are no more registers to hold them.
687  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
688]>;
689
690def CC_X86_64_WebKit_JS : CallingConv<[
691  // Promote i8/i16 arguments to i32.
692  CCIfType<[i8, i16], CCPromoteToType<i32>>,
693
694  // Only the first integer argument is passed in register.
695  CCIfType<[i32], CCAssignToReg<[EAX]>>,
696  CCIfType<[i64], CCAssignToReg<[RAX]>>,
697
698  // The remaining integer arguments are passed on the stack. 32bit integer and
699  // floating-point arguments are aligned to 4 byte and stored in 4 byte slots.
700  // 64bit integer and floating-point arguments are aligned to 8 byte and stored
701  // in 8 byte stack slots.
702  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
703  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
704]>;
705
706// No explicit register is specified for the AnyReg calling convention. The
707// register allocator may assign the arguments to any free register.
708//
709// This calling convention is currently only supported by the stackmap and
710// patchpoint intrinsics. All other uses will result in an assert on Debug
711// builds. On Release builds we fallback to the X86 C calling convention.
712def CC_X86_64_AnyReg : CallingConv<[
713  CCCustom<"CC_X86_AnyReg_Error">
714]>;
715
716//===----------------------------------------------------------------------===//
717// X86 C Calling Convention
718//===----------------------------------------------------------------------===//
719
720/// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector
721/// values are spilled on the stack.
722def CC_X86_32_Vector_Common : CallingConv<[
723  // Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
724  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
725
726  // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
727  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
728           CCAssignToStack<32, 32>>,
729
730  // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
731  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
732           CCAssignToStack<64, 64>>
733]>;
734
735// CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in
736// vector registers
737def CC_X86_32_Vector_Standard : CallingConv<[
738  // SSE vector arguments are passed in XMM registers.
739  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
740                CCAssignToReg<[XMM0, XMM1, XMM2]>>>,
741
742  // AVX 256-bit vector arguments are passed in YMM registers.
743  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
744                CCIfSubtarget<"hasAVX()",
745                CCAssignToReg<[YMM0, YMM1, YMM2]>>>>,
746
747  // AVX 512-bit vector arguments are passed in ZMM registers.
748  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
749                CCAssignToReg<[ZMM0, ZMM1, ZMM2]>>>,
750
751  CCDelegateTo<CC_X86_32_Vector_Common>
752]>;
753
754// CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in
755// vector registers.
756def CC_X86_32_Vector_Darwin : CallingConv<[
757  // SSE vector arguments are passed in XMM registers.
758  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
759                CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
760
761  // AVX 256-bit vector arguments are passed in YMM registers.
762  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
763                CCIfSubtarget<"hasAVX()",
764                CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
765
766  // AVX 512-bit vector arguments are passed in ZMM registers.
767  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
768                CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>>,
769
770  CCDelegateTo<CC_X86_32_Vector_Common>
771]>;
772
773/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
774/// values are spilled on the stack.
775def CC_X86_32_Common : CallingConv<[
776  // Handles byval parameters.
777  CCIfByVal<CCPassByVal<4, 4>>,
778
779  // The first 3 float or double arguments, if marked 'inreg' and if the call
780  // is not a vararg call and if SSE2 is available, are passed in SSE registers.
781  CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
782                CCIfSubtarget<"hasSSE2()",
783                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
784
785  // The first 3 __m64 vector arguments are passed in mmx registers if the
786  // call is not a vararg call.
787  CCIfNotVarArg<CCIfType<[x86mmx],
788                CCAssignToReg<[MM0, MM1, MM2]>>>,
789
790  // Integer/Float values get stored in stack slots that are 4 bytes in
791  // size and 4-byte aligned.
792  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
793
794  // Doubles get 8-byte slots that are 4-byte aligned.
795  CCIfType<[f64], CCAssignToStack<8, 4>>,
796
797  // Long doubles get slots whose size depends on the subtarget.
798  CCIfType<[f80], CCAssignToStack<0, 4>>,
799
800  // Boolean vectors of AVX-512 are passed in SIMD registers.
801  // The call from AVX to AVX-512 function should work,
802  // since the boolean types in AVX/AVX2 are promoted by default.
803  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
804  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
805  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
806  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
807  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
808  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
809
810  // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
811  // passed in the parameter area.
812  CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
813
814  // Darwin passes vectors in a form that differs from the i386 psABI
815  CCIfSubtarget<"isTargetDarwin()", CCDelegateTo<CC_X86_32_Vector_Darwin>>,
816
817  // Otherwise, drop to 'normal' X86-32 CC
818  CCDelegateTo<CC_X86_32_Vector_Standard>
819]>;
820
821def CC_X86_32_C : CallingConv<[
822  // Promote i1/i8/i16/v1i1 arguments to i32.
823  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
824
825  // The 'nest' parameter, if any, is passed in ECX.
826  CCIfNest<CCAssignToReg<[ECX]>>,
827
828  // The first 3 integer arguments, if marked 'inreg' and if the call is not
829  // a vararg call, are passed in integer registers.
830  CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
831
832  // Otherwise, same as everything else.
833  CCDelegateTo<CC_X86_32_Common>
834]>;
835
836def CC_X86_32_MCU : CallingConv<[
837  // Handles byval parameters.  Note that, like FastCC, we can't rely on
838  // the delegation to CC_X86_32_Common because that happens after code that
839  // puts arguments in registers.
840  CCIfByVal<CCPassByVal<4, 4>>,
841
842  // Promote i1/i8/i16/v1i1 arguments to i32.
843  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
844
845  // If the call is not a vararg call, some arguments may be passed
846  // in integer registers.
847  CCIfNotVarArg<CCIfType<[i32], CCCustom<"CC_X86_32_MCUInReg">>>,
848
849  // Otherwise, same as everything else.
850  CCDelegateTo<CC_X86_32_Common>
851]>;
852
853def CC_X86_32_FastCall : CallingConv<[
854  // Promote i1 to i8.
855  CCIfType<[i1], CCPromoteToType<i8>>,
856
857  // The 'nest' parameter, if any, is passed in EAX.
858  CCIfNest<CCAssignToReg<[EAX]>>,
859
860  // The first 2 integer arguments are passed in ECX/EDX
861  CCIfInReg<CCIfType<[ i8], CCAssignToReg<[ CL,  DL]>>>,
862  CCIfInReg<CCIfType<[i16], CCAssignToReg<[ CX,  DX]>>>,
863  CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>,
864
865  // Otherwise, same as everything else.
866  CCDelegateTo<CC_X86_32_Common>
867]>;
868
869def CC_X86_Win32_VectorCall : CallingConv<[
870  // Pass floating point in XMMs
871  CCCustom<"CC_X86_32_VectorCall">,
872
873  // Delegate to fastcall to handle integer types.
874  CCDelegateTo<CC_X86_32_FastCall>
875]>;
876
877def CC_X86_32_ThisCall_Common : CallingConv<[
878  // The first integer argument is passed in ECX
879  CCIfType<[i32], CCAssignToReg<[ECX]>>,
880
881  // Otherwise, same as everything else.
882  CCDelegateTo<CC_X86_32_Common>
883]>;
884
885def CC_X86_32_ThisCall_Mingw : CallingConv<[
886  // Promote i1/i8/i16/v1i1 arguments to i32.
887  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
888
889  CCDelegateTo<CC_X86_32_ThisCall_Common>
890]>;
891
892def CC_X86_32_ThisCall_Win : CallingConv<[
893  // Promote i1/i8/i16/v1i1 arguments to i32.
894  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
895
896  // Pass sret arguments indirectly through stack.
897  CCIfSRet<CCAssignToStack<4, 4>>,
898
899  CCDelegateTo<CC_X86_32_ThisCall_Common>
900]>;
901
902def CC_X86_32_ThisCall : CallingConv<[
903  CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>,
904  CCDelegateTo<CC_X86_32_ThisCall_Win>
905]>;
906
907def CC_X86_32_FastCC : CallingConv<[
908  // Handles byval parameters.  Note that we can't rely on the delegation
909  // to CC_X86_32_Common for this because that happens after code that
910  // puts arguments in registers.
911  CCIfByVal<CCPassByVal<4, 4>>,
912
913  // Promote i1/i8/i16/v1i1 arguments to i32.
914  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
915
916  // The 'nest' parameter, if any, is passed in EAX.
917  CCIfNest<CCAssignToReg<[EAX]>>,
918
919  // The first 2 integer arguments are passed in ECX/EDX
920  CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
921
922  // The first 3 float or double arguments, if the call is not a vararg
923  // call and if SSE2 is available, are passed in SSE registers.
924  CCIfNotVarArg<CCIfType<[f32,f64],
925                CCIfSubtarget<"hasSSE2()",
926                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
927
928  // Doubles get 8-byte slots that are 8-byte aligned.
929  CCIfType<[f64], CCAssignToStack<8, 8>>,
930
931  // Otherwise, same as everything else.
932  CCDelegateTo<CC_X86_32_Common>
933]>;
934
935def CC_X86_32_GHC : CallingConv<[
936  // Promote i8/i16 arguments to i32.
937  CCIfType<[i8, i16], CCPromoteToType<i32>>,
938
939  // Pass in STG registers: Base, Sp, Hp, R1
940  CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
941]>;
942
943def CC_X86_32_HiPE : CallingConv<[
944  // Promote i8/i16 arguments to i32.
945  CCIfType<[i8, i16], CCPromoteToType<i32>>,
946
947  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2
948  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>,
949
950  // Integer/Float values get stored in stack slots that are 4 bytes in
951  // size and 4-byte aligned.
952  CCIfType<[i32, f32], CCAssignToStack<4, 4>>
953]>;
954
955// X86-64 Intel OpenCL built-ins calling convention.
956def CC_Intel_OCL_BI : CallingConv<[
957
958  CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>,
959  CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8,  R9 ]>>>,
960
961  CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>,
962  CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>,
963
964  CCIfType<[i32], CCAssignToStack<4, 4>>,
965
966  // The SSE vector arguments are passed in XMM registers.
967  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
968           CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
969
970  // The 256-bit vector arguments are passed in YMM registers.
971  CCIfType<[v8f32, v4f64, v8i32, v4i64],
972           CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>,
973
974  // The 512-bit vector arguments are passed in ZMM registers.
975  CCIfType<[v16f32, v8f64, v16i32, v8i64],
976           CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>,
977
978  // Pass masks in mask registers
979  CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>,
980
981  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
982  CCIfSubtarget<"is64Bit()",       CCDelegateTo<CC_X86_64_C>>,
983  CCDelegateTo<CC_X86_32_C>
984]>;
985
986def CC_X86_32_Intr : CallingConv<[
987  CCAssignToStack<4, 4>
988]>;
989
990def CC_X86_64_Intr : CallingConv<[
991  CCAssignToStack<8, 8>
992]>;
993
994//===----------------------------------------------------------------------===//
995// X86 Root Argument Calling Conventions
996//===----------------------------------------------------------------------===//
997
998// This is the root argument convention for the X86-32 backend.
999def CC_X86_32 : CallingConv<[
1000  // X86_INTR calling convention is valid in MCU target and should override the
1001  // MCU calling convention. Thus, this should be checked before isTargetMCU().
1002  CCIfCC<"CallingConv::X86_INTR", CCDelegateTo<CC_X86_32_Intr>>,
1003  CCIfSubtarget<"isTargetMCU()", CCDelegateTo<CC_X86_32_MCU>>,
1004  CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
1005  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win32_VectorCall>>,
1006  CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
1007  CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
1008  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
1009  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>,
1010  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_32_RegCall>>,
1011
1012  // Otherwise, drop to normal X86-32 CC
1013  CCDelegateTo<CC_X86_32_C>
1014]>;
1015
1016// This is the root argument convention for the X86-64 backend.
1017def CC_X86_64 : CallingConv<[
1018  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
1019  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>,
1020  CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>,
1021  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>,
1022  CCIfCC<"CallingConv::Win64", CCDelegateTo<CC_X86_Win64_C>>,
1023  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>,
1024  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win64_VectorCall>>,
1025  CCIfCC<"CallingConv::HHVM", CCDelegateTo<CC_X86_64_HHVM>>,
1026  CCIfCC<"CallingConv::HHVM_C", CCDelegateTo<CC_X86_64_HHVM_C>>,
1027  CCIfCC<"CallingConv::X86_RegCall",
1028    CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_RegCall>>>,
1029  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_SysV64_RegCall>>,
1030  CCIfCC<"CallingConv::X86_INTR", CCDelegateTo<CC_X86_64_Intr>>,
1031
1032  // Mingw64 and native Win64 use Win64 CC
1033  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
1034
1035  // Otherwise, drop to normal X86-64 CC
1036  CCDelegateTo<CC_X86_64_C>
1037]>;
1038
1039// This is the argument convention used for the entire X86 backend.
1040def CC_X86 : CallingConv<[
1041  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>,
1042  CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
1043  CCDelegateTo<CC_X86_32>
1044]>;
1045
1046//===----------------------------------------------------------------------===//
1047// Callee-saved Registers.
1048//===----------------------------------------------------------------------===//
1049
1050def CSR_NoRegs : CalleeSavedRegs<(add)>;
1051
1052def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
1053def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;
1054
1055def CSR_64_SwiftError : CalleeSavedRegs<(sub CSR_64, R12)>;
1056
1057def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
1058def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;
1059
1060def CSR_Win64_NoSSE : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15)>;
1061
1062def CSR_Win64 : CalleeSavedRegs<(add CSR_Win64_NoSSE,
1063                                     (sequence "XMM%u", 6, 15))>;
1064
1065def CSR_Win64_SwiftError : CalleeSavedRegs<(sub CSR_Win64, R12)>;
1066
1067// The function used by Darwin to obtain the address of a thread-local variable
1068// uses rdi to pass a single parameter and rax for the return value. All other
1069// GPRs are preserved.
1070def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI,
1071                                             R8, R9, R10, R11)>;
1072
1073// CSRs that are handled by prologue, epilogue.
1074def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add RBP)>;
1075
1076// CSRs that are handled explicitly via copies.
1077def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(sub CSR_64_TLS_Darwin, RBP)>;
1078
1079// All GPRs - except r11
1080def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI,
1081                                              R8, R9, R10, RSP)>;
1082
1083// All registers - except r11
1084def CSR_64_RT_AllRegs     : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
1085                                                 (sequence "XMM%u", 0, 15))>;
1086def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
1087                                                 (sequence "YMM%u", 0, 15))>;
1088
1089def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10,
1090                                           R11, R12, R13, R14, R15, RBP,
1091                                           (sequence "XMM%u", 0, 15))>;
1092
1093def CSR_32_AllRegs     : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI,
1094                                              EDI)>;
1095def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs,
1096                                              (sequence "XMM%u", 0, 7))>;
1097def CSR_32_AllRegs_AVX : CalleeSavedRegs<(add CSR_32_AllRegs,
1098                                              (sequence "YMM%u", 0, 7))>;
1099def CSR_32_AllRegs_AVX512 : CalleeSavedRegs<(add CSR_32_AllRegs,
1100                                                 (sequence "ZMM%u", 0, 7),
1101                                                 (sequence "K%u", 0, 7))>;
1102
1103def CSR_64_AllRegs     : CalleeSavedRegs<(add CSR_64_MostRegs, RAX)>;
1104def CSR_64_AllRegs_NoSSE : CalleeSavedRegs<(add RAX, RBX, RCX, RDX, RSI, RDI, R8, R9,
1105                                                R10, R11, R12, R13, R14, R15, RBP)>;
1106def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
1107                                                   (sequence "YMM%u", 0, 15)),
1108                                              (sequence "XMM%u", 0, 15))>;
1109def CSR_64_AllRegs_AVX512 : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
1110                                                      (sequence "ZMM%u", 0, 31),
1111                                                      (sequence "K%u", 0, 7)),
1112                                                 (sequence "XMM%u", 0, 15))>;
1113
1114// Standard C + YMM6-15
1115def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12,
1116                                                  R13, R14, R15,
1117                                                  (sequence "YMM%u", 6, 15))>;
1118
1119def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI,
1120                                                     R12, R13, R14, R15,
1121                                                     (sequence "ZMM%u", 6, 21),
1122                                                     K4, K5, K6, K7)>;
1123//Standard C + XMM 8-15
1124def CSR_64_Intel_OCL_BI       : CalleeSavedRegs<(add CSR_64,
1125                                                 (sequence "XMM%u", 8, 15))>;
1126
1127//Standard C + YMM 8-15
1128def CSR_64_Intel_OCL_BI_AVX    : CalleeSavedRegs<(add CSR_64,
1129                                                  (sequence "YMM%u", 8, 15))>;
1130
1131def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RDI, RSI, R14, R15,
1132                                                  (sequence "ZMM%u", 16, 31),
1133                                                  K4, K5, K6, K7)>;
1134
1135// Only R12 is preserved for PHP calls in HHVM.
1136def CSR_64_HHVM : CalleeSavedRegs<(add R12)>;
1137
1138// Register calling convention preserves few GPR and XMM8-15
1139def CSR_32_RegCall_NoSSE : CalleeSavedRegs<(add ESI, EDI, EBX, EBP, ESP)>;
1140def CSR_32_RegCall       : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE,
1141                                           (sequence "XMM%u", 4, 7))>;
1142def CSR_Win64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP,
1143                                              (sequence "R%u", 10, 15))>;
1144def CSR_Win64_RegCall       : CalleeSavedRegs<(add CSR_Win64_RegCall_NoSSE,
1145                                              (sequence "XMM%u", 8, 15))>;
1146def CSR_SysV64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP,
1147                                               (sequence "R%u", 12, 15))>;
1148def CSR_SysV64_RegCall       : CalleeSavedRegs<(add CSR_SysV64_RegCall_NoSSE,
1149                                               (sequence "XMM%u", 8, 15))>;
1150
1151