1 //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file defines the pass that looks through the machine instructions
11 /// late in the compilation, and finds byte or word instructions that
12 /// can be profitably replaced with 32 bit instructions that give equivalent
13 /// results for the bits of the results that are used. There are two possible
14 /// reasons to do this.
15 ///
16 /// One reason is to avoid false-dependences on the upper portions
17 /// of the registers. Only instructions that have a destination register
18 /// which is not in any of the source registers can be affected by this.
19 /// Any instruction where one of the source registers is also the destination
20 /// register is unaffected, because it has a true dependence on the source
21 /// register already. So, this consideration primarily affects load
22 /// instructions and register-to-register moves. It would
23 /// seem like cmov(s) would also be affected, but because of the way cmov is
24 /// really implemented by most machines as reading both the destination and
25 /// and source registers, and then "merging" the two based on a condition,
26 /// it really already should be considered as having a true dependence on the
27 /// destination register as well.
28 ///
29 /// The other reason to do this is for potential code size savings. Word
30 /// operations need an extra override byte compared to their 32 bit
31 /// versions. So this can convert many word operations to their larger
32 /// size, saving a byte in encoding. This could introduce partial register
33 /// dependences where none existed however. As an example take:
34 /// orw ax, $0x1000
35 /// addw ax, $3
36 /// now if this were to get transformed into
37 /// orw ax, $1000
38 /// addl eax, $3
39 /// because the addl encodes shorter than the addw, this would introduce
40 /// a use of a register that was only partially written earlier. On older
41 /// Intel processors this can be quite a performance penalty, so this should
42 /// probably only be done when it can be proven that a new partial dependence
43 /// wouldn't be created, or when your know a newer processor is being
44 /// targeted, or when optimizing for minimum code size.
45 ///
46 //===----------------------------------------------------------------------===//
47
48 #include "X86.h"
49 #include "X86InstrInfo.h"
50 #include "X86Subtarget.h"
51 #include "llvm/ADT/Statistic.h"
52 #include "llvm/CodeGen/LivePhysRegs.h"
53 #include "llvm/CodeGen/MachineFunctionPass.h"
54 #include "llvm/CodeGen/MachineInstrBuilder.h"
55 #include "llvm/CodeGen/MachineLoopInfo.h"
56 #include "llvm/CodeGen/MachineRegisterInfo.h"
57 #include "llvm/CodeGen/Passes.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 using namespace llvm;
62
63 #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup"
64 #define FIXUPBW_NAME "x86-fixup-bw-insts"
65
66 #define DEBUG_TYPE FIXUPBW_NAME
67
68 // Option to allow this optimization pass to have fine-grained control.
69 static cl::opt<bool>
70 FixupBWInsts("fixup-byte-word-insts",
71 cl::desc("Change byte and word instructions to larger sizes"),
72 cl::init(true), cl::Hidden);
73
74 namespace {
75 class FixupBWInstPass : public MachineFunctionPass {
76 /// Loop over all of the instructions in the basic block replacing applicable
77 /// byte or word instructions with better alternatives.
78 void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
79
80 /// This sets the \p SuperDestReg to the 32 bit super reg of the original
81 /// destination register of the MachineInstr passed in. It returns true if
82 /// that super register is dead just prior to \p OrigMI, and false if not.
83 bool getSuperRegDestIfDead(MachineInstr *OrigMI,
84 unsigned &SuperDestReg) const;
85
86 /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit
87 /// register if it is safe to do so. Return the replacement instruction if
88 /// OK, otherwise return nullptr.
89 MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const;
90
91 /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is
92 /// safe to do so. Return the replacement instruction if OK, otherwise return
93 /// nullptr.
94 MachineInstr *tryReplaceCopy(MachineInstr *MI) const;
95
96 // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if
97 // possible. Return the replacement instruction if OK, return nullptr
98 // otherwise.
99 MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const;
100
101 public:
102 static char ID;
103
getPassName() const104 StringRef getPassName() const override { return FIXUPBW_DESC; }
105
FixupBWInstPass()106 FixupBWInstPass() : MachineFunctionPass(ID) {
107 initializeFixupBWInstPassPass(*PassRegistry::getPassRegistry());
108 }
109
getAnalysisUsage(AnalysisUsage & AU) const110 void getAnalysisUsage(AnalysisUsage &AU) const override {
111 AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to
112 // guide some heuristics.
113 MachineFunctionPass::getAnalysisUsage(AU);
114 }
115
116 /// Loop over all of the basic blocks, replacing byte and word instructions by
117 /// equivalent 32 bit instructions where performance or code size can be
118 /// improved.
119 bool runOnMachineFunction(MachineFunction &MF) override;
120
getRequiredProperties() const121 MachineFunctionProperties getRequiredProperties() const override {
122 return MachineFunctionProperties().set(
123 MachineFunctionProperties::Property::NoVRegs);
124 }
125
126 private:
127 MachineFunction *MF;
128
129 /// Machine instruction info used throughout the class.
130 const X86InstrInfo *TII;
131
132 /// Local member for function's OptForSize attribute.
133 bool OptForSize;
134
135 /// Machine loop info used for guiding some heruistics.
136 MachineLoopInfo *MLI;
137
138 /// Register Liveness information after the current instruction.
139 LivePhysRegs LiveRegs;
140 };
141 char FixupBWInstPass::ID = 0;
142 }
143
INITIALIZE_PASS(FixupBWInstPass,FIXUPBW_NAME,FIXUPBW_DESC,false,false)144 INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false)
145
146 FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }
147
runOnMachineFunction(MachineFunction & MF)148 bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) {
149 if (!FixupBWInsts || skipFunction(MF.getFunction()))
150 return false;
151
152 this->MF = &MF;
153 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
154 OptForSize = MF.getFunction().optForSize();
155 MLI = &getAnalysis<MachineLoopInfo>();
156 LiveRegs.init(TII->getRegisterInfo());
157
158 LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";);
159
160 // Process all basic blocks.
161 for (auto &MBB : MF)
162 processBasicBlock(MF, MBB);
163
164 LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";);
165
166 return true;
167 }
168
169 /// Check if after \p OrigMI the only portion of super register
170 /// of the destination register of \p OrigMI that is alive is that
171 /// destination register.
172 ///
173 /// If so, return that super register in \p SuperDestReg.
getSuperRegDestIfDead(MachineInstr * OrigMI,unsigned & SuperDestReg) const174 bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI,
175 unsigned &SuperDestReg) const {
176 auto *TRI = &TII->getRegisterInfo();
177
178 unsigned OrigDestReg = OrigMI->getOperand(0).getReg();
179 SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32);
180
181 const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg);
182
183 // Make sure that the sub-register that this instruction has as its
184 // destination is the lowest order sub-register of the super-register.
185 // If it isn't, then the register isn't really dead even if the
186 // super-register is considered dead.
187 if (SubRegIdx == X86::sub_8bit_hi)
188 return false;
189
190 // If neither the destination-super register nor any applicable subregisters
191 // are live after this instruction, then the super register is safe to use.
192 if (!LiveRegs.contains(SuperDestReg)) {
193 // If the original destination register was not the low 8-bit subregister
194 // then the super register check is sufficient.
195 if (SubRegIdx != X86::sub_8bit)
196 return true;
197 // If the original destination register was the low 8-bit subregister and
198 // we also need to check the 16-bit subregister and the high 8-bit
199 // subregister.
200 if (!LiveRegs.contains(getX86SubSuperRegister(OrigDestReg, 16)) &&
201 !LiveRegs.contains(getX86SubSuperRegister(SuperDestReg, 8,
202 /*High=*/true)))
203 return true;
204 // Otherwise, we have a little more checking to do.
205 }
206
207 // If we get here, the super-register destination (or some part of it) is
208 // marked as live after the original instruction.
209 //
210 // The X86 backend does not have subregister liveness tracking enabled,
211 // so liveness information might be overly conservative. Specifically, the
212 // super register might be marked as live because it is implicitly defined
213 // by the instruction we are examining.
214 //
215 // However, for some specific instructions (this pass only cares about MOVs)
216 // we can produce more precise results by analysing that MOV's operands.
217 //
218 // Indeed, if super-register is not live before the mov it means that it
219 // was originally <read-undef> and so we are free to modify these
220 // undef upper bits. That may happen in case where the use is in another MBB
221 // and the vreg/physreg corresponding to the move has higher width than
222 // necessary (e.g. due to register coalescing with a "truncate" copy).
223 // So, we would like to handle patterns like this:
224 //
225 // %bb.2: derived from LLVM BB %if.then
226 // Live Ins: %rdi
227 // Predecessors according to CFG: %bb.0
228 // %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax
229 // ; No implicit %eax
230 // Successors according to CFG: %bb.3(?%)
231 //
232 // %bb.3: derived from LLVM BB %if.end
233 // Live Ins: %eax Only %ax is actually live
234 // Predecessors according to CFG: %bb.2 %bb.1
235 // %ax = KILL %ax, implicit killed %eax
236 // RET 0, %ax
237 unsigned Opc = OrigMI->getOpcode(); (void)Opc;
238 // These are the opcodes currently handled by the pass, if something
239 // else will be added we need to ensure that new opcode has the same
240 // properties.
241 assert((Opc == X86::MOV8rm || Opc == X86::MOV16rm || Opc == X86::MOV8rr ||
242 Opc == X86::MOV16rr) &&
243 "Unexpected opcode.");
244
245 bool IsDefined = false;
246 for (auto &MO: OrigMI->implicit_operands()) {
247 if (!MO.isReg())
248 continue;
249
250 assert((MO.isDef() || MO.isUse()) && "Expected Def or Use only!");
251
252 if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg()))
253 IsDefined = true;
254
255 // If MO is a use of any part of the destination register but is not equal
256 // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg.
257 // For example, if OrigDestReg is %al then an implicit use of %ah, %ax,
258 // %eax, or %rax will prevent us from using the %eax register.
259 if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) &&
260 TRI->regsOverlap(SuperDestReg, MO.getReg()))
261 return false;
262 }
263 // Reg is not Imp-def'ed -> it's live both before/after the instruction.
264 if (!IsDefined)
265 return false;
266
267 // Otherwise, the Reg is not live before the MI and the MOV can't
268 // make it really live, so it's in fact dead even after the MI.
269 return true;
270 }
271
tryReplaceLoad(unsigned New32BitOpcode,MachineInstr * MI) const272 MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode,
273 MachineInstr *MI) const {
274 unsigned NewDestReg;
275
276 // We are going to try to rewrite this load to a larger zero-extending
277 // load. This is safe if all portions of the 32 bit super-register
278 // of the original destination register, except for the original destination
279 // register are dead. getSuperRegDestIfDead checks that.
280 if (!getSuperRegDestIfDead(MI, NewDestReg))
281 return nullptr;
282
283 // Safe to change the instruction.
284 MachineInstrBuilder MIB =
285 BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);
286
287 unsigned NumArgs = MI->getNumOperands();
288 for (unsigned i = 1; i < NumArgs; ++i)
289 MIB.add(MI->getOperand(i));
290
291 MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
292
293 return MIB;
294 }
295
tryReplaceCopy(MachineInstr * MI) const296 MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const {
297 assert(MI->getNumExplicitOperands() == 2);
298 auto &OldDest = MI->getOperand(0);
299 auto &OldSrc = MI->getOperand(1);
300
301 unsigned NewDestReg;
302 if (!getSuperRegDestIfDead(MI, NewDestReg))
303 return nullptr;
304
305 unsigned NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32);
306
307 // This is only correct if we access the same subregister index: otherwise,
308 // we could try to replace "movb %ah, %al" with "movl %eax, %eax".
309 auto *TRI = &TII->getRegisterInfo();
310 if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) !=
311 TRI->getSubRegIndex(NewDestReg, OldDest.getReg()))
312 return nullptr;
313
314 // Safe to change the instruction.
315 // Don't set src flags, as we don't know if we're also killing the superreg.
316 // However, the superregister might not be defined; make it explicit that
317 // we don't care about the higher bits by reading it as Undef, and adding
318 // an imp-use on the original subregister.
319 MachineInstrBuilder MIB =
320 BuildMI(*MF, MI->getDebugLoc(), TII->get(X86::MOV32rr), NewDestReg)
321 .addReg(NewSrcReg, RegState::Undef)
322 .addReg(OldSrc.getReg(), RegState::Implicit);
323
324 // Drop imp-defs/uses that would be redundant with the new def/use.
325 for (auto &Op : MI->implicit_operands())
326 if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg))
327 MIB.add(Op);
328
329 return MIB;
330 }
331
tryReplaceInstr(MachineInstr * MI,MachineBasicBlock & MBB) const332 MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI,
333 MachineBasicBlock &MBB) const {
334 // See if this is an instruction of the type we are currently looking for.
335 switch (MI->getOpcode()) {
336
337 case X86::MOV8rm:
338 // Only replace 8 bit loads with the zero extending versions if
339 // in an inner most loop and not optimizing for size. This takes
340 // an extra byte to encode, and provides limited performance upside.
341 if (MachineLoop *ML = MLI->getLoopFor(&MBB))
342 if (ML->begin() == ML->end() && !OptForSize)
343 return tryReplaceLoad(X86::MOVZX32rm8, MI);
344 break;
345
346 case X86::MOV16rm:
347 // Always try to replace 16 bit load with 32 bit zero extending.
348 // Code size is the same, and there is sometimes a perf advantage
349 // from eliminating a false dependence on the upper portion of
350 // the register.
351 return tryReplaceLoad(X86::MOVZX32rm16, MI);
352
353 case X86::MOV8rr:
354 case X86::MOV16rr:
355 // Always try to replace 8/16 bit copies with a 32 bit copy.
356 // Code size is either less (16) or equal (8), and there is sometimes a
357 // perf advantage from eliminating a false dependence on the upper portion
358 // of the register.
359 return tryReplaceCopy(MI);
360
361 default:
362 // nothing to do here.
363 break;
364 }
365
366 return nullptr;
367 }
368
processBasicBlock(MachineFunction & MF,MachineBasicBlock & MBB)369 void FixupBWInstPass::processBasicBlock(MachineFunction &MF,
370 MachineBasicBlock &MBB) {
371
372 // This algorithm doesn't delete the instructions it is replacing
373 // right away. By leaving the existing instructions in place, the
374 // register liveness information doesn't change, and this makes the
375 // analysis that goes on be better than if the replaced instructions
376 // were immediately removed.
377 //
378 // This algorithm always creates a replacement instruction
379 // and notes that and the original in a data structure, until the
380 // whole BB has been analyzed. This keeps the replacement instructions
381 // from making it seem as if the larger register might be live.
382 SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements;
383
384 // Start computing liveness for this block. We iterate from the end to be able
385 // to update this for each instruction.
386 LiveRegs.clear();
387 // We run after PEI, so we need to AddPristinesAndCSRs.
388 LiveRegs.addLiveOuts(MBB);
389
390 for (auto I = MBB.rbegin(); I != MBB.rend(); ++I) {
391 MachineInstr *MI = &*I;
392
393 if (MachineInstr *NewMI = tryReplaceInstr(MI, MBB))
394 MIReplacements.push_back(std::make_pair(MI, NewMI));
395
396 // We're done with this instruction, update liveness for the next one.
397 LiveRegs.stepBackward(*MI);
398 }
399
400 while (!MIReplacements.empty()) {
401 MachineInstr *MI = MIReplacements.back().first;
402 MachineInstr *NewMI = MIReplacements.back().second;
403 MIReplacements.pop_back();
404 MBB.insert(MI, NewMI);
405 MBB.erase(MI);
406 }
407 }
408