1 //===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass that finds instructions that can be
11 // re-written as LEA instructions in order to reduce pipeline delays.
12 // When optimizing for size it replaces suitable LEAs with INC or DEC.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "X86.h"
17 #include "X86InstrInfo.h"
18 #include "X86Subtarget.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/TargetSchedule.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace llvm;
27
28 namespace llvm {
29 void initializeFixupLEAPassPass(PassRegistry &);
30 }
31
32 #define FIXUPLEA_DESC "X86 LEA Fixup"
33 #define FIXUPLEA_NAME "x86-fixup-LEAs"
34
35 #define DEBUG_TYPE FIXUPLEA_NAME
36
37 STATISTIC(NumLEAs, "Number of LEA instructions created");
38
39 namespace {
40 class FixupLEAPass : public MachineFunctionPass {
41 enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
42
43 /// Loop over all of the instructions in the basic block
44 /// replacing applicable instructions with LEA instructions,
45 /// where appropriate.
46 bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI);
47
48
49 /// Given a machine register, look for the instruction
50 /// which writes it in the current basic block. If found,
51 /// try to replace it with an equivalent LEA instruction.
52 /// If replacement succeeds, then also process the newly created
53 /// instruction.
54 void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I,
55 MachineFunction::iterator MFI);
56
57 /// Given a memory access or LEA instruction
58 /// whose address mode uses a base and/or index register, look for
59 /// an opportunity to replace the instruction which sets the base or index
60 /// register with an equivalent LEA instruction.
61 void processInstruction(MachineBasicBlock::iterator &I,
62 MachineFunction::iterator MFI);
63
64 /// Given a LEA instruction which is unprofitable
65 /// on Silvermont try to replace it with an equivalent ADD instruction
66 void processInstructionForSLM(MachineBasicBlock::iterator &I,
67 MachineFunction::iterator MFI);
68
69
70 /// Given a LEA instruction which is unprofitable
71 /// on SNB+ try to replace it with other instructions.
72 /// According to Intel's Optimization Reference Manual:
73 /// " For LEA instructions with three source operands and some specific
74 /// situations, instruction latency has increased to 3 cycles, and must
75 /// dispatch via port 1:
76 /// - LEA that has all three source operands: base, index, and offset
77 /// - LEA that uses base and index registers where the base is EBP, RBP,
78 /// or R13
79 /// - LEA that uses RIP relative addressing mode
80 /// - LEA that uses 16-bit addressing mode "
81 /// This function currently handles the first 2 cases only.
82 MachineInstr *processInstrForSlow3OpLEA(MachineInstr &MI,
83 MachineFunction::iterator MFI);
84
85 /// Look for LEAs that add 1 to reg or subtract 1 from reg
86 /// and convert them to INC or DEC respectively.
87 bool fixupIncDec(MachineBasicBlock::iterator &I,
88 MachineFunction::iterator MFI) const;
89
90 /// Determine if an instruction references a machine register
91 /// and, if so, whether it reads or writes the register.
92 RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I);
93
94 /// Step backwards through a basic block, looking
95 /// for an instruction which writes a register within
96 /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
97 MachineBasicBlock::iterator searchBackwards(MachineOperand &p,
98 MachineBasicBlock::iterator &I,
99 MachineFunction::iterator MFI);
100
101 /// if an instruction can be converted to an
102 /// equivalent LEA, insert the new instruction into the basic block
103 /// and return a pointer to it. Otherwise, return zero.
104 MachineInstr *postRAConvertToLEA(MachineFunction::iterator &MFI,
105 MachineBasicBlock::iterator &MBBI) const;
106
107 public:
108 static char ID;
109
getPassName() const110 StringRef getPassName() const override { return FIXUPLEA_DESC; }
111
FixupLEAPass()112 FixupLEAPass() : MachineFunctionPass(ID) {
113 initializeFixupLEAPassPass(*PassRegistry::getPassRegistry());
114 }
115
116 /// Loop over all of the basic blocks,
117 /// replacing instructions by equivalent LEA instructions
118 /// if needed and when possible.
119 bool runOnMachineFunction(MachineFunction &MF) override;
120
121 // This pass runs after regalloc and doesn't support VReg operands.
getRequiredProperties() const122 MachineFunctionProperties getRequiredProperties() const override {
123 return MachineFunctionProperties().set(
124 MachineFunctionProperties::Property::NoVRegs);
125 }
126
127 private:
128 TargetSchedModel TSM;
129 MachineFunction *MF;
130 const X86InstrInfo *TII; // Machine instruction info.
131 bool OptIncDec;
132 bool OptLEA;
133 };
134 }
135
136 char FixupLEAPass::ID = 0;
137
INITIALIZE_PASS(FixupLEAPass,FIXUPLEA_NAME,FIXUPLEA_DESC,false,false)138 INITIALIZE_PASS(FixupLEAPass, FIXUPLEA_NAME, FIXUPLEA_DESC, false, false)
139
140 MachineInstr *
141 FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI,
142 MachineBasicBlock::iterator &MBBI) const {
143 MachineInstr &MI = *MBBI;
144 switch (MI.getOpcode()) {
145 case X86::MOV32rr:
146 case X86::MOV64rr: {
147 const MachineOperand &Src = MI.getOperand(1);
148 const MachineOperand &Dest = MI.getOperand(0);
149 MachineInstr *NewMI =
150 BuildMI(*MF, MI.getDebugLoc(),
151 TII->get(MI.getOpcode() == X86::MOV32rr ? X86::LEA32r
152 : X86::LEA64r))
153 .add(Dest)
154 .add(Src)
155 .addImm(1)
156 .addReg(0)
157 .addImm(0)
158 .addReg(0);
159 MFI->insert(MBBI, NewMI); // Insert the new inst
160 return NewMI;
161 }
162 case X86::ADD64ri32:
163 case X86::ADD64ri8:
164 case X86::ADD64ri32_DB:
165 case X86::ADD64ri8_DB:
166 case X86::ADD32ri:
167 case X86::ADD32ri8:
168 case X86::ADD32ri_DB:
169 case X86::ADD32ri8_DB:
170 case X86::ADD16ri:
171 case X86::ADD16ri8:
172 case X86::ADD16ri_DB:
173 case X86::ADD16ri8_DB:
174 if (!MI.getOperand(2).isImm()) {
175 // convertToThreeAddress will call getImm()
176 // which requires isImm() to be true
177 return nullptr;
178 }
179 break;
180 case X86::ADD16rr:
181 case X86::ADD16rr_DB:
182 if (MI.getOperand(1).getReg() != MI.getOperand(2).getReg()) {
183 // if src1 != src2, then convertToThreeAddress will
184 // need to create a Virtual register, which we cannot do
185 // after register allocation.
186 return nullptr;
187 }
188 }
189 return TII->convertToThreeAddress(MFI, MI, nullptr);
190 }
191
createX86FixupLEAs()192 FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); }
193
runOnMachineFunction(MachineFunction & Func)194 bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) {
195 if (skipFunction(Func.getFunction()))
196 return false;
197
198 MF = &Func;
199 const X86Subtarget &ST = Func.getSubtarget<X86Subtarget>();
200 OptIncDec = !ST.slowIncDec() || Func.getFunction().optForMinSize();
201 OptLEA = ST.LEAusesAG() || ST.slowLEA() || ST.slow3OpsLEA();
202
203 if (!OptLEA && !OptIncDec)
204 return false;
205
206 TSM.init(&Func.getSubtarget());
207 TII = ST.getInstrInfo();
208
209 LLVM_DEBUG(dbgs() << "Start X86FixupLEAs\n";);
210 // Process all basic blocks.
211 for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I)
212 processBasicBlock(Func, I);
213 LLVM_DEBUG(dbgs() << "End X86FixupLEAs\n";);
214
215 return true;
216 }
217
218 FixupLEAPass::RegUsageState
usesRegister(MachineOperand & p,MachineBasicBlock::iterator I)219 FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) {
220 RegUsageState RegUsage = RU_NotUsed;
221 MachineInstr &MI = *I;
222
223 for (unsigned int i = 0; i < MI.getNumOperands(); ++i) {
224 MachineOperand &opnd = MI.getOperand(i);
225 if (opnd.isReg() && opnd.getReg() == p.getReg()) {
226 if (opnd.isDef())
227 return RU_Write;
228 RegUsage = RU_Read;
229 }
230 }
231 return RegUsage;
232 }
233
234 /// getPreviousInstr - Given a reference to an instruction in a basic
235 /// block, return a reference to the previous instruction in the block,
236 /// wrapping around to the last instruction of the block if the block
237 /// branches to itself.
getPreviousInstr(MachineBasicBlock::iterator & I,MachineFunction::iterator MFI)238 static inline bool getPreviousInstr(MachineBasicBlock::iterator &I,
239 MachineFunction::iterator MFI) {
240 if (I == MFI->begin()) {
241 if (MFI->isPredecessor(&*MFI)) {
242 I = --MFI->end();
243 return true;
244 } else
245 return false;
246 }
247 --I;
248 return true;
249 }
250
251 MachineBasicBlock::iterator
searchBackwards(MachineOperand & p,MachineBasicBlock::iterator & I,MachineFunction::iterator MFI)252 FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I,
253 MachineFunction::iterator MFI) {
254 int InstrDistance = 1;
255 MachineBasicBlock::iterator CurInst;
256 static const int INSTR_DISTANCE_THRESHOLD = 5;
257
258 CurInst = I;
259 bool Found;
260 Found = getPreviousInstr(CurInst, MFI);
261 while (Found && I != CurInst) {
262 if (CurInst->isCall() || CurInst->isInlineAsm())
263 break;
264 if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
265 break; // too far back to make a difference
266 if (usesRegister(p, CurInst) == RU_Write) {
267 return CurInst;
268 }
269 InstrDistance += TSM.computeInstrLatency(&*CurInst);
270 Found = getPreviousInstr(CurInst, MFI);
271 }
272 return MachineBasicBlock::iterator();
273 }
274
isLEA(const int Opcode)275 static inline bool isLEA(const int Opcode) {
276 return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
277 Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
278 }
279
isInefficientLEAReg(unsigned int Reg)280 static inline bool isInefficientLEAReg(unsigned int Reg) {
281 return Reg == X86::EBP || Reg == X86::RBP || Reg == X86::R13;
282 }
283
isRegOperand(const MachineOperand & Op)284 static inline bool isRegOperand(const MachineOperand &Op) {
285 return Op.isReg() && Op.getReg() != X86::NoRegister;
286 }
287 /// hasIneffecientLEARegs - LEA that uses base and index registers
288 /// where the base is EBP, RBP, or R13
289 // TODO: use a variant scheduling class to model the latency profile
290 // of LEA instructions, and implement this logic as a scheduling predicate.
hasInefficientLEABaseReg(const MachineOperand & Base,const MachineOperand & Index)291 static inline bool hasInefficientLEABaseReg(const MachineOperand &Base,
292 const MachineOperand &Index) {
293 return Base.isReg() && isInefficientLEAReg(Base.getReg()) &&
294 isRegOperand(Index);
295 }
296
hasLEAOffset(const MachineOperand & Offset)297 static inline bool hasLEAOffset(const MachineOperand &Offset) {
298 return (Offset.isImm() && Offset.getImm() != 0) || Offset.isGlobal();
299 }
300
getADDrrFromLEA(int LEAOpcode)301 static inline int getADDrrFromLEA(int LEAOpcode) {
302 switch (LEAOpcode) {
303 default:
304 llvm_unreachable("Unexpected LEA instruction");
305 case X86::LEA16r:
306 return X86::ADD16rr;
307 case X86::LEA32r:
308 return X86::ADD32rr;
309 case X86::LEA64_32r:
310 case X86::LEA64r:
311 return X86::ADD64rr;
312 }
313 }
314
getADDriFromLEA(int LEAOpcode,const MachineOperand & Offset)315 static inline int getADDriFromLEA(int LEAOpcode, const MachineOperand &Offset) {
316 bool IsInt8 = Offset.isImm() && isInt<8>(Offset.getImm());
317 switch (LEAOpcode) {
318 default:
319 llvm_unreachable("Unexpected LEA instruction");
320 case X86::LEA16r:
321 return IsInt8 ? X86::ADD16ri8 : X86::ADD16ri;
322 case X86::LEA32r:
323 case X86::LEA64_32r:
324 return IsInt8 ? X86::ADD32ri8 : X86::ADD32ri;
325 case X86::LEA64r:
326 return IsInt8 ? X86::ADD64ri8 : X86::ADD64ri32;
327 }
328 }
329
330 /// isLEASimpleIncOrDec - Does this LEA have one these forms:
331 /// lea %reg, 1(%reg)
332 /// lea %reg, -1(%reg)
isLEASimpleIncOrDec(MachineInstr & LEA)333 static inline bool isLEASimpleIncOrDec(MachineInstr &LEA) {
334 unsigned SrcReg = LEA.getOperand(1 + X86::AddrBaseReg).getReg();
335 unsigned DstReg = LEA.getOperand(0).getReg();
336 unsigned AddrDispOp = 1 + X86::AddrDisp;
337 return SrcReg == DstReg &&
338 LEA.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
339 LEA.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 &&
340 LEA.getOperand(AddrDispOp).isImm() &&
341 (LEA.getOperand(AddrDispOp).getImm() == 1 ||
342 LEA.getOperand(AddrDispOp).getImm() == -1);
343 }
344
fixupIncDec(MachineBasicBlock::iterator & I,MachineFunction::iterator MFI) const345 bool FixupLEAPass::fixupIncDec(MachineBasicBlock::iterator &I,
346 MachineFunction::iterator MFI) const {
347 MachineInstr &MI = *I;
348 int Opcode = MI.getOpcode();
349 if (!isLEA(Opcode))
350 return false;
351
352 if (isLEASimpleIncOrDec(MI) && TII->isSafeToClobberEFLAGS(*MFI, I)) {
353 int NewOpcode;
354 bool isINC = MI.getOperand(4).getImm() == 1;
355 switch (Opcode) {
356 case X86::LEA16r:
357 NewOpcode = isINC ? X86::INC16r : X86::DEC16r;
358 break;
359 case X86::LEA32r:
360 case X86::LEA64_32r:
361 NewOpcode = isINC ? X86::INC32r : X86::DEC32r;
362 break;
363 case X86::LEA64r:
364 NewOpcode = isINC ? X86::INC64r : X86::DEC64r;
365 break;
366 }
367
368 MachineInstr *NewMI =
369 BuildMI(*MFI, I, MI.getDebugLoc(), TII->get(NewOpcode))
370 .add(MI.getOperand(0))
371 .add(MI.getOperand(1));
372 MFI->erase(I);
373 I = static_cast<MachineBasicBlock::iterator>(NewMI);
374 return true;
375 }
376 return false;
377 }
378
processInstruction(MachineBasicBlock::iterator & I,MachineFunction::iterator MFI)379 void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I,
380 MachineFunction::iterator MFI) {
381 // Process a load, store, or LEA instruction.
382 MachineInstr &MI = *I;
383 const MCInstrDesc &Desc = MI.getDesc();
384 int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags);
385 if (AddrOffset >= 0) {
386 AddrOffset += X86II::getOperandBias(Desc);
387 MachineOperand &p = MI.getOperand(AddrOffset + X86::AddrBaseReg);
388 if (p.isReg() && p.getReg() != X86::ESP) {
389 seekLEAFixup(p, I, MFI);
390 }
391 MachineOperand &q = MI.getOperand(AddrOffset + X86::AddrIndexReg);
392 if (q.isReg() && q.getReg() != X86::ESP) {
393 seekLEAFixup(q, I, MFI);
394 }
395 }
396 }
397
seekLEAFixup(MachineOperand & p,MachineBasicBlock::iterator & I,MachineFunction::iterator MFI)398 void FixupLEAPass::seekLEAFixup(MachineOperand &p,
399 MachineBasicBlock::iterator &I,
400 MachineFunction::iterator MFI) {
401 MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI);
402 if (MBI != MachineBasicBlock::iterator()) {
403 MachineInstr *NewMI = postRAConvertToLEA(MFI, MBI);
404 if (NewMI) {
405 ++NumLEAs;
406 LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump(););
407 // now to replace with an equivalent LEA...
408 LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump(););
409 MFI->erase(MBI);
410 MachineBasicBlock::iterator J =
411 static_cast<MachineBasicBlock::iterator>(NewMI);
412 processInstruction(J, MFI);
413 }
414 }
415 }
416
processInstructionForSLM(MachineBasicBlock::iterator & I,MachineFunction::iterator MFI)417 void FixupLEAPass::processInstructionForSLM(MachineBasicBlock::iterator &I,
418 MachineFunction::iterator MFI) {
419 MachineInstr &MI = *I;
420 const int Opcode = MI.getOpcode();
421 if (!isLEA(Opcode))
422 return;
423 if (MI.getOperand(5).getReg() != 0 || !MI.getOperand(4).isImm() ||
424 !TII->isSafeToClobberEFLAGS(*MFI, I))
425 return;
426 const unsigned DstR = MI.getOperand(0).getReg();
427 const unsigned SrcR1 = MI.getOperand(1).getReg();
428 const unsigned SrcR2 = MI.getOperand(3).getReg();
429 if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR))
430 return;
431 if (MI.getOperand(2).getImm() > 1)
432 return;
433 LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
434 LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
435 MachineInstr *NewMI = nullptr;
436 // Make ADD instruction for two registers writing to LEA's destination
437 if (SrcR1 != 0 && SrcR2 != 0) {
438 const MCInstrDesc &ADDrr = TII->get(getADDrrFromLEA(Opcode));
439 const MachineOperand &Src = MI.getOperand(SrcR1 == DstR ? 3 : 1);
440 NewMI =
441 BuildMI(*MFI, I, MI.getDebugLoc(), ADDrr, DstR).addReg(DstR).add(Src);
442 LLVM_DEBUG(NewMI->dump(););
443 }
444 // Make ADD instruction for immediate
445 if (MI.getOperand(4).getImm() != 0) {
446 const MCInstrDesc &ADDri =
447 TII->get(getADDriFromLEA(Opcode, MI.getOperand(4)));
448 const MachineOperand &SrcR = MI.getOperand(SrcR1 == DstR ? 1 : 3);
449 NewMI = BuildMI(*MFI, I, MI.getDebugLoc(), ADDri, DstR)
450 .add(SrcR)
451 .addImm(MI.getOperand(4).getImm());
452 LLVM_DEBUG(NewMI->dump(););
453 }
454 if (NewMI) {
455 MFI->erase(I);
456 I = NewMI;
457 }
458 }
459
460 MachineInstr *
processInstrForSlow3OpLEA(MachineInstr & MI,MachineFunction::iterator MFI)461 FixupLEAPass::processInstrForSlow3OpLEA(MachineInstr &MI,
462 MachineFunction::iterator MFI) {
463
464 const int LEAOpcode = MI.getOpcode();
465 if (!isLEA(LEAOpcode))
466 return nullptr;
467
468 const MachineOperand &Dst = MI.getOperand(0);
469 const MachineOperand &Base = MI.getOperand(1);
470 const MachineOperand &Scale = MI.getOperand(2);
471 const MachineOperand &Index = MI.getOperand(3);
472 const MachineOperand &Offset = MI.getOperand(4);
473 const MachineOperand &Segment = MI.getOperand(5);
474
475 if (!(TII->isThreeOperandsLEA(MI) ||
476 hasInefficientLEABaseReg(Base, Index)) ||
477 !TII->isSafeToClobberEFLAGS(*MFI, MI) ||
478 Segment.getReg() != X86::NoRegister)
479 return nullptr;
480
481 unsigned int DstR = Dst.getReg();
482 unsigned int BaseR = Base.getReg();
483 unsigned int IndexR = Index.getReg();
484 unsigned SSDstR =
485 (LEAOpcode == X86::LEA64_32r) ? getX86SubSuperRegister(DstR, 64) : DstR;
486 bool IsScale1 = Scale.getImm() == 1;
487 bool IsInefficientBase = isInefficientLEAReg(BaseR);
488 bool IsInefficientIndex = isInefficientLEAReg(IndexR);
489
490 // Skip these cases since it takes more than 2 instructions
491 // to replace the LEA instruction.
492 if (IsInefficientBase && SSDstR == BaseR && !IsScale1)
493 return nullptr;
494 if (LEAOpcode == X86::LEA64_32r && IsInefficientBase &&
495 (IsInefficientIndex || !IsScale1))
496 return nullptr;
497
498 const DebugLoc DL = MI.getDebugLoc();
499 const MCInstrDesc &ADDrr = TII->get(getADDrrFromLEA(LEAOpcode));
500 const MCInstrDesc &ADDri = TII->get(getADDriFromLEA(LEAOpcode, Offset));
501
502 LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MI.dump(););
503 LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
504
505 // First try to replace LEA with one or two (for the 3-op LEA case)
506 // add instructions:
507 // 1.lea (%base,%index,1), %base => add %index,%base
508 // 2.lea (%base,%index,1), %index => add %base,%index
509 if (IsScale1 && (DstR == BaseR || DstR == IndexR)) {
510 const MachineOperand &Src = DstR == BaseR ? Index : Base;
511 MachineInstr *NewMI =
512 BuildMI(*MFI, MI, DL, ADDrr, DstR).addReg(DstR).add(Src);
513 LLVM_DEBUG(NewMI->dump(););
514 // Create ADD instruction for the Offset in case of 3-Ops LEA.
515 if (hasLEAOffset(Offset)) {
516 NewMI = BuildMI(*MFI, MI, DL, ADDri, DstR).addReg(DstR).add(Offset);
517 LLVM_DEBUG(NewMI->dump(););
518 }
519 return NewMI;
520 }
521 // If the base is inefficient try switching the index and base operands,
522 // otherwise just break the 3-Ops LEA inst into 2-Ops LEA + ADD instruction:
523 // lea offset(%base,%index,scale),%dst =>
524 // lea (%base,%index,scale); add offset,%dst
525 if (!IsInefficientBase || (!IsInefficientIndex && IsScale1)) {
526 MachineInstr *NewMI = BuildMI(*MFI, MI, DL, TII->get(LEAOpcode))
527 .add(Dst)
528 .add(IsInefficientBase ? Index : Base)
529 .add(Scale)
530 .add(IsInefficientBase ? Base : Index)
531 .addImm(0)
532 .add(Segment);
533 LLVM_DEBUG(NewMI->dump(););
534 // Create ADD instruction for the Offset in case of 3-Ops LEA.
535 if (hasLEAOffset(Offset)) {
536 NewMI = BuildMI(*MFI, MI, DL, ADDri, DstR).addReg(DstR).add(Offset);
537 LLVM_DEBUG(NewMI->dump(););
538 }
539 return NewMI;
540 }
541 // Handle the rest of the cases with inefficient base register:
542 assert(SSDstR != BaseR && "SSDstR == BaseR should be handled already!");
543 assert(IsInefficientBase && "efficient base should be handled already!");
544
545 // lea (%base,%index,1), %dst => mov %base,%dst; add %index,%dst
546 if (IsScale1 && !hasLEAOffset(Offset)) {
547 bool BIK = Base.isKill() && BaseR != IndexR;
548 TII->copyPhysReg(*MFI, MI, DL, DstR, BaseR, BIK);
549 LLVM_DEBUG(MI.getPrevNode()->dump(););
550
551 MachineInstr *NewMI =
552 BuildMI(*MFI, MI, DL, ADDrr, DstR).addReg(DstR).add(Index);
553 LLVM_DEBUG(NewMI->dump(););
554 return NewMI;
555 }
556 // lea offset(%base,%index,scale), %dst =>
557 // lea offset( ,%index,scale), %dst; add %base,%dst
558 MachineInstr *NewMI = BuildMI(*MFI, MI, DL, TII->get(LEAOpcode))
559 .add(Dst)
560 .addReg(0)
561 .add(Scale)
562 .add(Index)
563 .add(Offset)
564 .add(Segment);
565 LLVM_DEBUG(NewMI->dump(););
566
567 NewMI = BuildMI(*MFI, MI, DL, ADDrr, DstR).addReg(DstR).add(Base);
568 LLVM_DEBUG(NewMI->dump(););
569 return NewMI;
570 }
571
processBasicBlock(MachineFunction & MF,MachineFunction::iterator MFI)572 bool FixupLEAPass::processBasicBlock(MachineFunction &MF,
573 MachineFunction::iterator MFI) {
574
575 for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
576 if (OptIncDec)
577 if (fixupIncDec(I, MFI))
578 continue;
579
580 if (OptLEA) {
581 if (MF.getSubtarget<X86Subtarget>().slowLEA())
582 processInstructionForSLM(I, MFI);
583
584 else {
585 if (MF.getSubtarget<X86Subtarget>().slow3OpsLEA()) {
586 if (auto *NewMI = processInstrForSlow3OpLEA(*I, MFI)) {
587 MFI->erase(I);
588 I = NewMI;
589 }
590 } else
591 processInstruction(I, MFI);
592 }
593 }
594 }
595 return false;
596 }
597