1 //====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 ///
11 /// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual
12 /// flag bits.
13 ///
14 /// We have to do this by carefully analyzing and rewriting the usage of the
15 /// copied EFLAGS register because there is no general way to rematerialize the
16 /// entire EFLAGS register safely and efficiently. Using `popf` both forces
17 /// dynamic stack adjustment and can create correctness issues due to IF, TF,
18 /// and other non-status flags being overwritten. Using sequences involving
19 /// SAHF don't work on all x86 processors and are often quite slow compared to
20 /// directly testing a single status preserved in its own GPR.
21 ///
22 //===----------------------------------------------------------------------===//
23
24 #include "X86.h"
25 #include "X86InstrBuilder.h"
26 #include "X86InstrInfo.h"
27 #include "X86Subtarget.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/PostOrderIterator.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/ScopeExit.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/SparseBitVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineConstantPool.h"
40 #include "llvm/CodeGen/MachineDominators.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineModuleInfo.h"
46 #include "llvm/CodeGen/MachineOperand.h"
47 #include "llvm/CodeGen/MachineRegisterInfo.h"
48 #include "llvm/CodeGen/MachineSSAUpdater.h"
49 #include "llvm/CodeGen/TargetInstrInfo.h"
50 #include "llvm/CodeGen/TargetRegisterInfo.h"
51 #include "llvm/CodeGen/TargetSchedule.h"
52 #include "llvm/CodeGen/TargetSubtargetInfo.h"
53 #include "llvm/IR/DebugLoc.h"
54 #include "llvm/MC/MCSchedule.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <iterator>
62 #include <utility>
63
64 using namespace llvm;
65
66 #define PASS_KEY "x86-flags-copy-lowering"
67 #define DEBUG_TYPE PASS_KEY
68
69 STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated");
70 STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted");
71 STATISTIC(NumTestsInserted, "Number of test instructions inserted");
72 STATISTIC(NumAddsInserted, "Number of adds instructions inserted");
73
74 namespace llvm {
75
76 void initializeX86FlagsCopyLoweringPassPass(PassRegistry &);
77
78 } // end namespace llvm
79
80 namespace {
81
82 // Convenient array type for storing registers associated with each condition.
83 using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>;
84
85 class X86FlagsCopyLoweringPass : public MachineFunctionPass {
86 public:
X86FlagsCopyLoweringPass()87 X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) {
88 initializeX86FlagsCopyLoweringPassPass(*PassRegistry::getPassRegistry());
89 }
90
getPassName() const91 StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; }
92 bool runOnMachineFunction(MachineFunction &MF) override;
93 void getAnalysisUsage(AnalysisUsage &AU) const override;
94
95 /// Pass identification, replacement for typeid.
96 static char ID;
97
98 private:
99 MachineRegisterInfo *MRI;
100 const X86Subtarget *Subtarget;
101 const X86InstrInfo *TII;
102 const TargetRegisterInfo *TRI;
103 const TargetRegisterClass *PromoteRC;
104 MachineDominatorTree *MDT;
105
106 CondRegArray collectCondsInRegs(MachineBasicBlock &MBB,
107 MachineBasicBlock::iterator CopyDefI);
108
109 unsigned promoteCondToReg(MachineBasicBlock &MBB,
110 MachineBasicBlock::iterator TestPos,
111 DebugLoc TestLoc, X86::CondCode Cond);
112 std::pair<unsigned, bool>
113 getCondOrInverseInReg(MachineBasicBlock &TestMBB,
114 MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
115 X86::CondCode Cond, CondRegArray &CondRegs);
116 void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
117 DebugLoc Loc, unsigned Reg);
118
119 void rewriteArithmetic(MachineBasicBlock &TestMBB,
120 MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
121 MachineInstr &MI, MachineOperand &FlagUse,
122 CondRegArray &CondRegs);
123 void rewriteCMov(MachineBasicBlock &TestMBB,
124 MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
125 MachineInstr &CMovI, MachineOperand &FlagUse,
126 CondRegArray &CondRegs);
127 void rewriteCondJmp(MachineBasicBlock &TestMBB,
128 MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
129 MachineInstr &JmpI, CondRegArray &CondRegs);
130 void rewriteCopy(MachineInstr &MI, MachineOperand &FlagUse,
131 MachineInstr &CopyDefI);
132 void rewriteSetCarryExtended(MachineBasicBlock &TestMBB,
133 MachineBasicBlock::iterator TestPos,
134 DebugLoc TestLoc, MachineInstr &SetBI,
135 MachineOperand &FlagUse, CondRegArray &CondRegs);
136 void rewriteSetCC(MachineBasicBlock &TestMBB,
137 MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
138 MachineInstr &SetCCI, MachineOperand &FlagUse,
139 CondRegArray &CondRegs);
140 };
141
142 } // end anonymous namespace
143
144 INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE,
145 "X86 EFLAGS copy lowering", false, false)
146 INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE,
147 "X86 EFLAGS copy lowering", false, false)
148
createX86FlagsCopyLoweringPass()149 FunctionPass *llvm::createX86FlagsCopyLoweringPass() {
150 return new X86FlagsCopyLoweringPass();
151 }
152
153 char X86FlagsCopyLoweringPass::ID = 0;
154
getAnalysisUsage(AnalysisUsage & AU) const155 void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const {
156 AU.addRequired<MachineDominatorTree>();
157 MachineFunctionPass::getAnalysisUsage(AU);
158 }
159
160 namespace {
161 /// An enumeration of the arithmetic instruction mnemonics which have
162 /// interesting flag semantics.
163 ///
164 /// We can map instruction opcodes into these mnemonics to make it easy to
165 /// dispatch with specific functionality.
166 enum class FlagArithMnemonic {
167 ADC,
168 ADCX,
169 ADOX,
170 RCL,
171 RCR,
172 SBB,
173 };
174 } // namespace
175
getMnemonicFromOpcode(unsigned Opcode)176 static FlagArithMnemonic getMnemonicFromOpcode(unsigned Opcode) {
177 switch (Opcode) {
178 default:
179 report_fatal_error("No support for lowering a copy into EFLAGS when used "
180 "by this instruction!");
181
182 #define LLVM_EXPAND_INSTR_SIZES(MNEMONIC, SUFFIX) \
183 case X86::MNEMONIC##8##SUFFIX: \
184 case X86::MNEMONIC##16##SUFFIX: \
185 case X86::MNEMONIC##32##SUFFIX: \
186 case X86::MNEMONIC##64##SUFFIX:
187
188 #define LLVM_EXPAND_ADC_SBB_INSTR(MNEMONIC) \
189 LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr) \
190 LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr_REV) \
191 LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rm) \
192 LLVM_EXPAND_INSTR_SIZES(MNEMONIC, mr) \
193 case X86::MNEMONIC##8ri: \
194 case X86::MNEMONIC##16ri8: \
195 case X86::MNEMONIC##32ri8: \
196 case X86::MNEMONIC##64ri8: \
197 case X86::MNEMONIC##16ri: \
198 case X86::MNEMONIC##32ri: \
199 case X86::MNEMONIC##64ri32: \
200 case X86::MNEMONIC##8mi: \
201 case X86::MNEMONIC##16mi8: \
202 case X86::MNEMONIC##32mi8: \
203 case X86::MNEMONIC##64mi8: \
204 case X86::MNEMONIC##16mi: \
205 case X86::MNEMONIC##32mi: \
206 case X86::MNEMONIC##64mi32: \
207 case X86::MNEMONIC##8i8: \
208 case X86::MNEMONIC##16i16: \
209 case X86::MNEMONIC##32i32: \
210 case X86::MNEMONIC##64i32:
211
212 LLVM_EXPAND_ADC_SBB_INSTR(ADC)
213 return FlagArithMnemonic::ADC;
214
215 LLVM_EXPAND_ADC_SBB_INSTR(SBB)
216 return FlagArithMnemonic::SBB;
217
218 #undef LLVM_EXPAND_ADC_SBB_INSTR
219
220 LLVM_EXPAND_INSTR_SIZES(RCL, rCL)
221 LLVM_EXPAND_INSTR_SIZES(RCL, r1)
222 LLVM_EXPAND_INSTR_SIZES(RCL, ri)
223 return FlagArithMnemonic::RCL;
224
225 LLVM_EXPAND_INSTR_SIZES(RCR, rCL)
226 LLVM_EXPAND_INSTR_SIZES(RCR, r1)
227 LLVM_EXPAND_INSTR_SIZES(RCR, ri)
228 return FlagArithMnemonic::RCR;
229
230 #undef LLVM_EXPAND_INSTR_SIZES
231
232 case X86::ADCX32rr:
233 case X86::ADCX64rr:
234 case X86::ADCX32rm:
235 case X86::ADCX64rm:
236 return FlagArithMnemonic::ADCX;
237
238 case X86::ADOX32rr:
239 case X86::ADOX64rr:
240 case X86::ADOX32rm:
241 case X86::ADOX64rm:
242 return FlagArithMnemonic::ADOX;
243 }
244 }
245
splitBlock(MachineBasicBlock & MBB,MachineInstr & SplitI,const X86InstrInfo & TII)246 static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB,
247 MachineInstr &SplitI,
248 const X86InstrInfo &TII) {
249 MachineFunction &MF = *MBB.getParent();
250
251 assert(SplitI.getParent() == &MBB &&
252 "Split instruction must be in the split block!");
253 assert(SplitI.isBranch() &&
254 "Only designed to split a tail of branch instructions!");
255 assert(X86::getCondFromBranchOpc(SplitI.getOpcode()) != X86::COND_INVALID &&
256 "Must split on an actual jCC instruction!");
257
258 // Dig out the previous instruction to the split point.
259 MachineInstr &PrevI = *std::prev(SplitI.getIterator());
260 assert(PrevI.isBranch() && "Must split after a branch!");
261 assert(X86::getCondFromBranchOpc(PrevI.getOpcode()) != X86::COND_INVALID &&
262 "Must split after an actual jCC instruction!");
263 assert(!std::prev(PrevI.getIterator())->isTerminator() &&
264 "Must only have this one terminator prior to the split!");
265
266 // Grab the one successor edge that will stay in `MBB`.
267 MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB();
268
269 // Analyze the original block to see if we are actually splitting an edge
270 // into two edges. This can happen when we have multiple conditional jumps to
271 // the same successor.
272 bool IsEdgeSplit =
273 std::any_of(SplitI.getIterator(), MBB.instr_end(),
274 [&](MachineInstr &MI) {
275 assert(MI.isTerminator() &&
276 "Should only have spliced terminators!");
277 return llvm::any_of(
278 MI.operands(), [&](MachineOperand &MOp) {
279 return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc;
280 });
281 }) ||
282 MBB.getFallThrough() == &UnsplitSucc;
283
284 MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
285
286 // Insert the new block immediately after the current one. Any existing
287 // fallthrough will be sunk into this new block anyways.
288 MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
289
290 // Splice the tail of instructions into the new block.
291 NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end());
292
293 // Copy the necessary succesors (and their probability info) into the new
294 // block.
295 for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI)
296 if (IsEdgeSplit || *SI != &UnsplitSucc)
297 NewMBB.copySuccessor(&MBB, SI);
298 // Normalize the probabilities if we didn't end up splitting the edge.
299 if (!IsEdgeSplit)
300 NewMBB.normalizeSuccProbs();
301
302 // Now replace all of the moved successors in the original block with the new
303 // block. This will merge their probabilities.
304 for (MachineBasicBlock *Succ : NewMBB.successors())
305 if (Succ != &UnsplitSucc)
306 MBB.replaceSuccessor(Succ, &NewMBB);
307
308 // We should always end up replacing at least one successor.
309 assert(MBB.isSuccessor(&NewMBB) &&
310 "Failed to make the new block a successor!");
311
312 // Now update all the PHIs.
313 for (MachineBasicBlock *Succ : NewMBB.successors()) {
314 for (MachineInstr &MI : *Succ) {
315 if (!MI.isPHI())
316 break;
317
318 for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
319 OpIdx += 2) {
320 MachineOperand &OpV = MI.getOperand(OpIdx);
321 MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
322 assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
323 if (OpMBB.getMBB() != &MBB)
324 continue;
325
326 // Replace the operand for unsplit successors
327 if (!IsEdgeSplit || Succ != &UnsplitSucc) {
328 OpMBB.setMBB(&NewMBB);
329
330 // We have to continue scanning as there may be multiple entries in
331 // the PHI.
332 continue;
333 }
334
335 // When we have split the edge append a new successor.
336 MI.addOperand(MF, OpV);
337 MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
338 break;
339 }
340 }
341 }
342
343 return NewMBB;
344 }
345
runOnMachineFunction(MachineFunction & MF)346 bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) {
347 LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
348 << " **********\n");
349
350 Subtarget = &MF.getSubtarget<X86Subtarget>();
351 MRI = &MF.getRegInfo();
352 TII = Subtarget->getInstrInfo();
353 TRI = Subtarget->getRegisterInfo();
354 MDT = &getAnalysis<MachineDominatorTree>();
355 PromoteRC = &X86::GR8RegClass;
356
357 if (MF.begin() == MF.end())
358 // Nothing to do for a degenerate empty function...
359 return false;
360
361 // Collect the copies in RPO so that when there are chains where a copy is in
362 // turn copied again we visit the first one first. This ensures we can find
363 // viable locations for testing the original EFLAGS that dominate all the
364 // uses across complex CFGs.
365 SmallVector<MachineInstr *, 4> Copies;
366 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
367 for (MachineBasicBlock *MBB : RPOT)
368 for (MachineInstr &MI : *MBB)
369 if (MI.getOpcode() == TargetOpcode::COPY &&
370 MI.getOperand(0).getReg() == X86::EFLAGS)
371 Copies.push_back(&MI);
372
373 for (MachineInstr *CopyI : Copies) {
374 MachineBasicBlock &MBB = *CopyI->getParent();
375
376 MachineOperand &VOp = CopyI->getOperand(1);
377 assert(VOp.isReg() &&
378 "The input to the copy for EFLAGS should always be a register!");
379 MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg());
380 if (CopyDefI.getOpcode() != TargetOpcode::COPY) {
381 // FIXME: The big likely candidate here are PHI nodes. We could in theory
382 // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard
383 // enough that it is probably better to change every other part of LLVM
384 // to avoid creating them. The issue is that once we have PHIs we won't
385 // know which original EFLAGS value we need to capture with our setCCs
386 // below. The end result will be computing a complete set of setCCs that
387 // we *might* want, computing them in every place where we copy *out* of
388 // EFLAGS and then doing SSA formation on all of them to insert necessary
389 // PHI nodes and consume those here. Then hoping that somehow we DCE the
390 // unnecessary ones. This DCE seems very unlikely to be successful and so
391 // we will almost certainly end up with a glut of dead setCC
392 // instructions. Until we have a motivating test case and fail to avoid
393 // it by changing other parts of LLVM's lowering, we refuse to handle
394 // this complex case here.
395 LLVM_DEBUG(
396 dbgs() << "ERROR: Encountered unexpected def of an eflags copy: ";
397 CopyDefI.dump());
398 report_fatal_error(
399 "Cannot lower EFLAGS copy unless it is defined in turn by a copy!");
400 }
401
402 auto Cleanup = make_scope_exit([&] {
403 // All uses of the EFLAGS copy are now rewritten, kill the copy into
404 // eflags and if dead the copy from.
405 CopyI->eraseFromParent();
406 if (MRI->use_empty(CopyDefI.getOperand(0).getReg()))
407 CopyDefI.eraseFromParent();
408 ++NumCopiesEliminated;
409 });
410
411 MachineOperand &DOp = CopyI->getOperand(0);
412 assert(DOp.isDef() && "Expected register def!");
413 assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!");
414 if (DOp.isDead())
415 continue;
416
417 MachineBasicBlock *TestMBB = CopyDefI.getParent();
418 auto TestPos = CopyDefI.getIterator();
419 DebugLoc TestLoc = CopyDefI.getDebugLoc();
420
421 LLVM_DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump());
422
423 // Walk up across live-in EFLAGS to find where they were actually def'ed.
424 //
425 // This copy's def may just be part of a region of blocks covered by
426 // a single def of EFLAGS and we want to find the top of that region where
427 // possible.
428 //
429 // This is essentially a search for a *candidate* reaching definition
430 // location. We don't need to ever find the actual reaching definition here,
431 // but we want to walk up the dominator tree to find the highest point which
432 // would be viable for such a definition.
433 auto HasEFLAGSClobber = [&](MachineBasicBlock::iterator Begin,
434 MachineBasicBlock::iterator End) {
435 // Scan backwards as we expect these to be relatively short and often find
436 // a clobber near the end.
437 return llvm::any_of(
438 llvm::reverse(llvm::make_range(Begin, End)), [&](MachineInstr &MI) {
439 // Flag any instruction (other than the copy we are
440 // currently rewriting) that defs EFLAGS.
441 return &MI != CopyI && MI.findRegisterDefOperand(X86::EFLAGS);
442 });
443 };
444 auto HasEFLAGSClobberPath = [&](MachineBasicBlock *BeginMBB,
445 MachineBasicBlock *EndMBB) {
446 assert(MDT->dominates(BeginMBB, EndMBB) &&
447 "Only support paths down the dominator tree!");
448 SmallPtrSet<MachineBasicBlock *, 4> Visited;
449 SmallVector<MachineBasicBlock *, 4> Worklist;
450 // We terminate at the beginning. No need to scan it.
451 Visited.insert(BeginMBB);
452 Worklist.push_back(EndMBB);
453 do {
454 auto *MBB = Worklist.pop_back_val();
455 for (auto *PredMBB : MBB->predecessors()) {
456 if (!Visited.insert(PredMBB).second)
457 continue;
458 if (HasEFLAGSClobber(PredMBB->begin(), PredMBB->end()))
459 return true;
460 // Enqueue this block to walk its predecessors.
461 Worklist.push_back(PredMBB);
462 }
463 } while (!Worklist.empty());
464 // No clobber found along a path from the begin to end.
465 return false;
466 };
467 while (TestMBB->isLiveIn(X86::EFLAGS) && !TestMBB->pred_empty() &&
468 !HasEFLAGSClobber(TestMBB->begin(), TestPos)) {
469 // Find the nearest common dominator of the predecessors, as
470 // that will be the best candidate to hoist into.
471 MachineBasicBlock *HoistMBB =
472 std::accumulate(std::next(TestMBB->pred_begin()), TestMBB->pred_end(),
473 *TestMBB->pred_begin(),
474 [&](MachineBasicBlock *LHS, MachineBasicBlock *RHS) {
475 return MDT->findNearestCommonDominator(LHS, RHS);
476 });
477
478 // Now we need to scan all predecessors that may be reached along paths to
479 // the hoist block. A clobber anywhere in any of these blocks the hoist.
480 // Note that this even handles loops because we require *no* clobbers.
481 if (HasEFLAGSClobberPath(HoistMBB, TestMBB))
482 break;
483
484 // We also need the terminators to not sneakily clobber flags.
485 if (HasEFLAGSClobber(HoistMBB->getFirstTerminator()->getIterator(),
486 HoistMBB->instr_end()))
487 break;
488
489 // We found a viable location, hoist our test position to it.
490 TestMBB = HoistMBB;
491 TestPos = TestMBB->getFirstTerminator()->getIterator();
492 // Clear the debug location as it would just be confusing after hoisting.
493 TestLoc = DebugLoc();
494 }
495 LLVM_DEBUG({
496 auto DefIt = llvm::find_if(
497 llvm::reverse(llvm::make_range(TestMBB->instr_begin(), TestPos)),
498 [&](MachineInstr &MI) {
499 return MI.findRegisterDefOperand(X86::EFLAGS);
500 });
501 if (DefIt.base() != TestMBB->instr_begin()) {
502 dbgs() << " Using EFLAGS defined by: ";
503 DefIt->dump();
504 } else {
505 dbgs() << " Using live-in flags for BB:\n";
506 TestMBB->dump();
507 }
508 });
509
510 // While rewriting uses, we buffer jumps and rewrite them in a second pass
511 // because doing so will perturb the CFG that we are walking to find the
512 // uses in the first place.
513 SmallVector<MachineInstr *, 4> JmpIs;
514
515 // Gather the condition flags that have already been preserved in
516 // registers. We do this from scratch each time as we expect there to be
517 // very few of them and we expect to not revisit the same copy definition
518 // many times. If either of those change sufficiently we could build a map
519 // of these up front instead.
520 CondRegArray CondRegs = collectCondsInRegs(*TestMBB, TestPos);
521
522 // Collect the basic blocks we need to scan. Typically this will just be
523 // a single basic block but we may have to scan multiple blocks if the
524 // EFLAGS copy lives into successors.
525 SmallVector<MachineBasicBlock *, 2> Blocks;
526 SmallPtrSet<MachineBasicBlock *, 2> VisitedBlocks;
527 Blocks.push_back(&MBB);
528
529 do {
530 MachineBasicBlock &UseMBB = *Blocks.pop_back_val();
531
532 // Track when if/when we find a kill of the flags in this block.
533 bool FlagsKilled = false;
534
535 // In most cases, we walk from the beginning to the end of the block. But
536 // when the block is the same block as the copy is from, we will visit it
537 // twice. The first time we start from the copy and go to the end. The
538 // second time we start from the beginning and go to the copy. This lets
539 // us handle copies inside of cycles.
540 // FIXME: This loop is *super* confusing. This is at least in part
541 // a symptom of all of this routine needing to be refactored into
542 // documentable components. Once done, there may be a better way to write
543 // this loop.
544 for (auto MII = (&UseMBB == &MBB && !VisitedBlocks.count(&UseMBB))
545 ? std::next(CopyI->getIterator())
546 : UseMBB.instr_begin(),
547 MIE = UseMBB.instr_end();
548 MII != MIE;) {
549 MachineInstr &MI = *MII++;
550 // If we are in the original copy block and encounter either the copy
551 // def or the copy itself, break so that we don't re-process any part of
552 // the block or process the instructions in the range that was copied
553 // over.
554 if (&MI == CopyI || &MI == &CopyDefI) {
555 assert(&UseMBB == &MBB && VisitedBlocks.count(&MBB) &&
556 "Should only encounter these on the second pass over the "
557 "original block.");
558 break;
559 }
560
561 MachineOperand *FlagUse = MI.findRegisterUseOperand(X86::EFLAGS);
562 if (!FlagUse) {
563 if (MI.findRegisterDefOperand(X86::EFLAGS)) {
564 // If EFLAGS are defined, it's as-if they were killed. We can stop
565 // scanning here.
566 //
567 // NB!!! Many instructions only modify some flags. LLVM currently
568 // models this as clobbering all flags, but if that ever changes
569 // this will need to be carefully updated to handle that more
570 // complex logic.
571 FlagsKilled = true;
572 break;
573 }
574 continue;
575 }
576
577 LLVM_DEBUG(dbgs() << " Rewriting use: "; MI.dump());
578
579 // Check the kill flag before we rewrite as that may change it.
580 if (FlagUse->isKill())
581 FlagsKilled = true;
582
583 // Once we encounter a branch, the rest of the instructions must also be
584 // branches. We can't rewrite in place here, so we handle them below.
585 //
586 // Note that we don't have to handle tail calls here, even conditional
587 // tail calls, as those are not introduced into the X86 MI until post-RA
588 // branch folding or black placement. As a consequence, we get to deal
589 // with the simpler formulation of conditional branches followed by tail
590 // calls.
591 if (X86::getCondFromBranchOpc(MI.getOpcode()) != X86::COND_INVALID) {
592 auto JmpIt = MI.getIterator();
593 do {
594 JmpIs.push_back(&*JmpIt);
595 ++JmpIt;
596 } while (JmpIt != UseMBB.instr_end() &&
597 X86::getCondFromBranchOpc(JmpIt->getOpcode()) !=
598 X86::COND_INVALID);
599 break;
600 }
601
602 // Otherwise we can just rewrite in-place.
603 if (X86::getCondFromCMovOpc(MI.getOpcode()) != X86::COND_INVALID) {
604 rewriteCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
605 } else if (X86::getCondFromSETOpc(MI.getOpcode()) !=
606 X86::COND_INVALID) {
607 rewriteSetCC(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
608 } else if (MI.getOpcode() == TargetOpcode::COPY) {
609 rewriteCopy(MI, *FlagUse, CopyDefI);
610 } else {
611 // We assume all other instructions that use flags also def them.
612 assert(MI.findRegisterDefOperand(X86::EFLAGS) &&
613 "Expected a def of EFLAGS for this instruction!");
614
615 // NB!!! Several arithmetic instructions only *partially* update
616 // flags. Theoretically, we could generate MI code sequences that
617 // would rely on this fact and observe different flags independently.
618 // But currently LLVM models all of these instructions as clobbering
619 // all the flags in an undef way. We rely on that to simplify the
620 // logic.
621 FlagsKilled = true;
622
623 switch (MI.getOpcode()) {
624 case X86::SETB_C8r:
625 case X86::SETB_C16r:
626 case X86::SETB_C32r:
627 case X86::SETB_C64r:
628 // Use custom lowering for arithmetic that is merely extending the
629 // carry flag. We model this as the SETB_C* pseudo instructions.
630 rewriteSetCarryExtended(*TestMBB, TestPos, TestLoc, MI, *FlagUse,
631 CondRegs);
632 break;
633
634 default:
635 // Generically handle remaining uses as arithmetic instructions.
636 rewriteArithmetic(*TestMBB, TestPos, TestLoc, MI, *FlagUse,
637 CondRegs);
638 break;
639 }
640 break;
641 }
642
643 // If this was the last use of the flags, we're done.
644 if (FlagsKilled)
645 break;
646 }
647
648 // If the flags were killed, we're done with this block.
649 if (FlagsKilled)
650 continue;
651
652 // Otherwise we need to scan successors for ones where the flags live-in
653 // and queue those up for processing.
654 for (MachineBasicBlock *SuccMBB : UseMBB.successors())
655 if (SuccMBB->isLiveIn(X86::EFLAGS) &&
656 VisitedBlocks.insert(SuccMBB).second) {
657 // We currently don't do any PHI insertion and so we require that the
658 // test basic block dominates all of the use basic blocks. Further, we
659 // can't have a cycle from the test block back to itself as that would
660 // create a cycle requiring a PHI to break it.
661 //
662 // We could in theory do PHI insertion here if it becomes useful by
663 // just taking undef values in along every edge that we don't trace
664 // this EFLAGS copy along. This isn't as bad as fully general PHI
665 // insertion, but still seems like a great deal of complexity.
666 //
667 // Because it is theoretically possible that some earlier MI pass or
668 // other lowering transformation could induce this to happen, we do
669 // a hard check even in non-debug builds here.
670 if (SuccMBB == TestMBB || !MDT->dominates(TestMBB, SuccMBB)) {
671 LLVM_DEBUG({
672 dbgs()
673 << "ERROR: Encountered use that is not dominated by our test "
674 "basic block! Rewriting this would require inserting PHI "
675 "nodes to track the flag state across the CFG.\n\nTest "
676 "block:\n";
677 TestMBB->dump();
678 dbgs() << "Use block:\n";
679 SuccMBB->dump();
680 });
681 report_fatal_error(
682 "Cannot lower EFLAGS copy when original copy def "
683 "does not dominate all uses.");
684 }
685
686 Blocks.push_back(SuccMBB);
687 }
688 } while (!Blocks.empty());
689
690 // Now rewrite the jumps that use the flags. These we handle specially
691 // because if there are multiple jumps in a single basic block we'll have
692 // to do surgery on the CFG.
693 MachineBasicBlock *LastJmpMBB = nullptr;
694 for (MachineInstr *JmpI : JmpIs) {
695 // Past the first jump within a basic block we need to split the blocks
696 // apart.
697 if (JmpI->getParent() == LastJmpMBB)
698 splitBlock(*JmpI->getParent(), *JmpI, *TII);
699 else
700 LastJmpMBB = JmpI->getParent();
701
702 rewriteCondJmp(*TestMBB, TestPos, TestLoc, *JmpI, CondRegs);
703 }
704
705 // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if
706 // the copy's def operand is itself a kill.
707 }
708
709 #ifndef NDEBUG
710 for (MachineBasicBlock &MBB : MF)
711 for (MachineInstr &MI : MBB)
712 if (MI.getOpcode() == TargetOpcode::COPY &&
713 (MI.getOperand(0).getReg() == X86::EFLAGS ||
714 MI.getOperand(1).getReg() == X86::EFLAGS)) {
715 LLVM_DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: ";
716 MI.dump());
717 llvm_unreachable("Unlowered EFLAGS copy!");
718 }
719 #endif
720
721 return true;
722 }
723
724 /// Collect any conditions that have already been set in registers so that we
725 /// can re-use them rather than adding duplicates.
collectCondsInRegs(MachineBasicBlock & MBB,MachineBasicBlock::iterator TestPos)726 CondRegArray X86FlagsCopyLoweringPass::collectCondsInRegs(
727 MachineBasicBlock &MBB, MachineBasicBlock::iterator TestPos) {
728 CondRegArray CondRegs = {};
729
730 // Scan backwards across the range of instructions with live EFLAGS.
731 for (MachineInstr &MI :
732 llvm::reverse(llvm::make_range(MBB.begin(), TestPos))) {
733 X86::CondCode Cond = X86::getCondFromSETOpc(MI.getOpcode());
734 if (Cond != X86::COND_INVALID && !MI.mayStore() && MI.getOperand(0).isReg() &&
735 TRI->isVirtualRegister(MI.getOperand(0).getReg())) {
736 assert(MI.getOperand(0).isDef() &&
737 "A non-storing SETcc should always define a register!");
738 CondRegs[Cond] = MI.getOperand(0).getReg();
739 }
740
741 // Stop scanning when we see the first definition of the EFLAGS as prior to
742 // this we would potentially capture the wrong flag state.
743 if (MI.findRegisterDefOperand(X86::EFLAGS))
744 break;
745 }
746 return CondRegs;
747 }
748
promoteCondToReg(MachineBasicBlock & TestMBB,MachineBasicBlock::iterator TestPos,DebugLoc TestLoc,X86::CondCode Cond)749 unsigned X86FlagsCopyLoweringPass::promoteCondToReg(
750 MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
751 DebugLoc TestLoc, X86::CondCode Cond) {
752 unsigned Reg = MRI->createVirtualRegister(PromoteRC);
753 auto SetI = BuildMI(TestMBB, TestPos, TestLoc,
754 TII->get(X86::getSETFromCond(Cond)), Reg);
755 (void)SetI;
756 LLVM_DEBUG(dbgs() << " save cond: "; SetI->dump());
757 ++NumSetCCsInserted;
758 return Reg;
759 }
760
getCondOrInverseInReg(MachineBasicBlock & TestMBB,MachineBasicBlock::iterator TestPos,DebugLoc TestLoc,X86::CondCode Cond,CondRegArray & CondRegs)761 std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg(
762 MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
763 DebugLoc TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) {
764 unsigned &CondReg = CondRegs[Cond];
765 unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)];
766 if (!CondReg && !InvCondReg)
767 CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
768
769 if (CondReg)
770 return {CondReg, false};
771 else
772 return {InvCondReg, true};
773 }
774
insertTest(MachineBasicBlock & MBB,MachineBasicBlock::iterator Pos,DebugLoc Loc,unsigned Reg)775 void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB,
776 MachineBasicBlock::iterator Pos,
777 DebugLoc Loc, unsigned Reg) {
778 auto TestI =
779 BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8rr)).addReg(Reg).addReg(Reg);
780 (void)TestI;
781 LLVM_DEBUG(dbgs() << " test cond: "; TestI->dump());
782 ++NumTestsInserted;
783 }
784
rewriteArithmetic(MachineBasicBlock & TestMBB,MachineBasicBlock::iterator TestPos,DebugLoc TestLoc,MachineInstr & MI,MachineOperand & FlagUse,CondRegArray & CondRegs)785 void X86FlagsCopyLoweringPass::rewriteArithmetic(
786 MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
787 DebugLoc TestLoc, MachineInstr &MI, MachineOperand &FlagUse,
788 CondRegArray &CondRegs) {
789 // Arithmetic is either reading CF or OF. Figure out which condition we need
790 // to preserve in a register.
791 X86::CondCode Cond;
792
793 // The addend to use to reset CF or OF when added to the flag value.
794 int Addend;
795
796 switch (getMnemonicFromOpcode(MI.getOpcode())) {
797 case FlagArithMnemonic::ADC:
798 case FlagArithMnemonic::ADCX:
799 case FlagArithMnemonic::RCL:
800 case FlagArithMnemonic::RCR:
801 case FlagArithMnemonic::SBB:
802 Cond = X86::COND_B; // CF == 1
803 // Set up an addend that when one is added will need a carry due to not
804 // having a higher bit available.
805 Addend = 255;
806 break;
807
808 case FlagArithMnemonic::ADOX:
809 Cond = X86::COND_O; // OF == 1
810 // Set up an addend that when one is added will turn from positive to
811 // negative and thus overflow in the signed domain.
812 Addend = 127;
813 break;
814 }
815
816 // Now get a register that contains the value of the flag input to the
817 // arithmetic. We require exactly this flag to simplify the arithmetic
818 // required to materialize it back into the flag.
819 unsigned &CondReg = CondRegs[Cond];
820 if (!CondReg)
821 CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
822
823 MachineBasicBlock &MBB = *MI.getParent();
824
825 // Insert an instruction that will set the flag back to the desired value.
826 unsigned TmpReg = MRI->createVirtualRegister(PromoteRC);
827 auto AddI =
828 BuildMI(MBB, MI.getIterator(), MI.getDebugLoc(), TII->get(X86::ADD8ri))
829 .addDef(TmpReg, RegState::Dead)
830 .addReg(CondReg)
831 .addImm(Addend);
832 (void)AddI;
833 LLVM_DEBUG(dbgs() << " add cond: "; AddI->dump());
834 ++NumAddsInserted;
835 FlagUse.setIsKill(true);
836 }
837
rewriteCMov(MachineBasicBlock & TestMBB,MachineBasicBlock::iterator TestPos,DebugLoc TestLoc,MachineInstr & CMovI,MachineOperand & FlagUse,CondRegArray & CondRegs)838 void X86FlagsCopyLoweringPass::rewriteCMov(MachineBasicBlock &TestMBB,
839 MachineBasicBlock::iterator TestPos,
840 DebugLoc TestLoc,
841 MachineInstr &CMovI,
842 MachineOperand &FlagUse,
843 CondRegArray &CondRegs) {
844 // First get the register containing this specific condition.
845 X86::CondCode Cond = X86::getCondFromCMovOpc(CMovI.getOpcode());
846 unsigned CondReg;
847 bool Inverted;
848 std::tie(CondReg, Inverted) =
849 getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
850
851 MachineBasicBlock &MBB = *CMovI.getParent();
852
853 // Insert a direct test of the saved register.
854 insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);
855
856 // Rewrite the CMov to use the !ZF flag from the test (but match register
857 // size and memory operand), and then kill its use of the flags afterward.
858 auto &CMovRC = *MRI->getRegClass(CMovI.getOperand(0).getReg());
859 CMovI.setDesc(TII->get(X86::getCMovFromCond(
860 Inverted ? X86::COND_E : X86::COND_NE, TRI->getRegSizeInBits(CMovRC) / 8,
861 !CMovI.memoperands_empty())));
862 FlagUse.setIsKill(true);
863 LLVM_DEBUG(dbgs() << " fixed cmov: "; CMovI.dump());
864 }
865
rewriteCondJmp(MachineBasicBlock & TestMBB,MachineBasicBlock::iterator TestPos,DebugLoc TestLoc,MachineInstr & JmpI,CondRegArray & CondRegs)866 void X86FlagsCopyLoweringPass::rewriteCondJmp(
867 MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
868 DebugLoc TestLoc, MachineInstr &JmpI, CondRegArray &CondRegs) {
869 // First get the register containing this specific condition.
870 X86::CondCode Cond = X86::getCondFromBranchOpc(JmpI.getOpcode());
871 unsigned CondReg;
872 bool Inverted;
873 std::tie(CondReg, Inverted) =
874 getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
875
876 MachineBasicBlock &JmpMBB = *JmpI.getParent();
877
878 // Insert a direct test of the saved register.
879 insertTest(JmpMBB, JmpI.getIterator(), JmpI.getDebugLoc(), CondReg);
880
881 // Rewrite the jump to use the !ZF flag from the test, and kill its use of
882 // flags afterward.
883 JmpI.setDesc(TII->get(
884 X86::GetCondBranchFromCond(Inverted ? X86::COND_E : X86::COND_NE)));
885 const int ImplicitEFLAGSOpIdx = 1;
886 JmpI.getOperand(ImplicitEFLAGSOpIdx).setIsKill(true);
887 LLVM_DEBUG(dbgs() << " fixed jCC: "; JmpI.dump());
888 }
889
rewriteCopy(MachineInstr & MI,MachineOperand & FlagUse,MachineInstr & CopyDefI)890 void X86FlagsCopyLoweringPass::rewriteCopy(MachineInstr &MI,
891 MachineOperand &FlagUse,
892 MachineInstr &CopyDefI) {
893 // Just replace this copy with the original copy def.
894 MRI->replaceRegWith(MI.getOperand(0).getReg(),
895 CopyDefI.getOperand(0).getReg());
896 MI.eraseFromParent();
897 }
898
rewriteSetCarryExtended(MachineBasicBlock & TestMBB,MachineBasicBlock::iterator TestPos,DebugLoc TestLoc,MachineInstr & SetBI,MachineOperand & FlagUse,CondRegArray & CondRegs)899 void X86FlagsCopyLoweringPass::rewriteSetCarryExtended(
900 MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
901 DebugLoc TestLoc, MachineInstr &SetBI, MachineOperand &FlagUse,
902 CondRegArray &CondRegs) {
903 // This routine is only used to handle pseudos for setting a register to zero
904 // or all ones based on CF. This is essentially the sign extended from 1-bit
905 // form of SETB and modeled with the SETB_C* pseudos. They require special
906 // handling as they aren't normal SETcc instructions and are lowered to an
907 // EFLAGS clobbering operation (SBB typically). One simplifying aspect is that
908 // they are only provided in reg-defining forms. A complicating factor is that
909 // they can define many different register widths.
910 assert(SetBI.getOperand(0).isReg() &&
911 "Cannot have a non-register defined operand to this variant of SETB!");
912
913 // Little helper to do the common final step of replacing the register def'ed
914 // by this SETB instruction with a new register and removing the SETB
915 // instruction.
916 auto RewriteToReg = [&](unsigned Reg) {
917 MRI->replaceRegWith(SetBI.getOperand(0).getReg(), Reg);
918 SetBI.eraseFromParent();
919 };
920
921 // Grab the register class used for this particular instruction.
922 auto &SetBRC = *MRI->getRegClass(SetBI.getOperand(0).getReg());
923
924 MachineBasicBlock &MBB = *SetBI.getParent();
925 auto SetPos = SetBI.getIterator();
926 auto SetLoc = SetBI.getDebugLoc();
927
928 auto AdjustReg = [&](unsigned Reg) {
929 auto &OrigRC = *MRI->getRegClass(Reg);
930 if (&OrigRC == &SetBRC)
931 return Reg;
932
933 unsigned NewReg;
934
935 int OrigRegSize = TRI->getRegSizeInBits(OrigRC) / 8;
936 int TargetRegSize = TRI->getRegSizeInBits(SetBRC) / 8;
937 assert(OrigRegSize <= 8 && "No GPRs larger than 64-bits!");
938 assert(TargetRegSize <= 8 && "No GPRs larger than 64-bits!");
939 int SubRegIdx[] = {X86::NoSubRegister, X86::sub_8bit, X86::sub_16bit,
940 X86::NoSubRegister, X86::sub_32bit};
941
942 // If the original size is smaller than the target *and* is smaller than 4
943 // bytes, we need to explicitly zero extend it. We always extend to 4-bytes
944 // to maximize the chance of being able to CSE that operation and to avoid
945 // partial dependency stalls extending to 2-bytes.
946 if (OrigRegSize < TargetRegSize && OrigRegSize < 4) {
947 NewReg = MRI->createVirtualRegister(&X86::GR32RegClass);
948 BuildMI(MBB, SetPos, SetLoc, TII->get(X86::MOVZX32rr8), NewReg)
949 .addReg(Reg);
950 if (&SetBRC == &X86::GR32RegClass)
951 return NewReg;
952 Reg = NewReg;
953 OrigRegSize = 4;
954 }
955
956 NewReg = MRI->createVirtualRegister(&SetBRC);
957 if (OrigRegSize < TargetRegSize) {
958 BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::SUBREG_TO_REG),
959 NewReg)
960 .addImm(0)
961 .addReg(Reg)
962 .addImm(SubRegIdx[OrigRegSize]);
963 } else if (OrigRegSize > TargetRegSize) {
964 if (TargetRegSize == 1 && !Subtarget->is64Bit()) {
965 // Need to constrain the register class.
966 MRI->constrainRegClass(Reg, &X86::GR32_ABCDRegClass);
967 }
968
969 BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::COPY),
970 NewReg)
971 .addReg(Reg, 0, SubRegIdx[TargetRegSize]);
972 } else {
973 BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::COPY), NewReg)
974 .addReg(Reg);
975 }
976 return NewReg;
977 };
978
979 unsigned &CondReg = CondRegs[X86::COND_B];
980 if (!CondReg)
981 CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, X86::COND_B);
982
983 // Adjust the condition to have the desired register width by zero-extending
984 // as needed.
985 // FIXME: We should use a better API to avoid the local reference and using a
986 // different variable here.
987 unsigned ExtCondReg = AdjustReg(CondReg);
988
989 // Now we need to turn this into a bitmask. We do this by subtracting it from
990 // zero.
991 unsigned ZeroReg = MRI->createVirtualRegister(&X86::GR32RegClass);
992 BuildMI(MBB, SetPos, SetLoc, TII->get(X86::MOV32r0), ZeroReg);
993 ZeroReg = AdjustReg(ZeroReg);
994
995 unsigned Sub;
996 switch (SetBI.getOpcode()) {
997 case X86::SETB_C8r:
998 Sub = X86::SUB8rr;
999 break;
1000
1001 case X86::SETB_C16r:
1002 Sub = X86::SUB16rr;
1003 break;
1004
1005 case X86::SETB_C32r:
1006 Sub = X86::SUB32rr;
1007 break;
1008
1009 case X86::SETB_C64r:
1010 Sub = X86::SUB64rr;
1011 break;
1012
1013 default:
1014 llvm_unreachable("Invalid SETB_C* opcode!");
1015 }
1016 unsigned ResultReg = MRI->createVirtualRegister(&SetBRC);
1017 BuildMI(MBB, SetPos, SetLoc, TII->get(Sub), ResultReg)
1018 .addReg(ZeroReg)
1019 .addReg(ExtCondReg);
1020 return RewriteToReg(ResultReg);
1021 }
1022
rewriteSetCC(MachineBasicBlock & TestMBB,MachineBasicBlock::iterator TestPos,DebugLoc TestLoc,MachineInstr & SetCCI,MachineOperand & FlagUse,CondRegArray & CondRegs)1023 void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &TestMBB,
1024 MachineBasicBlock::iterator TestPos,
1025 DebugLoc TestLoc,
1026 MachineInstr &SetCCI,
1027 MachineOperand &FlagUse,
1028 CondRegArray &CondRegs) {
1029 X86::CondCode Cond = X86::getCondFromSETOpc(SetCCI.getOpcode());
1030 // Note that we can't usefully rewrite this to the inverse without complex
1031 // analysis of the users of the setCC. Largely we rely on duplicates which
1032 // could have been avoided already being avoided here.
1033 unsigned &CondReg = CondRegs[Cond];
1034 if (!CondReg)
1035 CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
1036
1037 // Rewriting a register def is trivial: we just replace the register and
1038 // remove the setcc.
1039 if (!SetCCI.mayStore()) {
1040 assert(SetCCI.getOperand(0).isReg() &&
1041 "Cannot have a non-register defined operand to SETcc!");
1042 MRI->replaceRegWith(SetCCI.getOperand(0).getReg(), CondReg);
1043 SetCCI.eraseFromParent();
1044 return;
1045 }
1046
1047 // Otherwise, we need to emit a store.
1048 auto MIB = BuildMI(*SetCCI.getParent(), SetCCI.getIterator(),
1049 SetCCI.getDebugLoc(), TII->get(X86::MOV8mr));
1050 // Copy the address operands.
1051 for (int i = 0; i < X86::AddrNumOperands; ++i)
1052 MIB.add(SetCCI.getOperand(i));
1053
1054 MIB.addReg(CondReg);
1055
1056 MIB->setMemRefs(SetCCI.memoperands_begin(), SetCCI.memoperands_end());
1057
1058 SetCCI.eraseFromParent();
1059 return;
1060 }
1061