1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass which converts floating point instructions from
11 // pseudo registers into register stack instructions.  This pass uses live
12 // variable information to indicate where the FPn registers are used and their
13 // lifetimes.
14 //
15 // The x87 hardware tracks liveness of the stack registers, so it is necessary
16 // to implement exact liveness tracking between basic blocks. The CFG edges are
17 // partitioned into bundles where the same FP registers must be live in
18 // identical stack positions. Instructions are inserted at the end of each basic
19 // block to rearrange the live registers to match the outgoing bundle.
20 //
21 // This approach avoids splitting critical edges at the potential cost of more
22 // live register shuffling instructions when critical edges are present.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "X86.h"
27 #include "X86InstrInfo.h"
28 #include "llvm/ADT/DepthFirstIterator.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LivePhysRegs.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/Passes.h"
40 #include "llvm/CodeGen/TargetInstrInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/InlineAsm.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include <algorithm>
49 #include <bitset>
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "x86-codegen"
53 
54 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
55 STATISTIC(NumFP  , "Number of floating point instructions");
56 
57 namespace {
58   const unsigned ScratchFPReg = 7;
59 
60   struct FPS : public MachineFunctionPass {
61     static char ID;
FPS__anon7f4338b90111::FPS62     FPS() : MachineFunctionPass(ID) {
63       initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
64       // This is really only to keep valgrind quiet.
65       // The logic in isLive() is too much for it.
66       memset(Stack, 0, sizeof(Stack));
67       memset(RegMap, 0, sizeof(RegMap));
68     }
69 
getAnalysisUsage__anon7f4338b90111::FPS70     void getAnalysisUsage(AnalysisUsage &AU) const override {
71       AU.setPreservesCFG();
72       AU.addRequired<EdgeBundles>();
73       AU.addPreservedID(MachineLoopInfoID);
74       AU.addPreservedID(MachineDominatorsID);
75       MachineFunctionPass::getAnalysisUsage(AU);
76     }
77 
78     bool runOnMachineFunction(MachineFunction &MF) override;
79 
getRequiredProperties__anon7f4338b90111::FPS80     MachineFunctionProperties getRequiredProperties() const override {
81       return MachineFunctionProperties().set(
82           MachineFunctionProperties::Property::NoVRegs);
83     }
84 
getPassName__anon7f4338b90111::FPS85     StringRef getPassName() const override { return "X86 FP Stackifier"; }
86 
87   private:
88     const TargetInstrInfo *TII; // Machine instruction info.
89 
90     // Two CFG edges are related if they leave the same block, or enter the same
91     // block. The transitive closure of an edge under this relation is a
92     // LiveBundle. It represents a set of CFG edges where the live FP stack
93     // registers must be allocated identically in the x87 stack.
94     //
95     // A LiveBundle is usually all the edges leaving a block, or all the edges
96     // entering a block, but it can contain more edges if critical edges are
97     // present.
98     //
99     // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
100     // but the exact mapping of FP registers to stack slots is fixed later.
101     struct LiveBundle {
102       // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
103       unsigned Mask;
104 
105       // Number of pre-assigned live registers in FixStack. This is 0 when the
106       // stack order has not yet been fixed.
107       unsigned FixCount;
108 
109       // Assigned stack order for live-in registers.
110       // FixStack[i] == getStackEntry(i) for all i < FixCount.
111       unsigned char FixStack[8];
112 
LiveBundle__anon7f4338b90111::FPS::LiveBundle113       LiveBundle() : Mask(0), FixCount(0) {}
114 
115       // Have the live registers been assigned a stack order yet?
isFixed__anon7f4338b90111::FPS::LiveBundle116       bool isFixed() const { return !Mask || FixCount; }
117     };
118 
119     // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
120     // with no live FP registers.
121     SmallVector<LiveBundle, 8> LiveBundles;
122 
123     // The edge bundle analysis provides indices into the LiveBundles vector.
124     EdgeBundles *Bundles;
125 
126     // Return a bitmask of FP registers in block's live-in list.
calcLiveInMask__anon7f4338b90111::FPS127     static unsigned calcLiveInMask(MachineBasicBlock *MBB, bool RemoveFPs) {
128       unsigned Mask = 0;
129       for (MachineBasicBlock::livein_iterator I = MBB->livein_begin();
130            I != MBB->livein_end(); ) {
131         MCPhysReg Reg = I->PhysReg;
132         static_assert(X86::FP6 - X86::FP0 == 6, "sequential regnums");
133         if (Reg >= X86::FP0 && Reg <= X86::FP6) {
134           Mask |= 1 << (Reg - X86::FP0);
135           if (RemoveFPs) {
136             I = MBB->removeLiveIn(I);
137             continue;
138           }
139         }
140         ++I;
141       }
142       return Mask;
143     }
144 
145     // Partition all the CFG edges into LiveBundles.
146     void bundleCFGRecomputeKillFlags(MachineFunction &MF);
147 
148     MachineBasicBlock *MBB;     // Current basic block
149 
150     // The hardware keeps track of how many FP registers are live, so we have
151     // to model that exactly. Usually, each live register corresponds to an
152     // FP<n> register, but when dealing with calls, returns, and inline
153     // assembly, it is sometimes necessary to have live scratch registers.
154     unsigned Stack[8];          // FP<n> Registers in each stack slot...
155     unsigned StackTop;          // The current top of the FP stack.
156 
157     enum {
158       NumFPRegs = 8             // Including scratch pseudo-registers.
159     };
160 
161     // For each live FP<n> register, point to its Stack[] entry.
162     // The first entries correspond to FP0-FP6, the rest are scratch registers
163     // used when we need slightly different live registers than what the
164     // register allocator thinks.
165     unsigned RegMap[NumFPRegs];
166 
167     // Set up our stack model to match the incoming registers to MBB.
168     void setupBlockStack();
169 
170     // Shuffle live registers to match the expectations of successor blocks.
171     void finishBlockStack();
172 
173 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpStack__anon7f4338b90111::FPS174     void dumpStack() const {
175       dbgs() << "Stack contents:";
176       for (unsigned i = 0; i != StackTop; ++i) {
177         dbgs() << " FP" << Stack[i];
178         assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
179       }
180     }
181 #endif
182 
183     /// getSlot - Return the stack slot number a particular register number is
184     /// in.
getSlot__anon7f4338b90111::FPS185     unsigned getSlot(unsigned RegNo) const {
186       assert(RegNo < NumFPRegs && "Regno out of range!");
187       return RegMap[RegNo];
188     }
189 
190     /// isLive - Is RegNo currently live in the stack?
isLive__anon7f4338b90111::FPS191     bool isLive(unsigned RegNo) const {
192       unsigned Slot = getSlot(RegNo);
193       return Slot < StackTop && Stack[Slot] == RegNo;
194     }
195 
196     /// getStackEntry - Return the X86::FP<n> register in register ST(i).
getStackEntry__anon7f4338b90111::FPS197     unsigned getStackEntry(unsigned STi) const {
198       if (STi >= StackTop)
199         report_fatal_error("Access past stack top!");
200       return Stack[StackTop-1-STi];
201     }
202 
203     /// getSTReg - Return the X86::ST(i) register which contains the specified
204     /// FP<RegNo> register.
getSTReg__anon7f4338b90111::FPS205     unsigned getSTReg(unsigned RegNo) const {
206       return StackTop - 1 - getSlot(RegNo) + X86::ST0;
207     }
208 
209     // pushReg - Push the specified FP<n> register onto the stack.
pushReg__anon7f4338b90111::FPS210     void pushReg(unsigned Reg) {
211       assert(Reg < NumFPRegs && "Register number out of range!");
212       if (StackTop >= 8)
213         report_fatal_error("Stack overflow!");
214       Stack[StackTop] = Reg;
215       RegMap[Reg] = StackTop++;
216     }
217 
218     // popReg - Pop a register from the stack.
popReg__anon7f4338b90111::FPS219     void popReg() {
220       if (StackTop == 0)
221         report_fatal_error("Cannot pop empty stack!");
222       RegMap[Stack[--StackTop]] = ~0;     // Update state
223     }
224 
isAtTop__anon7f4338b90111::FPS225     bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
moveToTop__anon7f4338b90111::FPS226     void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
227       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
228       if (isAtTop(RegNo)) return;
229 
230       unsigned STReg = getSTReg(RegNo);
231       unsigned RegOnTop = getStackEntry(0);
232 
233       // Swap the slots the regs are in.
234       std::swap(RegMap[RegNo], RegMap[RegOnTop]);
235 
236       // Swap stack slot contents.
237       if (RegMap[RegOnTop] >= StackTop)
238         report_fatal_error("Access past stack top!");
239       std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
240 
241       // Emit an fxch to update the runtime processors version of the state.
242       BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
243       ++NumFXCH;
244     }
245 
duplicateToTop__anon7f4338b90111::FPS246     void duplicateToTop(unsigned RegNo, unsigned AsReg,
247                         MachineBasicBlock::iterator I) {
248       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
249       unsigned STReg = getSTReg(RegNo);
250       pushReg(AsReg);   // New register on top of stack
251 
252       BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
253     }
254 
255     /// popStackAfter - Pop the current value off of the top of the FP stack
256     /// after the specified instruction.
257     void popStackAfter(MachineBasicBlock::iterator &I);
258 
259     /// freeStackSlotAfter - Free the specified register from the register
260     /// stack, so that it is no longer in a register.  If the register is
261     /// currently at the top of the stack, we just pop the current instruction,
262     /// otherwise we store the current top-of-stack into the specified slot,
263     /// then pop the top of stack.
264     void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
265 
266     /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
267     /// instruction.
268     MachineBasicBlock::iterator
269     freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
270 
271     /// Adjust the live registers to be the set in Mask.
272     void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
273 
274     /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
275     /// st(0), FP reg FixStack[1] is st(1) etc.
276     void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
277                          MachineBasicBlock::iterator I);
278 
279     bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
280 
281     void handleCall(MachineBasicBlock::iterator &I);
282     void handleReturn(MachineBasicBlock::iterator &I);
283     void handleZeroArgFP(MachineBasicBlock::iterator &I);
284     void handleOneArgFP(MachineBasicBlock::iterator &I);
285     void handleOneArgFPRW(MachineBasicBlock::iterator &I);
286     void handleTwoArgFP(MachineBasicBlock::iterator &I);
287     void handleCompareFP(MachineBasicBlock::iterator &I);
288     void handleCondMovFP(MachineBasicBlock::iterator &I);
289     void handleSpecialFP(MachineBasicBlock::iterator &I);
290 
291     // Check if a COPY instruction is using FP registers.
isFPCopy__anon7f4338b90111::FPS292     static bool isFPCopy(MachineInstr &MI) {
293       unsigned DstReg = MI.getOperand(0).getReg();
294       unsigned SrcReg = MI.getOperand(1).getReg();
295 
296       return X86::RFP80RegClass.contains(DstReg) ||
297         X86::RFP80RegClass.contains(SrcReg);
298     }
299 
300     void setKillFlags(MachineBasicBlock &MBB) const;
301   };
302   char FPS::ID = 0;
303 }
304 
createX86FloatingPointStackifierPass()305 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
306 
307 /// getFPReg - Return the X86::FPx register number for the specified operand.
308 /// For example, this returns 3 for X86::FP3.
getFPReg(const MachineOperand & MO)309 static unsigned getFPReg(const MachineOperand &MO) {
310   assert(MO.isReg() && "Expected an FP register!");
311   unsigned Reg = MO.getReg();
312   assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
313   return Reg - X86::FP0;
314 }
315 
316 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
317 /// register references into FP stack references.
318 ///
runOnMachineFunction(MachineFunction & MF)319 bool FPS::runOnMachineFunction(MachineFunction &MF) {
320   // We only need to run this pass if there are any FP registers used in this
321   // function.  If it is all integer, there is nothing for us to do!
322   bool FPIsUsed = false;
323 
324   static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!");
325   const MachineRegisterInfo &MRI = MF.getRegInfo();
326   for (unsigned i = 0; i <= 6; ++i)
327     if (!MRI.reg_nodbg_empty(X86::FP0 + i)) {
328       FPIsUsed = true;
329       break;
330     }
331 
332   // Early exit.
333   if (!FPIsUsed) return false;
334 
335   Bundles = &getAnalysis<EdgeBundles>();
336   TII = MF.getSubtarget().getInstrInfo();
337 
338   // Prepare cross-MBB liveness.
339   bundleCFGRecomputeKillFlags(MF);
340 
341   StackTop = 0;
342 
343   // Process the function in depth first order so that we process at least one
344   // of the predecessors for every reachable block in the function.
345   df_iterator_default_set<MachineBasicBlock*> Processed;
346   MachineBasicBlock *Entry = &MF.front();
347 
348   LiveBundle &Bundle =
349     LiveBundles[Bundles->getBundle(Entry->getNumber(), false)];
350 
351   // In regcall convention, some FP registers may not be passed through
352   // the stack, so they will need to be assigned to the stack first
353   if ((Entry->getParent()->getFunction().getCallingConv() ==
354     CallingConv::X86_RegCall) && (Bundle.Mask && !Bundle.FixCount)) {
355     // In the register calling convention, up to one FP argument could be
356     // saved in the first FP register.
357     // If bundle.mask is non-zero and Bundle.FixCount is zero, it means
358     // that the FP registers contain arguments.
359     // The actual value is passed in FP0.
360     // Here we fix the stack and mark FP0 as pre-assigned register.
361     assert((Bundle.Mask & 0xFE) == 0 &&
362       "Only FP0 could be passed as an argument");
363     Bundle.FixCount = 1;
364     Bundle.FixStack[0] = 0;
365   }
366 
367   bool Changed = false;
368   for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed))
369     Changed |= processBasicBlock(MF, *BB);
370 
371   // Process any unreachable blocks in arbitrary order now.
372   if (MF.size() != Processed.size())
373     for (MachineBasicBlock &BB : MF)
374       if (Processed.insert(&BB).second)
375         Changed |= processBasicBlock(MF, BB);
376 
377   LiveBundles.clear();
378 
379   return Changed;
380 }
381 
382 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
383 /// live-out sets for the FP registers. Consistent means that the set of
384 /// registers live-out from a block is identical to the live-in set of all
385 /// successors. This is not enforced by the normal live-in lists since
386 /// registers may be implicitly defined, or not used by all successors.
bundleCFGRecomputeKillFlags(MachineFunction & MF)387 void FPS::bundleCFGRecomputeKillFlags(MachineFunction &MF) {
388   assert(LiveBundles.empty() && "Stale data in LiveBundles");
389   LiveBundles.resize(Bundles->getNumBundles());
390 
391   // Gather the actual live-in masks for all MBBs.
392   for (MachineBasicBlock &MBB : MF) {
393     setKillFlags(MBB);
394 
395     const unsigned Mask = calcLiveInMask(&MBB, false);
396     if (!Mask)
397       continue;
398     // Update MBB ingoing bundle mask.
399     LiveBundles[Bundles->getBundle(MBB.getNumber(), false)].Mask |= Mask;
400   }
401 }
402 
403 /// processBasicBlock - Loop over all of the instructions in the basic block,
404 /// transforming FP instructions into their stack form.
405 ///
processBasicBlock(MachineFunction & MF,MachineBasicBlock & BB)406 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
407   bool Changed = false;
408   MBB = &BB;
409 
410   setupBlockStack();
411 
412   for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
413     MachineInstr &MI = *I;
414     uint64_t Flags = MI.getDesc().TSFlags;
415 
416     unsigned FPInstClass = Flags & X86II::FPTypeMask;
417     if (MI.isInlineAsm())
418       FPInstClass = X86II::SpecialFP;
419 
420     if (MI.isCopy() && isFPCopy(MI))
421       FPInstClass = X86II::SpecialFP;
422 
423     if (MI.isImplicitDef() &&
424         X86::RFP80RegClass.contains(MI.getOperand(0).getReg()))
425       FPInstClass = X86II::SpecialFP;
426 
427     if (MI.isCall())
428       FPInstClass = X86II::SpecialFP;
429 
430     if (FPInstClass == X86II::NotFP)
431       continue;  // Efficiently ignore non-fp insts!
432 
433     MachineInstr *PrevMI = nullptr;
434     if (I != BB.begin())
435       PrevMI = &*std::prev(I);
436 
437     ++NumFP;  // Keep track of # of pseudo instrs
438     LLVM_DEBUG(dbgs() << "\nFPInst:\t" << MI);
439 
440     // Get dead variables list now because the MI pointer may be deleted as part
441     // of processing!
442     SmallVector<unsigned, 8> DeadRegs;
443     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
444       const MachineOperand &MO = MI.getOperand(i);
445       if (MO.isReg() && MO.isDead())
446         DeadRegs.push_back(MO.getReg());
447     }
448 
449     switch (FPInstClass) {
450     case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
451     case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
452     case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
453     case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
454     case X86II::CompareFP:  handleCompareFP(I); break;
455     case X86II::CondMovFP:  handleCondMovFP(I); break;
456     case X86II::SpecialFP:  handleSpecialFP(I); break;
457     default: llvm_unreachable("Unknown FP Type!");
458     }
459 
460     // Check to see if any of the values defined by this instruction are dead
461     // after definition.  If so, pop them.
462     for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
463       unsigned Reg = DeadRegs[i];
464       // Check if Reg is live on the stack. An inline-asm register operand that
465       // is in the clobber list and marked dead might not be live on the stack.
466       static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers");
467       if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) {
468         LLVM_DEBUG(dbgs() << "Register FP#" << Reg - X86::FP0 << " is dead!\n");
469         freeStackSlotAfter(I, Reg-X86::FP0);
470       }
471     }
472 
473     // Print out all of the instructions expanded to if -debug
474     LLVM_DEBUG({
475       MachineBasicBlock::iterator PrevI = PrevMI;
476       if (I == PrevI) {
477         dbgs() << "Just deleted pseudo instruction\n";
478       } else {
479         MachineBasicBlock::iterator Start = I;
480         // Rewind to first instruction newly inserted.
481         while (Start != BB.begin() && std::prev(Start) != PrevI)
482           --Start;
483         dbgs() << "Inserted instructions:\n\t";
484         Start->print(dbgs());
485         while (++Start != std::next(I)) {
486         }
487       }
488       dumpStack();
489     });
490     (void)PrevMI;
491 
492     Changed = true;
493   }
494 
495   finishBlockStack();
496 
497   return Changed;
498 }
499 
500 /// setupBlockStack - Use the live bundles to set up our model of the stack
501 /// to match predecessors' live out stack.
setupBlockStack()502 void FPS::setupBlockStack() {
503   LLVM_DEBUG(dbgs() << "\nSetting up live-ins for " << printMBBReference(*MBB)
504                     << " derived from " << MBB->getName() << ".\n");
505   StackTop = 0;
506   // Get the live-in bundle for MBB.
507   const LiveBundle &Bundle =
508     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
509 
510   if (!Bundle.Mask) {
511     LLVM_DEBUG(dbgs() << "Block has no FP live-ins.\n");
512     return;
513   }
514 
515   // Depth-first iteration should ensure that we always have an assigned stack.
516   assert(Bundle.isFixed() && "Reached block before any predecessors");
517 
518   // Push the fixed live-in registers.
519   for (unsigned i = Bundle.FixCount; i > 0; --i) {
520     LLVM_DEBUG(dbgs() << "Live-in st(" << (i - 1) << "): %fp"
521                       << unsigned(Bundle.FixStack[i - 1]) << '\n');
522     pushReg(Bundle.FixStack[i-1]);
523   }
524 
525   // Kill off unwanted live-ins. This can happen with a critical edge.
526   // FIXME: We could keep these live registers around as zombies. They may need
527   // to be revived at the end of a short block. It might save a few instrs.
528   unsigned Mask = calcLiveInMask(MBB, /*RemoveFPs=*/true);
529   adjustLiveRegs(Mask, MBB->begin());
530   LLVM_DEBUG(MBB->dump());
531 }
532 
533 /// finishBlockStack - Revive live-outs that are implicitly defined out of
534 /// MBB. Shuffle live registers to match the expected fixed stack of any
535 /// predecessors, and ensure that all predecessors are expecting the same
536 /// stack.
finishBlockStack()537 void FPS::finishBlockStack() {
538   // The RET handling below takes care of return blocks for us.
539   if (MBB->succ_empty())
540     return;
541 
542   LLVM_DEBUG(dbgs() << "Setting up live-outs for " << printMBBReference(*MBB)
543                     << " derived from " << MBB->getName() << ".\n");
544 
545   // Get MBB's live-out bundle.
546   unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
547   LiveBundle &Bundle = LiveBundles[BundleIdx];
548 
549   // We may need to kill and define some registers to match successors.
550   // FIXME: This can probably be combined with the shuffle below.
551   MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
552   adjustLiveRegs(Bundle.Mask, Term);
553 
554   if (!Bundle.Mask) {
555     LLVM_DEBUG(dbgs() << "No live-outs.\n");
556     return;
557   }
558 
559   // Has the stack order been fixed yet?
560   LLVM_DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
561   if (Bundle.isFixed()) {
562     LLVM_DEBUG(dbgs() << "Shuffling stack to match.\n");
563     shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
564   } else {
565     // Not fixed yet, we get to choose.
566     LLVM_DEBUG(dbgs() << "Fixing stack order now.\n");
567     Bundle.FixCount = StackTop;
568     for (unsigned i = 0; i < StackTop; ++i)
569       Bundle.FixStack[i] = getStackEntry(i);
570   }
571 }
572 
573 
574 //===----------------------------------------------------------------------===//
575 // Efficient Lookup Table Support
576 //===----------------------------------------------------------------------===//
577 
578 namespace {
579   struct TableEntry {
580     uint16_t from;
581     uint16_t to;
operator <__anon7f4338b90311::TableEntry582     bool operator<(const TableEntry &TE) const { return from < TE.from; }
operator <(const TableEntry & TE,unsigned V)583     friend bool operator<(const TableEntry &TE, unsigned V) {
584       return TE.from < V;
585     }
operator <(unsigned V,const TableEntry & TE)586     friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
587                                                 const TableEntry &TE) {
588       return V < TE.from;
589     }
590   };
591 }
592 
Lookup(ArrayRef<TableEntry> Table,unsigned Opcode)593 static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) {
594   const TableEntry *I = std::lower_bound(Table.begin(), Table.end(), Opcode);
595   if (I != Table.end() && I->from == Opcode)
596     return I->to;
597   return -1;
598 }
599 
600 #ifdef NDEBUG
601 #define ASSERT_SORTED(TABLE)
602 #else
603 #define ASSERT_SORTED(TABLE)                                                   \
604   {                                                                            \
605     static std::atomic<bool> TABLE##Checked(false);                            \
606     if (!TABLE##Checked.load(std::memory_order_relaxed)) {                     \
607       assert(std::is_sorted(std::begin(TABLE), std::end(TABLE)) &&             \
608              "All lookup tables must be sorted for efficient access!");        \
609       TABLE##Checked.store(true, std::memory_order_relaxed);                   \
610     }                                                                          \
611   }
612 #endif
613 
614 //===----------------------------------------------------------------------===//
615 // Register File -> Register Stack Mapping Methods
616 //===----------------------------------------------------------------------===//
617 
618 // OpcodeTable - Sorted map of register instructions to their stack version.
619 // The first element is an register file pseudo instruction, the second is the
620 // concrete X86 instruction which uses the register stack.
621 //
622 static const TableEntry OpcodeTable[] = {
623   { X86::ABS_Fp32     , X86::ABS_F     },
624   { X86::ABS_Fp64     , X86::ABS_F     },
625   { X86::ABS_Fp80     , X86::ABS_F     },
626   { X86::ADD_Fp32m    , X86::ADD_F32m  },
627   { X86::ADD_Fp64m    , X86::ADD_F64m  },
628   { X86::ADD_Fp64m32  , X86::ADD_F32m  },
629   { X86::ADD_Fp80m32  , X86::ADD_F32m  },
630   { X86::ADD_Fp80m64  , X86::ADD_F64m  },
631   { X86::ADD_FpI16m32 , X86::ADD_FI16m },
632   { X86::ADD_FpI16m64 , X86::ADD_FI16m },
633   { X86::ADD_FpI16m80 , X86::ADD_FI16m },
634   { X86::ADD_FpI32m32 , X86::ADD_FI32m },
635   { X86::ADD_FpI32m64 , X86::ADD_FI32m },
636   { X86::ADD_FpI32m80 , X86::ADD_FI32m },
637   { X86::CHS_Fp32     , X86::CHS_F     },
638   { X86::CHS_Fp64     , X86::CHS_F     },
639   { X86::CHS_Fp80     , X86::CHS_F     },
640   { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
641   { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
642   { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
643   { X86::CMOVB_Fp32   , X86::CMOVB_F   },
644   { X86::CMOVB_Fp64   , X86::CMOVB_F  },
645   { X86::CMOVB_Fp80   , X86::CMOVB_F  },
646   { X86::CMOVE_Fp32   , X86::CMOVE_F  },
647   { X86::CMOVE_Fp64   , X86::CMOVE_F   },
648   { X86::CMOVE_Fp80   , X86::CMOVE_F   },
649   { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
650   { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
651   { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
652   { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
653   { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
654   { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
655   { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
656   { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
657   { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
658   { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
659   { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
660   { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
661   { X86::CMOVP_Fp32   , X86::CMOVP_F   },
662   { X86::CMOVP_Fp64   , X86::CMOVP_F   },
663   { X86::CMOVP_Fp80   , X86::CMOVP_F   },
664   { X86::COS_Fp32     , X86::COS_F     },
665   { X86::COS_Fp64     , X86::COS_F     },
666   { X86::COS_Fp80     , X86::COS_F     },
667   { X86::DIVR_Fp32m   , X86::DIVR_F32m },
668   { X86::DIVR_Fp64m   , X86::DIVR_F64m },
669   { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
670   { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
671   { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
672   { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
673   { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
674   { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
675   { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
676   { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
677   { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
678   { X86::DIV_Fp32m    , X86::DIV_F32m  },
679   { X86::DIV_Fp64m    , X86::DIV_F64m  },
680   { X86::DIV_Fp64m32  , X86::DIV_F32m  },
681   { X86::DIV_Fp80m32  , X86::DIV_F32m  },
682   { X86::DIV_Fp80m64  , X86::DIV_F64m  },
683   { X86::DIV_FpI16m32 , X86::DIV_FI16m },
684   { X86::DIV_FpI16m64 , X86::DIV_FI16m },
685   { X86::DIV_FpI16m80 , X86::DIV_FI16m },
686   { X86::DIV_FpI32m32 , X86::DIV_FI32m },
687   { X86::DIV_FpI32m64 , X86::DIV_FI32m },
688   { X86::DIV_FpI32m80 , X86::DIV_FI32m },
689   { X86::ILD_Fp16m32  , X86::ILD_F16m  },
690   { X86::ILD_Fp16m64  , X86::ILD_F16m  },
691   { X86::ILD_Fp16m80  , X86::ILD_F16m  },
692   { X86::ILD_Fp32m32  , X86::ILD_F32m  },
693   { X86::ILD_Fp32m64  , X86::ILD_F32m  },
694   { X86::ILD_Fp32m80  , X86::ILD_F32m  },
695   { X86::ILD_Fp64m32  , X86::ILD_F64m  },
696   { X86::ILD_Fp64m64  , X86::ILD_F64m  },
697   { X86::ILD_Fp64m80  , X86::ILD_F64m  },
698   { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
699   { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
700   { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
701   { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
702   { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
703   { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
704   { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
705   { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
706   { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
707   { X86::IST_Fp16m32  , X86::IST_F16m  },
708   { X86::IST_Fp16m64  , X86::IST_F16m  },
709   { X86::IST_Fp16m80  , X86::IST_F16m  },
710   { X86::IST_Fp32m32  , X86::IST_F32m  },
711   { X86::IST_Fp32m64  , X86::IST_F32m  },
712   { X86::IST_Fp32m80  , X86::IST_F32m  },
713   { X86::IST_Fp64m32  , X86::IST_FP64m },
714   { X86::IST_Fp64m64  , X86::IST_FP64m },
715   { X86::IST_Fp64m80  , X86::IST_FP64m },
716   { X86::LD_Fp032     , X86::LD_F0     },
717   { X86::LD_Fp064     , X86::LD_F0     },
718   { X86::LD_Fp080     , X86::LD_F0     },
719   { X86::LD_Fp132     , X86::LD_F1     },
720   { X86::LD_Fp164     , X86::LD_F1     },
721   { X86::LD_Fp180     , X86::LD_F1     },
722   { X86::LD_Fp32m     , X86::LD_F32m   },
723   { X86::LD_Fp32m64   , X86::LD_F32m   },
724   { X86::LD_Fp32m80   , X86::LD_F32m   },
725   { X86::LD_Fp64m     , X86::LD_F64m   },
726   { X86::LD_Fp64m80   , X86::LD_F64m   },
727   { X86::LD_Fp80m     , X86::LD_F80m   },
728   { X86::MUL_Fp32m    , X86::MUL_F32m  },
729   { X86::MUL_Fp64m    , X86::MUL_F64m  },
730   { X86::MUL_Fp64m32  , X86::MUL_F32m  },
731   { X86::MUL_Fp80m32  , X86::MUL_F32m  },
732   { X86::MUL_Fp80m64  , X86::MUL_F64m  },
733   { X86::MUL_FpI16m32 , X86::MUL_FI16m },
734   { X86::MUL_FpI16m64 , X86::MUL_FI16m },
735   { X86::MUL_FpI16m80 , X86::MUL_FI16m },
736   { X86::MUL_FpI32m32 , X86::MUL_FI32m },
737   { X86::MUL_FpI32m64 , X86::MUL_FI32m },
738   { X86::MUL_FpI32m80 , X86::MUL_FI32m },
739   { X86::SIN_Fp32     , X86::SIN_F     },
740   { X86::SIN_Fp64     , X86::SIN_F     },
741   { X86::SIN_Fp80     , X86::SIN_F     },
742   { X86::SQRT_Fp32    , X86::SQRT_F    },
743   { X86::SQRT_Fp64    , X86::SQRT_F    },
744   { X86::SQRT_Fp80    , X86::SQRT_F    },
745   { X86::ST_Fp32m     , X86::ST_F32m   },
746   { X86::ST_Fp64m     , X86::ST_F64m   },
747   { X86::ST_Fp64m32   , X86::ST_F32m   },
748   { X86::ST_Fp80m32   , X86::ST_F32m   },
749   { X86::ST_Fp80m64   , X86::ST_F64m   },
750   { X86::ST_FpP80m    , X86::ST_FP80m  },
751   { X86::SUBR_Fp32m   , X86::SUBR_F32m },
752   { X86::SUBR_Fp64m   , X86::SUBR_F64m },
753   { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
754   { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
755   { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
756   { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
757   { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
758   { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
759   { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
760   { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
761   { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
762   { X86::SUB_Fp32m    , X86::SUB_F32m  },
763   { X86::SUB_Fp64m    , X86::SUB_F64m  },
764   { X86::SUB_Fp64m32  , X86::SUB_F32m  },
765   { X86::SUB_Fp80m32  , X86::SUB_F32m  },
766   { X86::SUB_Fp80m64  , X86::SUB_F64m  },
767   { X86::SUB_FpI16m32 , X86::SUB_FI16m },
768   { X86::SUB_FpI16m64 , X86::SUB_FI16m },
769   { X86::SUB_FpI16m80 , X86::SUB_FI16m },
770   { X86::SUB_FpI32m32 , X86::SUB_FI32m },
771   { X86::SUB_FpI32m64 , X86::SUB_FI32m },
772   { X86::SUB_FpI32m80 , X86::SUB_FI32m },
773   { X86::TST_Fp32     , X86::TST_F     },
774   { X86::TST_Fp64     , X86::TST_F     },
775   { X86::TST_Fp80     , X86::TST_F     },
776   { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
777   { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
778   { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
779   { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
780   { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
781   { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
782 };
783 
getConcreteOpcode(unsigned Opcode)784 static unsigned getConcreteOpcode(unsigned Opcode) {
785   ASSERT_SORTED(OpcodeTable);
786   int Opc = Lookup(OpcodeTable, Opcode);
787   assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
788   return Opc;
789 }
790 
791 //===----------------------------------------------------------------------===//
792 // Helper Methods
793 //===----------------------------------------------------------------------===//
794 
795 // PopTable - Sorted map of instructions to their popping version.  The first
796 // element is an instruction, the second is the version which pops.
797 //
798 static const TableEntry PopTable[] = {
799   { X86::ADD_FrST0 , X86::ADD_FPrST0  },
800 
801   { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
802   { X86::DIV_FrST0 , X86::DIV_FPrST0  },
803 
804   { X86::IST_F16m  , X86::IST_FP16m   },
805   { X86::IST_F32m  , X86::IST_FP32m   },
806 
807   { X86::MUL_FrST0 , X86::MUL_FPrST0  },
808 
809   { X86::ST_F32m   , X86::ST_FP32m    },
810   { X86::ST_F64m   , X86::ST_FP64m    },
811   { X86::ST_Frr    , X86::ST_FPrr     },
812 
813   { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
814   { X86::SUB_FrST0 , X86::SUB_FPrST0  },
815 
816   { X86::UCOM_FIr  , X86::UCOM_FIPr   },
817 
818   { X86::UCOM_FPr  , X86::UCOM_FPPr   },
819   { X86::UCOM_Fr   , X86::UCOM_FPr    },
820 };
821 
822 /// popStackAfter - Pop the current value off of the top of the FP stack after
823 /// the specified instruction.  This attempts to be sneaky and combine the pop
824 /// into the instruction itself if possible.  The iterator is left pointing to
825 /// the last instruction, be it a new pop instruction inserted, or the old
826 /// instruction if it was modified in place.
827 ///
popStackAfter(MachineBasicBlock::iterator & I)828 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
829   MachineInstr &MI = *I;
830   const DebugLoc &dl = MI.getDebugLoc();
831   ASSERT_SORTED(PopTable);
832 
833   popReg();
834 
835   // Check to see if there is a popping version of this instruction...
836   int Opcode = Lookup(PopTable, I->getOpcode());
837   if (Opcode != -1) {
838     I->setDesc(TII->get(Opcode));
839     if (Opcode == X86::UCOM_FPPr)
840       I->RemoveOperand(0);
841   } else {    // Insert an explicit pop
842     I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
843   }
844 }
845 
846 /// freeStackSlotAfter - Free the specified register from the register stack, so
847 /// that it is no longer in a register.  If the register is currently at the top
848 /// of the stack, we just pop the current instruction, otherwise we store the
849 /// current top-of-stack into the specified slot, then pop the top of stack.
freeStackSlotAfter(MachineBasicBlock::iterator & I,unsigned FPRegNo)850 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
851   if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
852     popStackAfter(I);
853     return;
854   }
855 
856   // Otherwise, store the top of stack into the dead slot, killing the operand
857   // without having to add in an explicit xchg then pop.
858   //
859   I = freeStackSlotBefore(++I, FPRegNo);
860 }
861 
862 /// freeStackSlotBefore - Free the specified register without trying any
863 /// folding.
864 MachineBasicBlock::iterator
freeStackSlotBefore(MachineBasicBlock::iterator I,unsigned FPRegNo)865 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
866   unsigned STReg    = getSTReg(FPRegNo);
867   unsigned OldSlot  = getSlot(FPRegNo);
868   unsigned TopReg   = Stack[StackTop-1];
869   Stack[OldSlot]    = TopReg;
870   RegMap[TopReg]    = OldSlot;
871   RegMap[FPRegNo]   = ~0;
872   Stack[--StackTop] = ~0;
873   return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr))
874       .addReg(STReg)
875       .getInstr();
876 }
877 
878 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
879 /// registers with a bit in Mask are live.
adjustLiveRegs(unsigned Mask,MachineBasicBlock::iterator I)880 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
881   unsigned Defs = Mask;
882   unsigned Kills = 0;
883   for (unsigned i = 0; i < StackTop; ++i) {
884     unsigned RegNo = Stack[i];
885     if (!(Defs & (1 << RegNo)))
886       // This register is live, but we don't want it.
887       Kills |= (1 << RegNo);
888     else
889       // We don't need to imp-def this live register.
890       Defs &= ~(1 << RegNo);
891   }
892   assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
893 
894   // Produce implicit-defs for free by using killed registers.
895   while (Kills && Defs) {
896     unsigned KReg = countTrailingZeros(Kills);
897     unsigned DReg = countTrailingZeros(Defs);
898     LLVM_DEBUG(dbgs() << "Renaming %fp" << KReg << " as imp %fp" << DReg
899                       << "\n");
900     std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
901     std::swap(RegMap[KReg], RegMap[DReg]);
902     Kills &= ~(1 << KReg);
903     Defs &= ~(1 << DReg);
904   }
905 
906   // Kill registers by popping.
907   if (Kills && I != MBB->begin()) {
908     MachineBasicBlock::iterator I2 = std::prev(I);
909     while (StackTop) {
910       unsigned KReg = getStackEntry(0);
911       if (!(Kills & (1 << KReg)))
912         break;
913       LLVM_DEBUG(dbgs() << "Popping %fp" << KReg << "\n");
914       popStackAfter(I2);
915       Kills &= ~(1 << KReg);
916     }
917   }
918 
919   // Manually kill the rest.
920   while (Kills) {
921     unsigned KReg = countTrailingZeros(Kills);
922     LLVM_DEBUG(dbgs() << "Killing %fp" << KReg << "\n");
923     freeStackSlotBefore(I, KReg);
924     Kills &= ~(1 << KReg);
925   }
926 
927   // Load zeros for all the imp-defs.
928   while(Defs) {
929     unsigned DReg = countTrailingZeros(Defs);
930     LLVM_DEBUG(dbgs() << "Defining %fp" << DReg << " as 0\n");
931     BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
932     pushReg(DReg);
933     Defs &= ~(1 << DReg);
934   }
935 
936   // Now we should have the correct registers live.
937   LLVM_DEBUG(dumpStack());
938   assert(StackTop == countPopulation(Mask) && "Live count mismatch");
939 }
940 
941 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
942 /// FixCount entries into the order given by FixStack.
943 /// FIXME: Is there a better algorithm than insertion sort?
shuffleStackTop(const unsigned char * FixStack,unsigned FixCount,MachineBasicBlock::iterator I)944 void FPS::shuffleStackTop(const unsigned char *FixStack,
945                           unsigned FixCount,
946                           MachineBasicBlock::iterator I) {
947   // Move items into place, starting from the desired stack bottom.
948   while (FixCount--) {
949     // Old register at position FixCount.
950     unsigned OldReg = getStackEntry(FixCount);
951     // Desired register at position FixCount.
952     unsigned Reg = FixStack[FixCount];
953     if (Reg == OldReg)
954       continue;
955     // (Reg st0) (OldReg st0) = (Reg OldReg st0)
956     moveToTop(Reg, I);
957     if (FixCount > 0)
958       moveToTop(OldReg, I);
959   }
960   LLVM_DEBUG(dumpStack());
961 }
962 
963 
964 //===----------------------------------------------------------------------===//
965 // Instruction transformation implementation
966 //===----------------------------------------------------------------------===//
967 
handleCall(MachineBasicBlock::iterator & I)968 void FPS::handleCall(MachineBasicBlock::iterator &I) {
969   unsigned STReturns = 0;
970   const MachineFunction* MF = I->getParent()->getParent();
971 
972   for (const auto &MO : I->operands()) {
973     if (!MO.isReg())
974       continue;
975 
976     unsigned R = MO.getReg() - X86::FP0;
977 
978     if (R < 8) {
979       if (MF->getFunction().getCallingConv() != CallingConv::X86_RegCall) {
980         assert(MO.isDef() && MO.isImplicit());
981       }
982 
983       STReturns |= 1 << R;
984     }
985   }
986 
987   unsigned N = countTrailingOnes(STReturns);
988 
989   // FP registers used for function return must be consecutive starting at
990   // FP0
991   assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2));
992 
993   // Reset the FP Stack - It is required because of possible leftovers from
994   // passed arguments. The caller should assume that the FP stack is
995   // returned empty (unless the callee returns values on FP stack).
996   while (StackTop > 0)
997     popReg();
998 
999   for (unsigned I = 0; I < N; ++I)
1000     pushReg(N - I - 1);
1001 }
1002 
1003 /// If RET has an FP register use operand, pass the first one in ST(0) and
1004 /// the second one in ST(1).
handleReturn(MachineBasicBlock::iterator & I)1005 void FPS::handleReturn(MachineBasicBlock::iterator &I) {
1006   MachineInstr &MI = *I;
1007 
1008   // Find the register operands.
1009   unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1010   unsigned LiveMask = 0;
1011 
1012   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1013     MachineOperand &Op = MI.getOperand(i);
1014     if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1015       continue;
1016     // FP Register uses must be kills unless there are two uses of the same
1017     // register, in which case only one will be a kill.
1018     assert(Op.isUse() &&
1019            (Op.isKill() ||                    // Marked kill.
1020             getFPReg(Op) == FirstFPRegOp ||   // Second instance.
1021             MI.killsRegister(Op.getReg())) && // Later use is marked kill.
1022            "Ret only defs operands, and values aren't live beyond it");
1023 
1024     if (FirstFPRegOp == ~0U)
1025       FirstFPRegOp = getFPReg(Op);
1026     else {
1027       assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1028       SecondFPRegOp = getFPReg(Op);
1029     }
1030     LiveMask |= (1 << getFPReg(Op));
1031 
1032     // Remove the operand so that later passes don't see it.
1033     MI.RemoveOperand(i);
1034     --i;
1035     --e;
1036   }
1037 
1038   // We may have been carrying spurious live-ins, so make sure only the
1039   // returned registers are left live.
1040   adjustLiveRegs(LiveMask, MI);
1041   if (!LiveMask) return;  // Quick check to see if any are possible.
1042 
1043   // There are only four possibilities here:
1044   // 1) we are returning a single FP value.  In this case, it has to be in
1045   //    ST(0) already, so just declare success by removing the value from the
1046   //    FP Stack.
1047   if (SecondFPRegOp == ~0U) {
1048     // Assert that the top of stack contains the right FP register.
1049     assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1050            "Top of stack not the right register for RET!");
1051 
1052     // Ok, everything is good, mark the value as not being on the stack
1053     // anymore so that our assertion about the stack being empty at end of
1054     // block doesn't fire.
1055     StackTop = 0;
1056     return;
1057   }
1058 
1059   // Otherwise, we are returning two values:
1060   // 2) If returning the same value for both, we only have one thing in the FP
1061   //    stack.  Consider:  RET FP1, FP1
1062   if (StackTop == 1) {
1063     assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1064            "Stack misconfiguration for RET!");
1065 
1066     // Duplicate the TOS so that we return it twice.  Just pick some other FPx
1067     // register to hold it.
1068     unsigned NewReg = ScratchFPReg;
1069     duplicateToTop(FirstFPRegOp, NewReg, MI);
1070     FirstFPRegOp = NewReg;
1071   }
1072 
1073   /// Okay we know we have two different FPx operands now:
1074   assert(StackTop == 2 && "Must have two values live!");
1075 
1076   /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1077   ///    in ST(1).  In this case, emit an fxch.
1078   if (getStackEntry(0) == SecondFPRegOp) {
1079     assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1080     moveToTop(FirstFPRegOp, MI);
1081   }
1082 
1083   /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1084   /// ST(1).  Just remove both from our understanding of the stack and return.
1085   assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1086   assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1087   StackTop = 0;
1088 }
1089 
1090 /// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
1091 ///
handleZeroArgFP(MachineBasicBlock::iterator & I)1092 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
1093   MachineInstr &MI = *I;
1094   unsigned DestReg = getFPReg(MI.getOperand(0));
1095 
1096   // Change from the pseudo instruction to the concrete instruction.
1097   MI.RemoveOperand(0); // Remove the explicit ST(0) operand
1098   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1099 
1100   // Result gets pushed on the stack.
1101   pushReg(DestReg);
1102 }
1103 
1104 /// handleOneArgFP - fst <mem>, ST(0)
1105 ///
handleOneArgFP(MachineBasicBlock::iterator & I)1106 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
1107   MachineInstr &MI = *I;
1108   unsigned NumOps = MI.getDesc().getNumOperands();
1109   assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
1110          "Can only handle fst* & ftst instructions!");
1111 
1112   // Is this the last use of the source register?
1113   unsigned Reg = getFPReg(MI.getOperand(NumOps - 1));
1114   bool KillsSrc = MI.killsRegister(X86::FP0 + Reg);
1115 
1116   // FISTP64m is strange because there isn't a non-popping versions.
1117   // If we have one _and_ we don't want to pop the operand, duplicate the value
1118   // on the stack instead of moving it.  This ensure that popping the value is
1119   // always ok.
1120   // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
1121   //
1122   if (!KillsSrc && (MI.getOpcode() == X86::IST_Fp64m32 ||
1123                     MI.getOpcode() == X86::ISTT_Fp16m32 ||
1124                     MI.getOpcode() == X86::ISTT_Fp32m32 ||
1125                     MI.getOpcode() == X86::ISTT_Fp64m32 ||
1126                     MI.getOpcode() == X86::IST_Fp64m64 ||
1127                     MI.getOpcode() == X86::ISTT_Fp16m64 ||
1128                     MI.getOpcode() == X86::ISTT_Fp32m64 ||
1129                     MI.getOpcode() == X86::ISTT_Fp64m64 ||
1130                     MI.getOpcode() == X86::IST_Fp64m80 ||
1131                     MI.getOpcode() == X86::ISTT_Fp16m80 ||
1132                     MI.getOpcode() == X86::ISTT_Fp32m80 ||
1133                     MI.getOpcode() == X86::ISTT_Fp64m80 ||
1134                     MI.getOpcode() == X86::ST_FpP80m)) {
1135     duplicateToTop(Reg, ScratchFPReg, I);
1136   } else {
1137     moveToTop(Reg, I);            // Move to the top of the stack...
1138   }
1139 
1140   // Convert from the pseudo instruction to the concrete instruction.
1141   MI.RemoveOperand(NumOps - 1); // Remove explicit ST(0) operand
1142   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1143 
1144   if (MI.getOpcode() == X86::IST_FP64m || MI.getOpcode() == X86::ISTT_FP16m ||
1145       MI.getOpcode() == X86::ISTT_FP32m || MI.getOpcode() == X86::ISTT_FP64m ||
1146       MI.getOpcode() == X86::ST_FP80m) {
1147     if (StackTop == 0)
1148       report_fatal_error("Stack empty??");
1149     --StackTop;
1150   } else if (KillsSrc) { // Last use of operand?
1151     popStackAfter(I);
1152   }
1153 }
1154 
1155 
1156 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
1157 /// replace the value with a newly computed value.  These instructions may have
1158 /// non-fp operands after their FP operands.
1159 ///
1160 ///  Examples:
1161 ///     R1 = fchs R2
1162 ///     R1 = fadd R2, [mem]
1163 ///
handleOneArgFPRW(MachineBasicBlock::iterator & I)1164 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1165   MachineInstr &MI = *I;
1166 #ifndef NDEBUG
1167   unsigned NumOps = MI.getDesc().getNumOperands();
1168   assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1169 #endif
1170 
1171   // Is this the last use of the source register?
1172   unsigned Reg = getFPReg(MI.getOperand(1));
1173   bool KillsSrc = MI.killsRegister(X86::FP0 + Reg);
1174 
1175   if (KillsSrc) {
1176     // If this is the last use of the source register, just make sure it's on
1177     // the top of the stack.
1178     moveToTop(Reg, I);
1179     if (StackTop == 0)
1180       report_fatal_error("Stack cannot be empty!");
1181     --StackTop;
1182     pushReg(getFPReg(MI.getOperand(0)));
1183   } else {
1184     // If this is not the last use of the source register, _copy_ it to the top
1185     // of the stack.
1186     duplicateToTop(Reg, getFPReg(MI.getOperand(0)), I);
1187   }
1188 
1189   // Change from the pseudo instruction to the concrete instruction.
1190   MI.RemoveOperand(1); // Drop the source operand.
1191   MI.RemoveOperand(0); // Drop the destination operand.
1192   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1193 }
1194 
1195 
1196 //===----------------------------------------------------------------------===//
1197 // Define tables of various ways to map pseudo instructions
1198 //
1199 
1200 // ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
1201 static const TableEntry ForwardST0Table[] = {
1202   { X86::ADD_Fp32  , X86::ADD_FST0r },
1203   { X86::ADD_Fp64  , X86::ADD_FST0r },
1204   { X86::ADD_Fp80  , X86::ADD_FST0r },
1205   { X86::DIV_Fp32  , X86::DIV_FST0r },
1206   { X86::DIV_Fp64  , X86::DIV_FST0r },
1207   { X86::DIV_Fp80  , X86::DIV_FST0r },
1208   { X86::MUL_Fp32  , X86::MUL_FST0r },
1209   { X86::MUL_Fp64  , X86::MUL_FST0r },
1210   { X86::MUL_Fp80  , X86::MUL_FST0r },
1211   { X86::SUB_Fp32  , X86::SUB_FST0r },
1212   { X86::SUB_Fp64  , X86::SUB_FST0r },
1213   { X86::SUB_Fp80  , X86::SUB_FST0r },
1214 };
1215 
1216 // ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
1217 static const TableEntry ReverseST0Table[] = {
1218   { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
1219   { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
1220   { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
1221   { X86::DIV_Fp32  , X86::DIVR_FST0r },
1222   { X86::DIV_Fp64  , X86::DIVR_FST0r },
1223   { X86::DIV_Fp80  , X86::DIVR_FST0r },
1224   { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
1225   { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
1226   { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
1227   { X86::SUB_Fp32  , X86::SUBR_FST0r },
1228   { X86::SUB_Fp64  , X86::SUBR_FST0r },
1229   { X86::SUB_Fp80  , X86::SUBR_FST0r },
1230 };
1231 
1232 // ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
1233 static const TableEntry ForwardSTiTable[] = {
1234   { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
1235   { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
1236   { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
1237   { X86::DIV_Fp32  , X86::DIVR_FrST0 },
1238   { X86::DIV_Fp64  , X86::DIVR_FrST0 },
1239   { X86::DIV_Fp80  , X86::DIVR_FrST0 },
1240   { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
1241   { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
1242   { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
1243   { X86::SUB_Fp32  , X86::SUBR_FrST0 },
1244   { X86::SUB_Fp64  , X86::SUBR_FrST0 },
1245   { X86::SUB_Fp80  , X86::SUBR_FrST0 },
1246 };
1247 
1248 // ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
1249 static const TableEntry ReverseSTiTable[] = {
1250   { X86::ADD_Fp32  , X86::ADD_FrST0 },
1251   { X86::ADD_Fp64  , X86::ADD_FrST0 },
1252   { X86::ADD_Fp80  , X86::ADD_FrST0 },
1253   { X86::DIV_Fp32  , X86::DIV_FrST0 },
1254   { X86::DIV_Fp64  , X86::DIV_FrST0 },
1255   { X86::DIV_Fp80  , X86::DIV_FrST0 },
1256   { X86::MUL_Fp32  , X86::MUL_FrST0 },
1257   { X86::MUL_Fp64  , X86::MUL_FrST0 },
1258   { X86::MUL_Fp80  , X86::MUL_FrST0 },
1259   { X86::SUB_Fp32  , X86::SUB_FrST0 },
1260   { X86::SUB_Fp64  , X86::SUB_FrST0 },
1261   { X86::SUB_Fp80  , X86::SUB_FrST0 },
1262 };
1263 
1264 
1265 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1266 /// instructions which need to be simplified and possibly transformed.
1267 ///
1268 /// Result: ST(0) = fsub  ST(0), ST(i)
1269 ///         ST(i) = fsub  ST(0), ST(i)
1270 ///         ST(0) = fsubr ST(0), ST(i)
1271 ///         ST(i) = fsubr ST(0), ST(i)
1272 ///
handleTwoArgFP(MachineBasicBlock::iterator & I)1273 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1274   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1275   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1276   MachineInstr &MI = *I;
1277 
1278   unsigned NumOperands = MI.getDesc().getNumOperands();
1279   assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1280   unsigned Dest = getFPReg(MI.getOperand(0));
1281   unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1282   unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1283   bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0);
1284   bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1285   DebugLoc dl = MI.getDebugLoc();
1286 
1287   unsigned TOS = getStackEntry(0);
1288 
1289   // One of our operands must be on the top of the stack.  If neither is yet, we
1290   // need to move one.
1291   if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
1292     // We can choose to move either operand to the top of the stack.  If one of
1293     // the operands is killed by this instruction, we want that one so that we
1294     // can update right on top of the old version.
1295     if (KillsOp0) {
1296       moveToTop(Op0, I);         // Move dead operand to TOS.
1297       TOS = Op0;
1298     } else if (KillsOp1) {
1299       moveToTop(Op1, I);
1300       TOS = Op1;
1301     } else {
1302       // All of the operands are live after this instruction executes, so we
1303       // cannot update on top of any operand.  Because of this, we must
1304       // duplicate one of the stack elements to the top.  It doesn't matter
1305       // which one we pick.
1306       //
1307       duplicateToTop(Op0, Dest, I);
1308       Op0 = TOS = Dest;
1309       KillsOp0 = true;
1310     }
1311   } else if (!KillsOp0 && !KillsOp1) {
1312     // If we DO have one of our operands at the top of the stack, but we don't
1313     // have a dead operand, we must duplicate one of the operands to a new slot
1314     // on the stack.
1315     duplicateToTop(Op0, Dest, I);
1316     Op0 = TOS = Dest;
1317     KillsOp0 = true;
1318   }
1319 
1320   // Now we know that one of our operands is on the top of the stack, and at
1321   // least one of our operands is killed by this instruction.
1322   assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1323          "Stack conditions not set up right!");
1324 
1325   // We decide which form to use based on what is on the top of the stack, and
1326   // which operand is killed by this instruction.
1327   ArrayRef<TableEntry> InstTable;
1328   bool isForward = TOS == Op0;
1329   bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1330   if (updateST0) {
1331     if (isForward)
1332       InstTable = ForwardST0Table;
1333     else
1334       InstTable = ReverseST0Table;
1335   } else {
1336     if (isForward)
1337       InstTable = ForwardSTiTable;
1338     else
1339       InstTable = ReverseSTiTable;
1340   }
1341 
1342   int Opcode = Lookup(InstTable, MI.getOpcode());
1343   assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1344 
1345   // NotTOS - The register which is not on the top of stack...
1346   unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1347 
1348   // Replace the old instruction with a new instruction
1349   MBB->remove(&*I++);
1350   I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1351 
1352   // If both operands are killed, pop one off of the stack in addition to
1353   // overwriting the other one.
1354   if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1355     assert(!updateST0 && "Should have updated other operand!");
1356     popStackAfter(I);   // Pop the top of stack
1357   }
1358 
1359   // Update stack information so that we know the destination register is now on
1360   // the stack.
1361   unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1362   assert(UpdatedSlot < StackTop && Dest < 7);
1363   Stack[UpdatedSlot]   = Dest;
1364   RegMap[Dest]         = UpdatedSlot;
1365   MBB->getParent()->DeleteMachineInstr(&MI); // Remove the old instruction
1366 }
1367 
1368 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1369 /// register arguments and no explicit destinations.
1370 ///
handleCompareFP(MachineBasicBlock::iterator & I)1371 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1372   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1373   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1374   MachineInstr &MI = *I;
1375 
1376   unsigned NumOperands = MI.getDesc().getNumOperands();
1377   assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1378   unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1379   unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1380   bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0);
1381   bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1382 
1383   // Make sure the first operand is on the top of stack, the other one can be
1384   // anywhere.
1385   moveToTop(Op0, I);
1386 
1387   // Change from the pseudo instruction to the concrete instruction.
1388   MI.getOperand(0).setReg(getSTReg(Op1));
1389   MI.RemoveOperand(1);
1390   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1391 
1392   // If any of the operands are killed by this instruction, free them.
1393   if (KillsOp0) freeStackSlotAfter(I, Op0);
1394   if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1395 }
1396 
1397 /// handleCondMovFP - Handle two address conditional move instructions.  These
1398 /// instructions move a st(i) register to st(0) iff a condition is true.  These
1399 /// instructions require that the first operand is at the top of the stack, but
1400 /// otherwise don't modify the stack at all.
handleCondMovFP(MachineBasicBlock::iterator & I)1401 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1402   MachineInstr &MI = *I;
1403 
1404   unsigned Op0 = getFPReg(MI.getOperand(0));
1405   unsigned Op1 = getFPReg(MI.getOperand(2));
1406   bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1407 
1408   // The first operand *must* be on the top of the stack.
1409   moveToTop(Op0, I);
1410 
1411   // Change the second operand to the stack register that the operand is in.
1412   // Change from the pseudo instruction to the concrete instruction.
1413   MI.RemoveOperand(0);
1414   MI.RemoveOperand(1);
1415   MI.getOperand(0).setReg(getSTReg(Op1));
1416   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1417 
1418   // If we kill the second operand, make sure to pop it from the stack.
1419   if (Op0 != Op1 && KillsOp1) {
1420     // Get this value off of the register stack.
1421     freeStackSlotAfter(I, Op1);
1422   }
1423 }
1424 
1425 
1426 /// handleSpecialFP - Handle special instructions which behave unlike other
1427 /// floating point instructions.  This is primarily intended for use by pseudo
1428 /// instructions.
1429 ///
handleSpecialFP(MachineBasicBlock::iterator & Inst)1430 void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) {
1431   MachineInstr &MI = *Inst;
1432 
1433   if (MI.isCall()) {
1434     handleCall(Inst);
1435     return;
1436   }
1437 
1438   if (MI.isReturn()) {
1439     handleReturn(Inst);
1440     return;
1441   }
1442 
1443   switch (MI.getOpcode()) {
1444   default: llvm_unreachable("Unknown SpecialFP instruction!");
1445   case TargetOpcode::COPY: {
1446     // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1447     const MachineOperand &MO1 = MI.getOperand(1);
1448     const MachineOperand &MO0 = MI.getOperand(0);
1449     bool KillsSrc = MI.killsRegister(MO1.getReg());
1450 
1451     // FP <- FP copy.
1452     unsigned DstFP = getFPReg(MO0);
1453     unsigned SrcFP = getFPReg(MO1);
1454     assert(isLive(SrcFP) && "Cannot copy dead register");
1455     if (KillsSrc) {
1456       // If the input operand is killed, we can just change the owner of the
1457       // incoming stack slot into the result.
1458       unsigned Slot = getSlot(SrcFP);
1459       Stack[Slot] = DstFP;
1460       RegMap[DstFP] = Slot;
1461     } else {
1462       // For COPY we just duplicate the specified value to a new stack slot.
1463       // This could be made better, but would require substantial changes.
1464       duplicateToTop(SrcFP, DstFP, Inst);
1465     }
1466     break;
1467   }
1468 
1469   case TargetOpcode::IMPLICIT_DEF: {
1470     // All FP registers must be explicitly defined, so load a 0 instead.
1471     unsigned Reg = MI.getOperand(0).getReg() - X86::FP0;
1472     LLVM_DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1473     BuildMI(*MBB, Inst, MI.getDebugLoc(), TII->get(X86::LD_F0));
1474     pushReg(Reg);
1475     break;
1476   }
1477 
1478   case TargetOpcode::INLINEASM: {
1479     // The inline asm MachineInstr currently only *uses* FP registers for the
1480     // 'f' constraint.  These should be turned into the current ST(x) register
1481     // in the machine instr.
1482     //
1483     // There are special rules for x87 inline assembly. The compiler must know
1484     // exactly how many registers are popped and pushed implicitly by the asm.
1485     // Otherwise it is not possible to restore the stack state after the inline
1486     // asm.
1487     //
1488     // There are 3 kinds of input operands:
1489     //
1490     // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1491     //    popped input operand must be in a fixed stack slot, and it is either
1492     //    tied to an output operand, or in the clobber list. The MI has ST use
1493     //    and def operands for these inputs.
1494     //
1495     // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1496     //    preserved by the inline asm. The fixed stack slots must be STn-STm
1497     //    following the popped inputs. A fixed input operand cannot be tied to
1498     //    an output or appear in the clobber list. The MI has ST use operands
1499     //    and no defs for these inputs.
1500     //
1501     // 3. Preserved inputs. These inputs use the "f" constraint which is
1502     //    represented as an FP register. The inline asm won't change these
1503     //    stack slots.
1504     //
1505     // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1506     // registers do not count as output operands. The inline asm changes the
1507     // stack as if it popped all the popped inputs and then pushed all the
1508     // output operands.
1509 
1510     // Scan the assembly for ST registers used, defined and clobbered. We can
1511     // only tell clobbers from defs by looking at the asm descriptor.
1512     unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
1513     unsigned NumOps = 0;
1514     SmallSet<unsigned, 1> FRegIdx;
1515     unsigned RCID;
1516 
1517     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI.getNumOperands();
1518          i != e && MI.getOperand(i).isImm(); i += 1 + NumOps) {
1519       unsigned Flags = MI.getOperand(i).getImm();
1520 
1521       NumOps = InlineAsm::getNumOperandRegisters(Flags);
1522       if (NumOps != 1)
1523         continue;
1524       const MachineOperand &MO = MI.getOperand(i + 1);
1525       if (!MO.isReg())
1526         continue;
1527       unsigned STReg = MO.getReg() - X86::FP0;
1528       if (STReg >= 8)
1529         continue;
1530 
1531       // If the flag has a register class constraint, this must be an operand
1532       // with constraint "f". Record its index and continue.
1533       if (InlineAsm::hasRegClassConstraint(Flags, RCID)) {
1534         FRegIdx.insert(i + 1);
1535         continue;
1536       }
1537 
1538       switch (InlineAsm::getKind(Flags)) {
1539       case InlineAsm::Kind_RegUse:
1540         STUses |= (1u << STReg);
1541         break;
1542       case InlineAsm::Kind_RegDef:
1543       case InlineAsm::Kind_RegDefEarlyClobber:
1544         STDefs |= (1u << STReg);
1545         if (MO.isDead())
1546           STDeadDefs |= (1u << STReg);
1547         break;
1548       case InlineAsm::Kind_Clobber:
1549         STClobbers |= (1u << STReg);
1550         break;
1551       default:
1552         break;
1553       }
1554     }
1555 
1556     if (STUses && !isMask_32(STUses))
1557       MI.emitError("fixed input regs must be last on the x87 stack");
1558     unsigned NumSTUses = countTrailingOnes(STUses);
1559 
1560     // Defs must be contiguous from the stack top. ST0-STn.
1561     if (STDefs && !isMask_32(STDefs)) {
1562       MI.emitError("output regs must be last on the x87 stack");
1563       STDefs = NextPowerOf2(STDefs) - 1;
1564     }
1565     unsigned NumSTDefs = countTrailingOnes(STDefs);
1566 
1567     // So must the clobbered stack slots. ST0-STm, m >= n.
1568     if (STClobbers && !isMask_32(STDefs | STClobbers))
1569       MI.emitError("clobbers must be last on the x87 stack");
1570 
1571     // Popped inputs are the ones that are also clobbered or defined.
1572     unsigned STPopped = STUses & (STDefs | STClobbers);
1573     if (STPopped && !isMask_32(STPopped))
1574       MI.emitError("implicitly popped regs must be last on the x87 stack");
1575     unsigned NumSTPopped = countTrailingOnes(STPopped);
1576 
1577     LLVM_DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1578                       << NumSTPopped << ", and defines " << NumSTDefs
1579                       << " regs.\n");
1580 
1581 #ifndef NDEBUG
1582     // If any input operand uses constraint "f", all output register
1583     // constraints must be early-clobber defs.
1584     for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I)
1585       if (FRegIdx.count(I)) {
1586         assert((1 << getFPReg(MI.getOperand(I)) & STDefs) == 0 &&
1587                "Operands with constraint \"f\" cannot overlap with defs");
1588       }
1589 #endif
1590 
1591     // Collect all FP registers (register operands with constraints "t", "u",
1592     // and "f") to kill afer the instruction.
1593     unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1594     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1595       MachineOperand &Op = MI.getOperand(i);
1596       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1597         continue;
1598       unsigned FPReg = getFPReg(Op);
1599 
1600       // If we kill this operand, make sure to pop it from the stack after the
1601       // asm.  We just remember it for now, and pop them all off at the end in
1602       // a batch.
1603       if (Op.isUse() && Op.isKill())
1604         FPKills |= 1U << FPReg;
1605     }
1606 
1607     // Do not include registers that are implicitly popped by defs/clobbers.
1608     FPKills &= ~(STDefs | STClobbers);
1609 
1610     // Now we can rearrange the live registers to match what was requested.
1611     unsigned char STUsesArray[8];
1612 
1613     for (unsigned I = 0; I < NumSTUses; ++I)
1614       STUsesArray[I] = I;
1615 
1616     shuffleStackTop(STUsesArray, NumSTUses, Inst);
1617     LLVM_DEBUG({
1618       dbgs() << "Before asm: ";
1619       dumpStack();
1620     });
1621 
1622     // With the stack layout fixed, rewrite the FP registers.
1623     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1624       MachineOperand &Op = MI.getOperand(i);
1625       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1626         continue;
1627 
1628       unsigned FPReg = getFPReg(Op);
1629 
1630       if (FRegIdx.count(i))
1631         // Operand with constraint "f".
1632         Op.setReg(getSTReg(FPReg));
1633       else
1634         // Operand with a single register class constraint ("t" or "u").
1635         Op.setReg(X86::ST0 + FPReg);
1636     }
1637 
1638     // Simulate the inline asm popping its inputs and pushing its outputs.
1639     StackTop -= NumSTPopped;
1640 
1641     for (unsigned i = 0; i < NumSTDefs; ++i)
1642       pushReg(NumSTDefs - i - 1);
1643 
1644     // If this asm kills any FP registers (is the last use of them) we must
1645     // explicitly emit pop instructions for them.  Do this now after the asm has
1646     // executed so that the ST(x) numbers are not off (which would happen if we
1647     // did this inline with operand rewriting).
1648     //
1649     // Note: this might be a non-optimal pop sequence.  We might be able to do
1650     // better by trying to pop in stack order or something.
1651     while (FPKills) {
1652       unsigned FPReg = countTrailingZeros(FPKills);
1653       if (isLive(FPReg))
1654         freeStackSlotAfter(Inst, FPReg);
1655       FPKills &= ~(1U << FPReg);
1656     }
1657 
1658     // Don't delete the inline asm!
1659     return;
1660   }
1661   }
1662 
1663   Inst = MBB->erase(Inst);  // Remove the pseudo instruction
1664 
1665   // We want to leave I pointing to the previous instruction, but what if we
1666   // just erased the first instruction?
1667   if (Inst == MBB->begin()) {
1668     LLVM_DEBUG(dbgs() << "Inserting dummy KILL\n");
1669     Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL));
1670   } else
1671     --Inst;
1672 }
1673 
setKillFlags(MachineBasicBlock & MBB) const1674 void FPS::setKillFlags(MachineBasicBlock &MBB) const {
1675   const TargetRegisterInfo &TRI =
1676       *MBB.getParent()->getSubtarget().getRegisterInfo();
1677   LivePhysRegs LPR(TRI);
1678 
1679   LPR.addLiveOuts(MBB);
1680 
1681   for (MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend();
1682        I != E; ++I) {
1683     if (I->isDebugInstr())
1684       continue;
1685 
1686     std::bitset<8> Defs;
1687     SmallVector<MachineOperand *, 2> Uses;
1688     MachineInstr &MI = *I;
1689 
1690     for (auto &MO : I->operands()) {
1691       if (!MO.isReg())
1692         continue;
1693 
1694       unsigned Reg = MO.getReg() - X86::FP0;
1695 
1696       if (Reg >= 8)
1697         continue;
1698 
1699       if (MO.isDef()) {
1700         Defs.set(Reg);
1701         if (!LPR.contains(MO.getReg()))
1702           MO.setIsDead();
1703       } else
1704         Uses.push_back(&MO);
1705     }
1706 
1707     for (auto *MO : Uses)
1708       if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg()))
1709         MO->setIsKill();
1710 
1711     LPR.stepBackward(MI);
1712   }
1713 }
1714