1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass which converts floating point instructions from
11 // pseudo registers into register stack instructions. This pass uses live
12 // variable information to indicate where the FPn registers are used and their
13 // lifetimes.
14 //
15 // The x87 hardware tracks liveness of the stack registers, so it is necessary
16 // to implement exact liveness tracking between basic blocks. The CFG edges are
17 // partitioned into bundles where the same FP registers must be live in
18 // identical stack positions. Instructions are inserted at the end of each basic
19 // block to rearrange the live registers to match the outgoing bundle.
20 //
21 // This approach avoids splitting critical edges at the potential cost of more
22 // live register shuffling instructions when critical edges are present.
23 //
24 //===----------------------------------------------------------------------===//
25
26 #include "X86.h"
27 #include "X86InstrInfo.h"
28 #include "llvm/ADT/DepthFirstIterator.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LivePhysRegs.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/Passes.h"
40 #include "llvm/CodeGen/TargetInstrInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/InlineAsm.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include <algorithm>
49 #include <bitset>
50 using namespace llvm;
51
52 #define DEBUG_TYPE "x86-codegen"
53
54 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
55 STATISTIC(NumFP , "Number of floating point instructions");
56
57 namespace {
58 const unsigned ScratchFPReg = 7;
59
60 struct FPS : public MachineFunctionPass {
61 static char ID;
FPS__anon7f4338b90111::FPS62 FPS() : MachineFunctionPass(ID) {
63 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
64 // This is really only to keep valgrind quiet.
65 // The logic in isLive() is too much for it.
66 memset(Stack, 0, sizeof(Stack));
67 memset(RegMap, 0, sizeof(RegMap));
68 }
69
getAnalysisUsage__anon7f4338b90111::FPS70 void getAnalysisUsage(AnalysisUsage &AU) const override {
71 AU.setPreservesCFG();
72 AU.addRequired<EdgeBundles>();
73 AU.addPreservedID(MachineLoopInfoID);
74 AU.addPreservedID(MachineDominatorsID);
75 MachineFunctionPass::getAnalysisUsage(AU);
76 }
77
78 bool runOnMachineFunction(MachineFunction &MF) override;
79
getRequiredProperties__anon7f4338b90111::FPS80 MachineFunctionProperties getRequiredProperties() const override {
81 return MachineFunctionProperties().set(
82 MachineFunctionProperties::Property::NoVRegs);
83 }
84
getPassName__anon7f4338b90111::FPS85 StringRef getPassName() const override { return "X86 FP Stackifier"; }
86
87 private:
88 const TargetInstrInfo *TII; // Machine instruction info.
89
90 // Two CFG edges are related if they leave the same block, or enter the same
91 // block. The transitive closure of an edge under this relation is a
92 // LiveBundle. It represents a set of CFG edges where the live FP stack
93 // registers must be allocated identically in the x87 stack.
94 //
95 // A LiveBundle is usually all the edges leaving a block, or all the edges
96 // entering a block, but it can contain more edges if critical edges are
97 // present.
98 //
99 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
100 // but the exact mapping of FP registers to stack slots is fixed later.
101 struct LiveBundle {
102 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
103 unsigned Mask;
104
105 // Number of pre-assigned live registers in FixStack. This is 0 when the
106 // stack order has not yet been fixed.
107 unsigned FixCount;
108
109 // Assigned stack order for live-in registers.
110 // FixStack[i] == getStackEntry(i) for all i < FixCount.
111 unsigned char FixStack[8];
112
LiveBundle__anon7f4338b90111::FPS::LiveBundle113 LiveBundle() : Mask(0), FixCount(0) {}
114
115 // Have the live registers been assigned a stack order yet?
isFixed__anon7f4338b90111::FPS::LiveBundle116 bool isFixed() const { return !Mask || FixCount; }
117 };
118
119 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
120 // with no live FP registers.
121 SmallVector<LiveBundle, 8> LiveBundles;
122
123 // The edge bundle analysis provides indices into the LiveBundles vector.
124 EdgeBundles *Bundles;
125
126 // Return a bitmask of FP registers in block's live-in list.
calcLiveInMask__anon7f4338b90111::FPS127 static unsigned calcLiveInMask(MachineBasicBlock *MBB, bool RemoveFPs) {
128 unsigned Mask = 0;
129 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin();
130 I != MBB->livein_end(); ) {
131 MCPhysReg Reg = I->PhysReg;
132 static_assert(X86::FP6 - X86::FP0 == 6, "sequential regnums");
133 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
134 Mask |= 1 << (Reg - X86::FP0);
135 if (RemoveFPs) {
136 I = MBB->removeLiveIn(I);
137 continue;
138 }
139 }
140 ++I;
141 }
142 return Mask;
143 }
144
145 // Partition all the CFG edges into LiveBundles.
146 void bundleCFGRecomputeKillFlags(MachineFunction &MF);
147
148 MachineBasicBlock *MBB; // Current basic block
149
150 // The hardware keeps track of how many FP registers are live, so we have
151 // to model that exactly. Usually, each live register corresponds to an
152 // FP<n> register, but when dealing with calls, returns, and inline
153 // assembly, it is sometimes necessary to have live scratch registers.
154 unsigned Stack[8]; // FP<n> Registers in each stack slot...
155 unsigned StackTop; // The current top of the FP stack.
156
157 enum {
158 NumFPRegs = 8 // Including scratch pseudo-registers.
159 };
160
161 // For each live FP<n> register, point to its Stack[] entry.
162 // The first entries correspond to FP0-FP6, the rest are scratch registers
163 // used when we need slightly different live registers than what the
164 // register allocator thinks.
165 unsigned RegMap[NumFPRegs];
166
167 // Set up our stack model to match the incoming registers to MBB.
168 void setupBlockStack();
169
170 // Shuffle live registers to match the expectations of successor blocks.
171 void finishBlockStack();
172
173 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpStack__anon7f4338b90111::FPS174 void dumpStack() const {
175 dbgs() << "Stack contents:";
176 for (unsigned i = 0; i != StackTop; ++i) {
177 dbgs() << " FP" << Stack[i];
178 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
179 }
180 }
181 #endif
182
183 /// getSlot - Return the stack slot number a particular register number is
184 /// in.
getSlot__anon7f4338b90111::FPS185 unsigned getSlot(unsigned RegNo) const {
186 assert(RegNo < NumFPRegs && "Regno out of range!");
187 return RegMap[RegNo];
188 }
189
190 /// isLive - Is RegNo currently live in the stack?
isLive__anon7f4338b90111::FPS191 bool isLive(unsigned RegNo) const {
192 unsigned Slot = getSlot(RegNo);
193 return Slot < StackTop && Stack[Slot] == RegNo;
194 }
195
196 /// getStackEntry - Return the X86::FP<n> register in register ST(i).
getStackEntry__anon7f4338b90111::FPS197 unsigned getStackEntry(unsigned STi) const {
198 if (STi >= StackTop)
199 report_fatal_error("Access past stack top!");
200 return Stack[StackTop-1-STi];
201 }
202
203 /// getSTReg - Return the X86::ST(i) register which contains the specified
204 /// FP<RegNo> register.
getSTReg__anon7f4338b90111::FPS205 unsigned getSTReg(unsigned RegNo) const {
206 return StackTop - 1 - getSlot(RegNo) + X86::ST0;
207 }
208
209 // pushReg - Push the specified FP<n> register onto the stack.
pushReg__anon7f4338b90111::FPS210 void pushReg(unsigned Reg) {
211 assert(Reg < NumFPRegs && "Register number out of range!");
212 if (StackTop >= 8)
213 report_fatal_error("Stack overflow!");
214 Stack[StackTop] = Reg;
215 RegMap[Reg] = StackTop++;
216 }
217
218 // popReg - Pop a register from the stack.
popReg__anon7f4338b90111::FPS219 void popReg() {
220 if (StackTop == 0)
221 report_fatal_error("Cannot pop empty stack!");
222 RegMap[Stack[--StackTop]] = ~0; // Update state
223 }
224
isAtTop__anon7f4338b90111::FPS225 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
moveToTop__anon7f4338b90111::FPS226 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
227 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
228 if (isAtTop(RegNo)) return;
229
230 unsigned STReg = getSTReg(RegNo);
231 unsigned RegOnTop = getStackEntry(0);
232
233 // Swap the slots the regs are in.
234 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
235
236 // Swap stack slot contents.
237 if (RegMap[RegOnTop] >= StackTop)
238 report_fatal_error("Access past stack top!");
239 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
240
241 // Emit an fxch to update the runtime processors version of the state.
242 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
243 ++NumFXCH;
244 }
245
duplicateToTop__anon7f4338b90111::FPS246 void duplicateToTop(unsigned RegNo, unsigned AsReg,
247 MachineBasicBlock::iterator I) {
248 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
249 unsigned STReg = getSTReg(RegNo);
250 pushReg(AsReg); // New register on top of stack
251
252 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
253 }
254
255 /// popStackAfter - Pop the current value off of the top of the FP stack
256 /// after the specified instruction.
257 void popStackAfter(MachineBasicBlock::iterator &I);
258
259 /// freeStackSlotAfter - Free the specified register from the register
260 /// stack, so that it is no longer in a register. If the register is
261 /// currently at the top of the stack, we just pop the current instruction,
262 /// otherwise we store the current top-of-stack into the specified slot,
263 /// then pop the top of stack.
264 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
265
266 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
267 /// instruction.
268 MachineBasicBlock::iterator
269 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
270
271 /// Adjust the live registers to be the set in Mask.
272 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
273
274 /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
275 /// st(0), FP reg FixStack[1] is st(1) etc.
276 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
277 MachineBasicBlock::iterator I);
278
279 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
280
281 void handleCall(MachineBasicBlock::iterator &I);
282 void handleReturn(MachineBasicBlock::iterator &I);
283 void handleZeroArgFP(MachineBasicBlock::iterator &I);
284 void handleOneArgFP(MachineBasicBlock::iterator &I);
285 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
286 void handleTwoArgFP(MachineBasicBlock::iterator &I);
287 void handleCompareFP(MachineBasicBlock::iterator &I);
288 void handleCondMovFP(MachineBasicBlock::iterator &I);
289 void handleSpecialFP(MachineBasicBlock::iterator &I);
290
291 // Check if a COPY instruction is using FP registers.
isFPCopy__anon7f4338b90111::FPS292 static bool isFPCopy(MachineInstr &MI) {
293 unsigned DstReg = MI.getOperand(0).getReg();
294 unsigned SrcReg = MI.getOperand(1).getReg();
295
296 return X86::RFP80RegClass.contains(DstReg) ||
297 X86::RFP80RegClass.contains(SrcReg);
298 }
299
300 void setKillFlags(MachineBasicBlock &MBB) const;
301 };
302 char FPS::ID = 0;
303 }
304
createX86FloatingPointStackifierPass()305 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
306
307 /// getFPReg - Return the X86::FPx register number for the specified operand.
308 /// For example, this returns 3 for X86::FP3.
getFPReg(const MachineOperand & MO)309 static unsigned getFPReg(const MachineOperand &MO) {
310 assert(MO.isReg() && "Expected an FP register!");
311 unsigned Reg = MO.getReg();
312 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
313 return Reg - X86::FP0;
314 }
315
316 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
317 /// register references into FP stack references.
318 ///
runOnMachineFunction(MachineFunction & MF)319 bool FPS::runOnMachineFunction(MachineFunction &MF) {
320 // We only need to run this pass if there are any FP registers used in this
321 // function. If it is all integer, there is nothing for us to do!
322 bool FPIsUsed = false;
323
324 static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!");
325 const MachineRegisterInfo &MRI = MF.getRegInfo();
326 for (unsigned i = 0; i <= 6; ++i)
327 if (!MRI.reg_nodbg_empty(X86::FP0 + i)) {
328 FPIsUsed = true;
329 break;
330 }
331
332 // Early exit.
333 if (!FPIsUsed) return false;
334
335 Bundles = &getAnalysis<EdgeBundles>();
336 TII = MF.getSubtarget().getInstrInfo();
337
338 // Prepare cross-MBB liveness.
339 bundleCFGRecomputeKillFlags(MF);
340
341 StackTop = 0;
342
343 // Process the function in depth first order so that we process at least one
344 // of the predecessors for every reachable block in the function.
345 df_iterator_default_set<MachineBasicBlock*> Processed;
346 MachineBasicBlock *Entry = &MF.front();
347
348 LiveBundle &Bundle =
349 LiveBundles[Bundles->getBundle(Entry->getNumber(), false)];
350
351 // In regcall convention, some FP registers may not be passed through
352 // the stack, so they will need to be assigned to the stack first
353 if ((Entry->getParent()->getFunction().getCallingConv() ==
354 CallingConv::X86_RegCall) && (Bundle.Mask && !Bundle.FixCount)) {
355 // In the register calling convention, up to one FP argument could be
356 // saved in the first FP register.
357 // If bundle.mask is non-zero and Bundle.FixCount is zero, it means
358 // that the FP registers contain arguments.
359 // The actual value is passed in FP0.
360 // Here we fix the stack and mark FP0 as pre-assigned register.
361 assert((Bundle.Mask & 0xFE) == 0 &&
362 "Only FP0 could be passed as an argument");
363 Bundle.FixCount = 1;
364 Bundle.FixStack[0] = 0;
365 }
366
367 bool Changed = false;
368 for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed))
369 Changed |= processBasicBlock(MF, *BB);
370
371 // Process any unreachable blocks in arbitrary order now.
372 if (MF.size() != Processed.size())
373 for (MachineBasicBlock &BB : MF)
374 if (Processed.insert(&BB).second)
375 Changed |= processBasicBlock(MF, BB);
376
377 LiveBundles.clear();
378
379 return Changed;
380 }
381
382 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
383 /// live-out sets for the FP registers. Consistent means that the set of
384 /// registers live-out from a block is identical to the live-in set of all
385 /// successors. This is not enforced by the normal live-in lists since
386 /// registers may be implicitly defined, or not used by all successors.
bundleCFGRecomputeKillFlags(MachineFunction & MF)387 void FPS::bundleCFGRecomputeKillFlags(MachineFunction &MF) {
388 assert(LiveBundles.empty() && "Stale data in LiveBundles");
389 LiveBundles.resize(Bundles->getNumBundles());
390
391 // Gather the actual live-in masks for all MBBs.
392 for (MachineBasicBlock &MBB : MF) {
393 setKillFlags(MBB);
394
395 const unsigned Mask = calcLiveInMask(&MBB, false);
396 if (!Mask)
397 continue;
398 // Update MBB ingoing bundle mask.
399 LiveBundles[Bundles->getBundle(MBB.getNumber(), false)].Mask |= Mask;
400 }
401 }
402
403 /// processBasicBlock - Loop over all of the instructions in the basic block,
404 /// transforming FP instructions into their stack form.
405 ///
processBasicBlock(MachineFunction & MF,MachineBasicBlock & BB)406 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
407 bool Changed = false;
408 MBB = &BB;
409
410 setupBlockStack();
411
412 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
413 MachineInstr &MI = *I;
414 uint64_t Flags = MI.getDesc().TSFlags;
415
416 unsigned FPInstClass = Flags & X86II::FPTypeMask;
417 if (MI.isInlineAsm())
418 FPInstClass = X86II::SpecialFP;
419
420 if (MI.isCopy() && isFPCopy(MI))
421 FPInstClass = X86II::SpecialFP;
422
423 if (MI.isImplicitDef() &&
424 X86::RFP80RegClass.contains(MI.getOperand(0).getReg()))
425 FPInstClass = X86II::SpecialFP;
426
427 if (MI.isCall())
428 FPInstClass = X86II::SpecialFP;
429
430 if (FPInstClass == X86II::NotFP)
431 continue; // Efficiently ignore non-fp insts!
432
433 MachineInstr *PrevMI = nullptr;
434 if (I != BB.begin())
435 PrevMI = &*std::prev(I);
436
437 ++NumFP; // Keep track of # of pseudo instrs
438 LLVM_DEBUG(dbgs() << "\nFPInst:\t" << MI);
439
440 // Get dead variables list now because the MI pointer may be deleted as part
441 // of processing!
442 SmallVector<unsigned, 8> DeadRegs;
443 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
444 const MachineOperand &MO = MI.getOperand(i);
445 if (MO.isReg() && MO.isDead())
446 DeadRegs.push_back(MO.getReg());
447 }
448
449 switch (FPInstClass) {
450 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
451 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
452 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
453 case X86II::TwoArgFP: handleTwoArgFP(I); break;
454 case X86II::CompareFP: handleCompareFP(I); break;
455 case X86II::CondMovFP: handleCondMovFP(I); break;
456 case X86II::SpecialFP: handleSpecialFP(I); break;
457 default: llvm_unreachable("Unknown FP Type!");
458 }
459
460 // Check to see if any of the values defined by this instruction are dead
461 // after definition. If so, pop them.
462 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
463 unsigned Reg = DeadRegs[i];
464 // Check if Reg is live on the stack. An inline-asm register operand that
465 // is in the clobber list and marked dead might not be live on the stack.
466 static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers");
467 if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) {
468 LLVM_DEBUG(dbgs() << "Register FP#" << Reg - X86::FP0 << " is dead!\n");
469 freeStackSlotAfter(I, Reg-X86::FP0);
470 }
471 }
472
473 // Print out all of the instructions expanded to if -debug
474 LLVM_DEBUG({
475 MachineBasicBlock::iterator PrevI = PrevMI;
476 if (I == PrevI) {
477 dbgs() << "Just deleted pseudo instruction\n";
478 } else {
479 MachineBasicBlock::iterator Start = I;
480 // Rewind to first instruction newly inserted.
481 while (Start != BB.begin() && std::prev(Start) != PrevI)
482 --Start;
483 dbgs() << "Inserted instructions:\n\t";
484 Start->print(dbgs());
485 while (++Start != std::next(I)) {
486 }
487 }
488 dumpStack();
489 });
490 (void)PrevMI;
491
492 Changed = true;
493 }
494
495 finishBlockStack();
496
497 return Changed;
498 }
499
500 /// setupBlockStack - Use the live bundles to set up our model of the stack
501 /// to match predecessors' live out stack.
setupBlockStack()502 void FPS::setupBlockStack() {
503 LLVM_DEBUG(dbgs() << "\nSetting up live-ins for " << printMBBReference(*MBB)
504 << " derived from " << MBB->getName() << ".\n");
505 StackTop = 0;
506 // Get the live-in bundle for MBB.
507 const LiveBundle &Bundle =
508 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
509
510 if (!Bundle.Mask) {
511 LLVM_DEBUG(dbgs() << "Block has no FP live-ins.\n");
512 return;
513 }
514
515 // Depth-first iteration should ensure that we always have an assigned stack.
516 assert(Bundle.isFixed() && "Reached block before any predecessors");
517
518 // Push the fixed live-in registers.
519 for (unsigned i = Bundle.FixCount; i > 0; --i) {
520 LLVM_DEBUG(dbgs() << "Live-in st(" << (i - 1) << "): %fp"
521 << unsigned(Bundle.FixStack[i - 1]) << '\n');
522 pushReg(Bundle.FixStack[i-1]);
523 }
524
525 // Kill off unwanted live-ins. This can happen with a critical edge.
526 // FIXME: We could keep these live registers around as zombies. They may need
527 // to be revived at the end of a short block. It might save a few instrs.
528 unsigned Mask = calcLiveInMask(MBB, /*RemoveFPs=*/true);
529 adjustLiveRegs(Mask, MBB->begin());
530 LLVM_DEBUG(MBB->dump());
531 }
532
533 /// finishBlockStack - Revive live-outs that are implicitly defined out of
534 /// MBB. Shuffle live registers to match the expected fixed stack of any
535 /// predecessors, and ensure that all predecessors are expecting the same
536 /// stack.
finishBlockStack()537 void FPS::finishBlockStack() {
538 // The RET handling below takes care of return blocks for us.
539 if (MBB->succ_empty())
540 return;
541
542 LLVM_DEBUG(dbgs() << "Setting up live-outs for " << printMBBReference(*MBB)
543 << " derived from " << MBB->getName() << ".\n");
544
545 // Get MBB's live-out bundle.
546 unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
547 LiveBundle &Bundle = LiveBundles[BundleIdx];
548
549 // We may need to kill and define some registers to match successors.
550 // FIXME: This can probably be combined with the shuffle below.
551 MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
552 adjustLiveRegs(Bundle.Mask, Term);
553
554 if (!Bundle.Mask) {
555 LLVM_DEBUG(dbgs() << "No live-outs.\n");
556 return;
557 }
558
559 // Has the stack order been fixed yet?
560 LLVM_DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
561 if (Bundle.isFixed()) {
562 LLVM_DEBUG(dbgs() << "Shuffling stack to match.\n");
563 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
564 } else {
565 // Not fixed yet, we get to choose.
566 LLVM_DEBUG(dbgs() << "Fixing stack order now.\n");
567 Bundle.FixCount = StackTop;
568 for (unsigned i = 0; i < StackTop; ++i)
569 Bundle.FixStack[i] = getStackEntry(i);
570 }
571 }
572
573
574 //===----------------------------------------------------------------------===//
575 // Efficient Lookup Table Support
576 //===----------------------------------------------------------------------===//
577
578 namespace {
579 struct TableEntry {
580 uint16_t from;
581 uint16_t to;
operator <__anon7f4338b90311::TableEntry582 bool operator<(const TableEntry &TE) const { return from < TE.from; }
operator <(const TableEntry & TE,unsigned V)583 friend bool operator<(const TableEntry &TE, unsigned V) {
584 return TE.from < V;
585 }
operator <(unsigned V,const TableEntry & TE)586 friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
587 const TableEntry &TE) {
588 return V < TE.from;
589 }
590 };
591 }
592
Lookup(ArrayRef<TableEntry> Table,unsigned Opcode)593 static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) {
594 const TableEntry *I = std::lower_bound(Table.begin(), Table.end(), Opcode);
595 if (I != Table.end() && I->from == Opcode)
596 return I->to;
597 return -1;
598 }
599
600 #ifdef NDEBUG
601 #define ASSERT_SORTED(TABLE)
602 #else
603 #define ASSERT_SORTED(TABLE) \
604 { \
605 static std::atomic<bool> TABLE##Checked(false); \
606 if (!TABLE##Checked.load(std::memory_order_relaxed)) { \
607 assert(std::is_sorted(std::begin(TABLE), std::end(TABLE)) && \
608 "All lookup tables must be sorted for efficient access!"); \
609 TABLE##Checked.store(true, std::memory_order_relaxed); \
610 } \
611 }
612 #endif
613
614 //===----------------------------------------------------------------------===//
615 // Register File -> Register Stack Mapping Methods
616 //===----------------------------------------------------------------------===//
617
618 // OpcodeTable - Sorted map of register instructions to their stack version.
619 // The first element is an register file pseudo instruction, the second is the
620 // concrete X86 instruction which uses the register stack.
621 //
622 static const TableEntry OpcodeTable[] = {
623 { X86::ABS_Fp32 , X86::ABS_F },
624 { X86::ABS_Fp64 , X86::ABS_F },
625 { X86::ABS_Fp80 , X86::ABS_F },
626 { X86::ADD_Fp32m , X86::ADD_F32m },
627 { X86::ADD_Fp64m , X86::ADD_F64m },
628 { X86::ADD_Fp64m32 , X86::ADD_F32m },
629 { X86::ADD_Fp80m32 , X86::ADD_F32m },
630 { X86::ADD_Fp80m64 , X86::ADD_F64m },
631 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
632 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
633 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
634 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
635 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
636 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
637 { X86::CHS_Fp32 , X86::CHS_F },
638 { X86::CHS_Fp64 , X86::CHS_F },
639 { X86::CHS_Fp80 , X86::CHS_F },
640 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
641 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
642 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
643 { X86::CMOVB_Fp32 , X86::CMOVB_F },
644 { X86::CMOVB_Fp64 , X86::CMOVB_F },
645 { X86::CMOVB_Fp80 , X86::CMOVB_F },
646 { X86::CMOVE_Fp32 , X86::CMOVE_F },
647 { X86::CMOVE_Fp64 , X86::CMOVE_F },
648 { X86::CMOVE_Fp80 , X86::CMOVE_F },
649 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
650 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
651 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
652 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
653 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
654 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
655 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
656 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
657 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
658 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
659 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
660 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
661 { X86::CMOVP_Fp32 , X86::CMOVP_F },
662 { X86::CMOVP_Fp64 , X86::CMOVP_F },
663 { X86::CMOVP_Fp80 , X86::CMOVP_F },
664 { X86::COS_Fp32 , X86::COS_F },
665 { X86::COS_Fp64 , X86::COS_F },
666 { X86::COS_Fp80 , X86::COS_F },
667 { X86::DIVR_Fp32m , X86::DIVR_F32m },
668 { X86::DIVR_Fp64m , X86::DIVR_F64m },
669 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
670 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
671 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
672 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
673 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
674 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
675 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
676 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
677 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
678 { X86::DIV_Fp32m , X86::DIV_F32m },
679 { X86::DIV_Fp64m , X86::DIV_F64m },
680 { X86::DIV_Fp64m32 , X86::DIV_F32m },
681 { X86::DIV_Fp80m32 , X86::DIV_F32m },
682 { X86::DIV_Fp80m64 , X86::DIV_F64m },
683 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
684 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
685 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
686 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
687 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
688 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
689 { X86::ILD_Fp16m32 , X86::ILD_F16m },
690 { X86::ILD_Fp16m64 , X86::ILD_F16m },
691 { X86::ILD_Fp16m80 , X86::ILD_F16m },
692 { X86::ILD_Fp32m32 , X86::ILD_F32m },
693 { X86::ILD_Fp32m64 , X86::ILD_F32m },
694 { X86::ILD_Fp32m80 , X86::ILD_F32m },
695 { X86::ILD_Fp64m32 , X86::ILD_F64m },
696 { X86::ILD_Fp64m64 , X86::ILD_F64m },
697 { X86::ILD_Fp64m80 , X86::ILD_F64m },
698 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
699 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
700 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
701 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
702 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
703 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
704 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
705 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
706 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
707 { X86::IST_Fp16m32 , X86::IST_F16m },
708 { X86::IST_Fp16m64 , X86::IST_F16m },
709 { X86::IST_Fp16m80 , X86::IST_F16m },
710 { X86::IST_Fp32m32 , X86::IST_F32m },
711 { X86::IST_Fp32m64 , X86::IST_F32m },
712 { X86::IST_Fp32m80 , X86::IST_F32m },
713 { X86::IST_Fp64m32 , X86::IST_FP64m },
714 { X86::IST_Fp64m64 , X86::IST_FP64m },
715 { X86::IST_Fp64m80 , X86::IST_FP64m },
716 { X86::LD_Fp032 , X86::LD_F0 },
717 { X86::LD_Fp064 , X86::LD_F0 },
718 { X86::LD_Fp080 , X86::LD_F0 },
719 { X86::LD_Fp132 , X86::LD_F1 },
720 { X86::LD_Fp164 , X86::LD_F1 },
721 { X86::LD_Fp180 , X86::LD_F1 },
722 { X86::LD_Fp32m , X86::LD_F32m },
723 { X86::LD_Fp32m64 , X86::LD_F32m },
724 { X86::LD_Fp32m80 , X86::LD_F32m },
725 { X86::LD_Fp64m , X86::LD_F64m },
726 { X86::LD_Fp64m80 , X86::LD_F64m },
727 { X86::LD_Fp80m , X86::LD_F80m },
728 { X86::MUL_Fp32m , X86::MUL_F32m },
729 { X86::MUL_Fp64m , X86::MUL_F64m },
730 { X86::MUL_Fp64m32 , X86::MUL_F32m },
731 { X86::MUL_Fp80m32 , X86::MUL_F32m },
732 { X86::MUL_Fp80m64 , X86::MUL_F64m },
733 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
734 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
735 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
736 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
737 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
738 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
739 { X86::SIN_Fp32 , X86::SIN_F },
740 { X86::SIN_Fp64 , X86::SIN_F },
741 { X86::SIN_Fp80 , X86::SIN_F },
742 { X86::SQRT_Fp32 , X86::SQRT_F },
743 { X86::SQRT_Fp64 , X86::SQRT_F },
744 { X86::SQRT_Fp80 , X86::SQRT_F },
745 { X86::ST_Fp32m , X86::ST_F32m },
746 { X86::ST_Fp64m , X86::ST_F64m },
747 { X86::ST_Fp64m32 , X86::ST_F32m },
748 { X86::ST_Fp80m32 , X86::ST_F32m },
749 { X86::ST_Fp80m64 , X86::ST_F64m },
750 { X86::ST_FpP80m , X86::ST_FP80m },
751 { X86::SUBR_Fp32m , X86::SUBR_F32m },
752 { X86::SUBR_Fp64m , X86::SUBR_F64m },
753 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
754 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
755 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
756 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
757 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
758 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
759 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
760 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
761 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
762 { X86::SUB_Fp32m , X86::SUB_F32m },
763 { X86::SUB_Fp64m , X86::SUB_F64m },
764 { X86::SUB_Fp64m32 , X86::SUB_F32m },
765 { X86::SUB_Fp80m32 , X86::SUB_F32m },
766 { X86::SUB_Fp80m64 , X86::SUB_F64m },
767 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
768 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
769 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
770 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
771 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
772 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
773 { X86::TST_Fp32 , X86::TST_F },
774 { X86::TST_Fp64 , X86::TST_F },
775 { X86::TST_Fp80 , X86::TST_F },
776 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
777 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
778 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
779 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
780 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
781 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
782 };
783
getConcreteOpcode(unsigned Opcode)784 static unsigned getConcreteOpcode(unsigned Opcode) {
785 ASSERT_SORTED(OpcodeTable);
786 int Opc = Lookup(OpcodeTable, Opcode);
787 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
788 return Opc;
789 }
790
791 //===----------------------------------------------------------------------===//
792 // Helper Methods
793 //===----------------------------------------------------------------------===//
794
795 // PopTable - Sorted map of instructions to their popping version. The first
796 // element is an instruction, the second is the version which pops.
797 //
798 static const TableEntry PopTable[] = {
799 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
800
801 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
802 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
803
804 { X86::IST_F16m , X86::IST_FP16m },
805 { X86::IST_F32m , X86::IST_FP32m },
806
807 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
808
809 { X86::ST_F32m , X86::ST_FP32m },
810 { X86::ST_F64m , X86::ST_FP64m },
811 { X86::ST_Frr , X86::ST_FPrr },
812
813 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
814 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
815
816 { X86::UCOM_FIr , X86::UCOM_FIPr },
817
818 { X86::UCOM_FPr , X86::UCOM_FPPr },
819 { X86::UCOM_Fr , X86::UCOM_FPr },
820 };
821
822 /// popStackAfter - Pop the current value off of the top of the FP stack after
823 /// the specified instruction. This attempts to be sneaky and combine the pop
824 /// into the instruction itself if possible. The iterator is left pointing to
825 /// the last instruction, be it a new pop instruction inserted, or the old
826 /// instruction if it was modified in place.
827 ///
popStackAfter(MachineBasicBlock::iterator & I)828 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
829 MachineInstr &MI = *I;
830 const DebugLoc &dl = MI.getDebugLoc();
831 ASSERT_SORTED(PopTable);
832
833 popReg();
834
835 // Check to see if there is a popping version of this instruction...
836 int Opcode = Lookup(PopTable, I->getOpcode());
837 if (Opcode != -1) {
838 I->setDesc(TII->get(Opcode));
839 if (Opcode == X86::UCOM_FPPr)
840 I->RemoveOperand(0);
841 } else { // Insert an explicit pop
842 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
843 }
844 }
845
846 /// freeStackSlotAfter - Free the specified register from the register stack, so
847 /// that it is no longer in a register. If the register is currently at the top
848 /// of the stack, we just pop the current instruction, otherwise we store the
849 /// current top-of-stack into the specified slot, then pop the top of stack.
freeStackSlotAfter(MachineBasicBlock::iterator & I,unsigned FPRegNo)850 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
851 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
852 popStackAfter(I);
853 return;
854 }
855
856 // Otherwise, store the top of stack into the dead slot, killing the operand
857 // without having to add in an explicit xchg then pop.
858 //
859 I = freeStackSlotBefore(++I, FPRegNo);
860 }
861
862 /// freeStackSlotBefore - Free the specified register without trying any
863 /// folding.
864 MachineBasicBlock::iterator
freeStackSlotBefore(MachineBasicBlock::iterator I,unsigned FPRegNo)865 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
866 unsigned STReg = getSTReg(FPRegNo);
867 unsigned OldSlot = getSlot(FPRegNo);
868 unsigned TopReg = Stack[StackTop-1];
869 Stack[OldSlot] = TopReg;
870 RegMap[TopReg] = OldSlot;
871 RegMap[FPRegNo] = ~0;
872 Stack[--StackTop] = ~0;
873 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr))
874 .addReg(STReg)
875 .getInstr();
876 }
877
878 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
879 /// registers with a bit in Mask are live.
adjustLiveRegs(unsigned Mask,MachineBasicBlock::iterator I)880 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
881 unsigned Defs = Mask;
882 unsigned Kills = 0;
883 for (unsigned i = 0; i < StackTop; ++i) {
884 unsigned RegNo = Stack[i];
885 if (!(Defs & (1 << RegNo)))
886 // This register is live, but we don't want it.
887 Kills |= (1 << RegNo);
888 else
889 // We don't need to imp-def this live register.
890 Defs &= ~(1 << RegNo);
891 }
892 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
893
894 // Produce implicit-defs for free by using killed registers.
895 while (Kills && Defs) {
896 unsigned KReg = countTrailingZeros(Kills);
897 unsigned DReg = countTrailingZeros(Defs);
898 LLVM_DEBUG(dbgs() << "Renaming %fp" << KReg << " as imp %fp" << DReg
899 << "\n");
900 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
901 std::swap(RegMap[KReg], RegMap[DReg]);
902 Kills &= ~(1 << KReg);
903 Defs &= ~(1 << DReg);
904 }
905
906 // Kill registers by popping.
907 if (Kills && I != MBB->begin()) {
908 MachineBasicBlock::iterator I2 = std::prev(I);
909 while (StackTop) {
910 unsigned KReg = getStackEntry(0);
911 if (!(Kills & (1 << KReg)))
912 break;
913 LLVM_DEBUG(dbgs() << "Popping %fp" << KReg << "\n");
914 popStackAfter(I2);
915 Kills &= ~(1 << KReg);
916 }
917 }
918
919 // Manually kill the rest.
920 while (Kills) {
921 unsigned KReg = countTrailingZeros(Kills);
922 LLVM_DEBUG(dbgs() << "Killing %fp" << KReg << "\n");
923 freeStackSlotBefore(I, KReg);
924 Kills &= ~(1 << KReg);
925 }
926
927 // Load zeros for all the imp-defs.
928 while(Defs) {
929 unsigned DReg = countTrailingZeros(Defs);
930 LLVM_DEBUG(dbgs() << "Defining %fp" << DReg << " as 0\n");
931 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
932 pushReg(DReg);
933 Defs &= ~(1 << DReg);
934 }
935
936 // Now we should have the correct registers live.
937 LLVM_DEBUG(dumpStack());
938 assert(StackTop == countPopulation(Mask) && "Live count mismatch");
939 }
940
941 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
942 /// FixCount entries into the order given by FixStack.
943 /// FIXME: Is there a better algorithm than insertion sort?
shuffleStackTop(const unsigned char * FixStack,unsigned FixCount,MachineBasicBlock::iterator I)944 void FPS::shuffleStackTop(const unsigned char *FixStack,
945 unsigned FixCount,
946 MachineBasicBlock::iterator I) {
947 // Move items into place, starting from the desired stack bottom.
948 while (FixCount--) {
949 // Old register at position FixCount.
950 unsigned OldReg = getStackEntry(FixCount);
951 // Desired register at position FixCount.
952 unsigned Reg = FixStack[FixCount];
953 if (Reg == OldReg)
954 continue;
955 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
956 moveToTop(Reg, I);
957 if (FixCount > 0)
958 moveToTop(OldReg, I);
959 }
960 LLVM_DEBUG(dumpStack());
961 }
962
963
964 //===----------------------------------------------------------------------===//
965 // Instruction transformation implementation
966 //===----------------------------------------------------------------------===//
967
handleCall(MachineBasicBlock::iterator & I)968 void FPS::handleCall(MachineBasicBlock::iterator &I) {
969 unsigned STReturns = 0;
970 const MachineFunction* MF = I->getParent()->getParent();
971
972 for (const auto &MO : I->operands()) {
973 if (!MO.isReg())
974 continue;
975
976 unsigned R = MO.getReg() - X86::FP0;
977
978 if (R < 8) {
979 if (MF->getFunction().getCallingConv() != CallingConv::X86_RegCall) {
980 assert(MO.isDef() && MO.isImplicit());
981 }
982
983 STReturns |= 1 << R;
984 }
985 }
986
987 unsigned N = countTrailingOnes(STReturns);
988
989 // FP registers used for function return must be consecutive starting at
990 // FP0
991 assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2));
992
993 // Reset the FP Stack - It is required because of possible leftovers from
994 // passed arguments. The caller should assume that the FP stack is
995 // returned empty (unless the callee returns values on FP stack).
996 while (StackTop > 0)
997 popReg();
998
999 for (unsigned I = 0; I < N; ++I)
1000 pushReg(N - I - 1);
1001 }
1002
1003 /// If RET has an FP register use operand, pass the first one in ST(0) and
1004 /// the second one in ST(1).
handleReturn(MachineBasicBlock::iterator & I)1005 void FPS::handleReturn(MachineBasicBlock::iterator &I) {
1006 MachineInstr &MI = *I;
1007
1008 // Find the register operands.
1009 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1010 unsigned LiveMask = 0;
1011
1012 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1013 MachineOperand &Op = MI.getOperand(i);
1014 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1015 continue;
1016 // FP Register uses must be kills unless there are two uses of the same
1017 // register, in which case only one will be a kill.
1018 assert(Op.isUse() &&
1019 (Op.isKill() || // Marked kill.
1020 getFPReg(Op) == FirstFPRegOp || // Second instance.
1021 MI.killsRegister(Op.getReg())) && // Later use is marked kill.
1022 "Ret only defs operands, and values aren't live beyond it");
1023
1024 if (FirstFPRegOp == ~0U)
1025 FirstFPRegOp = getFPReg(Op);
1026 else {
1027 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1028 SecondFPRegOp = getFPReg(Op);
1029 }
1030 LiveMask |= (1 << getFPReg(Op));
1031
1032 // Remove the operand so that later passes don't see it.
1033 MI.RemoveOperand(i);
1034 --i;
1035 --e;
1036 }
1037
1038 // We may have been carrying spurious live-ins, so make sure only the
1039 // returned registers are left live.
1040 adjustLiveRegs(LiveMask, MI);
1041 if (!LiveMask) return; // Quick check to see if any are possible.
1042
1043 // There are only four possibilities here:
1044 // 1) we are returning a single FP value. In this case, it has to be in
1045 // ST(0) already, so just declare success by removing the value from the
1046 // FP Stack.
1047 if (SecondFPRegOp == ~0U) {
1048 // Assert that the top of stack contains the right FP register.
1049 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1050 "Top of stack not the right register for RET!");
1051
1052 // Ok, everything is good, mark the value as not being on the stack
1053 // anymore so that our assertion about the stack being empty at end of
1054 // block doesn't fire.
1055 StackTop = 0;
1056 return;
1057 }
1058
1059 // Otherwise, we are returning two values:
1060 // 2) If returning the same value for both, we only have one thing in the FP
1061 // stack. Consider: RET FP1, FP1
1062 if (StackTop == 1) {
1063 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1064 "Stack misconfiguration for RET!");
1065
1066 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1067 // register to hold it.
1068 unsigned NewReg = ScratchFPReg;
1069 duplicateToTop(FirstFPRegOp, NewReg, MI);
1070 FirstFPRegOp = NewReg;
1071 }
1072
1073 /// Okay we know we have two different FPx operands now:
1074 assert(StackTop == 2 && "Must have two values live!");
1075
1076 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1077 /// in ST(1). In this case, emit an fxch.
1078 if (getStackEntry(0) == SecondFPRegOp) {
1079 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1080 moveToTop(FirstFPRegOp, MI);
1081 }
1082
1083 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1084 /// ST(1). Just remove both from our understanding of the stack and return.
1085 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1086 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1087 StackTop = 0;
1088 }
1089
1090 /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
1091 ///
handleZeroArgFP(MachineBasicBlock::iterator & I)1092 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
1093 MachineInstr &MI = *I;
1094 unsigned DestReg = getFPReg(MI.getOperand(0));
1095
1096 // Change from the pseudo instruction to the concrete instruction.
1097 MI.RemoveOperand(0); // Remove the explicit ST(0) operand
1098 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1099
1100 // Result gets pushed on the stack.
1101 pushReg(DestReg);
1102 }
1103
1104 /// handleOneArgFP - fst <mem>, ST(0)
1105 ///
handleOneArgFP(MachineBasicBlock::iterator & I)1106 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
1107 MachineInstr &MI = *I;
1108 unsigned NumOps = MI.getDesc().getNumOperands();
1109 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
1110 "Can only handle fst* & ftst instructions!");
1111
1112 // Is this the last use of the source register?
1113 unsigned Reg = getFPReg(MI.getOperand(NumOps - 1));
1114 bool KillsSrc = MI.killsRegister(X86::FP0 + Reg);
1115
1116 // FISTP64m is strange because there isn't a non-popping versions.
1117 // If we have one _and_ we don't want to pop the operand, duplicate the value
1118 // on the stack instead of moving it. This ensure that popping the value is
1119 // always ok.
1120 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
1121 //
1122 if (!KillsSrc && (MI.getOpcode() == X86::IST_Fp64m32 ||
1123 MI.getOpcode() == X86::ISTT_Fp16m32 ||
1124 MI.getOpcode() == X86::ISTT_Fp32m32 ||
1125 MI.getOpcode() == X86::ISTT_Fp64m32 ||
1126 MI.getOpcode() == X86::IST_Fp64m64 ||
1127 MI.getOpcode() == X86::ISTT_Fp16m64 ||
1128 MI.getOpcode() == X86::ISTT_Fp32m64 ||
1129 MI.getOpcode() == X86::ISTT_Fp64m64 ||
1130 MI.getOpcode() == X86::IST_Fp64m80 ||
1131 MI.getOpcode() == X86::ISTT_Fp16m80 ||
1132 MI.getOpcode() == X86::ISTT_Fp32m80 ||
1133 MI.getOpcode() == X86::ISTT_Fp64m80 ||
1134 MI.getOpcode() == X86::ST_FpP80m)) {
1135 duplicateToTop(Reg, ScratchFPReg, I);
1136 } else {
1137 moveToTop(Reg, I); // Move to the top of the stack...
1138 }
1139
1140 // Convert from the pseudo instruction to the concrete instruction.
1141 MI.RemoveOperand(NumOps - 1); // Remove explicit ST(0) operand
1142 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1143
1144 if (MI.getOpcode() == X86::IST_FP64m || MI.getOpcode() == X86::ISTT_FP16m ||
1145 MI.getOpcode() == X86::ISTT_FP32m || MI.getOpcode() == X86::ISTT_FP64m ||
1146 MI.getOpcode() == X86::ST_FP80m) {
1147 if (StackTop == 0)
1148 report_fatal_error("Stack empty??");
1149 --StackTop;
1150 } else if (KillsSrc) { // Last use of operand?
1151 popStackAfter(I);
1152 }
1153 }
1154
1155
1156 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
1157 /// replace the value with a newly computed value. These instructions may have
1158 /// non-fp operands after their FP operands.
1159 ///
1160 /// Examples:
1161 /// R1 = fchs R2
1162 /// R1 = fadd R2, [mem]
1163 ///
handleOneArgFPRW(MachineBasicBlock::iterator & I)1164 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1165 MachineInstr &MI = *I;
1166 #ifndef NDEBUG
1167 unsigned NumOps = MI.getDesc().getNumOperands();
1168 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1169 #endif
1170
1171 // Is this the last use of the source register?
1172 unsigned Reg = getFPReg(MI.getOperand(1));
1173 bool KillsSrc = MI.killsRegister(X86::FP0 + Reg);
1174
1175 if (KillsSrc) {
1176 // If this is the last use of the source register, just make sure it's on
1177 // the top of the stack.
1178 moveToTop(Reg, I);
1179 if (StackTop == 0)
1180 report_fatal_error("Stack cannot be empty!");
1181 --StackTop;
1182 pushReg(getFPReg(MI.getOperand(0)));
1183 } else {
1184 // If this is not the last use of the source register, _copy_ it to the top
1185 // of the stack.
1186 duplicateToTop(Reg, getFPReg(MI.getOperand(0)), I);
1187 }
1188
1189 // Change from the pseudo instruction to the concrete instruction.
1190 MI.RemoveOperand(1); // Drop the source operand.
1191 MI.RemoveOperand(0); // Drop the destination operand.
1192 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1193 }
1194
1195
1196 //===----------------------------------------------------------------------===//
1197 // Define tables of various ways to map pseudo instructions
1198 //
1199
1200 // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1201 static const TableEntry ForwardST0Table[] = {
1202 { X86::ADD_Fp32 , X86::ADD_FST0r },
1203 { X86::ADD_Fp64 , X86::ADD_FST0r },
1204 { X86::ADD_Fp80 , X86::ADD_FST0r },
1205 { X86::DIV_Fp32 , X86::DIV_FST0r },
1206 { X86::DIV_Fp64 , X86::DIV_FST0r },
1207 { X86::DIV_Fp80 , X86::DIV_FST0r },
1208 { X86::MUL_Fp32 , X86::MUL_FST0r },
1209 { X86::MUL_Fp64 , X86::MUL_FST0r },
1210 { X86::MUL_Fp80 , X86::MUL_FST0r },
1211 { X86::SUB_Fp32 , X86::SUB_FST0r },
1212 { X86::SUB_Fp64 , X86::SUB_FST0r },
1213 { X86::SUB_Fp80 , X86::SUB_FST0r },
1214 };
1215
1216 // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1217 static const TableEntry ReverseST0Table[] = {
1218 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
1219 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
1220 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
1221 { X86::DIV_Fp32 , X86::DIVR_FST0r },
1222 { X86::DIV_Fp64 , X86::DIVR_FST0r },
1223 { X86::DIV_Fp80 , X86::DIVR_FST0r },
1224 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
1225 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
1226 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
1227 { X86::SUB_Fp32 , X86::SUBR_FST0r },
1228 { X86::SUB_Fp64 , X86::SUBR_FST0r },
1229 { X86::SUB_Fp80 , X86::SUBR_FST0r },
1230 };
1231
1232 // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1233 static const TableEntry ForwardSTiTable[] = {
1234 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
1235 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
1236 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
1237 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
1238 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
1239 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
1240 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
1241 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
1242 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
1243 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
1244 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
1245 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
1246 };
1247
1248 // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1249 static const TableEntry ReverseSTiTable[] = {
1250 { X86::ADD_Fp32 , X86::ADD_FrST0 },
1251 { X86::ADD_Fp64 , X86::ADD_FrST0 },
1252 { X86::ADD_Fp80 , X86::ADD_FrST0 },
1253 { X86::DIV_Fp32 , X86::DIV_FrST0 },
1254 { X86::DIV_Fp64 , X86::DIV_FrST0 },
1255 { X86::DIV_Fp80 , X86::DIV_FrST0 },
1256 { X86::MUL_Fp32 , X86::MUL_FrST0 },
1257 { X86::MUL_Fp64 , X86::MUL_FrST0 },
1258 { X86::MUL_Fp80 , X86::MUL_FrST0 },
1259 { X86::SUB_Fp32 , X86::SUB_FrST0 },
1260 { X86::SUB_Fp64 , X86::SUB_FrST0 },
1261 { X86::SUB_Fp80 , X86::SUB_FrST0 },
1262 };
1263
1264
1265 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1266 /// instructions which need to be simplified and possibly transformed.
1267 ///
1268 /// Result: ST(0) = fsub ST(0), ST(i)
1269 /// ST(i) = fsub ST(0), ST(i)
1270 /// ST(0) = fsubr ST(0), ST(i)
1271 /// ST(i) = fsubr ST(0), ST(i)
1272 ///
handleTwoArgFP(MachineBasicBlock::iterator & I)1273 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1274 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1275 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1276 MachineInstr &MI = *I;
1277
1278 unsigned NumOperands = MI.getDesc().getNumOperands();
1279 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1280 unsigned Dest = getFPReg(MI.getOperand(0));
1281 unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1282 unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1283 bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0);
1284 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1285 DebugLoc dl = MI.getDebugLoc();
1286
1287 unsigned TOS = getStackEntry(0);
1288
1289 // One of our operands must be on the top of the stack. If neither is yet, we
1290 // need to move one.
1291 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
1292 // We can choose to move either operand to the top of the stack. If one of
1293 // the operands is killed by this instruction, we want that one so that we
1294 // can update right on top of the old version.
1295 if (KillsOp0) {
1296 moveToTop(Op0, I); // Move dead operand to TOS.
1297 TOS = Op0;
1298 } else if (KillsOp1) {
1299 moveToTop(Op1, I);
1300 TOS = Op1;
1301 } else {
1302 // All of the operands are live after this instruction executes, so we
1303 // cannot update on top of any operand. Because of this, we must
1304 // duplicate one of the stack elements to the top. It doesn't matter
1305 // which one we pick.
1306 //
1307 duplicateToTop(Op0, Dest, I);
1308 Op0 = TOS = Dest;
1309 KillsOp0 = true;
1310 }
1311 } else if (!KillsOp0 && !KillsOp1) {
1312 // If we DO have one of our operands at the top of the stack, but we don't
1313 // have a dead operand, we must duplicate one of the operands to a new slot
1314 // on the stack.
1315 duplicateToTop(Op0, Dest, I);
1316 Op0 = TOS = Dest;
1317 KillsOp0 = true;
1318 }
1319
1320 // Now we know that one of our operands is on the top of the stack, and at
1321 // least one of our operands is killed by this instruction.
1322 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1323 "Stack conditions not set up right!");
1324
1325 // We decide which form to use based on what is on the top of the stack, and
1326 // which operand is killed by this instruction.
1327 ArrayRef<TableEntry> InstTable;
1328 bool isForward = TOS == Op0;
1329 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1330 if (updateST0) {
1331 if (isForward)
1332 InstTable = ForwardST0Table;
1333 else
1334 InstTable = ReverseST0Table;
1335 } else {
1336 if (isForward)
1337 InstTable = ForwardSTiTable;
1338 else
1339 InstTable = ReverseSTiTable;
1340 }
1341
1342 int Opcode = Lookup(InstTable, MI.getOpcode());
1343 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1344
1345 // NotTOS - The register which is not on the top of stack...
1346 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1347
1348 // Replace the old instruction with a new instruction
1349 MBB->remove(&*I++);
1350 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1351
1352 // If both operands are killed, pop one off of the stack in addition to
1353 // overwriting the other one.
1354 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1355 assert(!updateST0 && "Should have updated other operand!");
1356 popStackAfter(I); // Pop the top of stack
1357 }
1358
1359 // Update stack information so that we know the destination register is now on
1360 // the stack.
1361 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1362 assert(UpdatedSlot < StackTop && Dest < 7);
1363 Stack[UpdatedSlot] = Dest;
1364 RegMap[Dest] = UpdatedSlot;
1365 MBB->getParent()->DeleteMachineInstr(&MI); // Remove the old instruction
1366 }
1367
1368 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1369 /// register arguments and no explicit destinations.
1370 ///
handleCompareFP(MachineBasicBlock::iterator & I)1371 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1372 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1373 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1374 MachineInstr &MI = *I;
1375
1376 unsigned NumOperands = MI.getDesc().getNumOperands();
1377 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1378 unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1379 unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1380 bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0);
1381 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1382
1383 // Make sure the first operand is on the top of stack, the other one can be
1384 // anywhere.
1385 moveToTop(Op0, I);
1386
1387 // Change from the pseudo instruction to the concrete instruction.
1388 MI.getOperand(0).setReg(getSTReg(Op1));
1389 MI.RemoveOperand(1);
1390 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1391
1392 // If any of the operands are killed by this instruction, free them.
1393 if (KillsOp0) freeStackSlotAfter(I, Op0);
1394 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1395 }
1396
1397 /// handleCondMovFP - Handle two address conditional move instructions. These
1398 /// instructions move a st(i) register to st(0) iff a condition is true. These
1399 /// instructions require that the first operand is at the top of the stack, but
1400 /// otherwise don't modify the stack at all.
handleCondMovFP(MachineBasicBlock::iterator & I)1401 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1402 MachineInstr &MI = *I;
1403
1404 unsigned Op0 = getFPReg(MI.getOperand(0));
1405 unsigned Op1 = getFPReg(MI.getOperand(2));
1406 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1407
1408 // The first operand *must* be on the top of the stack.
1409 moveToTop(Op0, I);
1410
1411 // Change the second operand to the stack register that the operand is in.
1412 // Change from the pseudo instruction to the concrete instruction.
1413 MI.RemoveOperand(0);
1414 MI.RemoveOperand(1);
1415 MI.getOperand(0).setReg(getSTReg(Op1));
1416 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1417
1418 // If we kill the second operand, make sure to pop it from the stack.
1419 if (Op0 != Op1 && KillsOp1) {
1420 // Get this value off of the register stack.
1421 freeStackSlotAfter(I, Op1);
1422 }
1423 }
1424
1425
1426 /// handleSpecialFP - Handle special instructions which behave unlike other
1427 /// floating point instructions. This is primarily intended for use by pseudo
1428 /// instructions.
1429 ///
handleSpecialFP(MachineBasicBlock::iterator & Inst)1430 void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) {
1431 MachineInstr &MI = *Inst;
1432
1433 if (MI.isCall()) {
1434 handleCall(Inst);
1435 return;
1436 }
1437
1438 if (MI.isReturn()) {
1439 handleReturn(Inst);
1440 return;
1441 }
1442
1443 switch (MI.getOpcode()) {
1444 default: llvm_unreachable("Unknown SpecialFP instruction!");
1445 case TargetOpcode::COPY: {
1446 // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1447 const MachineOperand &MO1 = MI.getOperand(1);
1448 const MachineOperand &MO0 = MI.getOperand(0);
1449 bool KillsSrc = MI.killsRegister(MO1.getReg());
1450
1451 // FP <- FP copy.
1452 unsigned DstFP = getFPReg(MO0);
1453 unsigned SrcFP = getFPReg(MO1);
1454 assert(isLive(SrcFP) && "Cannot copy dead register");
1455 if (KillsSrc) {
1456 // If the input operand is killed, we can just change the owner of the
1457 // incoming stack slot into the result.
1458 unsigned Slot = getSlot(SrcFP);
1459 Stack[Slot] = DstFP;
1460 RegMap[DstFP] = Slot;
1461 } else {
1462 // For COPY we just duplicate the specified value to a new stack slot.
1463 // This could be made better, but would require substantial changes.
1464 duplicateToTop(SrcFP, DstFP, Inst);
1465 }
1466 break;
1467 }
1468
1469 case TargetOpcode::IMPLICIT_DEF: {
1470 // All FP registers must be explicitly defined, so load a 0 instead.
1471 unsigned Reg = MI.getOperand(0).getReg() - X86::FP0;
1472 LLVM_DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1473 BuildMI(*MBB, Inst, MI.getDebugLoc(), TII->get(X86::LD_F0));
1474 pushReg(Reg);
1475 break;
1476 }
1477
1478 case TargetOpcode::INLINEASM: {
1479 // The inline asm MachineInstr currently only *uses* FP registers for the
1480 // 'f' constraint. These should be turned into the current ST(x) register
1481 // in the machine instr.
1482 //
1483 // There are special rules for x87 inline assembly. The compiler must know
1484 // exactly how many registers are popped and pushed implicitly by the asm.
1485 // Otherwise it is not possible to restore the stack state after the inline
1486 // asm.
1487 //
1488 // There are 3 kinds of input operands:
1489 //
1490 // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1491 // popped input operand must be in a fixed stack slot, and it is either
1492 // tied to an output operand, or in the clobber list. The MI has ST use
1493 // and def operands for these inputs.
1494 //
1495 // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1496 // preserved by the inline asm. The fixed stack slots must be STn-STm
1497 // following the popped inputs. A fixed input operand cannot be tied to
1498 // an output or appear in the clobber list. The MI has ST use operands
1499 // and no defs for these inputs.
1500 //
1501 // 3. Preserved inputs. These inputs use the "f" constraint which is
1502 // represented as an FP register. The inline asm won't change these
1503 // stack slots.
1504 //
1505 // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1506 // registers do not count as output operands. The inline asm changes the
1507 // stack as if it popped all the popped inputs and then pushed all the
1508 // output operands.
1509
1510 // Scan the assembly for ST registers used, defined and clobbered. We can
1511 // only tell clobbers from defs by looking at the asm descriptor.
1512 unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
1513 unsigned NumOps = 0;
1514 SmallSet<unsigned, 1> FRegIdx;
1515 unsigned RCID;
1516
1517 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI.getNumOperands();
1518 i != e && MI.getOperand(i).isImm(); i += 1 + NumOps) {
1519 unsigned Flags = MI.getOperand(i).getImm();
1520
1521 NumOps = InlineAsm::getNumOperandRegisters(Flags);
1522 if (NumOps != 1)
1523 continue;
1524 const MachineOperand &MO = MI.getOperand(i + 1);
1525 if (!MO.isReg())
1526 continue;
1527 unsigned STReg = MO.getReg() - X86::FP0;
1528 if (STReg >= 8)
1529 continue;
1530
1531 // If the flag has a register class constraint, this must be an operand
1532 // with constraint "f". Record its index and continue.
1533 if (InlineAsm::hasRegClassConstraint(Flags, RCID)) {
1534 FRegIdx.insert(i + 1);
1535 continue;
1536 }
1537
1538 switch (InlineAsm::getKind(Flags)) {
1539 case InlineAsm::Kind_RegUse:
1540 STUses |= (1u << STReg);
1541 break;
1542 case InlineAsm::Kind_RegDef:
1543 case InlineAsm::Kind_RegDefEarlyClobber:
1544 STDefs |= (1u << STReg);
1545 if (MO.isDead())
1546 STDeadDefs |= (1u << STReg);
1547 break;
1548 case InlineAsm::Kind_Clobber:
1549 STClobbers |= (1u << STReg);
1550 break;
1551 default:
1552 break;
1553 }
1554 }
1555
1556 if (STUses && !isMask_32(STUses))
1557 MI.emitError("fixed input regs must be last on the x87 stack");
1558 unsigned NumSTUses = countTrailingOnes(STUses);
1559
1560 // Defs must be contiguous from the stack top. ST0-STn.
1561 if (STDefs && !isMask_32(STDefs)) {
1562 MI.emitError("output regs must be last on the x87 stack");
1563 STDefs = NextPowerOf2(STDefs) - 1;
1564 }
1565 unsigned NumSTDefs = countTrailingOnes(STDefs);
1566
1567 // So must the clobbered stack slots. ST0-STm, m >= n.
1568 if (STClobbers && !isMask_32(STDefs | STClobbers))
1569 MI.emitError("clobbers must be last on the x87 stack");
1570
1571 // Popped inputs are the ones that are also clobbered or defined.
1572 unsigned STPopped = STUses & (STDefs | STClobbers);
1573 if (STPopped && !isMask_32(STPopped))
1574 MI.emitError("implicitly popped regs must be last on the x87 stack");
1575 unsigned NumSTPopped = countTrailingOnes(STPopped);
1576
1577 LLVM_DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1578 << NumSTPopped << ", and defines " << NumSTDefs
1579 << " regs.\n");
1580
1581 #ifndef NDEBUG
1582 // If any input operand uses constraint "f", all output register
1583 // constraints must be early-clobber defs.
1584 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I)
1585 if (FRegIdx.count(I)) {
1586 assert((1 << getFPReg(MI.getOperand(I)) & STDefs) == 0 &&
1587 "Operands with constraint \"f\" cannot overlap with defs");
1588 }
1589 #endif
1590
1591 // Collect all FP registers (register operands with constraints "t", "u",
1592 // and "f") to kill afer the instruction.
1593 unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1594 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1595 MachineOperand &Op = MI.getOperand(i);
1596 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1597 continue;
1598 unsigned FPReg = getFPReg(Op);
1599
1600 // If we kill this operand, make sure to pop it from the stack after the
1601 // asm. We just remember it for now, and pop them all off at the end in
1602 // a batch.
1603 if (Op.isUse() && Op.isKill())
1604 FPKills |= 1U << FPReg;
1605 }
1606
1607 // Do not include registers that are implicitly popped by defs/clobbers.
1608 FPKills &= ~(STDefs | STClobbers);
1609
1610 // Now we can rearrange the live registers to match what was requested.
1611 unsigned char STUsesArray[8];
1612
1613 for (unsigned I = 0; I < NumSTUses; ++I)
1614 STUsesArray[I] = I;
1615
1616 shuffleStackTop(STUsesArray, NumSTUses, Inst);
1617 LLVM_DEBUG({
1618 dbgs() << "Before asm: ";
1619 dumpStack();
1620 });
1621
1622 // With the stack layout fixed, rewrite the FP registers.
1623 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1624 MachineOperand &Op = MI.getOperand(i);
1625 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1626 continue;
1627
1628 unsigned FPReg = getFPReg(Op);
1629
1630 if (FRegIdx.count(i))
1631 // Operand with constraint "f".
1632 Op.setReg(getSTReg(FPReg));
1633 else
1634 // Operand with a single register class constraint ("t" or "u").
1635 Op.setReg(X86::ST0 + FPReg);
1636 }
1637
1638 // Simulate the inline asm popping its inputs and pushing its outputs.
1639 StackTop -= NumSTPopped;
1640
1641 for (unsigned i = 0; i < NumSTDefs; ++i)
1642 pushReg(NumSTDefs - i - 1);
1643
1644 // If this asm kills any FP registers (is the last use of them) we must
1645 // explicitly emit pop instructions for them. Do this now after the asm has
1646 // executed so that the ST(x) numbers are not off (which would happen if we
1647 // did this inline with operand rewriting).
1648 //
1649 // Note: this might be a non-optimal pop sequence. We might be able to do
1650 // better by trying to pop in stack order or something.
1651 while (FPKills) {
1652 unsigned FPReg = countTrailingZeros(FPKills);
1653 if (isLive(FPReg))
1654 freeStackSlotAfter(Inst, FPReg);
1655 FPKills &= ~(1U << FPReg);
1656 }
1657
1658 // Don't delete the inline asm!
1659 return;
1660 }
1661 }
1662
1663 Inst = MBB->erase(Inst); // Remove the pseudo instruction
1664
1665 // We want to leave I pointing to the previous instruction, but what if we
1666 // just erased the first instruction?
1667 if (Inst == MBB->begin()) {
1668 LLVM_DEBUG(dbgs() << "Inserting dummy KILL\n");
1669 Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL));
1670 } else
1671 --Inst;
1672 }
1673
setKillFlags(MachineBasicBlock & MBB) const1674 void FPS::setKillFlags(MachineBasicBlock &MBB) const {
1675 const TargetRegisterInfo &TRI =
1676 *MBB.getParent()->getSubtarget().getRegisterInfo();
1677 LivePhysRegs LPR(TRI);
1678
1679 LPR.addLiveOuts(MBB);
1680
1681 for (MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend();
1682 I != E; ++I) {
1683 if (I->isDebugInstr())
1684 continue;
1685
1686 std::bitset<8> Defs;
1687 SmallVector<MachineOperand *, 2> Uses;
1688 MachineInstr &MI = *I;
1689
1690 for (auto &MO : I->operands()) {
1691 if (!MO.isReg())
1692 continue;
1693
1694 unsigned Reg = MO.getReg() - X86::FP0;
1695
1696 if (Reg >= 8)
1697 continue;
1698
1699 if (MO.isDef()) {
1700 Defs.set(Reg);
1701 if (!LPR.contains(MO.getReg()))
1702 MO.setIsDead();
1703 } else
1704 Uses.push_back(&MO);
1705 }
1706
1707 for (auto *MO : Uses)
1708 if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg()))
1709 MO->setIsKill();
1710
1711 LPR.stepBackward(MI);
1712 }
1713 }
1714