1//===-- X86InstrArithmetic.td - Integer Arithmetic Instrs --*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the integer arithmetic instructions in the X86
11// architecture.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// LEA - Load Effective Address
17let SchedRW = [WriteLEA] in {
18let hasSideEffects = 0 in
19def LEA16r   : I<0x8D, MRMSrcMem,
20                 (outs GR16:$dst), (ins anymem:$src),
21                 "lea{w}\t{$src|$dst}, {$dst|$src}", []>, OpSize16;
22let isReMaterializable = 1 in
23def LEA32r   : I<0x8D, MRMSrcMem,
24                 (outs GR32:$dst), (ins anymem:$src),
25                 "lea{l}\t{$src|$dst}, {$dst|$src}",
26                 [(set GR32:$dst, lea32addr:$src)]>,
27                 OpSize32, Requires<[Not64BitMode]>;
28
29def LEA64_32r : I<0x8D, MRMSrcMem,
30                  (outs GR32:$dst), (ins lea64_32mem:$src),
31                  "lea{l}\t{$src|$dst}, {$dst|$src}",
32                  [(set GR32:$dst, lea64_32addr:$src)]>,
33                  OpSize32, Requires<[In64BitMode]>;
34
35let isReMaterializable = 1 in
36def LEA64r   : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins lea64mem:$src),
37                  "lea{q}\t{$src|$dst}, {$dst|$src}",
38                  [(set GR64:$dst, lea64addr:$src)]>;
39} // SchedRW
40
41//===----------------------------------------------------------------------===//
42//  Fixed-Register Multiplication and Division Instructions.
43//
44
45// SchedModel info for instruction that loads one value and gets the second
46// (and possibly third) value from a register.
47// This is used for instructions that put the memory operands before other
48// uses.
49class SchedLoadReg<SchedWrite SW> : Sched<[SW,
50  // Memory operand.
51  ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
52  // Register reads (implicit or explicit).
53  ReadAfterLd, ReadAfterLd]>;
54
55// Extra precision multiplication
56
57// AL is really implied by AX, but the registers in Defs must match the
58// SDNode results (i8, i32).
59// AL,AH = AL*GR8
60let Defs = [AL,EFLAGS,AX], Uses = [AL] in
61def MUL8r  : I<0xF6, MRM4r, (outs),  (ins GR8:$src), "mul{b}\t$src",
62               // FIXME: Used for 8-bit mul, ignore result upper 8 bits.
63               // This probably ought to be moved to a def : Pat<> if the
64               // syntax can be accepted.
65               [(set AL, (mul AL, GR8:$src)),
66                (implicit EFLAGS)]>, Sched<[WriteIMul]>;
67// AX,DX = AX*GR16
68let Defs = [AX,DX,EFLAGS], Uses = [AX], hasSideEffects = 0 in
69def MUL16r : I<0xF7, MRM4r, (outs),  (ins GR16:$src),
70               "mul{w}\t$src",
71               []>, OpSize16, Sched<[WriteIMul]>;
72// EAX,EDX = EAX*GR32
73let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], hasSideEffects = 0 in
74def MUL32r : I<0xF7, MRM4r, (outs),  (ins GR32:$src),
75               "mul{l}\t$src",
76               [/*(set EAX, EDX, EFLAGS, (X86umul_flag EAX, GR32:$src))*/]>,
77               OpSize32, Sched<[WriteIMul]>;
78// RAX,RDX = RAX*GR64
79let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], hasSideEffects = 0 in
80def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src),
81                "mul{q}\t$src",
82                [/*(set RAX, RDX, EFLAGS, (X86umul_flag RAX, GR64:$src))*/]>,
83                Sched<[WriteIMul64]>;
84// AL,AH = AL*[mem8]
85let Defs = [AL,EFLAGS,AX], Uses = [AL] in
86def MUL8m  : I<0xF6, MRM4m, (outs), (ins i8mem :$src),
87               "mul{b}\t$src",
88               // FIXME: Used for 8-bit mul, ignore result upper 8 bits.
89               // This probably ought to be moved to a def : Pat<> if the
90               // syntax can be accepted.
91               [(set AL, (mul AL, (loadi8 addr:$src))),
92                (implicit EFLAGS)]>, SchedLoadReg<WriteIMul.Folded>;
93// AX,DX = AX*[mem16]
94let mayLoad = 1, hasSideEffects = 0 in {
95let Defs = [AX,DX,EFLAGS], Uses = [AX] in
96def MUL16m : I<0xF7, MRM4m, (outs), (ins i16mem:$src),
97               "mul{w}\t$src", []>, OpSize16, SchedLoadReg<WriteIMul.Folded>;
98// EAX,EDX = EAX*[mem32]
99let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
100def MUL32m : I<0xF7, MRM4m, (outs), (ins i32mem:$src),
101              "mul{l}\t$src", []>, OpSize32, SchedLoadReg<WriteIMul.Folded>;
102// RAX,RDX = RAX*[mem64]
103let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
104def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src),
105                "mul{q}\t$src", []>, SchedLoadReg<WriteIMul64.Folded>,
106                Requires<[In64BitMode]>;
107}
108
109let hasSideEffects = 0 in {
110// AL,AH = AL*GR8
111let Defs = [AL,EFLAGS,AX], Uses = [AL] in
112def IMUL8r  : I<0xF6, MRM5r, (outs),  (ins GR8:$src), "imul{b}\t$src", []>,
113                Sched<[WriteIMul]>;
114// AX,DX = AX*GR16
115let Defs = [AX,DX,EFLAGS], Uses = [AX] in
116def IMUL16r : I<0xF7, MRM5r, (outs),  (ins GR16:$src), "imul{w}\t$src", []>,
117                OpSize16, Sched<[WriteIMul]>;
118// EAX,EDX = EAX*GR32
119let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
120def IMUL32r : I<0xF7, MRM5r, (outs),  (ins GR32:$src), "imul{l}\t$src", []>,
121                OpSize32, Sched<[WriteIMul]>;
122// RAX,RDX = RAX*GR64
123let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
124def IMUL64r : RI<0xF7, MRM5r, (outs), (ins GR64:$src), "imul{q}\t$src", []>,
125                 Sched<[WriteIMul64]>;
126
127let mayLoad = 1 in {
128// AL,AH = AL*[mem8]
129let Defs = [AL,EFLAGS,AX], Uses = [AL] in
130def IMUL8m  : I<0xF6, MRM5m, (outs), (ins i8mem :$src),
131                "imul{b}\t$src", []>, SchedLoadReg<WriteIMul.Folded>;
132// AX,DX = AX*[mem16]
133let Defs = [AX,DX,EFLAGS], Uses = [AX] in
134def IMUL16m : I<0xF7, MRM5m, (outs), (ins i16mem:$src),
135                "imul{w}\t$src", []>, OpSize16, SchedLoadReg<WriteIMul.Folded>;
136// EAX,EDX = EAX*[mem32]
137let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
138def IMUL32m : I<0xF7, MRM5m, (outs), (ins i32mem:$src),
139                "imul{l}\t$src", []>, OpSize32, SchedLoadReg<WriteIMul.Folded>;
140// RAX,RDX = RAX*[mem64]
141let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
142def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src),
143                 "imul{q}\t$src", []>, SchedLoadReg<WriteIMul64.Folded>,
144                 Requires<[In64BitMode]>;
145}
146} // hasSideEffects
147
148
149let Defs = [EFLAGS] in {
150let Constraints = "$src1 = $dst" in {
151
152let isCommutable = 1 in {
153// X = IMUL Y, Z --> X = IMUL Z, Y
154// Register-Register Signed Integer Multiply
155def IMUL16rr : I<0xAF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2),
156                 "imul{w}\t{$src2, $dst|$dst, $src2}",
157                 [(set GR16:$dst, EFLAGS,
158                       (X86smul_flag GR16:$src1, GR16:$src2))]>,
159                 Sched<[WriteIMul]>, TB, OpSize16;
160def IMUL32rr : I<0xAF, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1,GR32:$src2),
161                 "imul{l}\t{$src2, $dst|$dst, $src2}",
162                 [(set GR32:$dst, EFLAGS,
163                       (X86smul_flag GR32:$src1, GR32:$src2))]>,
164                 Sched<[WriteIMul]>, TB, OpSize32;
165def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst),
166                                   (ins GR64:$src1, GR64:$src2),
167                  "imul{q}\t{$src2, $dst|$dst, $src2}",
168                  [(set GR64:$dst, EFLAGS,
169                        (X86smul_flag GR64:$src1, GR64:$src2))]>,
170                  Sched<[WriteIMul64]>, TB;
171} // isCommutable
172
173// Register-Memory Signed Integer Multiply
174def IMUL16rm : I<0xAF, MRMSrcMem, (outs GR16:$dst),
175                                  (ins GR16:$src1, i16mem:$src2),
176                 "imul{w}\t{$src2, $dst|$dst, $src2}",
177                 [(set GR16:$dst, EFLAGS,
178                       (X86smul_flag GR16:$src1, (loadi16 addr:$src2)))]>,
179                 Sched<[WriteIMul.Folded, ReadAfterLd]>, TB, OpSize16;
180def IMUL32rm : I<0xAF, MRMSrcMem, (outs GR32:$dst),
181                 (ins GR32:$src1, i32mem:$src2),
182                 "imul{l}\t{$src2, $dst|$dst, $src2}",
183                 [(set GR32:$dst, EFLAGS,
184                       (X86smul_flag GR32:$src1, (loadi32 addr:$src2)))]>,
185                 Sched<[WriteIMul.Folded, ReadAfterLd]>, TB, OpSize32;
186def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst),
187                                   (ins GR64:$src1, i64mem:$src2),
188                  "imul{q}\t{$src2, $dst|$dst, $src2}",
189                  [(set GR64:$dst, EFLAGS,
190                        (X86smul_flag GR64:$src1, (loadi64 addr:$src2)))]>,
191                  Sched<[WriteIMul64.Folded, ReadAfterLd]>, TB;
192} // Constraints = "$src1 = $dst"
193
194} // Defs = [EFLAGS]
195
196// Surprisingly enough, these are not two address instructions!
197let Defs = [EFLAGS] in {
198// Register-Integer Signed Integer Multiply
199def IMUL16rri  : Ii16<0x69, MRMSrcReg,                      // GR16 = GR16*I16
200                      (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
201                      "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
202                      [(set GR16:$dst, EFLAGS,
203                            (X86smul_flag GR16:$src1, imm:$src2))]>,
204                      Sched<[WriteIMul]>, OpSize16;
205def IMUL16rri8 : Ii8<0x6B, MRMSrcReg,                       // GR16 = GR16*I8
206                     (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
207                     "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
208                     [(set GR16:$dst, EFLAGS,
209                           (X86smul_flag GR16:$src1, i16immSExt8:$src2))]>,
210                     Sched<[WriteIMul]>, OpSize16;
211def IMUL32rri  : Ii32<0x69, MRMSrcReg,                      // GR32 = GR32*I32
212                      (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
213                      "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
214                      [(set GR32:$dst, EFLAGS,
215                            (X86smul_flag GR32:$src1, imm:$src2))]>,
216                      Sched<[WriteIMul]>, OpSize32;
217def IMUL32rri8 : Ii8<0x6B, MRMSrcReg,                       // GR32 = GR32*I8
218                     (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
219                     "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
220                     [(set GR32:$dst, EFLAGS,
221                           (X86smul_flag GR32:$src1, i32immSExt8:$src2))]>,
222                     Sched<[WriteIMul]>, OpSize32;
223def IMUL64rri32 : RIi32S<0x69, MRMSrcReg,                    // GR64 = GR64*I32
224                         (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
225                         "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
226                         [(set GR64:$dst, EFLAGS,
227                             (X86smul_flag GR64:$src1, i64immSExt32:$src2))]>,
228                         Sched<[WriteIMul64]>;
229def IMUL64rri8 : RIi8<0x6B, MRMSrcReg,                      // GR64 = GR64*I8
230                      (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
231                      "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
232                      [(set GR64:$dst, EFLAGS,
233                            (X86smul_flag GR64:$src1, i64immSExt8:$src2))]>,
234                      Sched<[WriteIMul64]>;
235
236// Memory-Integer Signed Integer Multiply
237def IMUL16rmi  : Ii16<0x69, MRMSrcMem,                     // GR16 = [mem16]*I16
238                      (outs GR16:$dst), (ins i16mem:$src1, i16imm:$src2),
239                      "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
240                      [(set GR16:$dst, EFLAGS,
241                            (X86smul_flag (loadi16 addr:$src1), imm:$src2))]>,
242                      Sched<[WriteIMul.Folded]>, OpSize16;
243def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem,                       // GR16 = [mem16]*I8
244                     (outs GR16:$dst), (ins i16mem:$src1, i16i8imm :$src2),
245                     "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
246                     [(set GR16:$dst, EFLAGS,
247                           (X86smul_flag (loadi16 addr:$src1),
248                                         i16immSExt8:$src2))]>,
249                     Sched<[WriteIMul.Folded]>, OpSize16;
250def IMUL32rmi  : Ii32<0x69, MRMSrcMem,                     // GR32 = [mem32]*I32
251                      (outs GR32:$dst), (ins i32mem:$src1, i32imm:$src2),
252                      "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
253                      [(set GR32:$dst, EFLAGS,
254                            (X86smul_flag (loadi32 addr:$src1), imm:$src2))]>,
255                      Sched<[WriteIMul.Folded]>, OpSize32;
256def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem,                       // GR32 = [mem32]*I8
257                     (outs GR32:$dst), (ins i32mem:$src1, i32i8imm: $src2),
258                     "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
259                     [(set GR32:$dst, EFLAGS,
260                           (X86smul_flag (loadi32 addr:$src1),
261                                         i32immSExt8:$src2))]>,
262                     Sched<[WriteIMul.Folded]>, OpSize32;
263def IMUL64rmi32 : RIi32S<0x69, MRMSrcMem,                   // GR64 = [mem64]*I32
264                         (outs GR64:$dst), (ins i64mem:$src1, i64i32imm:$src2),
265                         "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
266                         [(set GR64:$dst, EFLAGS,
267                              (X86smul_flag (loadi64 addr:$src1),
268                                            i64immSExt32:$src2))]>,
269                         Sched<[WriteIMul64.Folded]>;
270def IMUL64rmi8 : RIi8<0x6B, MRMSrcMem,                      // GR64 = [mem64]*I8
271                      (outs GR64:$dst), (ins i64mem:$src1, i64i8imm: $src2),
272                      "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
273                      [(set GR64:$dst, EFLAGS,
274                            (X86smul_flag (loadi64 addr:$src1),
275                                          i64immSExt8:$src2))]>,
276                      Sched<[WriteIMul64.Folded]>;
277} // Defs = [EFLAGS]
278
279// unsigned division/remainder
280let hasSideEffects = 1 in { // so that we don't speculatively execute
281let Defs = [AL,AH,EFLAGS], Uses = [AX] in
282def DIV8r  : I<0xF6, MRM6r, (outs),  (ins GR8:$src),    // AX/r8 = AL,AH
283               "div{b}\t$src", []>, Sched<[WriteDiv8]>;
284let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
285def DIV16r : I<0xF7, MRM6r, (outs),  (ins GR16:$src),   // DX:AX/r16 = AX,DX
286               "div{w}\t$src", []>, Sched<[WriteDiv16]>, OpSize16;
287let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
288def DIV32r : I<0xF7, MRM6r, (outs),  (ins GR32:$src),   // EDX:EAX/r32 = EAX,EDX
289               "div{l}\t$src", []>, Sched<[WriteDiv32]>, OpSize32;
290// RDX:RAX/r64 = RAX,RDX
291let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
292def DIV64r : RI<0xF7, MRM6r, (outs), (ins GR64:$src),
293                "div{q}\t$src", []>, Sched<[WriteDiv64]>;
294
295let mayLoad = 1 in {
296let Defs = [AL,AH,EFLAGS], Uses = [AX] in
297def DIV8m  : I<0xF6, MRM6m, (outs), (ins i8mem:$src),   // AX/[mem8] = AL,AH
298               "div{b}\t$src", []>, SchedLoadReg<WriteDiv8.Folded>;
299let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
300def DIV16m : I<0xF7, MRM6m, (outs), (ins i16mem:$src),  // DX:AX/[mem16] = AX,DX
301               "div{w}\t$src", []>, OpSize16, SchedLoadReg<WriteDiv16.Folded>;
302let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in    // EDX:EAX/[mem32] = EAX,EDX
303def DIV32m : I<0xF7, MRM6m, (outs), (ins i32mem:$src),
304               "div{l}\t$src", []>, SchedLoadReg<WriteDiv32.Folded>, OpSize32;
305// RDX:RAX/[mem64] = RAX,RDX
306let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
307def DIV64m : RI<0xF7, MRM6m, (outs), (ins i64mem:$src),
308                "div{q}\t$src", []>, SchedLoadReg<WriteDiv64.Folded>,
309                Requires<[In64BitMode]>;
310}
311
312// Signed division/remainder.
313let Defs = [AL,AH,EFLAGS], Uses = [AX] in
314def IDIV8r : I<0xF6, MRM7r, (outs),  (ins GR8:$src),    // AX/r8 = AL,AH
315               "idiv{b}\t$src", []>, Sched<[WriteIDiv8]>;
316let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
317def IDIV16r: I<0xF7, MRM7r, (outs),  (ins GR16:$src),   // DX:AX/r16 = AX,DX
318               "idiv{w}\t$src", []>, Sched<[WriteIDiv16]>, OpSize16;
319let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
320def IDIV32r: I<0xF7, MRM7r, (outs),  (ins GR32:$src),   // EDX:EAX/r32 = EAX,EDX
321               "idiv{l}\t$src", []>, Sched<[WriteIDiv32]>, OpSize32;
322// RDX:RAX/r64 = RAX,RDX
323let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
324def IDIV64r: RI<0xF7, MRM7r, (outs), (ins GR64:$src),
325                "idiv{q}\t$src", []>, Sched<[WriteIDiv64]>;
326
327let mayLoad = 1 in {
328let Defs = [AL,AH,EFLAGS], Uses = [AX] in
329def IDIV8m : I<0xF6, MRM7m, (outs), (ins i8mem:$src),   // AX/[mem8] = AL,AH
330               "idiv{b}\t$src", []>, SchedLoadReg<WriteIDiv8.Folded>;
331let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
332def IDIV16m: I<0xF7, MRM7m, (outs), (ins i16mem:$src),  // DX:AX/[mem16] = AX,DX
333               "idiv{w}\t$src", []>, OpSize16, SchedLoadReg<WriteIDiv16.Folded>;
334let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in    // EDX:EAX/[mem32] = EAX,EDX
335def IDIV32m: I<0xF7, MRM7m, (outs), (ins i32mem:$src),
336               "idiv{l}\t$src", []>, OpSize32, SchedLoadReg<WriteIDiv32.Folded>;
337let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in // RDX:RAX/[mem64] = RAX,RDX
338def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src),
339                "idiv{q}\t$src", []>, SchedLoadReg<WriteIDiv64.Folded>,
340                Requires<[In64BitMode]>;
341}
342} // hasSideEffects = 0
343
344//===----------------------------------------------------------------------===//
345//  Two address Instructions.
346//
347
348// unary instructions
349let CodeSize = 2 in {
350let Defs = [EFLAGS] in {
351let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
352def NEG8r  : I<0xF6, MRM3r, (outs GR8 :$dst), (ins GR8 :$src1),
353               "neg{b}\t$dst",
354               [(set GR8:$dst, (ineg GR8:$src1)),
355                (implicit EFLAGS)]>;
356def NEG16r : I<0xF7, MRM3r, (outs GR16:$dst), (ins GR16:$src1),
357               "neg{w}\t$dst",
358               [(set GR16:$dst, (ineg GR16:$src1)),
359                (implicit EFLAGS)]>, OpSize16;
360def NEG32r : I<0xF7, MRM3r, (outs GR32:$dst), (ins GR32:$src1),
361               "neg{l}\t$dst",
362               [(set GR32:$dst, (ineg GR32:$src1)),
363                (implicit EFLAGS)]>, OpSize32;
364def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src1), "neg{q}\t$dst",
365                [(set GR64:$dst, (ineg GR64:$src1)),
366                 (implicit EFLAGS)]>;
367} // Constraints = "$src1 = $dst", SchedRW
368
369// Read-modify-write negate.
370let SchedRW = [WriteALURMW] in {
371def NEG8m  : I<0xF6, MRM3m, (outs), (ins i8mem :$dst),
372               "neg{b}\t$dst",
373               [(store (ineg (loadi8 addr:$dst)), addr:$dst),
374                (implicit EFLAGS)]>;
375def NEG16m : I<0xF7, MRM3m, (outs), (ins i16mem:$dst),
376               "neg{w}\t$dst",
377               [(store (ineg (loadi16 addr:$dst)), addr:$dst),
378                (implicit EFLAGS)]>, OpSize16;
379def NEG32m : I<0xF7, MRM3m, (outs), (ins i32mem:$dst),
380               "neg{l}\t$dst",
381               [(store (ineg (loadi32 addr:$dst)), addr:$dst),
382                (implicit EFLAGS)]>, OpSize32;
383def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst",
384                [(store (ineg (loadi64 addr:$dst)), addr:$dst),
385                 (implicit EFLAGS)]>,
386                Requires<[In64BitMode]>;
387} // SchedRW
388} // Defs = [EFLAGS]
389
390
391// Note: NOT does not set EFLAGS!
392
393let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
394def NOT8r  : I<0xF6, MRM2r, (outs GR8 :$dst), (ins GR8 :$src1),
395               "not{b}\t$dst",
396               [(set GR8:$dst, (not GR8:$src1))]>;
397def NOT16r : I<0xF7, MRM2r, (outs GR16:$dst), (ins GR16:$src1),
398               "not{w}\t$dst",
399               [(set GR16:$dst, (not GR16:$src1))]>, OpSize16;
400def NOT32r : I<0xF7, MRM2r, (outs GR32:$dst), (ins GR32:$src1),
401               "not{l}\t$dst",
402               [(set GR32:$dst, (not GR32:$src1))]>, OpSize32;
403def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src1), "not{q}\t$dst",
404                [(set GR64:$dst, (not GR64:$src1))]>;
405} // Constraints = "$src1 = $dst", SchedRW
406
407let SchedRW = [WriteALURMW] in {
408def NOT8m  : I<0xF6, MRM2m, (outs), (ins i8mem :$dst),
409               "not{b}\t$dst",
410               [(store (not (loadi8 addr:$dst)), addr:$dst)]>;
411def NOT16m : I<0xF7, MRM2m, (outs), (ins i16mem:$dst),
412               "not{w}\t$dst",
413               [(store (not (loadi16 addr:$dst)), addr:$dst)]>,
414               OpSize16;
415def NOT32m : I<0xF7, MRM2m, (outs), (ins i32mem:$dst),
416               "not{l}\t$dst",
417               [(store (not (loadi32 addr:$dst)), addr:$dst)]>,
418               OpSize32;
419def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst",
420                [(store (not (loadi64 addr:$dst)), addr:$dst)]>,
421                Requires<[In64BitMode]>;
422} // SchedRW
423} // CodeSize
424
425// TODO: inc/dec is slow for P4, but fast for Pentium-M.
426let Defs = [EFLAGS] in {
427let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
428let CodeSize = 2 in
429def INC8r  : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1),
430               "inc{b}\t$dst",
431               [(set GR8:$dst, EFLAGS, (X86inc_flag GR8:$src1))]>;
432let isConvertibleToThreeAddress = 1, CodeSize = 2 in { // Can xform into LEA.
433def INC16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1),
434               "inc{w}\t$dst",
435               [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))]>, OpSize16;
436def INC32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1),
437               "inc{l}\t$dst",
438               [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))]>, OpSize32;
439def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src1), "inc{q}\t$dst",
440                [(set GR64:$dst, EFLAGS, (X86inc_flag GR64:$src1))]>;
441} // isConvertibleToThreeAddress = 1, CodeSize = 2
442
443// Short forms only valid in 32-bit mode. Selected during MCInst lowering.
444let CodeSize = 1, hasSideEffects = 0 in {
445def INC16r_alt : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
446                   "inc{w}\t$dst", []>,
447                 OpSize16, Requires<[Not64BitMode]>;
448def INC32r_alt : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
449                   "inc{l}\t$dst", []>,
450                 OpSize32, Requires<[Not64BitMode]>;
451} // CodeSize = 1, hasSideEffects = 0
452} // Constraints = "$src1 = $dst", SchedRW
453
454let CodeSize = 2, SchedRW = [WriteALURMW] in {
455let Predicates = [UseIncDec] in {
456  def INC8m  : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "inc{b}\t$dst",
457               [(store (add (loadi8 addr:$dst), 1), addr:$dst),
458                (implicit EFLAGS)]>;
459  def INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
460               [(store (add (loadi16 addr:$dst), 1), addr:$dst),
461                (implicit EFLAGS)]>, OpSize16;
462  def INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
463               [(store (add (loadi32 addr:$dst), 1), addr:$dst),
464                (implicit EFLAGS)]>, OpSize32;
465} // Predicates
466let Predicates = [UseIncDec, In64BitMode] in {
467  def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst",
468                  [(store (add (loadi64 addr:$dst), 1), addr:$dst),
469                   (implicit EFLAGS)]>;
470} // Predicates
471} // CodeSize = 2, SchedRW
472
473let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
474let CodeSize = 2 in
475def DEC8r  : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1),
476               "dec{b}\t$dst",
477               [(set GR8:$dst, EFLAGS, (X86dec_flag GR8:$src1))]>;
478let isConvertibleToThreeAddress = 1, CodeSize = 2 in { // Can xform into LEA.
479def DEC16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1),
480               "dec{w}\t$dst",
481               [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))]>, OpSize16;
482def DEC32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1),
483               "dec{l}\t$dst",
484               [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))]>, OpSize32;
485def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src1), "dec{q}\t$dst",
486                [(set GR64:$dst, EFLAGS, (X86dec_flag GR64:$src1))]>;
487} // isConvertibleToThreeAddress = 1, CodeSize = 2
488
489// Short forms only valid in 32-bit mode. Selected during MCInst lowering.
490let CodeSize = 1, hasSideEffects = 0 in {
491def DEC16r_alt : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
492                   "dec{w}\t$dst", []>,
493                 OpSize16, Requires<[Not64BitMode]>;
494def DEC32r_alt : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
495                   "dec{l}\t$dst", []>,
496                 OpSize32, Requires<[Not64BitMode]>;
497} // CodeSize = 1, hasSideEffects = 0
498} // Constraints = "$src1 = $dst", SchedRW
499
500
501let CodeSize = 2, SchedRW = [WriteALURMW] in {
502let Predicates = [UseIncDec] in {
503  def DEC8m  : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "dec{b}\t$dst",
504               [(store (add (loadi8 addr:$dst), -1), addr:$dst),
505                (implicit EFLAGS)]>;
506  def DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
507               [(store (add (loadi16 addr:$dst), -1), addr:$dst),
508                (implicit EFLAGS)]>, OpSize16;
509  def DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
510               [(store (add (loadi32 addr:$dst), -1), addr:$dst),
511                (implicit EFLAGS)]>, OpSize32;
512} // Predicates
513let Predicates = [UseIncDec, In64BitMode] in {
514  def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
515                  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
516                   (implicit EFLAGS)]>;
517} // Predicates
518} // CodeSize = 2, SchedRW
519} // Defs = [EFLAGS]
520
521/// X86TypeInfo - This is a bunch of information that describes relevant X86
522/// information about value types.  For example, it can tell you what the
523/// register class and preferred load to use.
524class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass,
525                  PatFrag loadnode, X86MemOperand memoperand, ImmType immkind,
526                  Operand immoperand, SDPatternOperator immoperator,
527                  Operand imm8operand, SDPatternOperator imm8operator,
528                  bit hasOddOpcode, OperandSize opSize,
529                  bit hasREX_WPrefix> {
530  /// VT - This is the value type itself.
531  ValueType VT = vt;
532
533  /// InstrSuffix - This is the suffix used on instructions with this type.  For
534  /// example, i8 -> "b", i16 -> "w", i32 -> "l", i64 -> "q".
535  string InstrSuffix = instrsuffix;
536
537  /// RegClass - This is the register class associated with this type.  For
538  /// example, i8 -> GR8, i16 -> GR16, i32 -> GR32, i64 -> GR64.
539  RegisterClass RegClass = regclass;
540
541  /// LoadNode - This is the load node associated with this type.  For
542  /// example, i8 -> loadi8, i16 -> loadi16, i32 -> loadi32, i64 -> loadi64.
543  PatFrag LoadNode = loadnode;
544
545  /// MemOperand - This is the memory operand associated with this type.  For
546  /// example, i8 -> i8mem, i16 -> i16mem, i32 -> i32mem, i64 -> i64mem.
547  X86MemOperand MemOperand = memoperand;
548
549  /// ImmEncoding - This is the encoding of an immediate of this type.  For
550  /// example, i8 -> Imm8, i16 -> Imm16, i32 -> Imm32.  Note that i64 -> Imm32
551  /// since the immediate fields of i64 instructions is a 32-bit sign extended
552  /// value.
553  ImmType ImmEncoding = immkind;
554
555  /// ImmOperand - This is the operand kind of an immediate of this type.  For
556  /// example, i8 -> i8imm, i16 -> i16imm, i32 -> i32imm.  Note that i64 ->
557  /// i64i32imm since the immediate fields of i64 instructions is a 32-bit sign
558  /// extended value.
559  Operand ImmOperand = immoperand;
560
561  /// ImmOperator - This is the operator that should be used to match an
562  /// immediate of this kind in a pattern (e.g. imm, or i64immSExt32).
563  SDPatternOperator ImmOperator = immoperator;
564
565  /// Imm8Operand - This is the operand kind to use for an imm8 of this type.
566  /// For example, i8 -> <invalid>, i16 -> i16i8imm, i32 -> i32i8imm.  This is
567  /// only used for instructions that have a sign-extended imm8 field form.
568  Operand Imm8Operand = imm8operand;
569
570  /// Imm8Operator - This is the operator that should be used to match an 8-bit
571  /// sign extended immediate of this kind in a pattern (e.g. imm16immSExt8).
572  SDPatternOperator Imm8Operator = imm8operator;
573
574  /// HasOddOpcode - This bit is true if the instruction should have an odd (as
575  /// opposed to even) opcode.  Operations on i8 are usually even, operations on
576  /// other datatypes are odd.
577  bit HasOddOpcode = hasOddOpcode;
578
579  /// OpSize - Selects whether the instruction needs a 0x66 prefix based on
580  /// 16-bit vs 32-bit mode. i8/i64 set this to OpSizeFixed. i16 sets this
581  /// to Opsize16. i32 sets this to OpSize32.
582  OperandSize OpSize = opSize;
583
584  /// HasREX_WPrefix - This bit is set to true if the instruction should have
585  /// the 0x40 REX prefix.  This is set for i64 types.
586  bit HasREX_WPrefix = hasREX_WPrefix;
587}
588
589def invalid_node : SDNode<"<<invalid_node>>", SDTIntLeaf,[],"<<invalid_node>>">;
590
591
592def Xi8  : X86TypeInfo<i8, "b", GR8, loadi8, i8mem,
593                       Imm8, i8imm, imm8_su, i8imm, invalid_node,
594                       0, OpSizeFixed, 0>;
595def Xi16 : X86TypeInfo<i16, "w", GR16, loadi16, i16mem,
596                       Imm16, i16imm, imm16_su, i16i8imm, i16immSExt8_su,
597                       1, OpSize16, 0>;
598def Xi32 : X86TypeInfo<i32, "l", GR32, loadi32, i32mem,
599                       Imm32, i32imm, imm32_su, i32i8imm, i32immSExt8_su,
600                       1, OpSize32, 0>;
601def Xi64 : X86TypeInfo<i64, "q", GR64, loadi64, i64mem,
602                       Imm32S, i64i32imm, i64immSExt32_su, i64i8imm, i64immSExt8_su,
603                       1, OpSizeFixed, 1>;
604
605/// ITy - This instruction base class takes the type info for the instruction.
606/// Using this, it:
607/// 1. Concatenates together the instruction mnemonic with the appropriate
608///    suffix letter, a tab, and the arguments.
609/// 2. Infers whether the instruction should have a 0x66 prefix byte.
610/// 3. Infers whether the instruction should have a 0x40 REX_W prefix.
611/// 4. Infers whether the low bit of the opcode should be 0 (for i8 operations)
612///    or 1 (for i16,i32,i64 operations).
613class ITy<bits<8> opcode, Format f, X86TypeInfo typeinfo, dag outs, dag ins,
614          string mnemonic, string args, list<dag> pattern>
615  : I<{opcode{7}, opcode{6}, opcode{5}, opcode{4},
616       opcode{3}, opcode{2}, opcode{1}, typeinfo.HasOddOpcode },
617      f, outs, ins,
618      !strconcat(mnemonic, "{", typeinfo.InstrSuffix, "}\t", args), pattern> {
619
620  // Infer instruction prefixes from type info.
621  let OpSize = typeinfo.OpSize;
622  let hasREX_WPrefix  = typeinfo.HasREX_WPrefix;
623}
624
625// BinOpRR - Instructions like "add reg, reg, reg".
626class BinOpRR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
627              dag outlist, X86FoldableSchedWrite sched, list<dag> pattern>
628  : ITy<opcode, MRMDestReg, typeinfo, outlist,
629        (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
630        mnemonic, "{$src2, $src1|$src1, $src2}", pattern>,
631    Sched<[sched]>;
632
633// BinOpRR_F - Instructions like "cmp reg, Reg", where the pattern has
634// just a EFLAGS as a result.
635class BinOpRR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
636                SDPatternOperator opnode>
637  : BinOpRR<opcode, mnemonic, typeinfo, (outs), WriteALU,
638            [(set EFLAGS,
639                  (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))]>;
640
641// BinOpRR_RF - Instructions like "add reg, reg, reg", where the pattern has
642// both a regclass and EFLAGS as a result.
643class BinOpRR_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
644                 SDNode opnode>
645  : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), WriteALU,
646            [(set typeinfo.RegClass:$dst, EFLAGS,
647                  (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))]>;
648
649// BinOpRR_RFF - Instructions like "adc reg, reg, reg", where the pattern has
650// both a regclass and EFLAGS as a result, and has EFLAGS as input.
651class BinOpRR_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
652                  SDNode opnode>
653  : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), WriteADC,
654            [(set typeinfo.RegClass:$dst, EFLAGS,
655                  (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2,
656                          EFLAGS))]>;
657
658// BinOpRR_Rev - Instructions like "add reg, reg, reg" (reversed encoding).
659class BinOpRR_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
660                  X86FoldableSchedWrite sched = WriteALU>
661  : ITy<opcode, MRMSrcReg, typeinfo,
662        (outs typeinfo.RegClass:$dst),
663        (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
664        mnemonic, "{$src2, $dst|$dst, $src2}", []>,
665    Sched<[sched]> {
666  // The disassembler should know about this, but not the asmparser.
667  let isCodeGenOnly = 1;
668  let ForceDisassemble = 1;
669  let hasSideEffects = 0;
670}
671
672// BinOpRR_RDD_Rev - Instructions like "adc reg, reg, reg" (reversed encoding).
673class BinOpRR_RFF_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
674  : BinOpRR_Rev<opcode, mnemonic, typeinfo, WriteADC>;
675
676// BinOpRR_F_Rev - Instructions like "cmp reg, reg" (reversed encoding).
677class BinOpRR_F_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
678  : ITy<opcode, MRMSrcReg, typeinfo, (outs),
679        (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
680        mnemonic, "{$src2, $src1|$src1, $src2}", []>,
681    Sched<[WriteALU]> {
682  // The disassembler should know about this, but not the asmparser.
683  let isCodeGenOnly = 1;
684  let ForceDisassemble = 1;
685  let hasSideEffects = 0;
686}
687
688// BinOpRM - Instructions like "add reg, reg, [mem]".
689class BinOpRM<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
690              dag outlist, X86FoldableSchedWrite sched, list<dag> pattern>
691  : ITy<opcode, MRMSrcMem, typeinfo, outlist,
692        (ins typeinfo.RegClass:$src1, typeinfo.MemOperand:$src2),
693        mnemonic, "{$src2, $src1|$src1, $src2}", pattern>,
694    Sched<[sched.Folded, ReadAfterLd]>;
695
696// BinOpRM_F - Instructions like "cmp reg, [mem]".
697class BinOpRM_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
698                SDNode opnode>
699  : BinOpRM<opcode, mnemonic, typeinfo, (outs), WriteALU,
700            [(set EFLAGS,
701            (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
702
703// BinOpRM_RF - Instructions like "add reg, reg, [mem]".
704class BinOpRM_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
705                 SDNode opnode>
706  : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), WriteALU,
707            [(set typeinfo.RegClass:$dst, EFLAGS,
708            (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
709
710// BinOpRM_RFF - Instructions like "adc reg, reg, [mem]".
711class BinOpRM_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
712                 SDNode opnode>
713  : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), WriteADC,
714            [(set typeinfo.RegClass:$dst, EFLAGS,
715            (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2),
716                    EFLAGS))]>;
717
718// BinOpRI - Instructions like "add reg, reg, imm".
719class BinOpRI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
720              Format f, dag outlist, X86FoldableSchedWrite sched, list<dag> pattern>
721  : ITy<opcode, f, typeinfo, outlist,
722        (ins typeinfo.RegClass:$src1, typeinfo.ImmOperand:$src2),
723        mnemonic, "{$src2, $src1|$src1, $src2}", pattern>,
724    Sched<[sched]> {
725  let ImmT = typeinfo.ImmEncoding;
726}
727
728// BinOpRI_F - Instructions like "cmp reg, imm".
729class BinOpRI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
730                SDPatternOperator opnode, Format f>
731  : BinOpRI<opcode, mnemonic, typeinfo, f, (outs), WriteALU,
732            [(set EFLAGS,
733                (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
734
735// BinOpRI_RF - Instructions like "add reg, reg, imm".
736class BinOpRI_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
737                 SDNode opnode, Format f>
738  : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteALU,
739            [(set typeinfo.RegClass:$dst, EFLAGS,
740                (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
741// BinOpRI_RFF - Instructions like "adc reg, reg, imm".
742class BinOpRI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
743                 SDNode opnode, Format f>
744  : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteADC,
745            [(set typeinfo.RegClass:$dst, EFLAGS,
746                (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2,
747                        EFLAGS))]>;
748
749// BinOpRI8 - Instructions like "add reg, reg, imm8".
750class BinOpRI8<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
751               Format f, dag outlist, X86FoldableSchedWrite sched, list<dag> pattern>
752  : ITy<opcode, f, typeinfo, outlist,
753        (ins typeinfo.RegClass:$src1, typeinfo.Imm8Operand:$src2),
754        mnemonic, "{$src2, $src1|$src1, $src2}", pattern>,
755    Sched<[sched]> {
756  let ImmT = Imm8; // Always 8-bit immediate.
757}
758
759// BinOpRI8_F - Instructions like "cmp reg, imm8".
760class BinOpRI8_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
761                  SDPatternOperator opnode, Format f>
762  : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs), WriteALU,
763             [(set EFLAGS,
764               (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
765
766// BinOpRI8_RF - Instructions like "add reg, reg, imm8".
767class BinOpRI8_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
768                  SDPatternOperator opnode, Format f>
769  : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteALU,
770             [(set typeinfo.RegClass:$dst, EFLAGS,
771               (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
772
773// BinOpRI8_RFF - Instructions like "adc reg, reg, imm8".
774class BinOpRI8_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
775                   SDPatternOperator opnode, Format f>
776  : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteADC,
777             [(set typeinfo.RegClass:$dst, EFLAGS,
778               (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2,
779                       EFLAGS))]>;
780
781// BinOpMR - Instructions like "add [mem], reg".
782class BinOpMR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
783              list<dag> pattern>
784  : ITy<opcode, MRMDestMem, typeinfo,
785        (outs), (ins typeinfo.MemOperand:$dst, typeinfo.RegClass:$src),
786        mnemonic, "{$src, $dst|$dst, $src}", pattern>;
787
788// BinOpMR_RMW - Instructions like "add [mem], reg".
789class BinOpMR_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
790                  SDNode opnode>
791  : BinOpMR<opcode, mnemonic, typeinfo,
792          [(store (opnode (load addr:$dst), typeinfo.RegClass:$src), addr:$dst),
793           (implicit EFLAGS)]>, Sched<[WriteALURMW]>;
794
795// BinOpMR_RMW_FF - Instructions like "adc [mem], reg".
796class BinOpMR_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
797                    SDNode opnode>
798  : BinOpMR<opcode, mnemonic, typeinfo,
799            [(store (opnode (load addr:$dst), typeinfo.RegClass:$src, EFLAGS),
800                    addr:$dst),
801             (implicit EFLAGS)]>, Sched<[WriteADCRMW]>;
802
803// BinOpMR_F - Instructions like "cmp [mem], reg".
804class BinOpMR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
805                SDPatternOperator opnode>
806  : BinOpMR<opcode, mnemonic, typeinfo,
807            [(set EFLAGS, (opnode (typeinfo.LoadNode addr:$dst),
808                                   typeinfo.RegClass:$src))]>,
809            Sched<[WriteALULd, ReadDefault, ReadDefault, ReadDefault,
810                   ReadDefault, ReadDefault, ReadAfterLd]>;
811
812// BinOpMI - Instructions like "add [mem], imm".
813class BinOpMI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
814              Format f, list<dag> pattern>
815  : ITy<opcode, f, typeinfo,
816        (outs), (ins typeinfo.MemOperand:$dst, typeinfo.ImmOperand:$src),
817        mnemonic, "{$src, $dst|$dst, $src}", pattern> {
818  let ImmT = typeinfo.ImmEncoding;
819}
820
821// BinOpMI_RMW - Instructions like "add [mem], imm".
822class BinOpMI_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
823                  SDNode opnode, Format f>
824  : BinOpMI<opcode, mnemonic, typeinfo, f,
825            [(store (opnode (typeinfo.VT (load addr:$dst)),
826                            typeinfo.ImmOperator:$src), addr:$dst),
827             (implicit EFLAGS)]>, Sched<[WriteALURMW]>;
828// BinOpMI_RMW_FF - Instructions like "adc [mem], imm".
829class BinOpMI_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
830                     SDNode opnode, Format f>
831  : BinOpMI<opcode, mnemonic, typeinfo, f,
832            [(store (opnode (typeinfo.VT (load addr:$dst)),
833                             typeinfo.ImmOperator:$src, EFLAGS), addr:$dst),
834             (implicit EFLAGS)]>, Sched<[WriteADCRMW]>;
835
836// BinOpMI_F - Instructions like "cmp [mem], imm".
837class BinOpMI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
838                SDPatternOperator opnode, Format f>
839  : BinOpMI<opcode, mnemonic, typeinfo, f,
840            [(set EFLAGS, (opnode (typeinfo.LoadNode addr:$dst),
841                                  typeinfo.ImmOperator:$src))]>,
842            Sched<[WriteALULd]>;
843
844// BinOpMI8 - Instructions like "add [mem], imm8".
845class BinOpMI8<string mnemonic, X86TypeInfo typeinfo,
846               Format f, list<dag> pattern>
847  : ITy<0x82, f, typeinfo,
848        (outs), (ins typeinfo.MemOperand:$dst, typeinfo.Imm8Operand:$src),
849        mnemonic, "{$src, $dst|$dst, $src}", pattern> {
850  let ImmT = Imm8; // Always 8-bit immediate.
851}
852
853// BinOpMI8_RMW - Instructions like "add [mem], imm8".
854class BinOpMI8_RMW<string mnemonic, X86TypeInfo typeinfo,
855                   SDPatternOperator opnode, Format f>
856  : BinOpMI8<mnemonic, typeinfo, f,
857             [(store (opnode (load addr:$dst),
858                             typeinfo.Imm8Operator:$src), addr:$dst),
859              (implicit EFLAGS)]>, Sched<[WriteALURMW]>;
860
861// BinOpMI8_RMW_FF - Instructions like "adc [mem], imm8".
862class BinOpMI8_RMW_FF<string mnemonic, X86TypeInfo typeinfo,
863                      SDPatternOperator opnode, Format f>
864  : BinOpMI8<mnemonic, typeinfo, f,
865             [(store (opnode (load addr:$dst),
866                             typeinfo.Imm8Operator:$src, EFLAGS), addr:$dst),
867              (implicit EFLAGS)]>, Sched<[WriteADCRMW]>;
868
869// BinOpMI8_F - Instructions like "cmp [mem], imm8".
870class BinOpMI8_F<string mnemonic, X86TypeInfo typeinfo,
871                 SDPatternOperator opnode, Format f>
872  : BinOpMI8<mnemonic, typeinfo, f,
873             [(set EFLAGS, (opnode (typeinfo.LoadNode addr:$dst),
874                                    typeinfo.Imm8Operator:$src))]>,
875             Sched<[WriteALULd]>;
876
877// BinOpAI - Instructions like "add %eax, %eax, imm", that imp-def EFLAGS.
878class BinOpAI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
879              Register areg, string operands, X86FoldableSchedWrite sched = WriteALU>
880  : ITy<opcode, RawFrm, typeinfo,
881        (outs), (ins typeinfo.ImmOperand:$src),
882        mnemonic, operands, []>, Sched<[sched]> {
883  let ImmT = typeinfo.ImmEncoding;
884  let Uses = [areg];
885  let Defs = [areg, EFLAGS];
886  let hasSideEffects = 0;
887}
888
889// BinOpAI_RFF - Instructions like "adc %eax, %eax, imm", that implicitly define
890// and use EFLAGS.
891class BinOpAI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
892                  Register areg, string operands>
893  : BinOpAI<opcode, mnemonic, typeinfo, areg, operands, WriteADC> {
894  let Uses = [areg, EFLAGS];
895}
896
897// BinOpAI_F - Instructions like "cmp %eax, %eax, imm", that imp-def EFLAGS.
898class BinOpAI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
899                Register areg, string operands>
900  : BinOpAI<opcode, mnemonic, typeinfo, areg, operands> {
901  let Defs = [EFLAGS];
902}
903
904/// ArithBinOp_RF - This is an arithmetic binary operator where the pattern is
905/// defined with "(set GPR:$dst, EFLAGS, (...".
906///
907/// It would be nice to get rid of the second and third argument here, but
908/// tblgen can't handle dependent type references aggressively enough: PR8330
909multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
910                         string mnemonic, Format RegMRM, Format MemMRM,
911                         SDNode opnodeflag, SDNode opnode,
912                         bit CommutableRR, bit ConvertibleToThreeAddress> {
913  let Defs = [EFLAGS] in {
914    let Constraints = "$src1 = $dst" in {
915      let isCommutable = CommutableRR in {
916        def NAME#8rr  : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , opnodeflag>;
917        let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
918          def NAME#16rr : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag>;
919          def NAME#32rr : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag>;
920          def NAME#64rr : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag>;
921        } // isConvertibleToThreeAddress
922      } // isCommutable
923
924      def NAME#8rr_REV  : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>, FoldGenData<NAME#8rr>;
925      def NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>, FoldGenData<NAME#16rr>;
926      def NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>, FoldGenData<NAME#32rr>;
927      def NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>, FoldGenData<NAME#64rr>;
928
929      def NAME#8rm   : BinOpRM_RF<BaseOpc2, mnemonic, Xi8 , opnodeflag>;
930      def NAME#16rm  : BinOpRM_RF<BaseOpc2, mnemonic, Xi16, opnodeflag>;
931      def NAME#32rm  : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, opnodeflag>;
932      def NAME#64rm  : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, opnodeflag>;
933
934      def NAME#8ri   : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM>;
935
936      let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
937        // NOTE: These are order specific, we want the ri8 forms to be listed
938        // first so that they are slightly preferred to the ri forms.
939        def NAME#16ri8 : BinOpRI8_RF<0x82, mnemonic, Xi16, opnodeflag, RegMRM>;
940        def NAME#32ri8 : BinOpRI8_RF<0x82, mnemonic, Xi32, opnodeflag, RegMRM>;
941        def NAME#64ri8 : BinOpRI8_RF<0x82, mnemonic, Xi64, opnodeflag, RegMRM>;
942
943        def NAME#16ri  : BinOpRI_RF<0x80, mnemonic, Xi16, opnodeflag, RegMRM>;
944        def NAME#32ri  : BinOpRI_RF<0x80, mnemonic, Xi32, opnodeflag, RegMRM>;
945        def NAME#64ri32: BinOpRI_RF<0x80, mnemonic, Xi64, opnodeflag, RegMRM>;
946      }
947    } // Constraints = "$src1 = $dst"
948
949    let mayLoad = 1, mayStore = 1 in {
950      def NAME#8mr    : BinOpMR_RMW<BaseOpc, mnemonic, Xi8 , opnode>;
951      def NAME#16mr   : BinOpMR_RMW<BaseOpc, mnemonic, Xi16, opnode>;
952      def NAME#32mr   : BinOpMR_RMW<BaseOpc, mnemonic, Xi32, opnode>;
953      def NAME#64mr   : BinOpMR_RMW<BaseOpc, mnemonic, Xi64, opnode>;
954    }
955
956    // NOTE: These are order specific, we want the mi8 forms to be listed
957    // first so that they are slightly preferred to the mi forms.
958    def NAME#16mi8  : BinOpMI8_RMW<mnemonic, Xi16, opnode, MemMRM>;
959    def NAME#32mi8  : BinOpMI8_RMW<mnemonic, Xi32, opnode, MemMRM>;
960    let Predicates = [In64BitMode] in
961    def NAME#64mi8  : BinOpMI8_RMW<mnemonic, Xi64, opnode, MemMRM>;
962
963    def NAME#8mi    : BinOpMI_RMW<0x80, mnemonic, Xi8 , opnode, MemMRM>;
964    def NAME#16mi   : BinOpMI_RMW<0x80, mnemonic, Xi16, opnode, MemMRM>;
965    def NAME#32mi   : BinOpMI_RMW<0x80, mnemonic, Xi32, opnode, MemMRM>;
966    let Predicates = [In64BitMode] in
967    def NAME#64mi32 : BinOpMI_RMW<0x80, mnemonic, Xi64, opnode, MemMRM>;
968
969    // These are for the disassembler since 0x82 opcode behaves like 0x80, but
970    // not in 64-bit mode.
971    let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1,
972        hasSideEffects = 0 in {
973      let Constraints = "$src1 = $dst" in
974        def NAME#8ri8 : BinOpRI8_RF<0x82, mnemonic, Xi8, null_frag, RegMRM>;
975      let mayLoad = 1, mayStore = 1 in
976        def NAME#8mi8 : BinOpMI8_RMW<mnemonic, Xi8, null_frag, MemMRM>;
977    }
978  } // Defs = [EFLAGS]
979
980  def NAME#8i8   : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL,
981                           "{$src, %al|al, $src}">;
982  def NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX,
983                           "{$src, %ax|ax, $src}">;
984  def NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX,
985                           "{$src, %eax|eax, $src}">;
986  def NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX,
987                           "{$src, %rax|rax, $src}">;
988}
989
990/// ArithBinOp_RFF - This is an arithmetic binary operator where the pattern is
991/// defined with "(set GPR:$dst, EFLAGS, (node LHS, RHS, EFLAGS))" like ADC and
992/// SBB.
993///
994/// It would be nice to get rid of the second and third argument here, but
995/// tblgen can't handle dependent type references aggressively enough: PR8330
996multiclass ArithBinOp_RFF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
997                          string mnemonic, Format RegMRM, Format MemMRM,
998                          SDNode opnode, bit CommutableRR,
999                           bit ConvertibleToThreeAddress> {
1000  let Uses = [EFLAGS], Defs = [EFLAGS] in {
1001    let Constraints = "$src1 = $dst" in {
1002      let isCommutable = CommutableRR in {
1003        def NAME#8rr  : BinOpRR_RFF<BaseOpc, mnemonic, Xi8 , opnode>;
1004        let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
1005          def NAME#16rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi16, opnode>;
1006          def NAME#32rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi32, opnode>;
1007          def NAME#64rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi64, opnode>;
1008        } // isConvertibleToThreeAddress
1009      } // isCommutable
1010
1011      def NAME#8rr_REV  : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi8>, FoldGenData<NAME#8rr>;
1012      def NAME#16rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi16>, FoldGenData<NAME#16rr>;
1013      def NAME#32rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi32>, FoldGenData<NAME#32rr>;
1014      def NAME#64rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi64>, FoldGenData<NAME#64rr>;
1015
1016      def NAME#8rm   : BinOpRM_RFF<BaseOpc2, mnemonic, Xi8 , opnode>;
1017      def NAME#16rm  : BinOpRM_RFF<BaseOpc2, mnemonic, Xi16, opnode>;
1018      def NAME#32rm  : BinOpRM_RFF<BaseOpc2, mnemonic, Xi32, opnode>;
1019      def NAME#64rm  : BinOpRM_RFF<BaseOpc2, mnemonic, Xi64, opnode>;
1020
1021      def NAME#8ri   : BinOpRI_RFF<0x80, mnemonic, Xi8 , opnode, RegMRM>;
1022
1023      let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
1024        // NOTE: These are order specific, we want the ri8 forms to be listed
1025        // first so that they are slightly preferred to the ri forms.
1026        def NAME#16ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi16, opnode, RegMRM>;
1027        def NAME#32ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi32, opnode, RegMRM>;
1028        def NAME#64ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi64, opnode, RegMRM>;
1029
1030        def NAME#16ri  : BinOpRI_RFF<0x80, mnemonic, Xi16, opnode, RegMRM>;
1031        def NAME#32ri  : BinOpRI_RFF<0x80, mnemonic, Xi32, opnode, RegMRM>;
1032        def NAME#64ri32: BinOpRI_RFF<0x80, mnemonic, Xi64, opnode, RegMRM>;
1033      }
1034    } // Constraints = "$src1 = $dst"
1035
1036    def NAME#8mr    : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi8 , opnode>;
1037    def NAME#16mr   : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi16, opnode>;
1038    def NAME#32mr   : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi32, opnode>;
1039    def NAME#64mr   : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi64, opnode>;
1040
1041    // NOTE: These are order specific, we want the mi8 forms to be listed
1042    // first so that they are slightly preferred to the mi forms.
1043    def NAME#16mi8  : BinOpMI8_RMW_FF<mnemonic, Xi16, opnode, MemMRM>;
1044    def NAME#32mi8  : BinOpMI8_RMW_FF<mnemonic, Xi32, opnode, MemMRM>;
1045    let Predicates = [In64BitMode] in
1046    def NAME#64mi8  : BinOpMI8_RMW_FF<mnemonic, Xi64, opnode, MemMRM>;
1047
1048    def NAME#8mi    : BinOpMI_RMW_FF<0x80, mnemonic, Xi8 , opnode, MemMRM>;
1049    def NAME#16mi   : BinOpMI_RMW_FF<0x80, mnemonic, Xi16, opnode, MemMRM>;
1050    def NAME#32mi   : BinOpMI_RMW_FF<0x80, mnemonic, Xi32, opnode, MemMRM>;
1051    let Predicates = [In64BitMode] in
1052    def NAME#64mi32 : BinOpMI_RMW_FF<0x80, mnemonic, Xi64, opnode, MemMRM>;
1053
1054    // These are for the disassembler since 0x82 opcode behaves like 0x80, but
1055    // not in 64-bit mode.
1056    let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1,
1057        hasSideEffects = 0 in {
1058      let Constraints = "$src1 = $dst" in
1059        def NAME#8ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi8, null_frag, RegMRM>;
1060      let mayLoad = 1, mayStore = 1 in
1061        def NAME#8mi8 : BinOpMI8_RMW_FF<mnemonic, Xi8, null_frag, MemMRM>;
1062    }
1063  } // Uses = [EFLAGS], Defs = [EFLAGS]
1064
1065  def NAME#8i8   : BinOpAI_RFF<BaseOpc4, mnemonic, Xi8 , AL,
1066                               "{$src, %al|al, $src}">;
1067  def NAME#16i16 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi16, AX,
1068                               "{$src, %ax|ax, $src}">;
1069  def NAME#32i32 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi32, EAX,
1070                               "{$src, %eax|eax, $src}">;
1071  def NAME#64i32 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi64, RAX,
1072                               "{$src, %rax|rax, $src}">;
1073}
1074
1075/// ArithBinOp_F - This is an arithmetic binary operator where the pattern is
1076/// defined with "(set EFLAGS, (...".  It would be really nice to find a way
1077/// to factor this with the other ArithBinOp_*.
1078///
1079multiclass ArithBinOp_F<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
1080                        string mnemonic, Format RegMRM, Format MemMRM,
1081                        SDNode opnode,
1082                        bit CommutableRR, bit ConvertibleToThreeAddress> {
1083  let Defs = [EFLAGS] in {
1084    let isCommutable = CommutableRR in {
1085      def NAME#8rr  : BinOpRR_F<BaseOpc, mnemonic, Xi8 , opnode>;
1086      let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
1087        def NAME#16rr : BinOpRR_F<BaseOpc, mnemonic, Xi16, opnode>;
1088        def NAME#32rr : BinOpRR_F<BaseOpc, mnemonic, Xi32, opnode>;
1089        def NAME#64rr : BinOpRR_F<BaseOpc, mnemonic, Xi64, opnode>;
1090      }
1091    } // isCommutable
1092
1093    def NAME#8rr_REV  : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi8>, FoldGenData<NAME#8rr>;
1094    def NAME#16rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi16>, FoldGenData<NAME#16rr>;
1095    def NAME#32rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi32>, FoldGenData<NAME#32rr>;
1096    def NAME#64rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi64>, FoldGenData<NAME#64rr>;
1097
1098    def NAME#8rm   : BinOpRM_F<BaseOpc2, mnemonic, Xi8 , opnode>;
1099    def NAME#16rm  : BinOpRM_F<BaseOpc2, mnemonic, Xi16, opnode>;
1100    def NAME#32rm  : BinOpRM_F<BaseOpc2, mnemonic, Xi32, opnode>;
1101    def NAME#64rm  : BinOpRM_F<BaseOpc2, mnemonic, Xi64, opnode>;
1102
1103    def NAME#8ri   : BinOpRI_F<0x80, mnemonic, Xi8 , opnode, RegMRM>;
1104
1105    let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
1106      // NOTE: These are order specific, we want the ri8 forms to be listed
1107      // first so that they are slightly preferred to the ri forms.
1108      def NAME#16ri8 : BinOpRI8_F<0x82, mnemonic, Xi16, opnode, RegMRM>;
1109      def NAME#32ri8 : BinOpRI8_F<0x82, mnemonic, Xi32, opnode, RegMRM>;
1110      def NAME#64ri8 : BinOpRI8_F<0x82, mnemonic, Xi64, opnode, RegMRM>;
1111
1112      def NAME#16ri  : BinOpRI_F<0x80, mnemonic, Xi16, opnode, RegMRM>;
1113      def NAME#32ri  : BinOpRI_F<0x80, mnemonic, Xi32, opnode, RegMRM>;
1114      def NAME#64ri32: BinOpRI_F<0x80, mnemonic, Xi64, opnode, RegMRM>;
1115    }
1116
1117    def NAME#8mr    : BinOpMR_F<BaseOpc, mnemonic, Xi8 , opnode>;
1118    def NAME#16mr   : BinOpMR_F<BaseOpc, mnemonic, Xi16, opnode>;
1119    def NAME#32mr   : BinOpMR_F<BaseOpc, mnemonic, Xi32, opnode>;
1120    def NAME#64mr   : BinOpMR_F<BaseOpc, mnemonic, Xi64, opnode>;
1121
1122    // NOTE: These are order specific, we want the mi8 forms to be listed
1123    // first so that they are slightly preferred to the mi forms.
1124    def NAME#16mi8  : BinOpMI8_F<mnemonic, Xi16, opnode, MemMRM>;
1125    def NAME#32mi8  : BinOpMI8_F<mnemonic, Xi32, opnode, MemMRM>;
1126    let Predicates = [In64BitMode] in
1127    def NAME#64mi8  : BinOpMI8_F<mnemonic, Xi64, opnode, MemMRM>;
1128
1129    def NAME#8mi    : BinOpMI_F<0x80, mnemonic, Xi8 , opnode, MemMRM>;
1130    def NAME#16mi   : BinOpMI_F<0x80, mnemonic, Xi16, opnode, MemMRM>;
1131    def NAME#32mi   : BinOpMI_F<0x80, mnemonic, Xi32, opnode, MemMRM>;
1132    let Predicates = [In64BitMode] in
1133    def NAME#64mi32 : BinOpMI_F<0x80, mnemonic, Xi64, opnode, MemMRM>;
1134
1135    // These are for the disassembler since 0x82 opcode behaves like 0x80, but
1136    // not in 64-bit mode.
1137    let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1,
1138        hasSideEffects = 0 in {
1139      def NAME#8ri8 : BinOpRI8_F<0x82, mnemonic, Xi8, null_frag, RegMRM>;
1140      let mayLoad = 1 in
1141        def NAME#8mi8 : BinOpMI8_F<mnemonic, Xi8, null_frag, MemMRM>;
1142    }
1143  } // Defs = [EFLAGS]
1144
1145  def NAME#8i8   : BinOpAI_F<BaseOpc4, mnemonic, Xi8 , AL,
1146                             "{$src, %al|al, $src}">;
1147  def NAME#16i16 : BinOpAI_F<BaseOpc4, mnemonic, Xi16, AX,
1148                             "{$src, %ax|ax, $src}">;
1149  def NAME#32i32 : BinOpAI_F<BaseOpc4, mnemonic, Xi32, EAX,
1150                             "{$src, %eax|eax, $src}">;
1151  def NAME#64i32 : BinOpAI_F<BaseOpc4, mnemonic, Xi64, RAX,
1152                             "{$src, %rax|rax, $src}">;
1153}
1154
1155
1156defm AND : ArithBinOp_RF<0x20, 0x22, 0x24, "and", MRM4r, MRM4m,
1157                         X86and_flag, and, 1, 0>;
1158defm OR  : ArithBinOp_RF<0x08, 0x0A, 0x0C, "or", MRM1r, MRM1m,
1159                         X86or_flag, or, 1, 0>;
1160defm XOR : ArithBinOp_RF<0x30, 0x32, 0x34, "xor", MRM6r, MRM6m,
1161                         X86xor_flag, xor, 1, 0>;
1162defm ADD : ArithBinOp_RF<0x00, 0x02, 0x04, "add", MRM0r, MRM0m,
1163                         X86add_flag, add, 1, 1>;
1164let isCompare = 1 in {
1165defm SUB : ArithBinOp_RF<0x28, 0x2A, 0x2C, "sub", MRM5r, MRM5m,
1166                         X86sub_flag, sub, 0, 0>;
1167}
1168
1169// Arithmetic.
1170defm ADC : ArithBinOp_RFF<0x10, 0x12, 0x14, "adc", MRM2r, MRM2m, X86adc_flag,
1171                          1, 0>;
1172defm SBB : ArithBinOp_RFF<0x18, 0x1A, 0x1C, "sbb", MRM3r, MRM3m, X86sbb_flag,
1173                          0, 0>;
1174
1175let isCompare = 1 in {
1176defm CMP : ArithBinOp_F<0x38, 0x3A, 0x3C, "cmp", MRM7r, MRM7m, X86cmp, 0, 0>;
1177}
1178
1179
1180//===----------------------------------------------------------------------===//
1181// Semantically, test instructions are similar like AND, except they don't
1182// generate a result.  From an encoding perspective, they are very different:
1183// they don't have all the usual imm8 and REV forms, and are encoded into a
1184// different space.
1185def X86testpat : PatFrag<(ops node:$lhs, node:$rhs),
1186                         (X86cmp (and_su node:$lhs, node:$rhs), 0)>;
1187
1188let isCompare = 1 in {
1189  let Defs = [EFLAGS] in {
1190    let isCommutable = 1 in {
1191      def TEST8rr  : BinOpRR_F<0x84, "test", Xi8 , X86testpat>;
1192      def TEST16rr : BinOpRR_F<0x84, "test", Xi16, X86testpat>;
1193      def TEST32rr : BinOpRR_F<0x84, "test", Xi32, X86testpat>;
1194      def TEST64rr : BinOpRR_F<0x84, "test", Xi64, X86testpat>;
1195    } // isCommutable
1196
1197    def TEST8mr    : BinOpMR_F<0x84, "test", Xi8 , X86testpat>;
1198    def TEST16mr   : BinOpMR_F<0x84, "test", Xi16, X86testpat>;
1199    def TEST32mr   : BinOpMR_F<0x84, "test", Xi32, X86testpat>;
1200    def TEST64mr   : BinOpMR_F<0x84, "test", Xi64, X86testpat>;
1201
1202    def TEST8ri    : BinOpRI_F<0xF6, "test", Xi8 , X86testpat, MRM0r>;
1203    def TEST16ri   : BinOpRI_F<0xF6, "test", Xi16, X86testpat, MRM0r>;
1204    def TEST32ri   : BinOpRI_F<0xF6, "test", Xi32, X86testpat, MRM0r>;
1205    let Predicates = [In64BitMode] in
1206    def TEST64ri32 : BinOpRI_F<0xF6, "test", Xi64, X86testpat, MRM0r>;
1207
1208    def TEST8mi    : BinOpMI_F<0xF6, "test", Xi8 , X86testpat, MRM0m>;
1209    def TEST16mi   : BinOpMI_F<0xF6, "test", Xi16, X86testpat, MRM0m>;
1210    def TEST32mi   : BinOpMI_F<0xF6, "test", Xi32, X86testpat, MRM0m>;
1211    let Predicates = [In64BitMode] in
1212    def TEST64mi32 : BinOpMI_F<0xF6, "test", Xi64, X86testpat, MRM0m>;
1213  } // Defs = [EFLAGS]
1214
1215  def TEST8i8    : BinOpAI_F<0xA8, "test", Xi8 , AL,
1216                             "{$src, %al|al, $src}">;
1217  def TEST16i16  : BinOpAI_F<0xA8, "test", Xi16, AX,
1218                             "{$src, %ax|ax, $src}">;
1219  def TEST32i32  : BinOpAI_F<0xA8, "test", Xi32, EAX,
1220                             "{$src, %eax|eax, $src}">;
1221  def TEST64i32  : BinOpAI_F<0xA8, "test", Xi64, RAX,
1222                             "{$src, %rax|rax, $src}">;
1223} // isCompare
1224
1225//===----------------------------------------------------------------------===//
1226// ANDN Instruction
1227//
1228multiclass bmi_andn<string mnemonic, RegisterClass RC, X86MemOperand x86memop,
1229                    PatFrag ld_frag> {
1230  def rr : I<0xF2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
1231            !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
1232            [(set RC:$dst, EFLAGS, (X86and_flag (not RC:$src1), RC:$src2))]>,
1233            Sched<[WriteALU]>;
1234  def rm : I<0xF2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
1235            !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
1236            [(set RC:$dst, EFLAGS,
1237             (X86and_flag (not RC:$src1), (ld_frag addr:$src2)))]>,
1238           Sched<[WriteALULd, ReadAfterLd]>;
1239}
1240
1241// Complexity is reduced to give and with immediate a chance to match first.
1242let Predicates = [HasBMI], Defs = [EFLAGS], AddedComplexity = -6 in {
1243  defm ANDN32 : bmi_andn<"andn{l}", GR32, i32mem, loadi32>, T8PS, VEX_4V;
1244  defm ANDN64 : bmi_andn<"andn{q}", GR64, i64mem, loadi64>, T8PS, VEX_4V, VEX_W;
1245}
1246
1247let Predicates = [HasBMI], AddedComplexity = -6 in {
1248  def : Pat<(and (not GR32:$src1), GR32:$src2),
1249            (ANDN32rr GR32:$src1, GR32:$src2)>;
1250  def : Pat<(and (not GR64:$src1), GR64:$src2),
1251            (ANDN64rr GR64:$src1, GR64:$src2)>;
1252  def : Pat<(and (not GR32:$src1), (loadi32 addr:$src2)),
1253            (ANDN32rm GR32:$src1, addr:$src2)>;
1254  def : Pat<(and (not GR64:$src1), (loadi64 addr:$src2)),
1255            (ANDN64rm GR64:$src1, addr:$src2)>;
1256}
1257
1258//===----------------------------------------------------------------------===//
1259// MULX Instruction
1260//
1261multiclass bmi_mulx<string mnemonic, RegisterClass RC, X86MemOperand x86memop,
1262                    X86FoldableSchedWrite sched> {
1263let hasSideEffects = 0 in {
1264  let isCommutable = 1 in
1265  def rr : I<0xF6, MRMSrcReg, (outs RC:$dst1, RC:$dst2), (ins RC:$src),
1266             !strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"),
1267             []>, T8XD, VEX_4V, Sched<[sched, WriteIMulH]>;
1268
1269  let mayLoad = 1 in
1270  def rm : I<0xF6, MRMSrcMem, (outs RC:$dst1, RC:$dst2), (ins x86memop:$src),
1271             !strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"),
1272             []>, T8XD, VEX_4V, Sched<[sched.Folded, WriteIMulH]>;
1273}
1274}
1275
1276let Predicates = [HasBMI2] in {
1277  let Uses = [EDX] in
1278    defm MULX32 : bmi_mulx<"mulx{l}", GR32, i32mem, WriteIMul>;
1279  let Uses = [RDX] in
1280    defm MULX64 : bmi_mulx<"mulx{q}", GR64, i64mem, WriteIMul64>, VEX_W;
1281}
1282
1283//===----------------------------------------------------------------------===//
1284// ADCX and ADOX Instructions
1285//
1286let Predicates = [HasADX], Defs = [EFLAGS], Uses = [EFLAGS],
1287    Constraints = "$src1 = $dst", AddedComplexity = 10 in {
1288  let SchedRW = [WriteADC] in {
1289  def ADCX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst),
1290                   (ins GR32:$src1, GR32:$src2),
1291                   "adcx{l}\t{$src2, $dst|$dst, $src2}",
1292                   [(set GR32:$dst, EFLAGS,
1293                     (X86adc_flag GR32:$src1, GR32:$src2, EFLAGS))]>, T8PD;
1294  def ADCX64rr : RI<0xF6, MRMSrcReg, (outs GR64:$dst),
1295                    (ins GR64:$src1, GR64:$src2),
1296                    "adcx{q}\t{$src2, $dst|$dst, $src2}",
1297                    [(set GR64:$dst, EFLAGS,
1298                      (X86adc_flag GR64:$src1, GR64:$src2, EFLAGS))]>, T8PD;
1299
1300  // We don't have patterns for ADOX yet.
1301  let hasSideEffects = 0 in {
1302  def ADOX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst),
1303                   (ins GR32:$src1, GR32:$src2),
1304                   "adox{l}\t{$src2, $dst|$dst, $src2}", []>, T8XS;
1305
1306  def ADOX64rr : RI<0xF6, MRMSrcReg, (outs GR64:$dst),
1307                    (ins GR64:$src1, GR64:$src2),
1308                    "adox{q}\t{$src2, $dst|$dst, $src2}", []>, T8XS;
1309  } // hasSideEffects = 0
1310  } // SchedRW
1311
1312  let mayLoad = 1, SchedRW = [WriteADCLd, ReadAfterLd] in {
1313  def ADCX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst),
1314                   (ins GR32:$src1, i32mem:$src2),
1315                   "adcx{l}\t{$src2, $dst|$dst, $src2}",
1316                   [(set GR32:$dst, EFLAGS,
1317                     (X86adc_flag GR32:$src1, (loadi32 addr:$src2), EFLAGS))]>,
1318                   T8PD;
1319
1320  def ADCX64rm : RI<0xF6, MRMSrcMem, (outs GR64:$dst),
1321                    (ins GR64:$src1, i64mem:$src2),
1322                    "adcx{q}\t{$src2, $dst|$dst, $src2}",
1323                    [(set GR64:$dst, EFLAGS,
1324                      (X86adc_flag GR64:$src1, (loadi64 addr:$src2), EFLAGS))]>,
1325                    T8PD;
1326
1327  // We don't have patterns for ADOX yet.
1328  let hasSideEffects = 0 in {
1329  def ADOX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst),
1330                   (ins GR32:$src1, i32mem:$src2),
1331                   "adox{l}\t{$src2, $dst|$dst, $src2}", []>, T8XS;
1332
1333  def ADOX64rm : RI<0xF6, MRMSrcMem, (outs GR64:$dst),
1334                    (ins GR64:$src1, i64mem:$src2),
1335                    "adox{q}\t{$src2, $dst|$dst, $src2}", []>, T8XS;
1336  } // hasSideEffects = 0
1337  } // mayLoad = 1, SchedRW = [WriteADCLd]
1338}
1339