1//===-- X86InstrCMovSetCC.td - Conditional Move and SetCC --*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the X86 conditional move and set on condition
11// instructions.
12//
13//===----------------------------------------------------------------------===//
14
15
16// CMOV instructions.
17multiclass CMOV<bits<8> opc, string Mnemonic, X86FoldableSchedWrite Sched,
18                PatLeaf CondNode> {
19  let Uses = [EFLAGS], Predicates = [HasCMov], Constraints = "$src1 = $dst",
20      isCommutable = 1, SchedRW = [Sched] in {
21    def NAME#16rr
22      : I<opc, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
23          !strconcat(Mnemonic, "{w}\t{$src2, $dst|$dst, $src2}"),
24          [(set GR16:$dst,
25                (X86cmov GR16:$src1, GR16:$src2, CondNode, EFLAGS))]>,
26                TB, OpSize16;
27    def NAME#32rr
28      : I<opc, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
29          !strconcat(Mnemonic, "{l}\t{$src2, $dst|$dst, $src2}"),
30          [(set GR32:$dst,
31                (X86cmov GR32:$src1, GR32:$src2, CondNode, EFLAGS))]>,
32                TB, OpSize32;
33    def NAME#64rr
34      :RI<opc, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
35          !strconcat(Mnemonic, "{q}\t{$src2, $dst|$dst, $src2}"),
36          [(set GR64:$dst,
37                (X86cmov GR64:$src1, GR64:$src2, CondNode, EFLAGS))]>, TB;
38  }
39
40  let Uses = [EFLAGS], Predicates = [HasCMov], Constraints = "$src1 = $dst",
41      SchedRW = [Sched.Folded, ReadAfterLd] in {
42    def NAME#16rm
43      : I<opc, MRMSrcMem, (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2),
44          !strconcat(Mnemonic, "{w}\t{$src2, $dst|$dst, $src2}"),
45          [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2),
46                                    CondNode, EFLAGS))]>, TB, OpSize16;
47    def NAME#32rm
48      : I<opc, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2),
49          !strconcat(Mnemonic, "{l}\t{$src2, $dst|$dst, $src2}"),
50          [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2),
51                                    CondNode, EFLAGS))]>, TB, OpSize32;
52    def NAME#64rm
53      :RI<opc, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
54          !strconcat(Mnemonic, "{q}\t{$src2, $dst|$dst, $src2}"),
55          [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
56                                    CondNode, EFLAGS))]>, TB;
57  } // Uses = [EFLAGS], Predicates = [HasCMov], Constraints = "$src1 = $dst"
58} // end multiclass
59
60
61// Conditional Moves.
62defm CMOVO  : CMOV<0x40, "cmovo" , WriteCMOV,  X86_COND_O>;
63defm CMOVNO : CMOV<0x41, "cmovno", WriteCMOV,  X86_COND_NO>;
64defm CMOVB  : CMOV<0x42, "cmovb" , WriteCMOV,  X86_COND_B>;
65defm CMOVAE : CMOV<0x43, "cmovae", WriteCMOV,  X86_COND_AE>;
66defm CMOVE  : CMOV<0x44, "cmove" , WriteCMOV,  X86_COND_E>;
67defm CMOVNE : CMOV<0x45, "cmovne", WriteCMOV,  X86_COND_NE>;
68defm CMOVBE : CMOV<0x46, "cmovbe", WriteCMOV2, X86_COND_BE>;
69defm CMOVA  : CMOV<0x47, "cmova" , WriteCMOV2, X86_COND_A>;
70defm CMOVS  : CMOV<0x48, "cmovs" , WriteCMOV,  X86_COND_S>;
71defm CMOVNS : CMOV<0x49, "cmovns", WriteCMOV,  X86_COND_NS>;
72defm CMOVP  : CMOV<0x4A, "cmovp" , WriteCMOV,  X86_COND_P>;
73defm CMOVNP : CMOV<0x4B, "cmovnp", WriteCMOV,  X86_COND_NP>;
74defm CMOVL  : CMOV<0x4C, "cmovl" , WriteCMOV,  X86_COND_L>;
75defm CMOVGE : CMOV<0x4D, "cmovge", WriteCMOV,  X86_COND_GE>;
76defm CMOVLE : CMOV<0x4E, "cmovle", WriteCMOV,  X86_COND_LE>;
77defm CMOVG  : CMOV<0x4F, "cmovg" , WriteCMOV,  X86_COND_G>;
78
79
80// SetCC instructions.
81multiclass SETCC<bits<8> opc, string Mnemonic, PatLeaf OpNode> {
82  let Uses = [EFLAGS] in {
83    def r    : I<opc, MRMXr,  (outs GR8:$dst), (ins),
84                     !strconcat(Mnemonic, "\t$dst"),
85                     [(set GR8:$dst, (X86setcc OpNode, EFLAGS))]>,
86                     TB, Sched<[WriteSETCC]>;
87    def m    : I<opc, MRMXm,  (outs), (ins i8mem:$dst),
88                     !strconcat(Mnemonic, "\t$dst"),
89                     [(store (X86setcc OpNode, EFLAGS), addr:$dst)]>,
90                     TB, Sched<[WriteSETCCStore]>;
91  } // Uses = [EFLAGS]
92}
93
94defm SETO  : SETCC<0x90, "seto",  X86_COND_O>;   // is overflow bit set
95defm SETNO : SETCC<0x91, "setno", X86_COND_NO>;  // is overflow bit not set
96defm SETB  : SETCC<0x92, "setb",  X86_COND_B>;   // unsigned less than
97defm SETAE : SETCC<0x93, "setae", X86_COND_AE>;  // unsigned greater or equal
98defm SETE  : SETCC<0x94, "sete",  X86_COND_E>;   // equal to
99defm SETNE : SETCC<0x95, "setne", X86_COND_NE>;  // not equal to
100defm SETBE : SETCC<0x96, "setbe", X86_COND_BE>;  // unsigned less than or equal
101defm SETA  : SETCC<0x97, "seta",  X86_COND_A>;   // unsigned greater than
102defm SETS  : SETCC<0x98, "sets",  X86_COND_S>;   // is signed bit set
103defm SETNS : SETCC<0x99, "setns", X86_COND_NS>;  // is not signed
104defm SETP  : SETCC<0x9A, "setp",  X86_COND_P>;   // is parity bit set
105defm SETNP : SETCC<0x9B, "setnp", X86_COND_NP>;  // is parity bit not set
106defm SETL  : SETCC<0x9C, "setl",  X86_COND_L>;   // signed less than
107defm SETGE : SETCC<0x9D, "setge", X86_COND_GE>;  // signed greater or equal
108defm SETLE : SETCC<0x9E, "setle", X86_COND_LE>;  // signed less than or equal
109defm SETG  : SETCC<0x9F, "setg",  X86_COND_G>;   // signed greater than
110
111// SALC is an undocumented instruction. Information for this instruction can be found
112// here http://www.rcollins.org/secrets/opcodes/SALC.html
113// Set AL if carry.
114let Uses = [EFLAGS], Defs = [AL], SchedRW = [WriteALU] in {
115  def SALC : I<0xD6, RawFrm, (outs), (ins), "salc", []>, Requires<[Not64BitMode]>;
116}
117