1//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file describes the various pseudo instructions used by the compiler, 11// as well as Pat patterns used during instruction selection. 12// 13//===----------------------------------------------------------------------===// 14 15//===----------------------------------------------------------------------===// 16// Pattern Matching Support 17 18def GetLo32XForm : SDNodeXForm<imm, [{ 19 // Transformation function: get the low 32 bits. 20 return getI32Imm((uint32_t)N->getZExtValue(), SDLoc(N)); 21}]>; 22 23def GetLo8XForm : SDNodeXForm<imm, [{ 24 // Transformation function: get the low 8 bits. 25 return getI8Imm((uint8_t)N->getZExtValue(), SDLoc(N)); 26}]>; 27 28 29//===----------------------------------------------------------------------===// 30// Random Pseudo Instructions. 31 32// PIC base construction. This expands to code that looks like this: 33// call $next_inst 34// popl %destreg" 35let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP, SSP], 36 SchedRW = [WriteJump] in 37 def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label), 38 "", []>; 39 40// 64-bit large code model PIC base construction. 41let hasSideEffects = 0, mayLoad = 1, isNotDuplicable = 1, SchedRW = [WriteJump] in 42 def MOVGOT64r : PseudoI<(outs GR64:$reg), 43 (ins GR64:$scratch, i64i32imm_pcrel:$got), []>; 44 45// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into 46// a stack adjustment and the codegen must know that they may modify the stack 47// pointer before prolog-epilog rewriting occurs. 48// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become 49// sub / add which can clobber EFLAGS. 50let Defs = [ESP, EFLAGS, SSP], Uses = [ESP, SSP], SchedRW = [WriteALU] in { 51def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), 52 (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3), 53 "#ADJCALLSTACKDOWN", []>, Requires<[NotLP64]>; 54def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), 55 "#ADJCALLSTACKUP", 56 [(X86callseq_end timm:$amt1, timm:$amt2)]>, 57 Requires<[NotLP64]>; 58} 59def : Pat<(X86callseq_start timm:$amt1, timm:$amt2), 60 (ADJCALLSTACKDOWN32 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[NotLP64]>; 61 62 63// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into 64// a stack adjustment and the codegen must know that they may modify the stack 65// pointer before prolog-epilog rewriting occurs. 66// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become 67// sub / add which can clobber EFLAGS. 68let Defs = [RSP, EFLAGS, SSP], Uses = [RSP, SSP], SchedRW = [WriteALU] in { 69def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), 70 (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3), 71 "#ADJCALLSTACKDOWN", []>, Requires<[IsLP64]>; 72def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), 73 "#ADJCALLSTACKUP", 74 [(X86callseq_end timm:$amt1, timm:$amt2)]>, 75 Requires<[IsLP64]>; 76} 77def : Pat<(X86callseq_start timm:$amt1, timm:$amt2), 78 (ADJCALLSTACKDOWN64 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[IsLP64]>; 79 80let SchedRW = [WriteSystem] in { 81 82// x86-64 va_start lowering magic. 83let usesCustomInserter = 1, Defs = [EFLAGS] in { 84def VASTART_SAVE_XMM_REGS : I<0, Pseudo, 85 (outs), 86 (ins GR8:$al, 87 i64imm:$regsavefi, i64imm:$offset, 88 variable_ops), 89 "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset", 90 [(X86vastart_save_xmm_regs GR8:$al, 91 imm:$regsavefi, 92 imm:$offset), 93 (implicit EFLAGS)]>; 94 95// The VAARG_64 pseudo-instruction takes the address of the va_list, 96// and places the address of the next argument into a register. 97let Defs = [EFLAGS] in 98def VAARG_64 : I<0, Pseudo, 99 (outs GR64:$dst), 100 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align), 101 "#VAARG_64 $dst, $ap, $size, $mode, $align", 102 [(set GR64:$dst, 103 (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)), 104 (implicit EFLAGS)]>; 105 106 107// When using segmented stacks these are lowered into instructions which first 108// check if the current stacklet has enough free memory. If it does, memory is 109// allocated by bumping the stack pointer. Otherwise memory is allocated from 110// the heap. 111 112let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in 113def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size), 114 "# variable sized alloca for segmented stacks", 115 [(set GR32:$dst, 116 (X86SegAlloca GR32:$size))]>, 117 Requires<[NotLP64]>; 118 119let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in 120def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size), 121 "# variable sized alloca for segmented stacks", 122 [(set GR64:$dst, 123 (X86SegAlloca GR64:$size))]>, 124 Requires<[In64BitMode]>; 125} 126 127// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows 128// targets. These calls are needed to probe the stack when allocating more than 129// 4k bytes in one go. Touching the stack at 4K increments is necessary to 130// ensure that the guard pages used by the OS virtual memory manager are 131// allocated in correct sequence. 132// The main point of having separate instruction are extra unmodelled effects 133// (compared to ordinary calls) like stack pointer change. 134 135let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in 136def WIN_ALLOCA_32 : I<0, Pseudo, (outs), (ins GR32:$size), 137 "# dynamic stack allocation", 138 [(X86WinAlloca GR32:$size)]>, 139 Requires<[NotLP64]>; 140 141let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in 142def WIN_ALLOCA_64 : I<0, Pseudo, (outs), (ins GR64:$size), 143 "# dynamic stack allocation", 144 [(X86WinAlloca GR64:$size)]>, 145 Requires<[In64BitMode]>; 146} // SchedRW 147 148// These instructions XOR the frame pointer into a GPR. They are used in some 149// stack protection schemes. These are post-RA pseudos because we only know the 150// frame register after register allocation. 151let Constraints = "$src = $dst", isPseudo = 1, Defs = [EFLAGS] in { 152 def XOR32_FP : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src), 153 "xorl\t$$FP, $src", []>, 154 Requires<[NotLP64]>, Sched<[WriteALU]>; 155 def XOR64_FP : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src), 156 "xorq\t$$FP $src", []>, 157 Requires<[In64BitMode]>, Sched<[WriteALU]>; 158} 159 160//===----------------------------------------------------------------------===// 161// EH Pseudo Instructions 162// 163let SchedRW = [WriteSystem] in { 164let isTerminator = 1, isReturn = 1, isBarrier = 1, 165 hasCtrlDep = 1, isCodeGenOnly = 1 in { 166def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr), 167 "ret\t#eh_return, addr: $addr", 168 [(X86ehret GR32:$addr)]>, Sched<[WriteJumpLd]>; 169 170} 171 172let isTerminator = 1, isReturn = 1, isBarrier = 1, 173 hasCtrlDep = 1, isCodeGenOnly = 1 in { 174def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr), 175 "ret\t#eh_return, addr: $addr", 176 [(X86ehret GR64:$addr)]>, Sched<[WriteJumpLd]>; 177 178} 179 180let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1, 181 isCodeGenOnly = 1, isReturn = 1 in { 182 def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>; 183 184 // CATCHRET needs a custom inserter for SEH. 185 let usesCustomInserter = 1 in 186 def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from), 187 "# CATCHRET", 188 [(catchret bb:$dst, bb:$from)]>; 189} 190 191let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1, 192 usesCustomInserter = 1 in 193def CATCHPAD : I<0, Pseudo, (outs), (ins), "# CATCHPAD", [(catchpad)]>; 194 195// This instruction is responsible for re-establishing stack pointers after an 196// exception has been caught and we are rejoining normal control flow in the 197// parent function or funclet. It generally sets ESP and EBP, and optionally 198// ESI. It is only needed for 32-bit WinEH, as the runtime restores CSRs for us 199// elsewhere. 200let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in 201def EH_RESTORE : I<0, Pseudo, (outs), (ins), "# EH_RESTORE", []>; 202 203let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1, 204 usesCustomInserter = 1 in { 205 def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf), 206 "#EH_SJLJ_SETJMP32", 207 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>, 208 Requires<[Not64BitMode]>; 209 def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf), 210 "#EH_SJLJ_SETJMP64", 211 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>, 212 Requires<[In64BitMode]>; 213 let isTerminator = 1 in { 214 def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf), 215 "#EH_SJLJ_LONGJMP32", 216 [(X86eh_sjlj_longjmp addr:$buf)]>, 217 Requires<[Not64BitMode]>; 218 def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf), 219 "#EH_SJLJ_LONGJMP64", 220 [(X86eh_sjlj_longjmp addr:$buf)]>, 221 Requires<[In64BitMode]>; 222 } 223} 224 225let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in { 226 def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst), 227 "#EH_SjLj_Setup\t$dst", []>; 228} 229} // SchedRW 230 231//===----------------------------------------------------------------------===// 232// Pseudo instructions used by unwind info. 233// 234let isPseudo = 1, SchedRW = [WriteSystem] in { 235 def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg), 236 "#SEH_PushReg $reg", []>; 237 def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst), 238 "#SEH_SaveReg $reg, $dst", []>; 239 def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst), 240 "#SEH_SaveXMM $reg, $dst", []>; 241 def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size), 242 "#SEH_StackAlloc $size", []>; 243 def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset), 244 "#SEH_SetFrame $reg, $offset", []>; 245 def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode), 246 "#SEH_PushFrame $mode", []>; 247 def SEH_EndPrologue : I<0, Pseudo, (outs), (ins), 248 "#SEH_EndPrologue", []>; 249 def SEH_Epilogue : I<0, Pseudo, (outs), (ins), 250 "#SEH_Epilogue", []>; 251} 252 253//===----------------------------------------------------------------------===// 254// Pseudo instructions used by segmented stacks. 255// 256 257// This is lowered into a RET instruction by MCInstLower. We need 258// this so that we don't have to have a MachineBasicBlock which ends 259// with a RET and also has successors. 260let isPseudo = 1, SchedRW = [WriteJumpLd] in { 261def MORESTACK_RET: I<0, Pseudo, (outs), (ins), "", []>; 262 263// This instruction is lowered to a RET followed by a MOV. The two 264// instructions are not generated on a higher level since then the 265// verifier sees a MachineBasicBlock ending with a non-terminator. 266def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins), "", []>; 267} 268 269//===----------------------------------------------------------------------===// 270// Alias Instructions 271//===----------------------------------------------------------------------===// 272 273// Alias instruction mapping movr0 to xor. 274// FIXME: remove when we can teach regalloc that xor reg, reg is ok. 275let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1, 276 isPseudo = 1, AddedComplexity = 10 in 277def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "", 278 [(set GR32:$dst, 0)]>, Sched<[WriteZero]>; 279 280// Other widths can also make use of the 32-bit xor, which may have a smaller 281// encoding and avoid partial register updates. 282let AddedComplexity = 10 in { 283def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>; 284def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>; 285def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)>; 286} 287 288let Predicates = [OptForSize, Not64BitMode], 289 AddedComplexity = 10 in { 290 let SchedRW = [WriteALU] in { 291 // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC, 292 // which only require 3 bytes compared to MOV32ri which requires 5. 293 let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in { 294 def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "", 295 [(set GR32:$dst, 1)]>; 296 def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "", 297 [(set GR32:$dst, -1)]>; 298 } 299 } // SchedRW 300 301 // MOV16ri is 4 bytes, so the instructions above are smaller. 302 def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>; 303 def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>; 304} 305 306let isReMaterializable = 1, isPseudo = 1, AddedComplexity = 5, 307 SchedRW = [WriteALU] in { 308// AddedComplexity higher than MOV64ri but lower than MOV32r0 and MOV32r1. 309def MOV32ImmSExti8 : I<0, Pseudo, (outs GR32:$dst), (ins i32i8imm:$src), "", 310 [(set GR32:$dst, i32immSExt8:$src)]>, 311 Requires<[OptForMinSize, NotWin64WithoutFP]>; 312def MOV64ImmSExti8 : I<0, Pseudo, (outs GR64:$dst), (ins i64i8imm:$src), "", 313 [(set GR64:$dst, i64immSExt8:$src)]>, 314 Requires<[OptForMinSize, NotWin64WithoutFP]>; 315} 316 317// Materialize i64 constant where top 32-bits are zero. This could theoretically 318// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however 319// that would make it more difficult to rematerialize. 320let isReMaterializable = 1, isAsCheapAsAMove = 1, 321 isPseudo = 1, hasSideEffects = 0, SchedRW = [WriteMove] in 322def MOV32ri64 : I<0, Pseudo, (outs GR32:$dst), (ins i64i32imm:$src), "", []>; 323 324// This 64-bit pseudo-move can be used for both a 64-bit constant that is 325// actually the zero-extension of a 32-bit constant and for labels in the 326// x86-64 small code model. 327def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [imm, X86Wrapper]>; 328 329let AddedComplexity = 1 in 330def : Pat<(i64 mov64imm32:$src), 331 (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>; 332 333// Use sbb to materialize carry bit. 334let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in { 335// FIXME: These are pseudo ops that should be replaced with Pat<> patterns. 336// However, Pat<> can't replicate the destination reg into the inputs of the 337// result. 338def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "", 339 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; 340def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "", 341 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; 342def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "", 343 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; 344def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "", 345 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; 346} // isCodeGenOnly 347 348 349def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 350 (SETB_C16r)>; 351def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 352 (SETB_C32r)>; 353def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 354 (SETB_C64r)>; 355 356def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 357 (SETB_C16r)>; 358def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 359 (SETB_C32r)>; 360def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 361 (SETB_C64r)>; 362 363// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and 364// will be eliminated and that the sbb can be extended up to a wider type. When 365// this happens, it is great. However, if we are left with an 8-bit sbb and an 366// and, we might as well just match it as a setb. 367def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), 368 (SETBr)>; 369 370// (add OP, SETB) -> (adc OP, 0) 371def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op), 372 (ADC8ri GR8:$op, 0)>; 373def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op), 374 (ADC32ri8 GR32:$op, 0)>; 375def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op), 376 (ADC64ri8 GR64:$op, 0)>; 377 378// (sub OP, SETB) -> (sbb OP, 0) 379def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)), 380 (SBB8ri GR8:$op, 0)>; 381def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)), 382 (SBB32ri8 GR32:$op, 0)>; 383def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)), 384 (SBB64ri8 GR64:$op, 0)>; 385 386// (sub OP, SETCC_CARRY) -> (adc OP, 0) 387def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))), 388 (ADC8ri GR8:$op, 0)>; 389def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))), 390 (ADC32ri8 GR32:$op, 0)>; 391def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))), 392 (ADC64ri8 GR64:$op, 0)>; 393 394//===----------------------------------------------------------------------===// 395// String Pseudo Instructions 396// 397let SchedRW = [WriteMicrocoded] in { 398let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in { 399def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}", 400 [(X86rep_movs i8)]>, REP, 401 Requires<[Not64BitMode]>; 402def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}", 403 [(X86rep_movs i16)]>, REP, OpSize16, 404 Requires<[Not64BitMode]>; 405def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}", 406 [(X86rep_movs i32)]>, REP, OpSize32, 407 Requires<[Not64BitMode]>; 408} 409 410let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in { 411def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}", 412 [(X86rep_movs i8)]>, REP, 413 Requires<[In64BitMode]>; 414def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}", 415 [(X86rep_movs i16)]>, REP, OpSize16, 416 Requires<[In64BitMode]>; 417def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}", 418 [(X86rep_movs i32)]>, REP, OpSize32, 419 Requires<[In64BitMode]>; 420def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}", 421 [(X86rep_movs i64)]>, REP, 422 Requires<[In64BitMode]>; 423} 424 425// FIXME: Should use "(X86rep_stos AL)" as the pattern. 426let Defs = [ECX,EDI], isCodeGenOnly = 1 in { 427 let Uses = [AL,ECX,EDI] in 428 def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}", 429 [(X86rep_stos i8)]>, REP, 430 Requires<[Not64BitMode]>; 431 let Uses = [AX,ECX,EDI] in 432 def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}", 433 [(X86rep_stos i16)]>, REP, OpSize16, 434 Requires<[Not64BitMode]>; 435 let Uses = [EAX,ECX,EDI] in 436 def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}", 437 [(X86rep_stos i32)]>, REP, OpSize32, 438 Requires<[Not64BitMode]>; 439} 440 441let Defs = [RCX,RDI], isCodeGenOnly = 1 in { 442 let Uses = [AL,RCX,RDI] in 443 def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}", 444 [(X86rep_stos i8)]>, REP, 445 Requires<[In64BitMode]>; 446 let Uses = [AX,RCX,RDI] in 447 def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}", 448 [(X86rep_stos i16)]>, REP, OpSize16, 449 Requires<[In64BitMode]>; 450 let Uses = [RAX,RCX,RDI] in 451 def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}", 452 [(X86rep_stos i32)]>, REP, OpSize32, 453 Requires<[In64BitMode]>; 454 455 let Uses = [RAX,RCX,RDI] in 456 def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}", 457 [(X86rep_stos i64)]>, REP, 458 Requires<[In64BitMode]>; 459} 460} // SchedRW 461 462//===----------------------------------------------------------------------===// 463// Thread Local Storage Instructions 464// 465let SchedRW = [WriteSystem] in { 466 467// ELF TLS Support 468// All calls clobber the non-callee saved registers. ESP is marked as 469// a use to prevent stack-pointer assignments that appear immediately 470// before calls from potentially appearing dead. 471let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7, 472 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7, 473 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, 474 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, 475 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF], 476 usesCustomInserter = 1, Uses = [ESP, SSP] in { 477def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym), 478 "# TLS_addr32", 479 [(X86tlsaddr tls32addr:$sym)]>, 480 Requires<[Not64BitMode]>; 481def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym), 482 "# TLS_base_addr32", 483 [(X86tlsbaseaddr tls32baseaddr:$sym)]>, 484 Requires<[Not64BitMode]>; 485} 486 487// All calls clobber the non-callee saved registers. RSP is marked as 488// a use to prevent stack-pointer assignments that appear immediately 489// before calls from potentially appearing dead. 490let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, 491 FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7, 492 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7, 493 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, 494 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, 495 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF], 496 usesCustomInserter = 1, Uses = [RSP, SSP] in { 497def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym), 498 "# TLS_addr64", 499 [(X86tlsaddr tls64addr:$sym)]>, 500 Requires<[In64BitMode]>; 501def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym), 502 "# TLS_base_addr64", 503 [(X86tlsbaseaddr tls64baseaddr:$sym)]>, 504 Requires<[In64BitMode]>; 505} 506 507// Darwin TLS Support 508// For i386, the address of the thunk is passed on the stack, on return the 509// address of the variable is in %eax. %ecx is trashed during the function 510// call. All other registers are preserved. 511let Defs = [EAX, ECX, EFLAGS, DF], 512 Uses = [ESP, SSP], 513 usesCustomInserter = 1 in 514def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym), 515 "# TLSCall_32", 516 [(X86TLSCall addr:$sym)]>, 517 Requires<[Not64BitMode]>; 518 519// For x86_64, the address of the thunk is passed in %rdi, but the 520// pseudo directly use the symbol, so do not add an implicit use of 521// %rdi. The lowering will do the right thing with RDI. 522// On return the address of the variable is in %rax. All other 523// registers are preserved. 524let Defs = [RAX, EFLAGS, DF], 525 Uses = [RSP, SSP], 526 usesCustomInserter = 1 in 527def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym), 528 "# TLSCall_64", 529 [(X86TLSCall addr:$sym)]>, 530 Requires<[In64BitMode]>; 531} // SchedRW 532 533//===----------------------------------------------------------------------===// 534// Conditional Move Pseudo Instructions 535 536// CMOV* - Used to implement the SELECT DAG operation. Expanded after 537// instruction selection into a branch sequence. 538multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> { 539 def CMOV#NAME : I<0, Pseudo, 540 (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond), 541 "#CMOV_"#NAME#" PSEUDO!", 542 [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond, 543 EFLAGS)))]>; 544} 545 546let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS] in { 547 // X86 doesn't have 8-bit conditional moves. Use a customInserter to 548 // emit control flow. An alternative to this is to mark i8 SELECT as Promote, 549 // however that requires promoting the operands, and can induce additional 550 // i8 register pressure. 551 defm _GR8 : CMOVrr_PSEUDO<GR8, i8>; 552 553 let Predicates = [NoCMov] in { 554 defm _GR32 : CMOVrr_PSEUDO<GR32, i32>; 555 defm _GR16 : CMOVrr_PSEUDO<GR16, i16>; 556 } // Predicates = [NoCMov] 557 558 // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no 559 // SSE1/SSE2. 560 let Predicates = [FPStackf32] in 561 defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>; 562 563 let Predicates = [FPStackf64] in 564 defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>; 565 566 defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>; 567 568 defm _FR32 : CMOVrr_PSEUDO<FR32, f32>; 569 defm _FR64 : CMOVrr_PSEUDO<FR64, f64>; 570 defm _F128 : CMOVrr_PSEUDO<VR128, f128>; 571 defm _V4F32 : CMOVrr_PSEUDO<VR128, v4f32>; 572 defm _V2F64 : CMOVrr_PSEUDO<VR128, v2f64>; 573 defm _V2I64 : CMOVrr_PSEUDO<VR128, v2i64>; 574 defm _V8F32 : CMOVrr_PSEUDO<VR256, v8f32>; 575 defm _V4F64 : CMOVrr_PSEUDO<VR256, v4f64>; 576 defm _V4I64 : CMOVrr_PSEUDO<VR256, v4i64>; 577 defm _V8I64 : CMOVrr_PSEUDO<VR512, v8i64>; 578 defm _V8F64 : CMOVrr_PSEUDO<VR512, v8f64>; 579 defm _V16F32 : CMOVrr_PSEUDO<VR512, v16f32>; 580 defm _V8I1 : CMOVrr_PSEUDO<VK8, v8i1>; 581 defm _V16I1 : CMOVrr_PSEUDO<VK16, v16i1>; 582 defm _V32I1 : CMOVrr_PSEUDO<VK32, v32i1>; 583 defm _V64I1 : CMOVrr_PSEUDO<VK64, v64i1>; 584} // usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS] 585 586//===----------------------------------------------------------------------===// 587// Normal-Instructions-With-Lock-Prefix Pseudo Instructions 588//===----------------------------------------------------------------------===// 589 590// FIXME: Use normal instructions and add lock prefix dynamically. 591 592// Memory barriers 593 594// TODO: Get this to fold the constant into the instruction. 595let isCodeGenOnly = 1, Defs = [EFLAGS] in 596def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero), 597 "or{l}\t{$zero, $dst|$dst, $zero}", []>, 598 Requires<[Not64BitMode]>, OpSize32, LOCK, 599 Sched<[WriteALULd, WriteRMW]>; 600 601let hasSideEffects = 1 in 602def Int_MemBarrier : I<0, Pseudo, (outs), (ins), 603 "#MEMBARRIER", 604 [(X86MemBarrier)]>, Sched<[WriteLoad]>; 605 606// RegOpc corresponds to the mr version of the instruction 607// ImmOpc corresponds to the mi version of the instruction 608// ImmOpc8 corresponds to the mi8 version of the instruction 609// ImmMod corresponds to the instruction format of the mi and mi8 versions 610multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8, 611 Format ImmMod, SDNode Op, string mnemonic> { 612let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1, 613 SchedRW = [WriteALULd, WriteRMW] in { 614 615def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, 616 RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 }, 617 MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), 618 !strconcat(mnemonic, "{b}\t", 619 "{$src2, $dst|$dst, $src2}"), 620 [(set EFLAGS, (Op addr:$dst, GR8:$src2))]>, LOCK; 621 622def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, 623 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, 624 MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), 625 !strconcat(mnemonic, "{w}\t", 626 "{$src2, $dst|$dst, $src2}"), 627 [(set EFLAGS, (Op addr:$dst, GR16:$src2))]>, 628 OpSize16, LOCK; 629 630def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, 631 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, 632 MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), 633 !strconcat(mnemonic, "{l}\t", 634 "{$src2, $dst|$dst, $src2}"), 635 [(set EFLAGS, (Op addr:$dst, GR32:$src2))]>, 636 OpSize32, LOCK; 637 638def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, 639 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, 640 MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), 641 !strconcat(mnemonic, "{q}\t", 642 "{$src2, $dst|$dst, $src2}"), 643 [(set EFLAGS, (Op addr:$dst, GR64:$src2))]>, LOCK; 644 645def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, 646 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 }, 647 ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2), 648 !strconcat(mnemonic, "{b}\t", 649 "{$src2, $dst|$dst, $src2}"), 650 [(set EFLAGS, (Op addr:$dst, (i8 imm:$src2)))]>, LOCK; 651 652def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, 653 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, 654 ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2), 655 !strconcat(mnemonic, "{w}\t", 656 "{$src2, $dst|$dst, $src2}"), 657 [(set EFLAGS, (Op addr:$dst, (i16 imm:$src2)))]>, 658 OpSize16, LOCK; 659 660def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, 661 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, 662 ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2), 663 !strconcat(mnemonic, "{l}\t", 664 "{$src2, $dst|$dst, $src2}"), 665 [(set EFLAGS, (Op addr:$dst, (i32 imm:$src2)))]>, 666 OpSize32, LOCK; 667 668def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, 669 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, 670 ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2), 671 !strconcat(mnemonic, "{q}\t", 672 "{$src2, $dst|$dst, $src2}"), 673 [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))]>, 674 LOCK; 675 676def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, 677 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, 678 ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2), 679 !strconcat(mnemonic, "{w}\t", 680 "{$src2, $dst|$dst, $src2}"), 681 [(set EFLAGS, (Op addr:$dst, i16immSExt8:$src2))]>, 682 OpSize16, LOCK; 683 684def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, 685 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, 686 ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2), 687 !strconcat(mnemonic, "{l}\t", 688 "{$src2, $dst|$dst, $src2}"), 689 [(set EFLAGS, (Op addr:$dst, i32immSExt8:$src2))]>, 690 OpSize32, LOCK; 691 692def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, 693 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, 694 ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2), 695 !strconcat(mnemonic, "{q}\t", 696 "{$src2, $dst|$dst, $src2}"), 697 [(set EFLAGS, (Op addr:$dst, i64immSExt8:$src2))]>, 698 LOCK; 699} 700 701} 702 703defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, X86lock_add, "add">; 704defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, X86lock_sub, "sub">; 705defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, X86lock_or , "or">; 706defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, X86lock_and, "and">; 707defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, X86lock_xor, "xor">; 708 709multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form, 710 string frag, string mnemonic> { 711let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1, 712 SchedRW = [WriteALULd, WriteRMW] in { 713def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst), 714 !strconcat(mnemonic, "{b}\t$dst"), 715 [(set EFLAGS, (!cast<PatFrag>(frag # "_8") addr:$dst))]>, 716 LOCK; 717def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst), 718 !strconcat(mnemonic, "{w}\t$dst"), 719 [(set EFLAGS, (!cast<PatFrag>(frag # "_16") addr:$dst))]>, 720 OpSize16, LOCK; 721def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst), 722 !strconcat(mnemonic, "{l}\t$dst"), 723 [(set EFLAGS, (!cast<PatFrag>(frag # "_32") addr:$dst))]>, 724 OpSize32, LOCK; 725def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst), 726 !strconcat(mnemonic, "{q}\t$dst"), 727 [(set EFLAGS, (!cast<PatFrag>(frag # "_64") addr:$dst))]>, 728 LOCK; 729} 730} 731 732multiclass unary_atomic_intrin<SDNode atomic_op> { 733 def _8 : PatFrag<(ops node:$ptr), 734 (atomic_op node:$ptr), [{ 735 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8; 736 }]>; 737 def _16 : PatFrag<(ops node:$ptr), 738 (atomic_op node:$ptr), [{ 739 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16; 740 }]>; 741 def _32 : PatFrag<(ops node:$ptr), 742 (atomic_op node:$ptr), [{ 743 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32; 744 }]>; 745 def _64 : PatFrag<(ops node:$ptr), 746 (atomic_op node:$ptr), [{ 747 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64; 748 }]>; 749} 750 751defm X86lock_inc : unary_atomic_intrin<X86lock_inc>; 752defm X86lock_dec : unary_atomic_intrin<X86lock_dec>; 753 754defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "X86lock_inc", "inc">; 755defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "X86lock_dec", "dec">; 756 757// Atomic compare and swap. 758multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic, 759 SDPatternOperator frag, X86MemOperand x86memop> { 760let isCodeGenOnly = 1, usesCustomInserter = 1 in { 761 def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr), 762 !strconcat(mnemonic, "\t$ptr"), 763 [(frag addr:$ptr)]>, TB, LOCK; 764} 765} 766 767multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form, 768 string mnemonic, SDPatternOperator frag> { 769let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in { 770 let Defs = [AL, EFLAGS], Uses = [AL] in 771 def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap), 772 !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"), 773 [(frag addr:$ptr, GR8:$swap, 1)]>, TB, LOCK; 774 let Defs = [AX, EFLAGS], Uses = [AX] in 775 def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap), 776 !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"), 777 [(frag addr:$ptr, GR16:$swap, 2)]>, TB, OpSize16, LOCK; 778 let Defs = [EAX, EFLAGS], Uses = [EAX] in 779 def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap), 780 !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"), 781 [(frag addr:$ptr, GR32:$swap, 4)]>, TB, OpSize32, LOCK; 782 let Defs = [RAX, EFLAGS], Uses = [RAX] in 783 def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap), 784 !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"), 785 [(frag addr:$ptr, GR64:$swap, 8)]>, TB, LOCK; 786} 787} 788 789let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX], 790 SchedRW = [WriteALULd, WriteRMW] in { 791defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b", X86cas8, i64mem>; 792} 793 794// This pseudo must be used when the frame uses RBX as 795// the base pointer. Indeed, in such situation RBX is a reserved 796// register and the register allocator will ignore any use/def of 797// it. In other words, the register will not fix the clobbering of 798// RBX that will happen when setting the arguments for the instrucion. 799// 800// Unlike the actual related instuction, we mark that this one 801// defines EBX (instead of using EBX). 802// The rationale is that we will define RBX during the expansion of 803// the pseudo. The argument feeding EBX is ebx_input. 804// 805// The additional argument, $ebx_save, is a temporary register used to 806// save the value of RBX across the actual instruction. 807// 808// To make sure the register assigned to $ebx_save does not interfere with 809// the definition of the actual instruction, we use a definition $dst which 810// is tied to $rbx_save. That way, the live-range of $rbx_save spans across 811// the instruction and we are sure we will have a valid register to restore 812// the value of RBX. 813let Defs = [EAX, EDX, EBX, EFLAGS], Uses = [EAX, ECX, EDX], 814 SchedRW = [WriteALULd, WriteRMW], isCodeGenOnly = 1, isPseudo = 1, 815 Constraints = "$ebx_save = $dst", usesCustomInserter = 1 in { 816def LCMPXCHG8B_SAVE_EBX : 817 I<0, Pseudo, (outs GR32:$dst), 818 (ins i64mem:$ptr, GR32:$ebx_input, GR32:$ebx_save), 819 !strconcat("cmpxchg8b", "\t$ptr"), 820 [(set GR32:$dst, (X86cas8save_ebx addr:$ptr, GR32:$ebx_input, 821 GR32:$ebx_save))]>; 822} 823 824 825let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX], 826 Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in { 827defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b", 828 X86cas16, i128mem>, REX_W; 829} 830 831// Same as LCMPXCHG8B_SAVE_RBX but for the 16 Bytes variant. 832let Defs = [RAX, RDX, RBX, EFLAGS], Uses = [RAX, RCX, RDX], 833 Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW], 834 isCodeGenOnly = 1, isPseudo = 1, Constraints = "$rbx_save = $dst", 835 usesCustomInserter = 1 in { 836def LCMPXCHG16B_SAVE_RBX : 837 I<0, Pseudo, (outs GR64:$dst), 838 (ins i128mem:$ptr, GR64:$rbx_input, GR64:$rbx_save), 839 !strconcat("cmpxchg16b", "\t$ptr"), 840 [(set GR64:$dst, (X86cas16save_rbx addr:$ptr, GR64:$rbx_input, 841 GR64:$rbx_save))]>; 842} 843 844defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg", X86cas>; 845 846// Atomic exchange and add 847multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic, 848 string frag> { 849 let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1, 850 SchedRW = [WriteALULd, WriteRMW] in { 851 def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst), 852 (ins GR8:$val, i8mem:$ptr), 853 !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"), 854 [(set GR8:$dst, 855 (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))]>; 856 def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst), 857 (ins GR16:$val, i16mem:$ptr), 858 !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"), 859 [(set 860 GR16:$dst, 861 (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))]>, 862 OpSize16; 863 def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst), 864 (ins GR32:$val, i32mem:$ptr), 865 !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"), 866 [(set 867 GR32:$dst, 868 (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))]>, 869 OpSize32; 870 def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst), 871 (ins GR64:$val, i64mem:$ptr), 872 !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"), 873 [(set 874 GR64:$dst, 875 (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))]>; 876 } 877} 878 879defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add">, TB, LOCK; 880 881/* The following multiclass tries to make sure that in code like 882 * x.store (immediate op x.load(acquire), release) 883 * and 884 * x.store (register op x.load(acquire), release) 885 * an operation directly on memory is generated instead of wasting a register. 886 * It is not automatic as atomic_store/load are only lowered to MOV instructions 887 * extremely late to prevent them from being accidentally reordered in the backend 888 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions) 889 */ 890multiclass RELEASE_BINOP_MI<SDNode op> { 891 def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src), 892 "#BINOP "#NAME#"8mi PSEUDO!", 893 [(atomic_store_8 addr:$dst, (op 894 (atomic_load_8 addr:$dst), (i8 imm:$src)))]>; 895 def NAME#8mr : I<0, Pseudo, (outs), (ins i8mem:$dst, GR8:$src), 896 "#BINOP "#NAME#"8mr PSEUDO!", 897 [(atomic_store_8 addr:$dst, (op 898 (atomic_load_8 addr:$dst), GR8:$src))]>; 899 // NAME#16 is not generated as 16-bit arithmetic instructions are considered 900 // costly and avoided as far as possible by this backend anyway 901 def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src), 902 "#BINOP "#NAME#"32mi PSEUDO!", 903 [(atomic_store_32 addr:$dst, (op 904 (atomic_load_32 addr:$dst), (i32 imm:$src)))]>; 905 def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src), 906 "#BINOP "#NAME#"32mr PSEUDO!", 907 [(atomic_store_32 addr:$dst, (op 908 (atomic_load_32 addr:$dst), GR32:$src))]>; 909 def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src), 910 "#BINOP "#NAME#"64mi32 PSEUDO!", 911 [(atomic_store_64 addr:$dst, (op 912 (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>; 913 def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src), 914 "#BINOP "#NAME#"64mr PSEUDO!", 915 [(atomic_store_64 addr:$dst, (op 916 (atomic_load_64 addr:$dst), GR64:$src))]>; 917} 918let Defs = [EFLAGS], SchedRW = [WriteMicrocoded] in { 919 defm RELEASE_ADD : RELEASE_BINOP_MI<add>; 920 defm RELEASE_AND : RELEASE_BINOP_MI<and>; 921 defm RELEASE_OR : RELEASE_BINOP_MI<or>; 922 defm RELEASE_XOR : RELEASE_BINOP_MI<xor>; 923 // Note: we don't deal with sub, because substractions of constants are 924 // optimized into additions before this code can run. 925} 926 927// Same as above, but for floating-point. 928// FIXME: imm version. 929// FIXME: Version that doesn't clobber $src, using AVX's VADDSS. 930// FIXME: This could also handle SIMD operations with *ps and *pd instructions. 931let usesCustomInserter = 1, SchedRW = [WriteMicrocoded] in { 932multiclass RELEASE_FP_BINOP_MI<SDNode op> { 933 def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, FR32:$src), 934 "#BINOP "#NAME#"32mr PSEUDO!", 935 [(atomic_store_32 addr:$dst, 936 (i32 (bitconvert (op 937 (f32 (bitconvert (i32 (atomic_load_32 addr:$dst)))), 938 FR32:$src))))]>, Requires<[HasSSE1]>; 939 def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, FR64:$src), 940 "#BINOP "#NAME#"64mr PSEUDO!", 941 [(atomic_store_64 addr:$dst, 942 (i64 (bitconvert (op 943 (f64 (bitconvert (i64 (atomic_load_64 addr:$dst)))), 944 FR64:$src))))]>, Requires<[HasSSE2]>; 945} 946defm RELEASE_FADD : RELEASE_FP_BINOP_MI<fadd>; 947// FIXME: Add fsub, fmul, fdiv, ... 948} 949 950multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> { 951 def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst), 952 "#UNOP "#NAME#"8m PSEUDO!", 953 [(atomic_store_8 addr:$dst, dag8)]>; 954 def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst), 955 "#UNOP "#NAME#"16m PSEUDO!", 956 [(atomic_store_16 addr:$dst, dag16)]>; 957 def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst), 958 "#UNOP "#NAME#"32m PSEUDO!", 959 [(atomic_store_32 addr:$dst, dag32)]>; 960 def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst), 961 "#UNOP "#NAME#"64m PSEUDO!", 962 [(atomic_store_64 addr:$dst, dag64)]>; 963} 964 965let Defs = [EFLAGS], Predicates = [UseIncDec], SchedRW = [WriteMicrocoded] in { 966 defm RELEASE_INC : RELEASE_UNOP< 967 (add (atomic_load_8 addr:$dst), (i8 1)), 968 (add (atomic_load_16 addr:$dst), (i16 1)), 969 (add (atomic_load_32 addr:$dst), (i32 1)), 970 (add (atomic_load_64 addr:$dst), (i64 1))>; 971 defm RELEASE_DEC : RELEASE_UNOP< 972 (add (atomic_load_8 addr:$dst), (i8 -1)), 973 (add (atomic_load_16 addr:$dst), (i16 -1)), 974 (add (atomic_load_32 addr:$dst), (i32 -1)), 975 (add (atomic_load_64 addr:$dst), (i64 -1))>; 976} 977/* 978TODO: These don't work because the type inference of TableGen fails. 979TODO: find a way to fix it. 980let Defs = [EFLAGS] in { 981 defm RELEASE_NEG : RELEASE_UNOP< 982 (ineg (atomic_load_8 addr:$dst)), 983 (ineg (atomic_load_16 addr:$dst)), 984 (ineg (atomic_load_32 addr:$dst)), 985 (ineg (atomic_load_64 addr:$dst))>; 986} 987// NOT doesn't set flags. 988defm RELEASE_NOT : RELEASE_UNOP< 989 (not (atomic_load_8 addr:$dst)), 990 (not (atomic_load_16 addr:$dst)), 991 (not (atomic_load_32 addr:$dst)), 992 (not (atomic_load_64 addr:$dst))>; 993*/ 994 995let SchedRW = [WriteMicrocoded] in { 996def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src), 997 "#RELEASE_MOV8mi PSEUDO!", 998 [(atomic_store_8 addr:$dst, (i8 imm:$src))]>; 999def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src), 1000 "#RELEASE_MOV16mi PSEUDO!", 1001 [(atomic_store_16 addr:$dst, (i16 imm:$src))]>; 1002def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src), 1003 "#RELEASE_MOV32mi PSEUDO!", 1004 [(atomic_store_32 addr:$dst, (i32 imm:$src))]>; 1005def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src), 1006 "#RELEASE_MOV64mi32 PSEUDO!", 1007 [(atomic_store_64 addr:$dst, i64immSExt32:$src)]>; 1008 1009def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src), 1010 "#RELEASE_MOV8mr PSEUDO!", 1011 [(atomic_store_8 addr:$dst, GR8 :$src)]>; 1012def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src), 1013 "#RELEASE_MOV16mr PSEUDO!", 1014 [(atomic_store_16 addr:$dst, GR16:$src)]>; 1015def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src), 1016 "#RELEASE_MOV32mr PSEUDO!", 1017 [(atomic_store_32 addr:$dst, GR32:$src)]>; 1018def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src), 1019 "#RELEASE_MOV64mr PSEUDO!", 1020 [(atomic_store_64 addr:$dst, GR64:$src)]>; 1021 1022def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src), 1023 "#ACQUIRE_MOV8rm PSEUDO!", 1024 [(set GR8:$dst, (atomic_load_8 addr:$src))]>; 1025def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src), 1026 "#ACQUIRE_MOV16rm PSEUDO!", 1027 [(set GR16:$dst, (atomic_load_16 addr:$src))]>; 1028def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src), 1029 "#ACQUIRE_MOV32rm PSEUDO!", 1030 [(set GR32:$dst, (atomic_load_32 addr:$src))]>; 1031def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src), 1032 "#ACQUIRE_MOV64rm PSEUDO!", 1033 [(set GR64:$dst, (atomic_load_64 addr:$src))]>; 1034} // SchedRW 1035 1036//===----------------------------------------------------------------------===// 1037// DAG Pattern Matching Rules 1038//===----------------------------------------------------------------------===// 1039 1040// Use AND/OR to store 0/-1 in memory when optimizing for minsize. This saves 1041// binary size compared to a regular MOV, but it introduces an unnecessary 1042// load, so is not suitable for regular or optsize functions. 1043let Predicates = [OptForMinSize] in { 1044def : Pat<(store (i16 0), addr:$dst), (AND16mi8 addr:$dst, 0)>; 1045def : Pat<(store (i32 0), addr:$dst), (AND32mi8 addr:$dst, 0)>; 1046def : Pat<(store (i64 0), addr:$dst), (AND64mi8 addr:$dst, 0)>; 1047def : Pat<(store (i16 -1), addr:$dst), (OR16mi8 addr:$dst, -1)>; 1048def : Pat<(store (i32 -1), addr:$dst), (OR32mi8 addr:$dst, -1)>; 1049def : Pat<(store (i64 -1), addr:$dst), (OR64mi8 addr:$dst, -1)>; 1050} 1051 1052// In kernel code model, we can get the address of a label 1053// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of 1054// the MOV64ri32 should accept these. 1055def : Pat<(i64 (X86Wrapper tconstpool :$dst)), 1056 (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>; 1057def : Pat<(i64 (X86Wrapper tjumptable :$dst)), 1058 (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>; 1059def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)), 1060 (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>; 1061def : Pat<(i64 (X86Wrapper texternalsym:$dst)), 1062 (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>; 1063def : Pat<(i64 (X86Wrapper mcsym:$dst)), 1064 (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>; 1065def : Pat<(i64 (X86Wrapper tblockaddress:$dst)), 1066 (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>; 1067 1068// If we have small model and -static mode, it is safe to store global addresses 1069// directly as immediates. FIXME: This is really a hack, the 'imm' predicate 1070// for MOV64mi32 should handle this sort of thing. 1071def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst), 1072 (MOV64mi32 addr:$dst, tconstpool:$src)>, 1073 Requires<[NearData, IsNotPIC]>; 1074def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst), 1075 (MOV64mi32 addr:$dst, tjumptable:$src)>, 1076 Requires<[NearData, IsNotPIC]>; 1077def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst), 1078 (MOV64mi32 addr:$dst, tglobaladdr:$src)>, 1079 Requires<[NearData, IsNotPIC]>; 1080def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst), 1081 (MOV64mi32 addr:$dst, texternalsym:$src)>, 1082 Requires<[NearData, IsNotPIC]>; 1083def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst), 1084 (MOV64mi32 addr:$dst, mcsym:$src)>, 1085 Requires<[NearData, IsNotPIC]>; 1086def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst), 1087 (MOV64mi32 addr:$dst, tblockaddress:$src)>, 1088 Requires<[NearData, IsNotPIC]>; 1089 1090def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>; 1091def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>; 1092 1093// Calls 1094 1095// tls has some funny stuff here... 1096// This corresponds to movabs $foo@tpoff, %rax 1097def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)), 1098 (MOV64ri32 tglobaltlsaddr :$dst)>; 1099// This corresponds to add $foo@tpoff, %rax 1100def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)), 1101 (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>; 1102 1103 1104// Direct PC relative function call for small code model. 32-bit displacement 1105// sign extended to 64-bit. 1106def : Pat<(X86call (i64 tglobaladdr:$dst)), 1107 (CALL64pcrel32 tglobaladdr:$dst)>; 1108def : Pat<(X86call (i64 texternalsym:$dst)), 1109 (CALL64pcrel32 texternalsym:$dst)>; 1110 1111// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they 1112// can never use callee-saved registers. That is the purpose of the GR64_TC 1113// register classes. 1114// 1115// The only volatile register that is never used by the calling convention is 1116// %r11. This happens when calling a vararg function with 6 arguments. 1117// 1118// Match an X86tcret that uses less than 7 volatile registers. 1119def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off), 1120 (X86tcret node:$ptr, node:$off), [{ 1121 // X86tcret args: (*chain, ptr, imm, regs..., glue) 1122 unsigned NumRegs = 0; 1123 for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i) 1124 if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6) 1125 return false; 1126 return true; 1127}]>; 1128 1129def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), 1130 (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>, 1131 Requires<[Not64BitMode, NotUseRetpoline]>; 1132 1133// FIXME: This is disabled for 32-bit PIC mode because the global base 1134// register which is part of the address mode may be assigned a 1135// callee-saved register. 1136def : Pat<(X86tcret (load addr:$dst), imm:$off), 1137 (TCRETURNmi addr:$dst, imm:$off)>, 1138 Requires<[Not64BitMode, IsNotPIC, NotUseRetpoline]>; 1139 1140def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off), 1141 (TCRETURNdi tglobaladdr:$dst, imm:$off)>, 1142 Requires<[NotLP64]>; 1143 1144def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off), 1145 (TCRETURNdi texternalsym:$dst, imm:$off)>, 1146 Requires<[NotLP64]>; 1147 1148def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), 1149 (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>, 1150 Requires<[In64BitMode, NotUseRetpoline]>; 1151 1152// Don't fold loads into X86tcret requiring more than 6 regs. 1153// There wouldn't be enough scratch registers for base+index. 1154def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off), 1155 (TCRETURNmi64 addr:$dst, imm:$off)>, 1156 Requires<[In64BitMode, NotUseRetpoline]>; 1157 1158def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), 1159 (RETPOLINE_TCRETURN64 ptr_rc_tailcall:$dst, imm:$off)>, 1160 Requires<[In64BitMode, UseRetpoline]>; 1161 1162def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), 1163 (RETPOLINE_TCRETURN32 ptr_rc_tailcall:$dst, imm:$off)>, 1164 Requires<[Not64BitMode, UseRetpoline]>; 1165 1166def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off), 1167 (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>, 1168 Requires<[IsLP64]>; 1169 1170def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off), 1171 (TCRETURNdi64 texternalsym:$dst, imm:$off)>, 1172 Requires<[IsLP64]>; 1173 1174// Normal calls, with various flavors of addresses. 1175def : Pat<(X86call (i32 tglobaladdr:$dst)), 1176 (CALLpcrel32 tglobaladdr:$dst)>; 1177def : Pat<(X86call (i32 texternalsym:$dst)), 1178 (CALLpcrel32 texternalsym:$dst)>; 1179def : Pat<(X86call (i32 imm:$dst)), 1180 (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>; 1181 1182// Comparisons. 1183 1184// TEST R,R is smaller than CMP R,0 1185def : Pat<(X86cmp GR8:$src1, 0), 1186 (TEST8rr GR8:$src1, GR8:$src1)>; 1187def : Pat<(X86cmp GR16:$src1, 0), 1188 (TEST16rr GR16:$src1, GR16:$src1)>; 1189def : Pat<(X86cmp GR32:$src1, 0), 1190 (TEST32rr GR32:$src1, GR32:$src1)>; 1191def : Pat<(X86cmp GR64:$src1, 0), 1192 (TEST64rr GR64:$src1, GR64:$src1)>; 1193 1194// Conditional moves with folded loads with operands swapped and conditions 1195// inverted. 1196multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32, 1197 Instruction Inst64> { 1198 let Predicates = [HasCMov] in { 1199 def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS), 1200 (Inst16 GR16:$src2, addr:$src1)>; 1201 def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS), 1202 (Inst32 GR32:$src2, addr:$src1)>; 1203 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS), 1204 (Inst64 GR64:$src2, addr:$src1)>; 1205 } 1206} 1207 1208defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>; 1209defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>; 1210defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>; 1211defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>; 1212defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>; 1213defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>; 1214defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>; 1215defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>; 1216defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>; 1217defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>; 1218defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>; 1219defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>; 1220defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>; 1221defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>; 1222defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>; 1223defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>; 1224 1225// zextload bool -> zextload byte 1226// i1 stored in one byte in zero-extended form. 1227// Upper bits cleanup should be executed before Store. 1228def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>; 1229def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; 1230def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; 1231def : Pat<(zextloadi64i1 addr:$src), 1232 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; 1233 1234// extload bool -> extload byte 1235// When extloading from 16-bit and smaller memory locations into 64-bit 1236// registers, use zero-extending loads so that the entire 64-bit register is 1237// defined, avoiding partial-register updates. 1238 1239def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>; 1240def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; 1241def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; 1242def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>; 1243def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>; 1244def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>; 1245 1246// For other extloads, use subregs, since the high contents of the register are 1247// defined after an extload. 1248def : Pat<(extloadi64i1 addr:$src), 1249 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; 1250def : Pat<(extloadi64i8 addr:$src), 1251 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; 1252def : Pat<(extloadi64i16 addr:$src), 1253 (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>; 1254def : Pat<(extloadi64i32 addr:$src), 1255 (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>; 1256 1257// anyext. Define these to do an explicit zero-extend to 1258// avoid partial-register updates. 1259def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG 1260 (MOVZX32rr8 GR8 :$src), sub_16bit)>; 1261def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>; 1262 1263// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32. 1264def : Pat<(i32 (anyext GR16:$src)), 1265 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>; 1266 1267def : Pat<(i64 (anyext GR8 :$src)), 1268 (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>; 1269def : Pat<(i64 (anyext GR16:$src)), 1270 (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>; 1271def : Pat<(i64 (anyext GR32:$src)), 1272 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, sub_32bit)>; 1273 1274 1275// Any instruction that defines a 32-bit result leaves the high half of the 1276// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may 1277// be copying from a truncate. Any other 32-bit operation will zero-extend 1278// up to 64 bits. AssertSext/AssertZext aren't saying anything about the upper 1279// 32 bits, they're probably just qualifying a CopyFromReg. 1280def def32 : PatLeaf<(i32 GR32:$src), [{ 1281 return N->getOpcode() != ISD::TRUNCATE && 1282 N->getOpcode() != TargetOpcode::EXTRACT_SUBREG && 1283 N->getOpcode() != ISD::CopyFromReg && 1284 N->getOpcode() != ISD::AssertSext && 1285 N->getOpcode() != ISD::AssertZext; 1286}]>; 1287 1288// In the case of a 32-bit def that is known to implicitly zero-extend, 1289// we can use a SUBREG_TO_REG. 1290def : Pat<(i64 (zext def32:$src)), 1291 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>; 1292 1293//===----------------------------------------------------------------------===// 1294// Pattern match OR as ADD 1295//===----------------------------------------------------------------------===// 1296 1297// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be 1298// 3-addressified into an LEA instruction to avoid copies. However, we also 1299// want to finally emit these instructions as an or at the end of the code 1300// generator to make the generated code easier to read. To do this, we select 1301// into "disjoint bits" pseudo ops. 1302 1303// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero. 1304def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{ 1305 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1))) 1306 return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue()); 1307 1308 KnownBits Known0; 1309 CurDAG->computeKnownBits(N->getOperand(0), Known0, 0); 1310 KnownBits Known1; 1311 CurDAG->computeKnownBits(N->getOperand(1), Known1, 0); 1312 return (~Known0.Zero & ~Known1.Zero) == 0; 1313}]>; 1314 1315 1316// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits. 1317// Try this before the selecting to OR. 1318let AddedComplexity = 5, SchedRW = [WriteALU] in { 1319 1320let isConvertibleToThreeAddress = 1, 1321 Constraints = "$src1 = $dst", Defs = [EFLAGS] in { 1322let isCommutable = 1 in { 1323def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), 1324 "", // orw/addw REG, REG 1325 [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>; 1326def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), 1327 "", // orl/addl REG, REG 1328 [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>; 1329def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), 1330 "", // orq/addq REG, REG 1331 [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>; 1332} // isCommutable 1333 1334// NOTE: These are order specific, we want the ri8 forms to be listed 1335// first so that they are slightly preferred to the ri forms. 1336 1337def ADD16ri8_DB : I<0, Pseudo, 1338 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), 1339 "", // orw/addw REG, imm8 1340 [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>; 1341def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), 1342 "", // orw/addw REG, imm 1343 [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>; 1344 1345def ADD32ri8_DB : I<0, Pseudo, 1346 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), 1347 "", // orl/addl REG, imm8 1348 [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>; 1349def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), 1350 "", // orl/addl REG, imm 1351 [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>; 1352 1353 1354def ADD64ri8_DB : I<0, Pseudo, 1355 (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), 1356 "", // orq/addq REG, imm8 1357 [(set GR64:$dst, (or_is_add GR64:$src1, 1358 i64immSExt8:$src2))]>; 1359def ADD64ri32_DB : I<0, Pseudo, 1360 (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), 1361 "", // orq/addq REG, imm 1362 [(set GR64:$dst, (or_is_add GR64:$src1, 1363 i64immSExt32:$src2))]>; 1364} 1365} // AddedComplexity, SchedRW 1366 1367//===----------------------------------------------------------------------===// 1368// Pattern match SUB as XOR 1369//===----------------------------------------------------------------------===// 1370 1371// An immediate in the LHS of a subtract can't be encoded in the instruction. 1372// If there is no possibility of a borrow we can use an XOR instead of a SUB 1373// to enable the immediate to be folded. 1374// TODO: Move this to a DAG combine? 1375 1376def sub_is_xor : PatFrag<(ops node:$lhs, node:$rhs), (sub node:$lhs, node:$rhs),[{ 1377 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 1378 KnownBits Known; 1379 CurDAG->computeKnownBits(N->getOperand(1), Known); 1380 1381 // If all possible ones in the RHS are set in the LHS then there can't be 1382 // a borrow and we can use xor. 1383 return (~Known.Zero).isSubsetOf(CN->getAPIntValue()); 1384 } 1385 1386 return false; 1387}]>; 1388 1389let AddedComplexity = 5 in { 1390def : Pat<(sub_is_xor imm:$src2, GR8:$src1), 1391 (XOR8ri GR8:$src1, imm:$src2)>; 1392def : Pat<(sub_is_xor i16immSExt8:$src2, GR16:$src1), 1393 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>; 1394def : Pat<(sub_is_xor imm:$src2, GR16:$src1), 1395 (XOR16ri GR16:$src1, imm:$src2)>; 1396def : Pat<(sub_is_xor i32immSExt8:$src2, GR32:$src1), 1397 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>; 1398def : Pat<(sub_is_xor imm:$src2, GR32:$src1), 1399 (XOR32ri GR32:$src1, imm:$src2)>; 1400def : Pat<(sub_is_xor i64immSExt8:$src2, GR64:$src1), 1401 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>; 1402def : Pat<(sub_is_xor i64immSExt32:$src2, GR64:$src1), 1403 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>; 1404} 1405 1406//===----------------------------------------------------------------------===// 1407// Some peepholes 1408//===----------------------------------------------------------------------===// 1409 1410// Odd encoding trick: -128 fits into an 8-bit immediate field while 1411// +128 doesn't, so in this special case use a sub instead of an add. 1412def : Pat<(add GR16:$src1, 128), 1413 (SUB16ri8 GR16:$src1, -128)>; 1414def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst), 1415 (SUB16mi8 addr:$dst, -128)>; 1416 1417def : Pat<(add GR32:$src1, 128), 1418 (SUB32ri8 GR32:$src1, -128)>; 1419def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst), 1420 (SUB32mi8 addr:$dst, -128)>; 1421 1422def : Pat<(add GR64:$src1, 128), 1423 (SUB64ri8 GR64:$src1, -128)>; 1424def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst), 1425 (SUB64mi8 addr:$dst, -128)>; 1426 1427// The same trick applies for 32-bit immediate fields in 64-bit 1428// instructions. 1429def : Pat<(add GR64:$src1, 0x0000000080000000), 1430 (SUB64ri32 GR64:$src1, 0xffffffff80000000)>; 1431def : Pat<(store (add (loadi64 addr:$dst), 0x0000000080000000), addr:$dst), 1432 (SUB64mi32 addr:$dst, 0xffffffff80000000)>; 1433 1434// To avoid needing to materialize an immediate in a register, use a 32-bit and 1435// with implicit zero-extension instead of a 64-bit and if the immediate has at 1436// least 32 bits of leading zeros. If in addition the last 32 bits can be 1437// represented with a sign extension of a 8 bit constant, use that. 1438// This can also reduce instruction size by eliminating the need for the REX 1439// prefix. 1440 1441// AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32. 1442let AddedComplexity = 1 in { 1443def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm), 1444 (SUBREG_TO_REG 1445 (i64 0), 1446 (AND32ri8 1447 (EXTRACT_SUBREG GR64:$src, sub_32bit), 1448 (i32 (GetLo8XForm imm:$imm))), 1449 sub_32bit)>; 1450 1451def : Pat<(and GR64:$src, i64immZExt32:$imm), 1452 (SUBREG_TO_REG 1453 (i64 0), 1454 (AND32ri 1455 (EXTRACT_SUBREG GR64:$src, sub_32bit), 1456 (i32 (GetLo32XForm imm:$imm))), 1457 sub_32bit)>; 1458} // AddedComplexity = 1 1459 1460 1461// AddedComplexity is needed due to the increased complexity on the 1462// i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all 1463// the MOVZX patterns keeps thems together in DAGIsel tables. 1464let AddedComplexity = 1 in { 1465// r & (2^16-1) ==> movz 1466def : Pat<(and GR32:$src1, 0xffff), 1467 (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>; 1468// r & (2^8-1) ==> movz 1469def : Pat<(and GR32:$src1, 0xff), 1470 (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>; 1471// r & (2^8-1) ==> movz 1472def : Pat<(and GR16:$src1, 0xff), 1473 (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)), 1474 sub_16bit)>; 1475 1476// r & (2^32-1) ==> movz 1477def : Pat<(and GR64:$src, 0x00000000FFFFFFFF), 1478 (SUBREG_TO_REG (i64 0), 1479 (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)), 1480 sub_32bit)>; 1481// r & (2^16-1) ==> movz 1482def : Pat<(and GR64:$src, 0xffff), 1483 (SUBREG_TO_REG (i64 0), 1484 (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))), 1485 sub_32bit)>; 1486// r & (2^8-1) ==> movz 1487def : Pat<(and GR64:$src, 0xff), 1488 (SUBREG_TO_REG (i64 0), 1489 (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))), 1490 sub_32bit)>; 1491} // AddedComplexity = 1 1492 1493 1494// Try to use BTS/BTR/BTC for single bit operations on the upper 32-bits. 1495 1496def BTRXForm : SDNodeXForm<imm, [{ 1497 // Transformation function: Find the lowest 0. 1498 return getI64Imm((uint8_t)N->getAPIntValue().countTrailingOnes(), SDLoc(N)); 1499}]>; 1500 1501def BTCBTSXForm : SDNodeXForm<imm, [{ 1502 // Transformation function: Find the lowest 1. 1503 return getI64Imm((uint8_t)N->getAPIntValue().countTrailingZeros(), SDLoc(N)); 1504}]>; 1505 1506def BTRMask64 : ImmLeaf<i64, [{ 1507 return !isUInt<32>(Imm) && !isInt<32>(Imm) && isPowerOf2_64(~Imm); 1508}]>; 1509 1510def BTCBTSMask64 : ImmLeaf<i64, [{ 1511 return !isInt<32>(Imm) && isPowerOf2_64(Imm); 1512}]>; 1513 1514// For now only do this for optsize. 1515let AddedComplexity = 1, Predicates=[OptForSize] in { 1516 def : Pat<(and GR64:$src1, BTRMask64:$mask), 1517 (BTR64ri8 GR64:$src1, (BTRXForm imm:$mask))>; 1518 def : Pat<(or GR64:$src1, BTCBTSMask64:$mask), 1519 (BTS64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>; 1520 def : Pat<(xor GR64:$src1, BTCBTSMask64:$mask), 1521 (BTC64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>; 1522} 1523 1524 1525// sext_inreg patterns 1526def : Pat<(sext_inreg GR32:$src, i16), 1527 (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>; 1528def : Pat<(sext_inreg GR32:$src, i8), 1529 (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>; 1530 1531def : Pat<(sext_inreg GR16:$src, i8), 1532 (EXTRACT_SUBREG (MOVSX32rr8 (EXTRACT_SUBREG GR16:$src, sub_8bit)), 1533 sub_16bit)>; 1534 1535def : Pat<(sext_inreg GR64:$src, i32), 1536 (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>; 1537def : Pat<(sext_inreg GR64:$src, i16), 1538 (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>; 1539def : Pat<(sext_inreg GR64:$src, i8), 1540 (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>; 1541 1542// sext, sext_load, zext, zext_load 1543def: Pat<(i16 (sext GR8:$src)), 1544 (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>; 1545def: Pat<(sextloadi16i8 addr:$src), 1546 (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>; 1547def: Pat<(i16 (zext GR8:$src)), 1548 (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>; 1549def: Pat<(zextloadi16i8 addr:$src), 1550 (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>; 1551 1552// trunc patterns 1553def : Pat<(i16 (trunc GR32:$src)), 1554 (EXTRACT_SUBREG GR32:$src, sub_16bit)>; 1555def : Pat<(i8 (trunc GR32:$src)), 1556 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), 1557 sub_8bit)>, 1558 Requires<[Not64BitMode]>; 1559def : Pat<(i8 (trunc GR16:$src)), 1560 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), 1561 sub_8bit)>, 1562 Requires<[Not64BitMode]>; 1563def : Pat<(i32 (trunc GR64:$src)), 1564 (EXTRACT_SUBREG GR64:$src, sub_32bit)>; 1565def : Pat<(i16 (trunc GR64:$src)), 1566 (EXTRACT_SUBREG GR64:$src, sub_16bit)>; 1567def : Pat<(i8 (trunc GR64:$src)), 1568 (EXTRACT_SUBREG GR64:$src, sub_8bit)>; 1569def : Pat<(i8 (trunc GR32:$src)), 1570 (EXTRACT_SUBREG GR32:$src, sub_8bit)>, 1571 Requires<[In64BitMode]>; 1572def : Pat<(i8 (trunc GR16:$src)), 1573 (EXTRACT_SUBREG GR16:$src, sub_8bit)>, 1574 Requires<[In64BitMode]>; 1575 1576def immff00_ffff : ImmLeaf<i32, [{ 1577 return Imm >= 0xff00 && Imm <= 0xffff; 1578}]>; 1579 1580// h-register tricks 1581def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))), 1582 (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>, 1583 Requires<[Not64BitMode]>; 1584def : Pat<(i8 (trunc (srl_su (i32 (anyext GR16:$src)), (i8 8)))), 1585 (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>, 1586 Requires<[Not64BitMode]>; 1587def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))), 1588 (EXTRACT_SUBREG GR32:$src, sub_8bit_hi)>, 1589 Requires<[Not64BitMode]>; 1590def : Pat<(srl GR16:$src, (i8 8)), 1591 (EXTRACT_SUBREG 1592 (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)), 1593 sub_16bit)>; 1594def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))), 1595 (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>; 1596def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))), 1597 (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>; 1598def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)), 1599 (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>; 1600def : Pat<(srl (and_su GR32:$src, immff00_ffff), (i8 8)), 1601 (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>; 1602 1603// h-register tricks. 1604// For now, be conservative on x86-64 and use an h-register extract only if the 1605// value is immediately zero-extended or stored, which are somewhat common 1606// cases. This uses a bunch of code to prevent a register requiring a REX prefix 1607// from being allocated in the same instruction as the h register, as there's 1608// currently no way to describe this requirement to the register allocator. 1609 1610// h-register extract and zero-extend. 1611def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)), 1612 (SUBREG_TO_REG 1613 (i64 0), 1614 (MOVZX32rr8_NOREX 1615 (EXTRACT_SUBREG GR64:$src, sub_8bit_hi)), 1616 sub_32bit)>; 1617def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))), 1618 (SUBREG_TO_REG 1619 (i64 0), 1620 (MOVZX32rr8_NOREX 1621 (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)), 1622 sub_32bit)>; 1623def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))), 1624 (SUBREG_TO_REG 1625 (i64 0), 1626 (MOVZX32rr8_NOREX 1627 (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)), 1628 sub_32bit)>; 1629 1630// h-register extract and store. 1631def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst), 1632 (MOV8mr_NOREX 1633 addr:$dst, 1634 (EXTRACT_SUBREG GR64:$src, sub_8bit_hi))>; 1635def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst), 1636 (MOV8mr_NOREX 1637 addr:$dst, 1638 (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>, 1639 Requires<[In64BitMode]>; 1640def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst), 1641 (MOV8mr_NOREX 1642 addr:$dst, 1643 (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>, 1644 Requires<[In64BitMode]>; 1645 1646 1647// (shl x, 1) ==> (add x, x) 1648// Note that if x is undef (immediate or otherwise), we could theoretically 1649// end up with the two uses of x getting different values, producing a result 1650// where the least significant bit is not 0. However, the probability of this 1651// happening is considered low enough that this is officially not a 1652// "real problem". 1653def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>; 1654def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>; 1655def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>; 1656def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>; 1657 1658// Helper imms to check if a mask doesn't change significant shift/rotate bits. 1659def immShift8 : ImmLeaf<i8, [{ 1660 return countTrailingOnes<uint64_t>(Imm) >= 3; 1661}]>; 1662def immShift16 : ImmLeaf<i8, [{ 1663 return countTrailingOnes<uint64_t>(Imm) >= 4; 1664}]>; 1665def immShift32 : ImmLeaf<i8, [{ 1666 return countTrailingOnes<uint64_t>(Imm) >= 5; 1667}]>; 1668def immShift64 : ImmLeaf<i8, [{ 1669 return countTrailingOnes<uint64_t>(Imm) >= 6; 1670}]>; 1671 1672// Shift amount is implicitly masked. 1673multiclass MaskedShiftAmountPats<SDNode frag, string name> { 1674 // (shift x (and y, 31)) ==> (shift x, y) 1675 def : Pat<(frag GR8:$src1, (and CL, immShift32)), 1676 (!cast<Instruction>(name # "8rCL") GR8:$src1)>; 1677 def : Pat<(frag GR16:$src1, (and CL, immShift32)), 1678 (!cast<Instruction>(name # "16rCL") GR16:$src1)>; 1679 def : Pat<(frag GR32:$src1, (and CL, immShift32)), 1680 (!cast<Instruction>(name # "32rCL") GR32:$src1)>; 1681 def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst), 1682 (!cast<Instruction>(name # "8mCL") addr:$dst)>; 1683 def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst), 1684 (!cast<Instruction>(name # "16mCL") addr:$dst)>; 1685 def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst), 1686 (!cast<Instruction>(name # "32mCL") addr:$dst)>; 1687 1688 // (shift x (and y, 63)) ==> (shift x, y) 1689 def : Pat<(frag GR64:$src1, (and CL, immShift64)), 1690 (!cast<Instruction>(name # "64rCL") GR64:$src1)>; 1691 def : Pat<(store (frag (loadi64 addr:$dst), (and CL, immShift64)), addr:$dst), 1692 (!cast<Instruction>(name # "64mCL") addr:$dst)>; 1693} 1694 1695defm : MaskedShiftAmountPats<shl, "SHL">; 1696defm : MaskedShiftAmountPats<srl, "SHR">; 1697defm : MaskedShiftAmountPats<sra, "SAR">; 1698 1699// ROL/ROR instructions allow a stronger mask optimization than shift for 8- and 1700// 16-bit. We can remove a mask of any (bitwidth - 1) on the rotation amount 1701// because over-rotating produces the same result. This is noted in the Intel 1702// docs with: "tempCOUNT <- (COUNT & COUNTMASK) MOD SIZE". Masking the rotation 1703// amount could affect EFLAGS results, but that does not matter because we are 1704// not tracking flags for these nodes. 1705multiclass MaskedRotateAmountPats<SDNode frag, string name> { 1706 // (rot x (and y, BitWidth - 1)) ==> (rot x, y) 1707 def : Pat<(frag GR8:$src1, (and CL, immShift8)), 1708 (!cast<Instruction>(name # "8rCL") GR8:$src1)>; 1709 def : Pat<(frag GR16:$src1, (and CL, immShift16)), 1710 (!cast<Instruction>(name # "16rCL") GR16:$src1)>; 1711 def : Pat<(frag GR32:$src1, (and CL, immShift32)), 1712 (!cast<Instruction>(name # "32rCL") GR32:$src1)>; 1713 def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift8)), addr:$dst), 1714 (!cast<Instruction>(name # "8mCL") addr:$dst)>; 1715 def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift16)), addr:$dst), 1716 (!cast<Instruction>(name # "16mCL") addr:$dst)>; 1717 def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst), 1718 (!cast<Instruction>(name # "32mCL") addr:$dst)>; 1719 1720 // (rot x (and y, 63)) ==> (rot x, y) 1721 def : Pat<(frag GR64:$src1, (and CL, immShift64)), 1722 (!cast<Instruction>(name # "64rCL") GR64:$src1)>; 1723 def : Pat<(store (frag (loadi64 addr:$dst), (and CL, immShift64)), addr:$dst), 1724 (!cast<Instruction>(name # "64mCL") addr:$dst)>; 1725} 1726 1727 1728defm : MaskedRotateAmountPats<rotl, "ROL">; 1729defm : MaskedRotateAmountPats<rotr, "ROR">; 1730 1731// Double shift amount is implicitly masked. 1732multiclass MaskedDoubleShiftAmountPats<SDNode frag, string name> { 1733 // (shift x (and y, 31)) ==> (shift x, y) 1734 def : Pat<(frag GR16:$src1, GR16:$src2, (and CL, immShift32)), 1735 (!cast<Instruction>(name # "16rrCL") GR16:$src1, GR16:$src2)>; 1736 def : Pat<(frag GR32:$src1, GR32:$src2, (and CL, immShift32)), 1737 (!cast<Instruction>(name # "32rrCL") GR32:$src1, GR32:$src2)>; 1738 1739 // (shift x (and y, 63)) ==> (shift x, y) 1740 def : Pat<(frag GR64:$src1, GR64:$src2, (and CL, immShift64)), 1741 (!cast<Instruction>(name # "64rrCL") GR64:$src1, GR64:$src2)>; 1742} 1743 1744defm : MaskedDoubleShiftAmountPats<X86shld, "SHLD">; 1745defm : MaskedDoubleShiftAmountPats<X86shrd, "SHRD">; 1746 1747let Predicates = [HasBMI2] in { 1748 let AddedComplexity = 1 in { 1749 def : Pat<(sra GR32:$src1, (and GR8:$src2, immShift32)), 1750 (SARX32rr GR32:$src1, 1751 (INSERT_SUBREG 1752 (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; 1753 def : Pat<(sra GR64:$src1, (and GR8:$src2, immShift64)), 1754 (SARX64rr GR64:$src1, 1755 (INSERT_SUBREG 1756 (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; 1757 1758 def : Pat<(srl GR32:$src1, (and GR8:$src2, immShift32)), 1759 (SHRX32rr GR32:$src1, 1760 (INSERT_SUBREG 1761 (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; 1762 def : Pat<(srl GR64:$src1, (and GR8:$src2, immShift64)), 1763 (SHRX64rr GR64:$src1, 1764 (INSERT_SUBREG 1765 (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; 1766 1767 def : Pat<(shl GR32:$src1, (and GR8:$src2, immShift32)), 1768 (SHLX32rr GR32:$src1, 1769 (INSERT_SUBREG 1770 (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; 1771 def : Pat<(shl GR64:$src1, (and GR8:$src2, immShift64)), 1772 (SHLX64rr GR64:$src1, 1773 (INSERT_SUBREG 1774 (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; 1775 } 1776 1777 def : Pat<(sra (loadi32 addr:$src1), (and GR8:$src2, immShift32)), 1778 (SARX32rm addr:$src1, 1779 (INSERT_SUBREG 1780 (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; 1781 def : Pat<(sra (loadi64 addr:$src1), (and GR8:$src2, immShift64)), 1782 (SARX64rm addr:$src1, 1783 (INSERT_SUBREG 1784 (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; 1785 1786 def : Pat<(srl (loadi32 addr:$src1), (and GR8:$src2, immShift32)), 1787 (SHRX32rm addr:$src1, 1788 (INSERT_SUBREG 1789 (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; 1790 def : Pat<(srl (loadi64 addr:$src1), (and GR8:$src2, immShift64)), 1791 (SHRX64rm addr:$src1, 1792 (INSERT_SUBREG 1793 (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; 1794 1795 def : Pat<(shl (loadi32 addr:$src1), (and GR8:$src2, immShift32)), 1796 (SHLX32rm addr:$src1, 1797 (INSERT_SUBREG 1798 (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; 1799 def : Pat<(shl (loadi64 addr:$src1), (and GR8:$src2, immShift64)), 1800 (SHLX64rm addr:$src1, 1801 (INSERT_SUBREG 1802 (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; 1803} 1804 1805// Use BTR/BTS/BTC for clearing/setting/toggling a bit in a variable location. 1806multiclass one_bit_patterns<RegisterClass RC, ValueType VT, Instruction BTR, 1807 Instruction BTS, Instruction BTC, 1808 ImmLeaf ImmShift> { 1809 def : Pat<(and RC:$src1, (rotl -2, GR8:$src2)), 1810 (BTR RC:$src1, 1811 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; 1812 def : Pat<(or RC:$src1, (shl 1, GR8:$src2)), 1813 (BTS RC:$src1, 1814 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; 1815 def : Pat<(xor RC:$src1, (shl 1, GR8:$src2)), 1816 (BTC RC:$src1, 1817 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; 1818 1819 // Similar to above, but removing unneeded masking of the shift amount. 1820 def : Pat<(and RC:$src1, (rotl -2, (and GR8:$src2, ImmShift))), 1821 (BTR RC:$src1, 1822 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; 1823 def : Pat<(or RC:$src1, (shl 1, (and GR8:$src2, ImmShift))), 1824 (BTS RC:$src1, 1825 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; 1826 def : Pat<(xor RC:$src1, (shl 1, (and GR8:$src2, ImmShift))), 1827 (BTC RC:$src1, 1828 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; 1829} 1830 1831defm : one_bit_patterns<GR16, i16, BTR16rr, BTS16rr, BTC16rr, immShift16>; 1832defm : one_bit_patterns<GR32, i32, BTR32rr, BTS32rr, BTC32rr, immShift32>; 1833defm : one_bit_patterns<GR64, i64, BTR64rr, BTS64rr, BTC64rr, immShift64>; 1834 1835 1836// (anyext (setcc_carry)) -> (setcc_carry) 1837def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 1838 (SETB_C16r)>; 1839def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 1840 (SETB_C32r)>; 1841def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))), 1842 (SETB_C32r)>; 1843 1844//===----------------------------------------------------------------------===// 1845// EFLAGS-defining Patterns 1846//===----------------------------------------------------------------------===// 1847 1848// add reg, reg 1849def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>; 1850def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>; 1851def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>; 1852def : Pat<(add GR64:$src1, GR64:$src2), (ADD64rr GR64:$src1, GR64:$src2)>; 1853 1854// add reg, mem 1855def : Pat<(add GR8:$src1, (loadi8 addr:$src2)), 1856 (ADD8rm GR8:$src1, addr:$src2)>; 1857def : Pat<(add GR16:$src1, (loadi16 addr:$src2)), 1858 (ADD16rm GR16:$src1, addr:$src2)>; 1859def : Pat<(add GR32:$src1, (loadi32 addr:$src2)), 1860 (ADD32rm GR32:$src1, addr:$src2)>; 1861def : Pat<(add GR64:$src1, (loadi64 addr:$src2)), 1862 (ADD64rm GR64:$src1, addr:$src2)>; 1863 1864// add reg, imm 1865def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>; 1866def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>; 1867def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>; 1868def : Pat<(add GR16:$src1, i16immSExt8:$src2), 1869 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>; 1870def : Pat<(add GR32:$src1, i32immSExt8:$src2), 1871 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>; 1872def : Pat<(add GR64:$src1, i64immSExt8:$src2), 1873 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>; 1874def : Pat<(add GR64:$src1, i64immSExt32:$src2), 1875 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>; 1876 1877// sub reg, reg 1878def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>; 1879def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>; 1880def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>; 1881def : Pat<(sub GR64:$src1, GR64:$src2), (SUB64rr GR64:$src1, GR64:$src2)>; 1882 1883// sub reg, mem 1884def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)), 1885 (SUB8rm GR8:$src1, addr:$src2)>; 1886def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)), 1887 (SUB16rm GR16:$src1, addr:$src2)>; 1888def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)), 1889 (SUB32rm GR32:$src1, addr:$src2)>; 1890def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)), 1891 (SUB64rm GR64:$src1, addr:$src2)>; 1892 1893// sub reg, imm 1894def : Pat<(sub GR8:$src1, imm:$src2), 1895 (SUB8ri GR8:$src1, imm:$src2)>; 1896def : Pat<(sub GR16:$src1, imm:$src2), 1897 (SUB16ri GR16:$src1, imm:$src2)>; 1898def : Pat<(sub GR32:$src1, imm:$src2), 1899 (SUB32ri GR32:$src1, imm:$src2)>; 1900def : Pat<(sub GR16:$src1, i16immSExt8:$src2), 1901 (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>; 1902def : Pat<(sub GR32:$src1, i32immSExt8:$src2), 1903 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>; 1904def : Pat<(sub GR64:$src1, i64immSExt8:$src2), 1905 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>; 1906def : Pat<(sub GR64:$src1, i64immSExt32:$src2), 1907 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>; 1908 1909// sub 0, reg 1910def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>; 1911def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>; 1912def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>; 1913def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>; 1914 1915// sub reg, relocImm 1916def : Pat<(X86sub_flag GR64:$src1, i64relocImmSExt8_su:$src2), 1917 (SUB64ri8 GR64:$src1, i64relocImmSExt8_su:$src2)>; 1918def : Pat<(X86sub_flag GR64:$src1, i64relocImmSExt32_su:$src2), 1919 (SUB64ri32 GR64:$src1, i64relocImmSExt32_su:$src2)>; 1920 1921// mul reg, reg 1922def : Pat<(mul GR16:$src1, GR16:$src2), 1923 (IMUL16rr GR16:$src1, GR16:$src2)>; 1924def : Pat<(mul GR32:$src1, GR32:$src2), 1925 (IMUL32rr GR32:$src1, GR32:$src2)>; 1926def : Pat<(mul GR64:$src1, GR64:$src2), 1927 (IMUL64rr GR64:$src1, GR64:$src2)>; 1928 1929// mul reg, mem 1930def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)), 1931 (IMUL16rm GR16:$src1, addr:$src2)>; 1932def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)), 1933 (IMUL32rm GR32:$src1, addr:$src2)>; 1934def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)), 1935 (IMUL64rm GR64:$src1, addr:$src2)>; 1936 1937// mul reg, imm 1938def : Pat<(mul GR16:$src1, imm:$src2), 1939 (IMUL16rri GR16:$src1, imm:$src2)>; 1940def : Pat<(mul GR32:$src1, imm:$src2), 1941 (IMUL32rri GR32:$src1, imm:$src2)>; 1942def : Pat<(mul GR16:$src1, i16immSExt8:$src2), 1943 (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>; 1944def : Pat<(mul GR32:$src1, i32immSExt8:$src2), 1945 (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>; 1946def : Pat<(mul GR64:$src1, i64immSExt8:$src2), 1947 (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>; 1948def : Pat<(mul GR64:$src1, i64immSExt32:$src2), 1949 (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>; 1950 1951// reg = mul mem, imm 1952def : Pat<(mul (loadi16 addr:$src1), imm:$src2), 1953 (IMUL16rmi addr:$src1, imm:$src2)>; 1954def : Pat<(mul (loadi32 addr:$src1), imm:$src2), 1955 (IMUL32rmi addr:$src1, imm:$src2)>; 1956def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2), 1957 (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>; 1958def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2), 1959 (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>; 1960def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2), 1961 (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>; 1962def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2), 1963 (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>; 1964 1965// Increment/Decrement reg. 1966// Do not make INC/DEC if it is slow 1967let Predicates = [UseIncDec] in { 1968 def : Pat<(add GR8:$src, 1), (INC8r GR8:$src)>; 1969 def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>; 1970 def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>; 1971 def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>; 1972 def : Pat<(add GR8:$src, -1), (DEC8r GR8:$src)>; 1973 def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>; 1974 def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>; 1975 def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>; 1976} 1977 1978// or reg/reg. 1979def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>; 1980def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>; 1981def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>; 1982def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>; 1983 1984// or reg/mem 1985def : Pat<(or GR8:$src1, (loadi8 addr:$src2)), 1986 (OR8rm GR8:$src1, addr:$src2)>; 1987def : Pat<(or GR16:$src1, (loadi16 addr:$src2)), 1988 (OR16rm GR16:$src1, addr:$src2)>; 1989def : Pat<(or GR32:$src1, (loadi32 addr:$src2)), 1990 (OR32rm GR32:$src1, addr:$src2)>; 1991def : Pat<(or GR64:$src1, (loadi64 addr:$src2)), 1992 (OR64rm GR64:$src1, addr:$src2)>; 1993 1994// or reg/imm 1995def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>; 1996def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>; 1997def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>; 1998def : Pat<(or GR16:$src1, i16immSExt8:$src2), 1999 (OR16ri8 GR16:$src1, i16immSExt8:$src2)>; 2000def : Pat<(or GR32:$src1, i32immSExt8:$src2), 2001 (OR32ri8 GR32:$src1, i32immSExt8:$src2)>; 2002def : Pat<(or GR64:$src1, i64immSExt8:$src2), 2003 (OR64ri8 GR64:$src1, i64immSExt8:$src2)>; 2004def : Pat<(or GR64:$src1, i64immSExt32:$src2), 2005 (OR64ri32 GR64:$src1, i64immSExt32:$src2)>; 2006 2007// xor reg/reg 2008def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>; 2009def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>; 2010def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>; 2011def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>; 2012 2013// xor reg/mem 2014def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)), 2015 (XOR8rm GR8:$src1, addr:$src2)>; 2016def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)), 2017 (XOR16rm GR16:$src1, addr:$src2)>; 2018def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)), 2019 (XOR32rm GR32:$src1, addr:$src2)>; 2020def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)), 2021 (XOR64rm GR64:$src1, addr:$src2)>; 2022 2023// xor reg/imm 2024def : Pat<(xor GR8:$src1, imm:$src2), 2025 (XOR8ri GR8:$src1, imm:$src2)>; 2026def : Pat<(xor GR16:$src1, imm:$src2), 2027 (XOR16ri GR16:$src1, imm:$src2)>; 2028def : Pat<(xor GR32:$src1, imm:$src2), 2029 (XOR32ri GR32:$src1, imm:$src2)>; 2030def : Pat<(xor GR16:$src1, i16immSExt8:$src2), 2031 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>; 2032def : Pat<(xor GR32:$src1, i32immSExt8:$src2), 2033 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>; 2034def : Pat<(xor GR64:$src1, i64immSExt8:$src2), 2035 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>; 2036def : Pat<(xor GR64:$src1, i64immSExt32:$src2), 2037 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>; 2038 2039// and reg/reg 2040def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>; 2041def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>; 2042def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>; 2043def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>; 2044 2045// and reg/mem 2046def : Pat<(and GR8:$src1, (loadi8 addr:$src2)), 2047 (AND8rm GR8:$src1, addr:$src2)>; 2048def : Pat<(and GR16:$src1, (loadi16 addr:$src2)), 2049 (AND16rm GR16:$src1, addr:$src2)>; 2050def : Pat<(and GR32:$src1, (loadi32 addr:$src2)), 2051 (AND32rm GR32:$src1, addr:$src2)>; 2052def : Pat<(and GR64:$src1, (loadi64 addr:$src2)), 2053 (AND64rm GR64:$src1, addr:$src2)>; 2054 2055// and reg/imm 2056def : Pat<(and GR8:$src1, imm:$src2), 2057 (AND8ri GR8:$src1, imm:$src2)>; 2058def : Pat<(and GR16:$src1, imm:$src2), 2059 (AND16ri GR16:$src1, imm:$src2)>; 2060def : Pat<(and GR32:$src1, imm:$src2), 2061 (AND32ri GR32:$src1, imm:$src2)>; 2062def : Pat<(and GR16:$src1, i16immSExt8:$src2), 2063 (AND16ri8 GR16:$src1, i16immSExt8:$src2)>; 2064def : Pat<(and GR32:$src1, i32immSExt8:$src2), 2065 (AND32ri8 GR32:$src1, i32immSExt8:$src2)>; 2066def : Pat<(and GR64:$src1, i64immSExt8:$src2), 2067 (AND64ri8 GR64:$src1, i64immSExt8:$src2)>; 2068def : Pat<(and GR64:$src1, i64immSExt32:$src2), 2069 (AND64ri32 GR64:$src1, i64immSExt32:$src2)>; 2070 2071// Bit scan instruction patterns to match explicit zero-undef behavior. 2072def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>; 2073def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>; 2074def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>; 2075def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>; 2076def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>; 2077def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>; 2078 2079// When HasMOVBE is enabled it is possible to get a non-legalized 2080// register-register 16 bit bswap. This maps it to a ROL instruction. 2081let Predicates = [HasMOVBE] in { 2082 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>; 2083} 2084 2085// These patterns are selected by some custom code in X86ISelDAGToDAG.cpp that 2086// custom combines and+srl into BEXTR. We use these patterns to avoid a bunch 2087// of manual code for folding loads. 2088let Predicates = [HasBMI, NoTBM] in { 2089 def : Pat<(X86bextr GR32:$src1, (i32 imm:$src2)), 2090 (BEXTR32rr GR32:$src1, (MOV32ri imm:$src2))>; 2091 def : Pat<(X86bextr (loadi32 addr:$src1), (i32 imm:$src2)), 2092 (BEXTR32rm addr:$src1, (MOV32ri imm:$src2))>; 2093 def : Pat<(X86bextr GR64:$src1, mov64imm32:$src2), 2094 (BEXTR64rr GR64:$src1, 2095 (SUBREG_TO_REG (i64 0), 2096 (MOV32ri64 mov64imm32:$src2), 2097 sub_32bit))>; 2098 def : Pat<(X86bextr (loadi64 addr:$src1), mov64imm32:$src2), 2099 (BEXTR64rm addr:$src1, 2100 (SUBREG_TO_REG (i64 0), 2101 (MOV32ri64 mov64imm32:$src2), 2102 sub_32bit))>; 2103} // HasBMI, NoTBM 2104