1//===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the X86 x87 FPU instruction set, defining the
11// instructions, and properties of the instructions which are needed for code
12// generation, machine code emission, and analysis.
13//
14//===----------------------------------------------------------------------===//
15
16//===----------------------------------------------------------------------===//
17// FPStack specific DAG Nodes.
18//===----------------------------------------------------------------------===//
19
20def SDTX86FpGet2    : SDTypeProfile<2, 0, [SDTCisVT<0, f80>,
21                                           SDTCisVT<1, f80>]>;
22def SDTX86Fld       : SDTypeProfile<1, 2, [SDTCisFP<0>,
23                                           SDTCisPtrTy<1>,
24                                           SDTCisVT<2, OtherVT>]>;
25def SDTX86Fst       : SDTypeProfile<0, 3, [SDTCisFP<0>,
26                                           SDTCisPtrTy<1>,
27                                           SDTCisVT<2, OtherVT>]>;
28def SDTX86Fild      : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>,
29                                           SDTCisVT<2, OtherVT>]>;
30def SDTX86Fnstsw    : SDTypeProfile<1, 1, [SDTCisVT<0, i16>, SDTCisVT<1, i16>]>;
31def SDTX86FpToIMem  : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
32
33def SDTX86CwdStore  : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
34
35def X86fld          : SDNode<"X86ISD::FLD", SDTX86Fld,
36                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
37def X86fst          : SDNode<"X86ISD::FST", SDTX86Fst,
38                             [SDNPHasChain, SDNPInGlue, SDNPMayStore,
39                              SDNPMemOperand]>;
40def X86fild         : SDNode<"X86ISD::FILD", SDTX86Fild,
41                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
42def X86fildflag     : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild,
43                             [SDNPHasChain, SDNPOutGlue, SDNPMayLoad,
44                              SDNPMemOperand]>;
45def X86fp_stsw      : SDNode<"X86ISD::FNSTSW16r", SDTX86Fnstsw>;
46def X86fp_to_i16mem : SDNode<"X86ISD::FP_TO_INT16_IN_MEM", SDTX86FpToIMem,
47                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
48def X86fp_to_i32mem : SDNode<"X86ISD::FP_TO_INT32_IN_MEM", SDTX86FpToIMem,
49                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
50def X86fp_to_i64mem : SDNode<"X86ISD::FP_TO_INT64_IN_MEM", SDTX86FpToIMem,
51                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
52def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m",          SDTX86CwdStore,
53                             [SDNPHasChain, SDNPMayStore, SDNPSideEffect,
54                              SDNPMemOperand]>;
55
56//===----------------------------------------------------------------------===//
57// FPStack pattern fragments
58//===----------------------------------------------------------------------===//
59
60def fpimm0 : FPImmLeaf<fAny, [{
61  return Imm.isExactlyValue(+0.0);
62}]>;
63
64def fpimmneg0 : FPImmLeaf<fAny, [{
65  return Imm.isExactlyValue(-0.0);
66}]>;
67
68def fpimm1 : FPImmLeaf<fAny, [{
69  return Imm.isExactlyValue(+1.0);
70}]>;
71
72def fpimmneg1 : FPImmLeaf<fAny, [{
73  return Imm.isExactlyValue(-1.0);
74}]>;
75
76// Some 'special' instructions - expanded after instruction selection.
77let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in {
78  def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src),
79                              [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
80  def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src),
81                              [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
82  def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src),
83                              [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
84  def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src),
85                              [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
86  def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src),
87                              [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
88  def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src),
89                              [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
90  def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src),
91                              [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
92  def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src),
93                              [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
94  def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src),
95                              [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
96}
97
98// All FP Stack operations are represented with four instructions here.  The
99// first three instructions, generated by the instruction selector, use "RFP32"
100// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
101// 64-bit or 80-bit floating point values.  These sizes apply to the values,
102// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
103// copied to each other without losing information.  These instructions are all
104// pseudo instructions and use the "_Fp" suffix.
105// In some cases there are additional variants with a mixture of different
106// register sizes.
107// The second instruction is defined with FPI, which is the actual instruction
108// emitted by the assembler.  These use "RST" registers, although frequently
109// the actual register(s) used are implicit.  These are always 80 bits.
110// The FP stackifier pass converts one to the other after register allocation
111// occurs.
112//
113// Note that the FpI instruction should have instruction selection info (e.g.
114// a pattern) and the FPI instruction should have emission info (e.g. opcode
115// encoding and asm printing info).
116
117// FpIf32, FpIf64 - Floating Point Pseudo Instruction template.
118// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
119// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
120// f80 instructions cannot use SSE and use neither of these.
121class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
122             FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>;
123class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
124             FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;
125
126// Factoring for arithmetic.
127multiclass FPBinary_rr<SDNode OpNode> {
128// Register op register -> register
129// These are separated out because they have no reversed form.
130def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
131                [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
132def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
133                [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
134def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
135                [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
136}
137// The FopST0 series are not included here because of the irregularities
138// in where the 'r' goes in assembly output.
139// These instructions cannot address 80-bit memory.
140multiclass FPBinary<SDNode OpNode, Format fp, string asmstring,
141                    bit Forward = 1> {
142let mayLoad = 1, hasSideEffects = 1 in {
143// ST(0) = ST(0) + [mem]
144def _Fp32m  : FpIf32<(outs RFP32:$dst),
145                     (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
146                  [!if(Forward,
147                       (set RFP32:$dst,
148                        (OpNode RFP32:$src1, (loadf32 addr:$src2))),
149                       (set RFP32:$dst,
150                        (OpNode (loadf32 addr:$src2), RFP32:$src1)))]>;
151def _Fp64m  : FpIf64<(outs RFP64:$dst),
152                     (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
153                  [!if(Forward,
154                       (set RFP64:$dst,
155                        (OpNode RFP64:$src1, (loadf64 addr:$src2))),
156                       (set RFP64:$dst,
157                        (OpNode (loadf64 addr:$src2), RFP64:$src1)))]>;
158def _Fp64m32: FpIf64<(outs RFP64:$dst),
159                     (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
160                  [!if(Forward,
161                       (set RFP64:$dst,
162                        (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2)))),
163                       (set RFP64:$dst,
164                        (OpNode (f64 (extloadf32 addr:$src2)), RFP64:$src1)))]>;
165def _Fp80m32: FpI_<(outs RFP80:$dst),
166                   (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
167                  [!if(Forward,
168                       (set RFP80:$dst,
169                        (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2)))),
170                       (set RFP80:$dst,
171                        (OpNode (f80 (extloadf32 addr:$src2)), RFP80:$src1)))]>;
172def _Fp80m64: FpI_<(outs RFP80:$dst),
173                   (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
174                  [!if(Forward,
175                       (set RFP80:$dst,
176                        (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2)))),
177                       (set RFP80:$dst,
178                        (OpNode (f80 (extloadf64 addr:$src2)), RFP80:$src1)))]>;
179def _F32m  : FPI<0xD8, fp, (outs), (ins f32mem:$src),
180                 !strconcat("f", asmstring, "{s}\t$src")>;
181def _F64m  : FPI<0xDC, fp, (outs), (ins f64mem:$src),
182                 !strconcat("f", asmstring, "{l}\t$src")>;
183// ST(0) = ST(0) + [memint]
184def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2),
185                       OneArgFPRW,
186                       [!if(Forward,
187                            (set RFP32:$dst,
188                             (OpNode RFP32:$src1, (X86fild addr:$src2, i16))),
189                            (set RFP32:$dst,
190                             (OpNode (X86fild addr:$src2, i16), RFP32:$src1)))]>;
191def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2),
192                       OneArgFPRW,
193                       [!if(Forward,
194                            (set RFP32:$dst,
195                             (OpNode RFP32:$src1, (X86fild addr:$src2, i32))),
196                            (set RFP32:$dst,
197                             (OpNode (X86fild addr:$src2, i32), RFP32:$src1)))]>;
198def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2),
199                       OneArgFPRW,
200                       [!if(Forward,
201                            (set RFP64:$dst,
202                             (OpNode RFP64:$src1, (X86fild addr:$src2, i16))),
203                            (set RFP64:$dst,
204                             (OpNode (X86fild addr:$src2, i16), RFP64:$src1)))]>;
205def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2),
206                       OneArgFPRW,
207                       [!if(Forward,
208                            (set RFP64:$dst,
209                             (OpNode RFP64:$src1, (X86fild addr:$src2, i32))),
210                            (set RFP64:$dst,
211                             (OpNode (X86fild addr:$src2, i32), RFP64:$src1)))]>;
212def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2),
213                     OneArgFPRW,
214                     [!if(Forward,
215                          (set RFP80:$dst,
216                           (OpNode RFP80:$src1, (X86fild addr:$src2, i16))),
217                          (set RFP80:$dst,
218                           (OpNode (X86fild addr:$src2, i16), RFP80:$src1)))]>;
219def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2),
220                     OneArgFPRW,
221                     [!if(Forward,
222                          (set RFP80:$dst,
223                           (OpNode RFP80:$src1, (X86fild addr:$src2, i32))),
224                          (set RFP80:$dst,
225                           (OpNode (X86fild addr:$src2, i32), RFP80:$src1)))]>;
226def _FI16m  : FPI<0xDE, fp, (outs), (ins i16mem:$src),
227                  !strconcat("fi", asmstring, "{s}\t$src")>;
228def _FI32m  : FPI<0xDA, fp, (outs), (ins i32mem:$src),
229                  !strconcat("fi", asmstring, "{l}\t$src")>;
230} // mayLoad = 1, hasSideEffects = 1
231}
232
233let Defs = [FPSW] in {
234// FPBinary_rr just defines pseudo-instructions, no need to set a scheduling
235// resources.
236let hasNoSchedulingInfo = 1 in {
237defm ADD : FPBinary_rr<fadd>;
238defm SUB : FPBinary_rr<fsub>;
239defm MUL : FPBinary_rr<fmul>;
240defm DIV : FPBinary_rr<fdiv>;
241}
242
243// Sets the scheduling resources for the actual NAME#_F<size>m defintions.
244let SchedRW = [WriteFAddLd] in {
245defm ADD : FPBinary<fadd, MRM0m, "add">;
246defm SUB : FPBinary<fsub, MRM4m, "sub">;
247defm SUBR: FPBinary<fsub ,MRM5m, "subr", 0>;
248}
249
250let SchedRW = [WriteFMulLd] in {
251defm MUL : FPBinary<fmul, MRM1m, "mul">;
252}
253
254let SchedRW = [WriteFDivLd] in {
255defm DIV : FPBinary<fdiv, MRM6m, "div">;
256defm DIVR: FPBinary<fdiv, MRM7m, "divr", 0>;
257}
258} // Defs = [FPSW]
259
260class FPST0rInst<Format fp, string asm>
261  : FPI<0xD8, fp, (outs), (ins RST:$op), asm>;
262class FPrST0Inst<Format fp, string asm>
263  : FPI<0xDC, fp, (outs), (ins RST:$op), asm>;
264class FPrST0PInst<Format fp, string asm>
265  : FPI<0xDE, fp, (outs), (ins RST:$op), asm>;
266
267// NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
268// of some of the 'reverse' forms of the fsub and fdiv instructions.  As such,
269// we have to put some 'r's in and take them out of weird places.
270let SchedRW = [WriteFAdd] in {
271def ADD_FST0r   : FPST0rInst <MRM0r, "fadd\t$op">;
272def ADD_FrST0   : FPrST0Inst <MRM0r, "fadd\t{%st(0), $op|$op, st(0)}">;
273def ADD_FPrST0  : FPrST0PInst<MRM0r, "faddp\t$op">;
274def SUBR_FST0r  : FPST0rInst <MRM5r, "fsubr\t$op">;
275def SUB_FrST0   : FPrST0Inst <MRM5r, "fsub{r}\t{%st(0), $op|$op, st(0)}">;
276def SUB_FPrST0  : FPrST0PInst<MRM5r, "fsub{r}p\t$op">;
277def SUB_FST0r   : FPST0rInst <MRM4r, "fsub\t$op">;
278def SUBR_FrST0  : FPrST0Inst <MRM4r, "fsub{|r}\t{%st(0), $op|$op, st(0)}">;
279def SUBR_FPrST0 : FPrST0PInst<MRM4r, "fsub{|r}p\t$op">;
280} // SchedRW
281let SchedRW = [WriteFCom] in {
282def COM_FST0r   : FPST0rInst <MRM2r, "fcom\t$op">;
283def COMP_FST0r  : FPST0rInst <MRM3r, "fcomp\t$op">;
284} // SchedRW
285let SchedRW = [WriteFMul] in {
286def MUL_FST0r   : FPST0rInst <MRM1r, "fmul\t$op">;
287def MUL_FrST0   : FPrST0Inst <MRM1r, "fmul\t{%st(0), $op|$op, st(0)}">;
288def MUL_FPrST0  : FPrST0PInst<MRM1r, "fmulp\t$op">;
289} // SchedRW
290let SchedRW = [WriteFDiv] in {
291def DIVR_FST0r  : FPST0rInst <MRM7r, "fdivr\t$op">;
292def DIV_FrST0   : FPrST0Inst <MRM7r, "fdiv{r}\t{%st(0), $op|$op, st(0)}">;
293def DIV_FPrST0  : FPrST0PInst<MRM7r, "fdiv{r}p\t$op">;
294def DIV_FST0r   : FPST0rInst <MRM6r, "fdiv\t$op">;
295def DIVR_FrST0  : FPrST0Inst <MRM6r, "fdiv{|r}\t{%st(0), $op|$op, st(0)}">;
296def DIVR_FPrST0 : FPrST0PInst<MRM6r, "fdiv{|r}p\t$op">;
297} // SchedRW
298
299// Unary operations.
300multiclass FPUnary<SDNode OpNode, Format fp, string asmstring> {
301def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
302                 [(set RFP32:$dst, (OpNode RFP32:$src))]>;
303def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
304                 [(set RFP64:$dst, (OpNode RFP64:$src))]>;
305def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
306                 [(set RFP80:$dst, (OpNode RFP80:$src))]>;
307def _F     : FPI<0xD9, fp, (outs), (ins), asmstring>;
308}
309
310let Defs = [FPSW] in {
311
312let SchedRW = [WriteFSign] in {
313defm CHS : FPUnary<fneg, MRM_E0, "fchs">;
314defm ABS : FPUnary<fabs, MRM_E1, "fabs">;
315}
316
317let SchedRW = [WriteFSqrt80] in
318defm SQRT: FPUnary<fsqrt,MRM_FA, "fsqrt">;
319
320let SchedRW = [WriteMicrocoded] in {
321defm SIN : FPUnary<fsin, MRM_FE, "fsin">;
322defm COS : FPUnary<fcos, MRM_FF, "fcos">;
323}
324
325let SchedRW = [WriteFCom] in {
326let hasSideEffects = 0 in {
327def TST_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
328def TST_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
329def TST_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
330} // hasSideEffects
331
332def TST_F  : FPI<0xD9, MRM_E4, (outs), (ins), "ftst">;
333} // SchedRW
334} // Defs = [FPSW]
335
336// Versions of FP instructions that take a single memory operand.  Added for the
337//   disassembler; remove as they are included with patterns elsewhere.
338let SchedRW = [WriteFComLd] in {
339def FCOM32m  : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">;
340def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">;
341
342def FCOM64m  : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">;
343def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">;
344
345def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">;
346def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">;
347
348def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">;
349def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">;
350} // SchedRW
351
352let SchedRW = [WriteMicrocoded] in {
353def FLDENVm  : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">;
354def FSTENVm  : FPI<0xD9, MRM6m, (outs), (ins f32mem:$dst), "fnstenv\t$dst">;
355
356def FRSTORm  : FPI<0xDD, MRM4m, (outs), (ins f32mem:$dst), "frstor\t$dst">;
357def FSAVEm   : FPI<0xDD, MRM6m, (outs), (ins f32mem:$dst), "fnsave\t$dst">;
358def FNSTSWm  : FPI<0xDD, MRM7m, (outs), (ins i16mem:$dst), "fnstsw\t$dst">;
359
360def FBLDm    : FPI<0xDF, MRM4m, (outs), (ins f80mem:$src), "fbld\t$src">;
361def FBSTPm   : FPI<0xDF, MRM6m, (outs), (ins f80mem:$dst), "fbstp\t$dst">;
362} // SchedRW
363
364// Floating point cmovs.
365class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
366  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMov]>;
367class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
368  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMov]>;
369
370multiclass FPCMov<PatLeaf cc> {
371  def _Fp32  : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
372                       CondMovFP,
373                     [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
374                                        cc, EFLAGS))]>;
375  def _Fp64  : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
376                       CondMovFP,
377                     [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
378                                        cc, EFLAGS))]>;
379  def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
380                     CondMovFP,
381                     [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
382                                        cc, EFLAGS))]>,
383                                        Requires<[HasCMov]>;
384}
385
386let Defs = [FPSW] in {
387let SchedRW = [WriteFCMOV] in {
388let Uses = [EFLAGS], Constraints = "$src1 = $dst" in {
389defm CMOVB  : FPCMov<X86_COND_B>;
390defm CMOVBE : FPCMov<X86_COND_BE>;
391defm CMOVE  : FPCMov<X86_COND_E>;
392defm CMOVP  : FPCMov<X86_COND_P>;
393defm CMOVNB : FPCMov<X86_COND_AE>;
394defm CMOVNBE: FPCMov<X86_COND_A>;
395defm CMOVNE : FPCMov<X86_COND_NE>;
396defm CMOVNP : FPCMov<X86_COND_NP>;
397} // Uses = [EFLAGS], Constraints = "$src1 = $dst"
398
399let Predicates = [HasCMov] in {
400// These are not factored because there's no clean way to pass DA/DB.
401def CMOVB_F  : FPI<0xDA, MRM0r, (outs), (ins RST:$op),
402                  "fcmovb\t{$op, %st(0)|st(0), $op}">;
403def CMOVBE_F : FPI<0xDA, MRM2r, (outs), (ins RST:$op),
404                  "fcmovbe\t{$op, %st(0)|st(0), $op}">;
405def CMOVE_F  : FPI<0xDA, MRM1r, (outs), (ins RST:$op),
406                  "fcmove\t{$op, %st(0)|st(0), $op}">;
407def CMOVP_F  : FPI<0xDA, MRM3r, (outs), (ins RST:$op),
408                  "fcmovu\t{$op, %st(0)|st(0), $op}">;
409def CMOVNB_F : FPI<0xDB, MRM0r, (outs), (ins RST:$op),
410                  "fcmovnb\t{$op, %st(0)|st(0), $op}">;
411def CMOVNBE_F: FPI<0xDB, MRM2r, (outs), (ins RST:$op),
412                  "fcmovnbe\t{$op, %st(0)|st(0), $op}">;
413def CMOVNE_F : FPI<0xDB, MRM1r, (outs), (ins RST:$op),
414                  "fcmovne\t{$op, %st(0)|st(0), $op}">;
415def CMOVNP_F : FPI<0xDB, MRM3r, (outs), (ins RST:$op),
416                  "fcmovnu\t{$op, %st(0)|st(0), $op}">;
417} // Predicates = [HasCMov]
418} // SchedRW
419
420// Floating point loads & stores.
421let SchedRW = [WriteLoad] in {
422let canFoldAsLoad = 1 in {
423def LD_Fp32m   : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
424                  [(set RFP32:$dst, (loadf32 addr:$src))]>;
425let isReMaterializable = 1 in
426  def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
427                  [(set RFP64:$dst, (loadf64 addr:$src))]>;
428def LD_Fp80m   : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
429                  [(set RFP80:$dst, (loadf80 addr:$src))]>;
430} // canFoldAsLoad
431def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
432                  [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
433def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
434                  [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
435def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
436                  [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
437def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
438                  [(set RFP32:$dst, (X86fild addr:$src, i16))]>;
439def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
440                  [(set RFP32:$dst, (X86fild addr:$src, i32))]>;
441def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
442                  [(set RFP32:$dst, (X86fild addr:$src, i64))]>;
443def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
444                  [(set RFP64:$dst, (X86fild addr:$src, i16))]>;
445def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
446                  [(set RFP64:$dst, (X86fild addr:$src, i32))]>;
447def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
448                  [(set RFP64:$dst, (X86fild addr:$src, i64))]>;
449def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
450                  [(set RFP80:$dst, (X86fild addr:$src, i16))]>;
451def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
452                  [(set RFP80:$dst, (X86fild addr:$src, i32))]>;
453def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
454                  [(set RFP80:$dst, (X86fild addr:$src, i64))]>;
455} // SchedRW
456
457let SchedRW = [WriteStore] in {
458def ST_Fp32m   : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
459                  [(store RFP32:$src, addr:$op)]>;
460def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
461                  [(truncstoref32 RFP64:$src, addr:$op)]>;
462def ST_Fp64m   : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
463                  [(store RFP64:$src, addr:$op)]>;
464def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
465                  [(truncstoref32 RFP80:$src, addr:$op)]>;
466def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
467                  [(truncstoref64 RFP80:$src, addr:$op)]>;
468// FST does not support 80-bit memory target; FSTP must be used.
469
470let mayStore = 1, hasSideEffects = 0 in {
471def ST_FpP32m    : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
472def ST_FpP64m32  : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
473def ST_FpP64m    : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
474def ST_FpP80m32  : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
475def ST_FpP80m64  : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
476} // mayStore
477
478def ST_FpP80m    : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
479                    [(store RFP80:$src, addr:$op)]>;
480
481let mayStore = 1, hasSideEffects = 0 in {
482def IST_Fp16m32  : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
483def IST_Fp32m32  : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>;
484def IST_Fp64m32  : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>;
485def IST_Fp16m64  : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
486def IST_Fp32m64  : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>;
487def IST_Fp64m64  : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>;
488def IST_Fp16m80  : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
489def IST_Fp32m80  : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>;
490def IST_Fp64m80  : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>;
491} // mayStore
492} // SchedRW
493
494let mayLoad = 1, SchedRW = [WriteLoad] in {
495def LD_F32m   : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src">;
496def LD_F64m   : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src">;
497def LD_F80m   : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src">;
498def ILD_F16m  : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src">;
499def ILD_F32m  : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src">;
500def ILD_F64m  : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src">;
501}
502let mayStore = 1, SchedRW = [WriteStore] in {
503def ST_F32m   : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst">;
504def ST_F64m   : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst">;
505def ST_FP32m  : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst">;
506def ST_FP64m  : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst">;
507def ST_FP80m  : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst">;
508def IST_F16m  : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst">;
509def IST_F32m  : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst">;
510def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst">;
511def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst">;
512def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst">;
513}
514
515// FISTTP requires SSE3 even though it's a FPStack op.
516let Predicates = [HasSSE3], SchedRW = [WriteStore] in {
517def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
518                    [(X86fp_to_i16mem RFP32:$src, addr:$op)]>;
519def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
520                    [(X86fp_to_i32mem RFP32:$src, addr:$op)]>;
521def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
522                    [(X86fp_to_i64mem RFP32:$src, addr:$op)]>;
523def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP,
524                    [(X86fp_to_i16mem RFP64:$src, addr:$op)]>;
525def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
526                    [(X86fp_to_i32mem RFP64:$src, addr:$op)]>;
527def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
528                    [(X86fp_to_i64mem RFP64:$src, addr:$op)]>;
529def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
530                    [(X86fp_to_i16mem RFP80:$src, addr:$op)]>;
531def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
532                    [(X86fp_to_i32mem RFP80:$src, addr:$op)]>;
533def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
534                    [(X86fp_to_i64mem RFP80:$src, addr:$op)]>;
535} // Predicates = [HasSSE3]
536
537let mayStore = 1, SchedRW = [WriteStore] in {
538def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst">;
539def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst">;
540def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), "fisttp{ll}\t$dst">;
541}
542
543// FP Stack manipulation instructions.
544let SchedRW = [WriteMove] in {
545def LD_Frr   : FPI<0xD9, MRM0r, (outs), (ins RST:$op), "fld\t$op">;
546def ST_Frr   : FPI<0xDD, MRM2r, (outs), (ins RST:$op), "fst\t$op">;
547def ST_FPrr  : FPI<0xDD, MRM3r, (outs), (ins RST:$op), "fstp\t$op">;
548def XCH_F    : FPI<0xD9, MRM1r, (outs), (ins RST:$op), "fxch\t$op">;
549}
550
551// Floating point constant loads.
552let isReMaterializable = 1, SchedRW = [WriteZero] in {
553def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
554                [(set RFP32:$dst, fpimm0)]>;
555def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
556                [(set RFP32:$dst, fpimm1)]>;
557def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
558                [(set RFP64:$dst, fpimm0)]>;
559def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
560                [(set RFP64:$dst, fpimm1)]>;
561def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
562                [(set RFP80:$dst, fpimm0)]>;
563def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
564                [(set RFP80:$dst, fpimm1)]>;
565}
566
567let SchedRW = [WriteFLD0] in
568def LD_F0 : FPI<0xD9, MRM_EE, (outs), (ins), "fldz">;
569
570let SchedRW = [WriteFLD1] in
571def LD_F1 : FPI<0xD9, MRM_E8, (outs), (ins), "fld1">;
572
573let SchedRW = [WriteFLDC], Defs = [FPSW] in {
574def FLDL2T : I<0xD9, MRM_E9, (outs), (ins), "fldl2t", []>;
575def FLDL2E : I<0xD9, MRM_EA, (outs), (ins), "fldl2e", []>;
576def FLDPI : I<0xD9, MRM_EB, (outs), (ins), "fldpi", []>;
577def FLDLG2 : I<0xD9, MRM_EC, (outs), (ins), "fldlg2", []>;
578def FLDLN2 : I<0xD9, MRM_ED, (outs), (ins), "fldln2", []>;
579} // SchedRW
580
581// Floating point compares.
582let SchedRW = [WriteFCom] in {
583def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
584                        [(set FPSW, (trunc (X86cmp RFP32:$lhs, RFP32:$rhs)))]>;
585def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
586                        [(set FPSW, (trunc (X86cmp RFP64:$lhs, RFP64:$rhs)))]>;
587def UCOM_Fpr80 : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
588                        [(set FPSW, (trunc (X86cmp RFP80:$lhs, RFP80:$rhs)))]>;
589} // SchedRW
590} // Defs = [FPSW]
591
592let SchedRW = [WriteFCom] in {
593// CC = ST(0) cmp ST(i)
594let Defs = [EFLAGS, FPSW] in {
595def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
596                  [(set EFLAGS, (X86cmp RFP32:$lhs, RFP32:$rhs))]>;
597def UCOM_FpIr64: FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
598                  [(set EFLAGS, (X86cmp RFP64:$lhs, RFP64:$rhs))]>;
599def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
600                  [(set EFLAGS, (X86cmp RFP80:$lhs, RFP80:$rhs))]>;
601}
602
603let Defs = [FPSW], Uses = [ST0] in {
604def UCOM_Fr    : FPI<0xDD, MRM4r,    // FPSW = cmp ST(0) with ST(i)
605                    (outs), (ins RST:$reg), "fucom\t$reg">;
606def UCOM_FPr   : FPI<0xDD, MRM5r,    // FPSW = cmp ST(0) with ST(i), pop
607                    (outs), (ins RST:$reg), "fucomp\t$reg">;
608def UCOM_FPPr  : FPI<0xDA, MRM_E9,       // cmp ST(0) with ST(1), pop, pop
609                    (outs), (ins), "fucompp">;
610}
611
612let Defs = [EFLAGS, FPSW], Uses = [ST0] in {
613def UCOM_FIr   : FPI<0xDB, MRM5r,     // CC = cmp ST(0) with ST(i)
614                    (outs), (ins RST:$reg), "fucomi\t$reg">;
615def UCOM_FIPr  : FPI<0xDF, MRM5r,     // CC = cmp ST(0) with ST(i), pop
616                    (outs), (ins RST:$reg), "fucompi\t$reg">;
617}
618
619let Defs = [EFLAGS, FPSW] in {
620def COM_FIr : FPI<0xDB, MRM6r, (outs), (ins RST:$reg), "fcomi\t$reg">;
621def COM_FIPr : FPI<0xDF, MRM6r, (outs), (ins RST:$reg), "fcompi\t$reg">;
622}
623} // SchedRW
624
625// Floating point flag ops.
626let SchedRW = [WriteALU] in {
627let Defs = [AX], Uses = [FPSW] in
628def FNSTSW16r : I<0xDF, MRM_E0,                  // AX = fp flags
629                  (outs), (ins), "fnstsw\t{%ax|ax}",
630                  [(set AX, (X86fp_stsw FPSW))]>;
631let Defs = [FPSW] in
632def FNSTCW16m : I<0xD9, MRM7m,                   // [mem16] = X87 control world
633                  (outs), (ins i16mem:$dst), "fnstcw\t$dst",
634                  [(X86fp_cwd_get16 addr:$dst)]>;
635} // SchedRW
636let Defs = [FPSW], mayLoad = 1 in
637def FLDCW16m  : I<0xD9, MRM5m,                   // X87 control world = [mem16]
638                  (outs), (ins i16mem:$dst), "fldcw\t$dst", []>,
639                Sched<[WriteLoad]>;
640
641// FPU control instructions
642let SchedRW = [WriteMicrocoded] in {
643let Defs = [FPSW] in {
644def FNINIT : I<0xDB, MRM_E3, (outs), (ins), "fninit", []>;
645def FFREE : FPI<0xDD, MRM0r, (outs), (ins RST:$reg), "ffree\t$reg">;
646def FFREEP : FPI<0xDF, MRM0r, (outs), (ins RST:$reg), "ffreep\t$reg">;
647
648// Clear exceptions
649def FNCLEX : I<0xDB, MRM_E2, (outs), (ins), "fnclex", []>;
650} // Defs = [FPSW]
651} // SchedRW
652
653// Operand-less floating-point instructions for the disassembler.
654def FNOP : I<0xD9, MRM_D0, (outs), (ins), "fnop", []>, Sched<[WriteNop]>;
655
656let SchedRW = [WriteMicrocoded] in {
657let Defs = [FPSW] in {
658def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", []>;
659def FXAM : I<0xD9, MRM_E5, (outs), (ins), "fxam", []>;
660def F2XM1 : I<0xD9, MRM_F0, (outs), (ins), "f2xm1", []>;
661def FYL2X : I<0xD9, MRM_F1, (outs), (ins), "fyl2x", []>;
662def FPTAN : I<0xD9, MRM_F2, (outs), (ins), "fptan", []>;
663def FPATAN : I<0xD9, MRM_F3, (outs), (ins), "fpatan", []>;
664def FXTRACT : I<0xD9, MRM_F4, (outs), (ins), "fxtract", []>;
665def FPREM1 : I<0xD9, MRM_F5, (outs), (ins), "fprem1", []>;
666def FDECSTP : I<0xD9, MRM_F6, (outs), (ins), "fdecstp", []>;
667def FINCSTP : I<0xD9, MRM_F7, (outs), (ins), "fincstp", []>;
668def FPREM : I<0xD9, MRM_F8, (outs), (ins), "fprem", []>;
669def FYL2XP1 : I<0xD9, MRM_F9, (outs), (ins), "fyl2xp1", []>;
670def FSINCOS : I<0xD9, MRM_FB, (outs), (ins), "fsincos", []>;
671def FRNDINT : I<0xD9, MRM_FC, (outs), (ins), "frndint", []>;
672def FSCALE : I<0xD9, MRM_FD, (outs), (ins), "fscale", []>;
673def FCOMPP : I<0xDE, MRM_D9, (outs), (ins), "fcompp", []>;
674} // Defs = [FPSW]
675
676def FXSAVE : I<0xAE, MRM0m, (outs), (ins opaquemem:$dst),
677             "fxsave\t$dst", [(int_x86_fxsave addr:$dst)]>, TB,
678             Requires<[HasFXSR]>;
679def FXSAVE64 : RI<0xAE, MRM0m, (outs), (ins opaquemem:$dst),
680               "fxsave64\t$dst", [(int_x86_fxsave64 addr:$dst)]>,
681               TB, Requires<[HasFXSR, In64BitMode]>;
682def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaquemem:$src),
683              "fxrstor\t$src", [(int_x86_fxrstor addr:$src)]>,
684              TB, Requires<[HasFXSR]>;
685def FXRSTOR64 : RI<0xAE, MRM1m, (outs), (ins opaquemem:$src),
686                "fxrstor64\t$src", [(int_x86_fxrstor64 addr:$src)]>,
687                TB, Requires<[HasFXSR, In64BitMode]>;
688} // SchedRW
689
690//===----------------------------------------------------------------------===//
691// Non-Instruction Patterns
692//===----------------------------------------------------------------------===//
693
694// Required for RET of f32 / f64 / f80 values.
695def : Pat<(X86fld addr:$src, f32), (LD_Fp32m addr:$src)>;
696def : Pat<(X86fld addr:$src, f64), (LD_Fp64m addr:$src)>;
697def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>;
698
699// Required for CALL which return f32 / f64 / f80 values.
700def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>;
701def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op,
702                                                          RFP64:$src)>;
703def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>;
704def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op,
705                                                          RFP80:$src)>;
706def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op,
707                                                          RFP80:$src)>;
708def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op,
709                                                         RFP80:$src)>;
710
711// Floating point constant -0.0 and -1.0
712def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
713def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
714def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
715def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
716def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
717def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;
718
719// Used to conv. i64 to f64 since there isn't a SSE version.
720def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>;
721
722// FP extensions map onto simple pseudo-value conversions if they are to/from
723// the FP stack.
724def : Pat<(f64 (fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>,
725          Requires<[FPStackf32]>;
726def : Pat<(f80 (fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>,
727           Requires<[FPStackf32]>;
728def : Pat<(f80 (fpextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>,
729           Requires<[FPStackf64]>;
730
731// FP truncations map onto simple pseudo-value conversions if they are to/from
732// the FP stack.  We have validated that only value-preserving truncations make
733// it through isel.
734def : Pat<(f32 (fpround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>,
735          Requires<[FPStackf32]>;
736def : Pat<(f32 (fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>,
737           Requires<[FPStackf32]>;
738def : Pat<(f64 (fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>,
739           Requires<[FPStackf64]>;
740