1 //===- X86OptimizeLEAs.cpp - optimize usage of LEA instructions -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass that performs some optimizations with LEA
11 // instructions in order to improve performance and code size.
12 // Currently, it does two things:
13 // 1) If there are two LEA instructions calculating addresses which only differ
14 //    by displacement inside a basic block, one of them is removed.
15 // 2) Address calculations in load and store instructions are replaced by
16 //    existing LEA def registers where possible.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "MCTargetDesc/X86BaseInfo.h"
21 #include "X86.h"
22 #include "X86InstrInfo.h"
23 #include "X86Subtarget.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseMapInfo.h"
26 #include "llvm/ADT/Hashing.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/TargetOpcodes.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/MC/MCInstrDesc.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <cassert>
48 #include <cstdint>
49 #include <iterator>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "x86-optimize-LEAs"
54 
55 static cl::opt<bool>
56     DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden,
57                      cl::desc("X86: Disable LEA optimizations."),
58                      cl::init(false));
59 
60 STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
61 STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed");
62 
63 /// Returns true if two machine operands are identical and they are not
64 /// physical registers.
65 static inline bool isIdenticalOp(const MachineOperand &MO1,
66                                  const MachineOperand &MO2);
67 
68 /// Returns true if two address displacement operands are of the same
69 /// type and use the same symbol/index/address regardless of the offset.
70 static bool isSimilarDispOp(const MachineOperand &MO1,
71                             const MachineOperand &MO2);
72 
73 /// Returns true if the instruction is LEA.
74 static inline bool isLEA(const MachineInstr &MI);
75 
76 namespace {
77 
78 /// A key based on instruction's memory operands.
79 class MemOpKey {
80 public:
MemOpKey(const MachineOperand * Base,const MachineOperand * Scale,const MachineOperand * Index,const MachineOperand * Segment,const MachineOperand * Disp)81   MemOpKey(const MachineOperand *Base, const MachineOperand *Scale,
82            const MachineOperand *Index, const MachineOperand *Segment,
83            const MachineOperand *Disp)
84       : Disp(Disp) {
85     Operands[0] = Base;
86     Operands[1] = Scale;
87     Operands[2] = Index;
88     Operands[3] = Segment;
89   }
90 
operator ==(const MemOpKey & Other) const91   bool operator==(const MemOpKey &Other) const {
92     // Addresses' bases, scales, indices and segments must be identical.
93     for (int i = 0; i < 4; ++i)
94       if (!isIdenticalOp(*Operands[i], *Other.Operands[i]))
95         return false;
96 
97     // Addresses' displacements don't have to be exactly the same. It only
98     // matters that they use the same symbol/index/address. Immediates' or
99     // offsets' differences will be taken care of during instruction
100     // substitution.
101     return isSimilarDispOp(*Disp, *Other.Disp);
102   }
103 
104   // Address' base, scale, index and segment operands.
105   const MachineOperand *Operands[4];
106 
107   // Address' displacement operand.
108   const MachineOperand *Disp;
109 };
110 
111 } // end anonymous namespace
112 
113 /// Provide DenseMapInfo for MemOpKey.
114 namespace llvm {
115 
116 template <> struct DenseMapInfo<MemOpKey> {
117   using PtrInfo = DenseMapInfo<const MachineOperand *>;
118 
getEmptyKeyllvm::DenseMapInfo119   static inline MemOpKey getEmptyKey() {
120     return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
121                     PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
122                     PtrInfo::getEmptyKey());
123   }
124 
getTombstoneKeyllvm::DenseMapInfo125   static inline MemOpKey getTombstoneKey() {
126     return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
127                     PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
128                     PtrInfo::getTombstoneKey());
129   }
130 
getHashValuellvm::DenseMapInfo131   static unsigned getHashValue(const MemOpKey &Val) {
132     // Checking any field of MemOpKey is enough to determine if the key is
133     // empty or tombstone.
134     assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key");
135     assert(Val.Disp != PtrInfo::getTombstoneKey() &&
136            "Cannot hash the tombstone key");
137 
138     hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1],
139                                   *Val.Operands[2], *Val.Operands[3]);
140 
141     // If the address displacement is an immediate, it should not affect the
142     // hash so that memory operands which differ only be immediate displacement
143     // would have the same hash. If the address displacement is something else,
144     // we should reflect symbol/index/address in the hash.
145     switch (Val.Disp->getType()) {
146     case MachineOperand::MO_Immediate:
147       break;
148     case MachineOperand::MO_ConstantPoolIndex:
149     case MachineOperand::MO_JumpTableIndex:
150       Hash = hash_combine(Hash, Val.Disp->getIndex());
151       break;
152     case MachineOperand::MO_ExternalSymbol:
153       Hash = hash_combine(Hash, Val.Disp->getSymbolName());
154       break;
155     case MachineOperand::MO_GlobalAddress:
156       Hash = hash_combine(Hash, Val.Disp->getGlobal());
157       break;
158     case MachineOperand::MO_BlockAddress:
159       Hash = hash_combine(Hash, Val.Disp->getBlockAddress());
160       break;
161     case MachineOperand::MO_MCSymbol:
162       Hash = hash_combine(Hash, Val.Disp->getMCSymbol());
163       break;
164     case MachineOperand::MO_MachineBasicBlock:
165       Hash = hash_combine(Hash, Val.Disp->getMBB());
166       break;
167     default:
168       llvm_unreachable("Invalid address displacement operand");
169     }
170 
171     return (unsigned)Hash;
172   }
173 
isEqualllvm::DenseMapInfo174   static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) {
175     // Checking any field of MemOpKey is enough to determine if the key is
176     // empty or tombstone.
177     if (RHS.Disp == PtrInfo::getEmptyKey())
178       return LHS.Disp == PtrInfo::getEmptyKey();
179     if (RHS.Disp == PtrInfo::getTombstoneKey())
180       return LHS.Disp == PtrInfo::getTombstoneKey();
181     return LHS == RHS;
182   }
183 };
184 
185 } // end namespace llvm
186 
187 /// Returns a hash table key based on memory operands of \p MI. The
188 /// number of the first memory operand of \p MI is specified through \p N.
getMemOpKey(const MachineInstr & MI,unsigned N)189 static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) {
190   assert((isLEA(MI) || MI.mayLoadOrStore()) &&
191          "The instruction must be a LEA, a load or a store");
192   return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg),
193                   &MI.getOperand(N + X86::AddrScaleAmt),
194                   &MI.getOperand(N + X86::AddrIndexReg),
195                   &MI.getOperand(N + X86::AddrSegmentReg),
196                   &MI.getOperand(N + X86::AddrDisp));
197 }
198 
isIdenticalOp(const MachineOperand & MO1,const MachineOperand & MO2)199 static inline bool isIdenticalOp(const MachineOperand &MO1,
200                                  const MachineOperand &MO2) {
201   return MO1.isIdenticalTo(MO2) &&
202          (!MO1.isReg() ||
203           !TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
204 }
205 
206 #ifndef NDEBUG
isValidDispOp(const MachineOperand & MO)207 static bool isValidDispOp(const MachineOperand &MO) {
208   return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() ||
209          MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB();
210 }
211 #endif
212 
isSimilarDispOp(const MachineOperand & MO1,const MachineOperand & MO2)213 static bool isSimilarDispOp(const MachineOperand &MO1,
214                             const MachineOperand &MO2) {
215   assert(isValidDispOp(MO1) && isValidDispOp(MO2) &&
216          "Address displacement operand is not valid");
217   return (MO1.isImm() && MO2.isImm()) ||
218          (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) ||
219          (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) ||
220          (MO1.isSymbol() && MO2.isSymbol() &&
221           MO1.getSymbolName() == MO2.getSymbolName()) ||
222          (MO1.isGlobal() && MO2.isGlobal() &&
223           MO1.getGlobal() == MO2.getGlobal()) ||
224          (MO1.isBlockAddress() && MO2.isBlockAddress() &&
225           MO1.getBlockAddress() == MO2.getBlockAddress()) ||
226          (MO1.isMCSymbol() && MO2.isMCSymbol() &&
227           MO1.getMCSymbol() == MO2.getMCSymbol()) ||
228          (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB());
229 }
230 
isLEA(const MachineInstr & MI)231 static inline bool isLEA(const MachineInstr &MI) {
232   unsigned Opcode = MI.getOpcode();
233   return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
234          Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
235 }
236 
237 namespace {
238 
239 class OptimizeLEAPass : public MachineFunctionPass {
240 public:
OptimizeLEAPass()241   OptimizeLEAPass() : MachineFunctionPass(ID) {}
242 
getPassName() const243   StringRef getPassName() const override { return "X86 LEA Optimize"; }
244 
245   /// Loop over all of the basic blocks, replacing address
246   /// calculations in load and store instructions, if it's already
247   /// been calculated by LEA. Also, remove redundant LEAs.
248   bool runOnMachineFunction(MachineFunction &MF) override;
249 
250 private:
251   using MemOpMap = DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>>;
252 
253   /// Returns a distance between two instructions inside one basic block.
254   /// Negative result means, that instructions occur in reverse order.
255   int calcInstrDist(const MachineInstr &First, const MachineInstr &Last);
256 
257   /// Choose the best \p LEA instruction from the \p List to replace
258   /// address calculation in \p MI instruction. Return the address displacement
259   /// and the distance between \p MI and the chosen \p BestLEA in
260   /// \p AddrDispShift and \p Dist.
261   bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
262                      const MachineInstr &MI, MachineInstr *&BestLEA,
263                      int64_t &AddrDispShift, int &Dist);
264 
265   /// Returns the difference between addresses' displacements of \p MI1
266   /// and \p MI2. The numbers of the first memory operands for the instructions
267   /// are specified through \p N1 and \p N2.
268   int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1,
269                            const MachineInstr &MI2, unsigned N2) const;
270 
271   /// Returns true if the \p Last LEA instruction can be replaced by the
272   /// \p First. The difference between displacements of the addresses calculated
273   /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper
274   /// replacement of the \p Last LEA's uses with the \p First's def register.
275   bool isReplaceable(const MachineInstr &First, const MachineInstr &Last,
276                      int64_t &AddrDispShift) const;
277 
278   /// Find all LEA instructions in the basic block. Also, assign position
279   /// numbers to all instructions in the basic block to speed up calculation of
280   /// distance between them.
281   void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs);
282 
283   /// Removes redundant address calculations.
284   bool removeRedundantAddrCalc(MemOpMap &LEAs);
285 
286   /// Replace debug value MI with a new debug value instruction using register
287   /// VReg with an appropriate offset and DIExpression to incorporate the
288   /// address displacement AddrDispShift. Return new debug value instruction.
289   MachineInstr *replaceDebugValue(MachineInstr &MI, unsigned VReg,
290                                   int64_t AddrDispShift);
291 
292   /// Removes LEAs which calculate similar addresses.
293   bool removeRedundantLEAs(MemOpMap &LEAs);
294 
295   DenseMap<const MachineInstr *, unsigned> InstrPos;
296 
297   MachineRegisterInfo *MRI;
298   const X86InstrInfo *TII;
299   const X86RegisterInfo *TRI;
300 
301   static char ID;
302 };
303 
304 } // end anonymous namespace
305 
306 char OptimizeLEAPass::ID = 0;
307 
createX86OptimizeLEAs()308 FunctionPass *llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); }
309 
calcInstrDist(const MachineInstr & First,const MachineInstr & Last)310 int OptimizeLEAPass::calcInstrDist(const MachineInstr &First,
311                                    const MachineInstr &Last) {
312   // Both instructions must be in the same basic block and they must be
313   // presented in InstrPos.
314   assert(Last.getParent() == First.getParent() &&
315          "Instructions are in different basic blocks");
316   assert(InstrPos.find(&First) != InstrPos.end() &&
317          InstrPos.find(&Last) != InstrPos.end() &&
318          "Instructions' positions are undefined");
319 
320   return InstrPos[&Last] - InstrPos[&First];
321 }
322 
323 // Find the best LEA instruction in the List to replace address recalculation in
324 // MI. Such LEA must meet these requirements:
325 // 1) The address calculated by the LEA differs only by the displacement from
326 //    the address used in MI.
327 // 2) The register class of the definition of the LEA is compatible with the
328 //    register class of the address base register of MI.
329 // 3) Displacement of the new memory operand should fit in 1 byte if possible.
330 // 4) The LEA should be as close to MI as possible, and prior to it if
331 //    possible.
chooseBestLEA(const SmallVectorImpl<MachineInstr * > & List,const MachineInstr & MI,MachineInstr * & BestLEA,int64_t & AddrDispShift,int & Dist)332 bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
333                                     const MachineInstr &MI,
334                                     MachineInstr *&BestLEA,
335                                     int64_t &AddrDispShift, int &Dist) {
336   const MachineFunction *MF = MI.getParent()->getParent();
337   const MCInstrDesc &Desc = MI.getDesc();
338   int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) +
339                 X86II::getOperandBias(Desc);
340 
341   BestLEA = nullptr;
342 
343   // Loop over all LEA instructions.
344   for (auto DefMI : List) {
345     // Get new address displacement.
346     int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1);
347 
348     // Make sure address displacement fits 4 bytes.
349     if (!isInt<32>(AddrDispShiftTemp))
350       continue;
351 
352     // Check that LEA def register can be used as MI address base. Some
353     // instructions can use a limited set of registers as address base, for
354     // example MOV8mr_NOREX. We could constrain the register class of the LEA
355     // def to suit MI, however since this case is very rare and hard to
356     // reproduce in a test it's just more reliable to skip the LEA.
357     if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) !=
358         MRI->getRegClass(DefMI->getOperand(0).getReg()))
359       continue;
360 
361     // Choose the closest LEA instruction from the list, prior to MI if
362     // possible. Note that we took into account resulting address displacement
363     // as well. Also note that the list is sorted by the order in which the LEAs
364     // occur, so the break condition is pretty simple.
365     int DistTemp = calcInstrDist(*DefMI, MI);
366     assert(DistTemp != 0 &&
367            "The distance between two different instructions cannot be zero");
368     if (DistTemp > 0 || BestLEA == nullptr) {
369       // Do not update return LEA, if the current one provides a displacement
370       // which fits in 1 byte, while the new candidate does not.
371       if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
372           isInt<8>(AddrDispShift))
373         continue;
374 
375       BestLEA = DefMI;
376       AddrDispShift = AddrDispShiftTemp;
377       Dist = DistTemp;
378     }
379 
380     // FIXME: Maybe we should not always stop at the first LEA after MI.
381     if (DistTemp < 0)
382       break;
383   }
384 
385   return BestLEA != nullptr;
386 }
387 
388 // Get the difference between the addresses' displacements of the two
389 // instructions \p MI1 and \p MI2. The numbers of the first memory operands are
390 // passed through \p N1 and \p N2.
getAddrDispShift(const MachineInstr & MI1,unsigned N1,const MachineInstr & MI2,unsigned N2) const391 int64_t OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1, unsigned N1,
392                                           const MachineInstr &MI2,
393                                           unsigned N2) const {
394   const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp);
395   const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp);
396 
397   assert(isSimilarDispOp(Op1, Op2) &&
398          "Address displacement operands are not compatible");
399 
400   // After the assert above we can be sure that both operands are of the same
401   // valid type and use the same symbol/index/address, thus displacement shift
402   // calculation is rather simple.
403   if (Op1.isJTI())
404     return 0;
405   return Op1.isImm() ? Op1.getImm() - Op2.getImm()
406                      : Op1.getOffset() - Op2.getOffset();
407 }
408 
409 // Check that the Last LEA can be replaced by the First LEA. To be so,
410 // these requirements must be met:
411 // 1) Addresses calculated by LEAs differ only by displacement.
412 // 2) Def registers of LEAs belong to the same class.
413 // 3) All uses of the Last LEA def register are replaceable, thus the
414 //    register is used only as address base.
isReplaceable(const MachineInstr & First,const MachineInstr & Last,int64_t & AddrDispShift) const415 bool OptimizeLEAPass::isReplaceable(const MachineInstr &First,
416                                     const MachineInstr &Last,
417                                     int64_t &AddrDispShift) const {
418   assert(isLEA(First) && isLEA(Last) &&
419          "The function works only with LEA instructions");
420 
421   // Make sure that LEA def registers belong to the same class. There may be
422   // instructions (like MOV8mr_NOREX) which allow a limited set of registers to
423   // be used as their operands, so we must be sure that replacing one LEA
424   // with another won't lead to putting a wrong register in the instruction.
425   if (MRI->getRegClass(First.getOperand(0).getReg()) !=
426       MRI->getRegClass(Last.getOperand(0).getReg()))
427     return false;
428 
429   // Get new address displacement.
430   AddrDispShift = getAddrDispShift(Last, 1, First, 1);
431 
432   // Loop over all uses of the Last LEA to check that its def register is
433   // used only as address base for memory accesses. If so, it can be
434   // replaced, otherwise - no.
435   for (auto &MO : MRI->use_nodbg_operands(Last.getOperand(0).getReg())) {
436     MachineInstr &MI = *MO.getParent();
437 
438     // Get the number of the first memory operand.
439     const MCInstrDesc &Desc = MI.getDesc();
440     int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
441 
442     // If the use instruction has no memory operand - the LEA is not
443     // replaceable.
444     if (MemOpNo < 0)
445       return false;
446 
447     MemOpNo += X86II::getOperandBias(Desc);
448 
449     // If the address base of the use instruction is not the LEA def register -
450     // the LEA is not replaceable.
451     if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO))
452       return false;
453 
454     // If the LEA def register is used as any other operand of the use
455     // instruction - the LEA is not replaceable.
456     for (unsigned i = 0; i < MI.getNumOperands(); i++)
457       if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) &&
458           isIdenticalOp(MI.getOperand(i), MO))
459         return false;
460 
461     // Check that the new address displacement will fit 4 bytes.
462     if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() &&
463         !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() +
464                    AddrDispShift))
465       return false;
466   }
467 
468   return true;
469 }
470 
findLEAs(const MachineBasicBlock & MBB,MemOpMap & LEAs)471 void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs) {
472   unsigned Pos = 0;
473   for (auto &MI : MBB) {
474     // Assign the position number to the instruction. Note that we are going to
475     // move some instructions during the optimization however there will never
476     // be a need to move two instructions before any selected instruction. So to
477     // avoid multiple positions' updates during moves we just increase position
478     // counter by two leaving a free space for instructions which will be moved.
479     InstrPos[&MI] = Pos += 2;
480 
481     if (isLEA(MI))
482       LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI));
483   }
484 }
485 
486 // Try to find load and store instructions which recalculate addresses already
487 // calculated by some LEA and replace their memory operands with its def
488 // register.
removeRedundantAddrCalc(MemOpMap & LEAs)489 bool OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) {
490   bool Changed = false;
491 
492   assert(!LEAs.empty());
493   MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent();
494 
495   // Process all instructions in basic block.
496   for (auto I = MBB->begin(), E = MBB->end(); I != E;) {
497     MachineInstr &MI = *I++;
498 
499     // Instruction must be load or store.
500     if (!MI.mayLoadOrStore())
501       continue;
502 
503     // Get the number of the first memory operand.
504     const MCInstrDesc &Desc = MI.getDesc();
505     int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
506 
507     // If instruction has no memory operand - skip it.
508     if (MemOpNo < 0)
509       continue;
510 
511     MemOpNo += X86II::getOperandBias(Desc);
512 
513     // Get the best LEA instruction to replace address calculation.
514     MachineInstr *DefMI;
515     int64_t AddrDispShift;
516     int Dist;
517     if (!chooseBestLEA(LEAs[getMemOpKey(MI, MemOpNo)], MI, DefMI, AddrDispShift,
518                        Dist))
519       continue;
520 
521     // If LEA occurs before current instruction, we can freely replace
522     // the instruction. If LEA occurs after, we can lift LEA above the
523     // instruction and this way to be able to replace it. Since LEA and the
524     // instruction have similar memory operands (thus, the same def
525     // instructions for these operands), we can always do that, without
526     // worries of using registers before their defs.
527     if (Dist < 0) {
528       DefMI->removeFromParent();
529       MBB->insert(MachineBasicBlock::iterator(&MI), DefMI);
530       InstrPos[DefMI] = InstrPos[&MI] - 1;
531 
532       // Make sure the instructions' position numbers are sane.
533       assert(((InstrPos[DefMI] == 1 &&
534                MachineBasicBlock::iterator(DefMI) == MBB->begin()) ||
535               InstrPos[DefMI] >
536                   InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) &&
537              "Instruction positioning is broken");
538     }
539 
540     // Since we can possibly extend register lifetime, clear kill flags.
541     MRI->clearKillFlags(DefMI->getOperand(0).getReg());
542 
543     ++NumSubstLEAs;
544     LLVM_DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump(););
545 
546     // Change instruction operands.
547     MI.getOperand(MemOpNo + X86::AddrBaseReg)
548         .ChangeToRegister(DefMI->getOperand(0).getReg(), false);
549     MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1);
550     MI.getOperand(MemOpNo + X86::AddrIndexReg)
551         .ChangeToRegister(X86::NoRegister, false);
552     MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift);
553     MI.getOperand(MemOpNo + X86::AddrSegmentReg)
554         .ChangeToRegister(X86::NoRegister, false);
555 
556     LLVM_DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump(););
557 
558     Changed = true;
559   }
560 
561   return Changed;
562 }
563 
replaceDebugValue(MachineInstr & MI,unsigned VReg,int64_t AddrDispShift)564 MachineInstr *OptimizeLEAPass::replaceDebugValue(MachineInstr &MI,
565                                                  unsigned VReg,
566                                                  int64_t AddrDispShift) {
567   DIExpression *Expr = const_cast<DIExpression *>(MI.getDebugExpression());
568 
569   if (AddrDispShift != 0)
570     Expr = DIExpression::prepend(Expr, DIExpression::NoDeref, AddrDispShift,
571                                  DIExpression::NoDeref,
572                                  DIExpression::WithStackValue);
573 
574   // Replace DBG_VALUE instruction with modified version.
575   MachineBasicBlock *MBB = MI.getParent();
576   DebugLoc DL = MI.getDebugLoc();
577   bool IsIndirect = MI.isIndirectDebugValue();
578   const MDNode *Var = MI.getDebugVariable();
579   if (IsIndirect)
580     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
581   return BuildMI(*MBB, MBB->erase(&MI), DL, TII->get(TargetOpcode::DBG_VALUE),
582                  IsIndirect, VReg, Var, Expr);
583 }
584 
585 // Try to find similar LEAs in the list and replace one with another.
removeRedundantLEAs(MemOpMap & LEAs)586 bool OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) {
587   bool Changed = false;
588 
589   // Loop over all entries in the table.
590   for (auto &E : LEAs) {
591     auto &List = E.second;
592 
593     // Loop over all LEA pairs.
594     auto I1 = List.begin();
595     while (I1 != List.end()) {
596       MachineInstr &First = **I1;
597       auto I2 = std::next(I1);
598       while (I2 != List.end()) {
599         MachineInstr &Last = **I2;
600         int64_t AddrDispShift;
601 
602         // LEAs should be in occurrence order in the list, so we can freely
603         // replace later LEAs with earlier ones.
604         assert(calcInstrDist(First, Last) > 0 &&
605                "LEAs must be in occurrence order in the list");
606 
607         // Check that the Last LEA instruction can be replaced by the First.
608         if (!isReplaceable(First, Last, AddrDispShift)) {
609           ++I2;
610           continue;
611         }
612 
613         // Loop over all uses of the Last LEA and update their operands. Note
614         // that the correctness of this has already been checked in the
615         // isReplaceable function.
616         unsigned FirstVReg = First.getOperand(0).getReg();
617         unsigned LastVReg = Last.getOperand(0).getReg();
618         for (auto UI = MRI->use_begin(LastVReg), UE = MRI->use_end();
619              UI != UE;) {
620           MachineOperand &MO = *UI++;
621           MachineInstr &MI = *MO.getParent();
622 
623           if (MI.isDebugValue()) {
624             // Replace DBG_VALUE instruction with modified version using the
625             // register from the replacing LEA and the address displacement
626             // between the LEA instructions.
627             replaceDebugValue(MI, FirstVReg, AddrDispShift);
628             continue;
629           }
630 
631           // Get the number of the first memory operand.
632           const MCInstrDesc &Desc = MI.getDesc();
633           int MemOpNo =
634               X86II::getMemoryOperandNo(Desc.TSFlags) +
635               X86II::getOperandBias(Desc);
636 
637           // Update address base.
638           MO.setReg(FirstVReg);
639 
640           // Update address disp.
641           MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp);
642           if (Op.isImm())
643             Op.setImm(Op.getImm() + AddrDispShift);
644           else if (!Op.isJTI())
645             Op.setOffset(Op.getOffset() + AddrDispShift);
646         }
647 
648         // Since we can possibly extend register lifetime, clear kill flags.
649         MRI->clearKillFlags(FirstVReg);
650 
651         ++NumRedundantLEAs;
652         LLVM_DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: ";
653                    Last.dump(););
654 
655         // By this moment, all of the Last LEA's uses must be replaced. So we
656         // can freely remove it.
657         assert(MRI->use_empty(LastVReg) &&
658                "The LEA's def register must have no uses");
659         Last.eraseFromParent();
660 
661         // Erase removed LEA from the list.
662         I2 = List.erase(I2);
663 
664         Changed = true;
665       }
666       ++I1;
667     }
668   }
669 
670   return Changed;
671 }
672 
runOnMachineFunction(MachineFunction & MF)673 bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
674   bool Changed = false;
675 
676   if (DisableX86LEAOpt || skipFunction(MF.getFunction()))
677     return false;
678 
679   MRI = &MF.getRegInfo();
680   TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
681   TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
682 
683   // Process all basic blocks.
684   for (auto &MBB : MF) {
685     MemOpMap LEAs;
686     InstrPos.clear();
687 
688     // Find all LEA instructions in basic block.
689     findLEAs(MBB, LEAs);
690 
691     // If current basic block has no LEAs, move on to the next one.
692     if (LEAs.empty())
693       continue;
694 
695     // Remove redundant LEA instructions.
696     Changed |= removeRedundantLEAs(LEAs);
697 
698     // Remove redundant address calculations. Do it only for -Os/-Oz since only
699     // a code size gain is expected from this part of the pass.
700     if (MF.getFunction().optForSize())
701       Changed |= removeRedundantAddrCalc(LEAs);
702   }
703 
704   return Changed;
705 }
706