1 //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the X86 specific subclass of TargetSubtargetInfo.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "X86.h"
15
16 #include "X86CallLowering.h"
17 #include "X86LegalizerInfo.h"
18 #include "X86RegisterBankInfo.h"
19 #include "X86Subtarget.h"
20 #include "MCTargetDesc/X86BaseInfo.h"
21 #include "X86TargetMachine.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
24 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/CodeGen.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36
37 #if defined(_MSC_VER)
38 #include <intrin.h>
39 #endif
40
41 using namespace llvm;
42
43 #define DEBUG_TYPE "subtarget"
44
45 #define GET_SUBTARGETINFO_TARGET_DESC
46 #define GET_SUBTARGETINFO_CTOR
47 #include "X86GenSubtargetInfo.inc"
48
49 // Temporary option to control early if-conversion for x86 while adding machine
50 // models.
51 static cl::opt<bool>
52 X86EarlyIfConv("x86-early-ifcvt", cl::Hidden,
53 cl::desc("Enable early if-conversion on X86"));
54
55
56 /// Classify a blockaddress reference for the current subtarget according to how
57 /// we should reference it in a non-pcrel context.
classifyBlockAddressReference() const58 unsigned char X86Subtarget::classifyBlockAddressReference() const {
59 return classifyLocalReference(nullptr);
60 }
61
62 /// Classify a global variable reference for the current subtarget according to
63 /// how we should reference it in a non-pcrel context.
64 unsigned char
classifyGlobalReference(const GlobalValue * GV) const65 X86Subtarget::classifyGlobalReference(const GlobalValue *GV) const {
66 return classifyGlobalReference(GV, *GV->getParent());
67 }
68
69 unsigned char
classifyLocalReference(const GlobalValue * GV) const70 X86Subtarget::classifyLocalReference(const GlobalValue *GV) const {
71 // If we're not PIC, it's not very interesting.
72 if (!isPositionIndependent())
73 return X86II::MO_NO_FLAG;
74
75 if (is64Bit()) {
76 // 64-bit ELF PIC local references may use GOTOFF relocations.
77 if (isTargetELF()) {
78 switch (TM.getCodeModel()) {
79 // 64-bit small code model is simple: All rip-relative.
80 case CodeModel::Small:
81 case CodeModel::Kernel:
82 return X86II::MO_NO_FLAG;
83
84 // The large PIC code model uses GOTOFF.
85 case CodeModel::Large:
86 return X86II::MO_GOTOFF;
87
88 // Medium is a hybrid: RIP-rel for code, GOTOFF for DSO local data.
89 case CodeModel::Medium:
90 if (isa<Function>(GV))
91 return X86II::MO_NO_FLAG; // All code is RIP-relative
92 return X86II::MO_GOTOFF; // Local symbols use GOTOFF.
93 }
94 llvm_unreachable("invalid code model");
95 }
96
97 // Otherwise, this is either a RIP-relative reference or a 64-bit movabsq,
98 // both of which use MO_NO_FLAG.
99 return X86II::MO_NO_FLAG;
100 }
101
102 // The COFF dynamic linker just patches the executable sections.
103 if (isTargetCOFF())
104 return X86II::MO_NO_FLAG;
105
106 if (isTargetDarwin()) {
107 // 32 bit macho has no relocation for a-b if a is undefined, even if
108 // b is in the section that is being relocated.
109 // This means we have to use o load even for GVs that are known to be
110 // local to the dso.
111 if (GV && (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
112 return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
113
114 return X86II::MO_PIC_BASE_OFFSET;
115 }
116
117 return X86II::MO_GOTOFF;
118 }
119
classifyGlobalReference(const GlobalValue * GV,const Module & M) const120 unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue *GV,
121 const Module &M) const {
122 // The static large model never uses stubs.
123 if (TM.getCodeModel() == CodeModel::Large && !isPositionIndependent())
124 return X86II::MO_NO_FLAG;
125
126 // Absolute symbols can be referenced directly.
127 if (GV) {
128 if (Optional<ConstantRange> CR = GV->getAbsoluteSymbolRange()) {
129 // See if we can use the 8-bit immediate form. Note that some instructions
130 // will sign extend the immediate operand, so to be conservative we only
131 // accept the range [0,128).
132 if (CR->getUnsignedMax().ult(128))
133 return X86II::MO_ABS8;
134 else
135 return X86II::MO_NO_FLAG;
136 }
137 }
138
139 if (TM.shouldAssumeDSOLocal(M, GV))
140 return classifyLocalReference(GV);
141
142 if (isTargetCOFF())
143 return X86II::MO_DLLIMPORT;
144
145 if (is64Bit()) {
146 // ELF supports a large, truly PIC code model with non-PC relative GOT
147 // references. Other object file formats do not. Use the no-flag, 64-bit
148 // reference for them.
149 if (TM.getCodeModel() == CodeModel::Large)
150 return isTargetELF() ? X86II::MO_GOT : X86II::MO_NO_FLAG;
151 return X86II::MO_GOTPCREL;
152 }
153
154 if (isTargetDarwin()) {
155 if (!isPositionIndependent())
156 return X86II::MO_DARWIN_NONLAZY;
157 return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
158 }
159
160 return X86II::MO_GOT;
161 }
162
163 unsigned char
classifyGlobalFunctionReference(const GlobalValue * GV) const164 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV) const {
165 return classifyGlobalFunctionReference(GV, *GV->getParent());
166 }
167
168 unsigned char
classifyGlobalFunctionReference(const GlobalValue * GV,const Module & M) const169 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV,
170 const Module &M) const {
171 if (TM.shouldAssumeDSOLocal(M, GV))
172 return X86II::MO_NO_FLAG;
173
174 if (isTargetCOFF()) {
175 assert(GV->hasDLLImportStorageClass() &&
176 "shouldAssumeDSOLocal gave inconsistent answer");
177 return X86II::MO_DLLIMPORT;
178 }
179
180 const Function *F = dyn_cast_or_null<Function>(GV);
181
182 if (isTargetELF()) {
183 if (is64Bit() && F && (CallingConv::X86_RegCall == F->getCallingConv()))
184 // According to psABI, PLT stub clobbers XMM8-XMM15.
185 // In Regcall calling convention those registers are used for passing
186 // parameters. Thus we need to prevent lazy binding in Regcall.
187 return X86II::MO_GOTPCREL;
188 // If PLT must be avoided then the call should be via GOTPCREL.
189 if (((F && F->hasFnAttribute(Attribute::NonLazyBind)) ||
190 (!F && M.getRtLibUseGOT())) &&
191 is64Bit())
192 return X86II::MO_GOTPCREL;
193 return X86II::MO_PLT;
194 }
195
196 if (is64Bit()) {
197 if (F && F->hasFnAttribute(Attribute::NonLazyBind))
198 // If the function is marked as non-lazy, generate an indirect call
199 // which loads from the GOT directly. This avoids runtime overhead
200 // at the cost of eager binding (and one extra byte of encoding).
201 return X86II::MO_GOTPCREL;
202 return X86II::MO_NO_FLAG;
203 }
204
205 return X86II::MO_NO_FLAG;
206 }
207
208 /// Return true if the subtarget allows calls to immediate address.
isLegalToCallImmediateAddr() const209 bool X86Subtarget::isLegalToCallImmediateAddr() const {
210 // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
211 // but WinCOFFObjectWriter::RecordRelocation cannot emit them. Once it does,
212 // the following check for Win32 should be removed.
213 if (In64BitMode || isTargetWin32())
214 return false;
215 return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
216 }
217
initSubtargetFeatures(StringRef CPU,StringRef FS)218 void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
219 std::string CPUName = CPU;
220 if (CPUName.empty())
221 CPUName = "generic";
222
223 // Make sure 64-bit features are available in 64-bit mode. (But make sure
224 // SSE2 can be turned off explicitly.)
225 std::string FullFS = FS;
226 if (In64BitMode) {
227 if (!FullFS.empty())
228 FullFS = "+64bit,+sse2," + FullFS;
229 else
230 FullFS = "+64bit,+sse2";
231 }
232
233 // LAHF/SAHF are always supported in non-64-bit mode.
234 if (!In64BitMode) {
235 if (!FullFS.empty())
236 FullFS = "+sahf," + FullFS;
237 else
238 FullFS = "+sahf";
239 }
240
241 // Parse features string and set the CPU.
242 ParseSubtargetFeatures(CPUName, FullFS);
243
244 // All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of
245 // 16-bytes and under that are reasonably fast. These features were
246 // introduced with Intel's Nehalem/Silvermont and AMD's Family10h
247 // micro-architectures respectively.
248 if (hasSSE42() || hasSSE4A())
249 IsUAMem16Slow = false;
250
251 // It's important to keep the MCSubtargetInfo feature bits in sync with
252 // target data structure which is shared with MC code emitter, etc.
253 if (In64BitMode)
254 ToggleFeature(X86::Mode64Bit);
255 else if (In32BitMode)
256 ToggleFeature(X86::Mode32Bit);
257 else if (In16BitMode)
258 ToggleFeature(X86::Mode16Bit);
259 else
260 llvm_unreachable("Not 16-bit, 32-bit or 64-bit mode!");
261
262 LLVM_DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
263 << ", 3DNowLevel " << X863DNowLevel << ", 64bit "
264 << HasX86_64 << "\n");
265 assert((!In64BitMode || HasX86_64) &&
266 "64-bit code requested on a subtarget that doesn't support it!");
267
268 // Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD and Solaris (both
269 // 32 and 64 bit) and for all 64-bit targets.
270 if (StackAlignOverride)
271 stackAlignment = StackAlignOverride;
272 else if (isTargetDarwin() || isTargetLinux() || isTargetSolaris() ||
273 isTargetKFreeBSD() || In64BitMode)
274 stackAlignment = 16;
275
276 // Some CPUs have more overhead for gather. The specified overhead is relative
277 // to the Load operation. "2" is the number provided by Intel architects. This
278 // parameter is used for cost estimation of Gather Op and comparison with
279 // other alternatives.
280 // TODO: Remove the explicit hasAVX512()?, That would mean we would only
281 // enable gather with a -march.
282 if (hasAVX512() || (hasAVX2() && hasFastGather()))
283 GatherOverhead = 2;
284 if (hasAVX512())
285 ScatterOverhead = 2;
286
287 // Consume the vector width attribute or apply any target specific limit.
288 if (PreferVectorWidthOverride)
289 PreferVectorWidth = PreferVectorWidthOverride;
290 else if (Prefer256Bit)
291 PreferVectorWidth = 256;
292 }
293
initializeSubtargetDependencies(StringRef CPU,StringRef FS)294 X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU,
295 StringRef FS) {
296 initSubtargetFeatures(CPU, FS);
297 return *this;
298 }
299
X86Subtarget(const Triple & TT,StringRef CPU,StringRef FS,const X86TargetMachine & TM,unsigned StackAlignOverride,unsigned PreferVectorWidthOverride,unsigned RequiredVectorWidth)300 X86Subtarget::X86Subtarget(const Triple &TT, StringRef CPU, StringRef FS,
301 const X86TargetMachine &TM,
302 unsigned StackAlignOverride,
303 unsigned PreferVectorWidthOverride,
304 unsigned RequiredVectorWidth)
305 : X86GenSubtargetInfo(TT, CPU, FS),
306 PICStyle(PICStyles::None), TM(TM), TargetTriple(TT),
307 StackAlignOverride(StackAlignOverride),
308 PreferVectorWidthOverride(PreferVectorWidthOverride),
309 RequiredVectorWidth(RequiredVectorWidth),
310 In64BitMode(TargetTriple.getArch() == Triple::x86_64),
311 In32BitMode(TargetTriple.getArch() == Triple::x86 &&
312 TargetTriple.getEnvironment() != Triple::CODE16),
313 In16BitMode(TargetTriple.getArch() == Triple::x86 &&
314 TargetTriple.getEnvironment() == Triple::CODE16),
315 InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM, *this),
316 FrameLowering(*this, getStackAlignment()) {
317 // Determine the PICStyle based on the target selected.
318 if (!isPositionIndependent())
319 setPICStyle(PICStyles::None);
320 else if (is64Bit())
321 setPICStyle(PICStyles::RIPRel);
322 else if (isTargetCOFF())
323 setPICStyle(PICStyles::None);
324 else if (isTargetDarwin())
325 setPICStyle(PICStyles::StubPIC);
326 else if (isTargetELF())
327 setPICStyle(PICStyles::GOT);
328
329 CallLoweringInfo.reset(new X86CallLowering(*getTargetLowering()));
330 Legalizer.reset(new X86LegalizerInfo(*this, TM));
331
332 auto *RBI = new X86RegisterBankInfo(*getRegisterInfo());
333 RegBankInfo.reset(RBI);
334 InstSelector.reset(createX86InstructionSelector(TM, *this, *RBI));
335 }
336
getCallLowering() const337 const CallLowering *X86Subtarget::getCallLowering() const {
338 return CallLoweringInfo.get();
339 }
340
getInstructionSelector() const341 const InstructionSelector *X86Subtarget::getInstructionSelector() const {
342 return InstSelector.get();
343 }
344
getLegalizerInfo() const345 const LegalizerInfo *X86Subtarget::getLegalizerInfo() const {
346 return Legalizer.get();
347 }
348
getRegBankInfo() const349 const RegisterBankInfo *X86Subtarget::getRegBankInfo() const {
350 return RegBankInfo.get();
351 }
352
enableEarlyIfConversion() const353 bool X86Subtarget::enableEarlyIfConversion() const {
354 return hasCMov() && X86EarlyIfConv;
355 }
356