1 //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the X86 specific subclass of TargetSubtargetInfo.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86.h"
15 
16 #include "X86CallLowering.h"
17 #include "X86LegalizerInfo.h"
18 #include "X86RegisterBankInfo.h"
19 #include "X86Subtarget.h"
20 #include "MCTargetDesc/X86BaseInfo.h"
21 #include "X86TargetMachine.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
24 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/CodeGen.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 
37 #if defined(_MSC_VER)
38 #include <intrin.h>
39 #endif
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "subtarget"
44 
45 #define GET_SUBTARGETINFO_TARGET_DESC
46 #define GET_SUBTARGETINFO_CTOR
47 #include "X86GenSubtargetInfo.inc"
48 
49 // Temporary option to control early if-conversion for x86 while adding machine
50 // models.
51 static cl::opt<bool>
52 X86EarlyIfConv("x86-early-ifcvt", cl::Hidden,
53                cl::desc("Enable early if-conversion on X86"));
54 
55 
56 /// Classify a blockaddress reference for the current subtarget according to how
57 /// we should reference it in a non-pcrel context.
classifyBlockAddressReference() const58 unsigned char X86Subtarget::classifyBlockAddressReference() const {
59   return classifyLocalReference(nullptr);
60 }
61 
62 /// Classify a global variable reference for the current subtarget according to
63 /// how we should reference it in a non-pcrel context.
64 unsigned char
classifyGlobalReference(const GlobalValue * GV) const65 X86Subtarget::classifyGlobalReference(const GlobalValue *GV) const {
66   return classifyGlobalReference(GV, *GV->getParent());
67 }
68 
69 unsigned char
classifyLocalReference(const GlobalValue * GV) const70 X86Subtarget::classifyLocalReference(const GlobalValue *GV) const {
71   // If we're not PIC, it's not very interesting.
72   if (!isPositionIndependent())
73     return X86II::MO_NO_FLAG;
74 
75   if (is64Bit()) {
76     // 64-bit ELF PIC local references may use GOTOFF relocations.
77     if (isTargetELF()) {
78       switch (TM.getCodeModel()) {
79       // 64-bit small code model is simple: All rip-relative.
80       case CodeModel::Small:
81       case CodeModel::Kernel:
82         return X86II::MO_NO_FLAG;
83 
84       // The large PIC code model uses GOTOFF.
85       case CodeModel::Large:
86         return X86II::MO_GOTOFF;
87 
88       // Medium is a hybrid: RIP-rel for code, GOTOFF for DSO local data.
89       case CodeModel::Medium:
90         if (isa<Function>(GV))
91           return X86II::MO_NO_FLAG; // All code is RIP-relative
92         return X86II::MO_GOTOFF;    // Local symbols use GOTOFF.
93       }
94       llvm_unreachable("invalid code model");
95     }
96 
97     // Otherwise, this is either a RIP-relative reference or a 64-bit movabsq,
98     // both of which use MO_NO_FLAG.
99     return X86II::MO_NO_FLAG;
100   }
101 
102   // The COFF dynamic linker just patches the executable sections.
103   if (isTargetCOFF())
104     return X86II::MO_NO_FLAG;
105 
106   if (isTargetDarwin()) {
107     // 32 bit macho has no relocation for a-b if a is undefined, even if
108     // b is in the section that is being relocated.
109     // This means we have to use o load even for GVs that are known to be
110     // local to the dso.
111     if (GV && (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
112       return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
113 
114     return X86II::MO_PIC_BASE_OFFSET;
115   }
116 
117   return X86II::MO_GOTOFF;
118 }
119 
classifyGlobalReference(const GlobalValue * GV,const Module & M) const120 unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue *GV,
121                                                     const Module &M) const {
122   // The static large model never uses stubs.
123   if (TM.getCodeModel() == CodeModel::Large && !isPositionIndependent())
124     return X86II::MO_NO_FLAG;
125 
126   // Absolute symbols can be referenced directly.
127   if (GV) {
128     if (Optional<ConstantRange> CR = GV->getAbsoluteSymbolRange()) {
129       // See if we can use the 8-bit immediate form. Note that some instructions
130       // will sign extend the immediate operand, so to be conservative we only
131       // accept the range [0,128).
132       if (CR->getUnsignedMax().ult(128))
133         return X86II::MO_ABS8;
134       else
135         return X86II::MO_NO_FLAG;
136     }
137   }
138 
139   if (TM.shouldAssumeDSOLocal(M, GV))
140     return classifyLocalReference(GV);
141 
142   if (isTargetCOFF())
143     return X86II::MO_DLLIMPORT;
144 
145   if (is64Bit()) {
146     // ELF supports a large, truly PIC code model with non-PC relative GOT
147     // references. Other object file formats do not. Use the no-flag, 64-bit
148     // reference for them.
149     if (TM.getCodeModel() == CodeModel::Large)
150       return isTargetELF() ? X86II::MO_GOT : X86II::MO_NO_FLAG;
151     return X86II::MO_GOTPCREL;
152   }
153 
154   if (isTargetDarwin()) {
155     if (!isPositionIndependent())
156       return X86II::MO_DARWIN_NONLAZY;
157     return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
158   }
159 
160   return X86II::MO_GOT;
161 }
162 
163 unsigned char
classifyGlobalFunctionReference(const GlobalValue * GV) const164 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV) const {
165   return classifyGlobalFunctionReference(GV, *GV->getParent());
166 }
167 
168 unsigned char
classifyGlobalFunctionReference(const GlobalValue * GV,const Module & M) const169 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV,
170                                               const Module &M) const {
171   if (TM.shouldAssumeDSOLocal(M, GV))
172     return X86II::MO_NO_FLAG;
173 
174   if (isTargetCOFF()) {
175     assert(GV->hasDLLImportStorageClass() &&
176            "shouldAssumeDSOLocal gave inconsistent answer");
177     return X86II::MO_DLLIMPORT;
178   }
179 
180   const Function *F = dyn_cast_or_null<Function>(GV);
181 
182   if (isTargetELF()) {
183     if (is64Bit() && F && (CallingConv::X86_RegCall == F->getCallingConv()))
184       // According to psABI, PLT stub clobbers XMM8-XMM15.
185       // In Regcall calling convention those registers are used for passing
186       // parameters. Thus we need to prevent lazy binding in Regcall.
187       return X86II::MO_GOTPCREL;
188     // If PLT must be avoided then the call should be via GOTPCREL.
189     if (((F && F->hasFnAttribute(Attribute::NonLazyBind)) ||
190          (!F && M.getRtLibUseGOT())) &&
191         is64Bit())
192        return X86II::MO_GOTPCREL;
193     return X86II::MO_PLT;
194   }
195 
196   if (is64Bit()) {
197     if (F && F->hasFnAttribute(Attribute::NonLazyBind))
198       // If the function is marked as non-lazy, generate an indirect call
199       // which loads from the GOT directly. This avoids runtime overhead
200       // at the cost of eager binding (and one extra byte of encoding).
201       return X86II::MO_GOTPCREL;
202     return X86II::MO_NO_FLAG;
203   }
204 
205   return X86II::MO_NO_FLAG;
206 }
207 
208 /// Return true if the subtarget allows calls to immediate address.
isLegalToCallImmediateAddr() const209 bool X86Subtarget::isLegalToCallImmediateAddr() const {
210   // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
211   // but WinCOFFObjectWriter::RecordRelocation cannot emit them.  Once it does,
212   // the following check for Win32 should be removed.
213   if (In64BitMode || isTargetWin32())
214     return false;
215   return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
216 }
217 
initSubtargetFeatures(StringRef CPU,StringRef FS)218 void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
219   std::string CPUName = CPU;
220   if (CPUName.empty())
221     CPUName = "generic";
222 
223   // Make sure 64-bit features are available in 64-bit mode. (But make sure
224   // SSE2 can be turned off explicitly.)
225   std::string FullFS = FS;
226   if (In64BitMode) {
227     if (!FullFS.empty())
228       FullFS = "+64bit,+sse2," + FullFS;
229     else
230       FullFS = "+64bit,+sse2";
231   }
232 
233   // LAHF/SAHF are always supported in non-64-bit mode.
234   if (!In64BitMode) {
235     if (!FullFS.empty())
236       FullFS = "+sahf," + FullFS;
237     else
238       FullFS = "+sahf";
239   }
240 
241   // Parse features string and set the CPU.
242   ParseSubtargetFeatures(CPUName, FullFS);
243 
244   // All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of
245   // 16-bytes and under that are reasonably fast. These features were
246   // introduced with Intel's Nehalem/Silvermont and AMD's Family10h
247   // micro-architectures respectively.
248   if (hasSSE42() || hasSSE4A())
249     IsUAMem16Slow = false;
250 
251   // It's important to keep the MCSubtargetInfo feature bits in sync with
252   // target data structure which is shared with MC code emitter, etc.
253   if (In64BitMode)
254     ToggleFeature(X86::Mode64Bit);
255   else if (In32BitMode)
256     ToggleFeature(X86::Mode32Bit);
257   else if (In16BitMode)
258     ToggleFeature(X86::Mode16Bit);
259   else
260     llvm_unreachable("Not 16-bit, 32-bit or 64-bit mode!");
261 
262   LLVM_DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
263                     << ", 3DNowLevel " << X863DNowLevel << ", 64bit "
264                     << HasX86_64 << "\n");
265   assert((!In64BitMode || HasX86_64) &&
266          "64-bit code requested on a subtarget that doesn't support it!");
267 
268   // Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD and Solaris (both
269   // 32 and 64 bit) and for all 64-bit targets.
270   if (StackAlignOverride)
271     stackAlignment = StackAlignOverride;
272   else if (isTargetDarwin() || isTargetLinux() || isTargetSolaris() ||
273            isTargetKFreeBSD() || In64BitMode)
274     stackAlignment = 16;
275 
276   // Some CPUs have more overhead for gather. The specified overhead is relative
277   // to the Load operation. "2" is the number provided by Intel architects. This
278   // parameter is used for cost estimation of Gather Op and comparison with
279   // other alternatives.
280   // TODO: Remove the explicit hasAVX512()?, That would mean we would only
281   // enable gather with a -march.
282   if (hasAVX512() || (hasAVX2() && hasFastGather()))
283     GatherOverhead = 2;
284   if (hasAVX512())
285     ScatterOverhead = 2;
286 
287   // Consume the vector width attribute or apply any target specific limit.
288   if (PreferVectorWidthOverride)
289     PreferVectorWidth = PreferVectorWidthOverride;
290   else if (Prefer256Bit)
291     PreferVectorWidth = 256;
292 }
293 
initializeSubtargetDependencies(StringRef CPU,StringRef FS)294 X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU,
295                                                             StringRef FS) {
296   initSubtargetFeatures(CPU, FS);
297   return *this;
298 }
299 
X86Subtarget(const Triple & TT,StringRef CPU,StringRef FS,const X86TargetMachine & TM,unsigned StackAlignOverride,unsigned PreferVectorWidthOverride,unsigned RequiredVectorWidth)300 X86Subtarget::X86Subtarget(const Triple &TT, StringRef CPU, StringRef FS,
301                            const X86TargetMachine &TM,
302                            unsigned StackAlignOverride,
303                            unsigned PreferVectorWidthOverride,
304                            unsigned RequiredVectorWidth)
305     : X86GenSubtargetInfo(TT, CPU, FS),
306       PICStyle(PICStyles::None), TM(TM), TargetTriple(TT),
307       StackAlignOverride(StackAlignOverride),
308       PreferVectorWidthOverride(PreferVectorWidthOverride),
309       RequiredVectorWidth(RequiredVectorWidth),
310       In64BitMode(TargetTriple.getArch() == Triple::x86_64),
311       In32BitMode(TargetTriple.getArch() == Triple::x86 &&
312                   TargetTriple.getEnvironment() != Triple::CODE16),
313       In16BitMode(TargetTriple.getArch() == Triple::x86 &&
314                   TargetTriple.getEnvironment() == Triple::CODE16),
315       InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM, *this),
316       FrameLowering(*this, getStackAlignment()) {
317   // Determine the PICStyle based on the target selected.
318   if (!isPositionIndependent())
319     setPICStyle(PICStyles::None);
320   else if (is64Bit())
321     setPICStyle(PICStyles::RIPRel);
322   else if (isTargetCOFF())
323     setPICStyle(PICStyles::None);
324   else if (isTargetDarwin())
325     setPICStyle(PICStyles::StubPIC);
326   else if (isTargetELF())
327     setPICStyle(PICStyles::GOT);
328 
329   CallLoweringInfo.reset(new X86CallLowering(*getTargetLowering()));
330   Legalizer.reset(new X86LegalizerInfo(*this, TM));
331 
332   auto *RBI = new X86RegisterBankInfo(*getRegisterInfo());
333   RegBankInfo.reset(RBI);
334   InstSelector.reset(createX86InstructionSelector(TM, *this, *RBI));
335 }
336 
getCallLowering() const337 const CallLowering *X86Subtarget::getCallLowering() const {
338   return CallLoweringInfo.get();
339 }
340 
getInstructionSelector() const341 const InstructionSelector *X86Subtarget::getInstructionSelector() const {
342   return InstSelector.get();
343 }
344 
getLegalizerInfo() const345 const LegalizerInfo *X86Subtarget::getLegalizerInfo() const {
346   return Legalizer.get();
347 }
348 
getRegBankInfo() const349 const RegisterBankInfo *X86Subtarget::getRegBankInfo() const {
350   return RegBankInfo.get();
351 }
352 
enableEarlyIfConversion() const353 bool X86Subtarget::enableEarlyIfConversion() const {
354   return hasCMov() && X86EarlyIfConv;
355 }
356