1 //===- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass which inserts x86 AVX vzeroupper instructions
11 // before calls to SSE encoded functions. This avoids transition latency
12 // penalty when transferring control between AVX encoded instructions and old
13 // SSE encoding mode.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "X86.h"
18 #include "X86InstrInfo.h"
19 #include "X86Subtarget.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetInstrInfo.h"
30 #include "llvm/CodeGen/TargetRegisterInfo.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <cassert>
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "x86-vzeroupper"
42 
43 STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
44 
45 namespace {
46 
47   class VZeroUpperInserter : public MachineFunctionPass {
48   public:
VZeroUpperInserter()49     VZeroUpperInserter() : MachineFunctionPass(ID) {}
50 
51     bool runOnMachineFunction(MachineFunction &MF) override;
52 
getRequiredProperties() const53     MachineFunctionProperties getRequiredProperties() const override {
54       return MachineFunctionProperties().set(
55           MachineFunctionProperties::Property::NoVRegs);
56     }
57 
getPassName() const58     StringRef getPassName() const override { return "X86 vzeroupper inserter"; }
59 
60   private:
61     void processBasicBlock(MachineBasicBlock &MBB);
62     void insertVZeroUpper(MachineBasicBlock::iterator I,
63                           MachineBasicBlock &MBB);
64     void addDirtySuccessor(MachineBasicBlock &MBB);
65 
66     using BlockExitState = enum { PASS_THROUGH, EXITS_CLEAN, EXITS_DIRTY };
67 
68     static const char* getBlockExitStateName(BlockExitState ST);
69 
70     // Core algorithm state:
71     // BlockState - Each block is either:
72     //   - PASS_THROUGH: There are neither YMM/ZMM dirtying instructions nor
73     //                   vzeroupper instructions in this block.
74     //   - EXITS_CLEAN: There is (or will be) a vzeroupper instruction in this
75     //                  block that will ensure that YMM/ZMM is clean on exit.
76     //   - EXITS_DIRTY: An instruction in the block dirties YMM/ZMM and no
77     //                  subsequent vzeroupper in the block clears it.
78     //
79     // AddedToDirtySuccessors - This flag is raised when a block is added to the
80     //                          DirtySuccessors list to ensure that it's not
81     //                          added multiple times.
82     //
83     // FirstUnguardedCall - Records the location of the first unguarded call in
84     //                      each basic block that may need to be guarded by a
85     //                      vzeroupper. We won't know whether it actually needs
86     //                      to be guarded until we discover a predecessor that
87     //                      is DIRTY_OUT.
88     struct BlockState {
89       BlockExitState ExitState = PASS_THROUGH;
90       bool AddedToDirtySuccessors = false;
91       MachineBasicBlock::iterator FirstUnguardedCall;
92 
93       BlockState() = default;
94     };
95 
96     using BlockStateMap = SmallVector<BlockState, 8>;
97     using DirtySuccessorsWorkList = SmallVector<MachineBasicBlock *, 8>;
98 
99     BlockStateMap BlockStates;
100     DirtySuccessorsWorkList DirtySuccessors;
101     bool EverMadeChange;
102     bool IsX86INTR;
103     const TargetInstrInfo *TII;
104 
105     static char ID;
106   };
107 
108 } // end anonymous namespace
109 
110 char VZeroUpperInserter::ID = 0;
111 
createX86IssueVZeroUpperPass()112 FunctionPass *llvm::createX86IssueVZeroUpperPass() {
113   return new VZeroUpperInserter();
114 }
115 
116 #ifndef NDEBUG
getBlockExitStateName(BlockExitState ST)117 const char* VZeroUpperInserter::getBlockExitStateName(BlockExitState ST) {
118   switch (ST) {
119     case PASS_THROUGH: return "Pass-through";
120     case EXITS_DIRTY: return "Exits-dirty";
121     case EXITS_CLEAN: return "Exits-clean";
122   }
123   llvm_unreachable("Invalid block exit state.");
124 }
125 #endif
126 
127 /// VZEROUPPER cleans state that is related to Y/ZMM0-15 only.
128 /// Thus, there is no need to check for Y/ZMM16 and above.
isYmmOrZmmReg(unsigned Reg)129 static bool isYmmOrZmmReg(unsigned Reg) {
130   return (Reg >= X86::YMM0 && Reg <= X86::YMM15) ||
131          (Reg >= X86::ZMM0 && Reg <= X86::ZMM15);
132 }
133 
checkFnHasLiveInYmmOrZmm(MachineRegisterInfo & MRI)134 static bool checkFnHasLiveInYmmOrZmm(MachineRegisterInfo &MRI) {
135   for (std::pair<unsigned, unsigned> LI : MRI.liveins())
136     if (isYmmOrZmmReg(LI.first))
137       return true;
138 
139   return false;
140 }
141 
clobbersAllYmmAndZmmRegs(const MachineOperand & MO)142 static bool clobbersAllYmmAndZmmRegs(const MachineOperand &MO) {
143   for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
144     if (!MO.clobbersPhysReg(reg))
145       return false;
146   }
147   for (unsigned reg = X86::ZMM0; reg <= X86::ZMM15; ++reg) {
148     if (!MO.clobbersPhysReg(reg))
149       return false;
150   }
151   return true;
152 }
153 
hasYmmOrZmmReg(MachineInstr & MI)154 static bool hasYmmOrZmmReg(MachineInstr &MI) {
155   for (const MachineOperand &MO : MI.operands()) {
156     if (MI.isCall() && MO.isRegMask() && !clobbersAllYmmAndZmmRegs(MO))
157       return true;
158     if (!MO.isReg())
159       continue;
160     if (MO.isDebug())
161       continue;
162     if (isYmmOrZmmReg(MO.getReg()))
163       return true;
164   }
165   return false;
166 }
167 
168 /// Check if given call instruction has a RegMask operand.
callHasRegMask(MachineInstr & MI)169 static bool callHasRegMask(MachineInstr &MI) {
170   assert(MI.isCall() && "Can only be called on call instructions.");
171   for (const MachineOperand &MO : MI.operands()) {
172     if (MO.isRegMask())
173       return true;
174   }
175   return false;
176 }
177 
178 /// Insert a vzeroupper instruction before I.
insertVZeroUpper(MachineBasicBlock::iterator I,MachineBasicBlock & MBB)179 void VZeroUpperInserter::insertVZeroUpper(MachineBasicBlock::iterator I,
180                                           MachineBasicBlock &MBB) {
181   DebugLoc dl = I->getDebugLoc();
182   BuildMI(MBB, I, dl, TII->get(X86::VZEROUPPER));
183   ++NumVZU;
184   EverMadeChange = true;
185 }
186 
187 /// Add MBB to the DirtySuccessors list if it hasn't already been added.
addDirtySuccessor(MachineBasicBlock & MBB)188 void VZeroUpperInserter::addDirtySuccessor(MachineBasicBlock &MBB) {
189   if (!BlockStates[MBB.getNumber()].AddedToDirtySuccessors) {
190     DirtySuccessors.push_back(&MBB);
191     BlockStates[MBB.getNumber()].AddedToDirtySuccessors = true;
192   }
193 }
194 
195 /// Loop over all of the instructions in the basic block, inserting vzeroupper
196 /// instructions before function calls.
processBasicBlock(MachineBasicBlock & MBB)197 void VZeroUpperInserter::processBasicBlock(MachineBasicBlock &MBB) {
198   // Start by assuming that the block is PASS_THROUGH which implies no unguarded
199   // calls.
200   BlockExitState CurState = PASS_THROUGH;
201   BlockStates[MBB.getNumber()].FirstUnguardedCall = MBB.end();
202 
203   for (MachineInstr &MI : MBB) {
204     bool IsCall = MI.isCall();
205     bool IsReturn = MI.isReturn();
206     bool IsControlFlow = IsCall || IsReturn;
207 
208     // No need for vzeroupper before iret in interrupt handler function,
209     // epilogue will restore YMM/ZMM registers if needed.
210     if (IsX86INTR && IsReturn)
211       continue;
212 
213     // An existing VZERO* instruction resets the state.
214     if (MI.getOpcode() == X86::VZEROALL || MI.getOpcode() == X86::VZEROUPPER) {
215       CurState = EXITS_CLEAN;
216       continue;
217     }
218 
219     // Shortcut: don't need to check regular instructions in dirty state.
220     if (!IsControlFlow && CurState == EXITS_DIRTY)
221       continue;
222 
223     if (hasYmmOrZmmReg(MI)) {
224       // We found a ymm/zmm-using instruction; this could be an AVX/AVX512
225       // instruction, or it could be control flow.
226       CurState = EXITS_DIRTY;
227       continue;
228     }
229 
230     // Check for control-flow out of the current function (which might
231     // indirectly execute SSE instructions).
232     if (!IsControlFlow)
233       continue;
234 
235     // If the call has no RegMask, skip it as well. It usually happens on
236     // helper function calls (such as '_chkstk', '_ftol2') where standard
237     // calling convention is not used (RegMask is not used to mark register
238     // clobbered and register usage (def/implicit-def/use) is well-defined and
239     // explicitly specified.
240     if (IsCall && !callHasRegMask(MI))
241       continue;
242 
243     // The VZEROUPPER instruction resets the upper 128 bits of YMM0-YMM15
244     // registers. In addition, the processor changes back to Clean state, after
245     // which execution of SSE instructions or AVX instructions has no transition
246     // penalty. Add the VZEROUPPER instruction before any function call/return
247     // that might execute SSE code.
248     // FIXME: In some cases, we may want to move the VZEROUPPER into a
249     // predecessor block.
250     if (CurState == EXITS_DIRTY) {
251       // After the inserted VZEROUPPER the state becomes clean again, but
252       // other YMM/ZMM may appear before other subsequent calls or even before
253       // the end of the BB.
254       insertVZeroUpper(MI, MBB);
255       CurState = EXITS_CLEAN;
256     } else if (CurState == PASS_THROUGH) {
257       // If this block is currently in pass-through state and we encounter a
258       // call then whether we need a vzeroupper or not depends on whether this
259       // block has successors that exit dirty. Record the location of the call,
260       // and set the state to EXITS_CLEAN, but do not insert the vzeroupper yet.
261       // It will be inserted later if necessary.
262       BlockStates[MBB.getNumber()].FirstUnguardedCall = MI;
263       CurState = EXITS_CLEAN;
264     }
265   }
266 
267   LLVM_DEBUG(dbgs() << "MBB #" << MBB.getNumber() << " exit state: "
268                     << getBlockExitStateName(CurState) << '\n');
269 
270   if (CurState == EXITS_DIRTY)
271     for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
272                                           SE = MBB.succ_end();
273          SI != SE; ++SI)
274       addDirtySuccessor(**SI);
275 
276   BlockStates[MBB.getNumber()].ExitState = CurState;
277 }
278 
279 /// Loop over all of the basic blocks, inserting vzeroupper instructions before
280 /// function calls.
runOnMachineFunction(MachineFunction & MF)281 bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
282   const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
283   if (!ST.hasAVX() || ST.hasFastPartialYMMorZMMWrite())
284     return false;
285   TII = ST.getInstrInfo();
286   MachineRegisterInfo &MRI = MF.getRegInfo();
287   EverMadeChange = false;
288   IsX86INTR = MF.getFunction().getCallingConv() == CallingConv::X86_INTR;
289 
290   bool FnHasLiveInYmmOrZmm = checkFnHasLiveInYmmOrZmm(MRI);
291 
292   // Fast check: if the function doesn't use any ymm/zmm registers, we don't
293   // need to insert any VZEROUPPER instructions.  This is constant-time, so it
294   // is cheap in the common case of no ymm/zmm use.
295   bool YmmOrZmmUsed = FnHasLiveInYmmOrZmm;
296   const TargetRegisterClass *RCs[2] = {&X86::VR256RegClass, &X86::VR512RegClass};
297   for (auto *RC : RCs) {
298     if (!YmmOrZmmUsed) {
299       for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end(); i != e;
300            i++) {
301         if (!MRI.reg_nodbg_empty(*i)) {
302           YmmOrZmmUsed = true;
303           break;
304         }
305       }
306     }
307   }
308   if (!YmmOrZmmUsed) {
309     return false;
310   }
311 
312   assert(BlockStates.empty() && DirtySuccessors.empty() &&
313          "X86VZeroUpper state should be clear");
314   BlockStates.resize(MF.getNumBlockIDs());
315 
316   // Process all blocks. This will compute block exit states, record the first
317   // unguarded call in each block, and add successors of dirty blocks to the
318   // DirtySuccessors list.
319   for (MachineBasicBlock &MBB : MF)
320     processBasicBlock(MBB);
321 
322   // If any YMM/ZMM regs are live-in to this function, add the entry block to
323   // the DirtySuccessors list
324   if (FnHasLiveInYmmOrZmm)
325     addDirtySuccessor(MF.front());
326 
327   // Re-visit all blocks that are successors of EXITS_DIRTY blocks. Add
328   // vzeroupper instructions to unguarded calls, and propagate EXITS_DIRTY
329   // through PASS_THROUGH blocks.
330   while (!DirtySuccessors.empty()) {
331     MachineBasicBlock &MBB = *DirtySuccessors.back();
332     DirtySuccessors.pop_back();
333     BlockState &BBState = BlockStates[MBB.getNumber()];
334 
335     // MBB is a successor of a dirty block, so its first call needs to be
336     // guarded.
337     if (BBState.FirstUnguardedCall != MBB.end())
338       insertVZeroUpper(BBState.FirstUnguardedCall, MBB);
339 
340     // If this successor was a pass-through block, then it is now dirty. Its
341     // successors need to be added to the worklist (if they haven't been
342     // already).
343     if (BBState.ExitState == PASS_THROUGH) {
344       LLVM_DEBUG(dbgs() << "MBB #" << MBB.getNumber()
345                         << " was Pass-through, is now Dirty-out.\n");
346       for (MachineBasicBlock *Succ : MBB.successors())
347         addDirtySuccessor(*Succ);
348     }
349   }
350 
351   BlockStates.clear();
352   return EverMadeChange;
353 }
354