1 //===- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass which inserts x86 AVX vzeroupper instructions
11 // before calls to SSE encoded functions. This avoids transition latency
12 // penalty when transferring control between AVX encoded instructions and old
13 // SSE encoding mode.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "X86.h"
18 #include "X86InstrInfo.h"
19 #include "X86Subtarget.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetInstrInfo.h"
30 #include "llvm/CodeGen/TargetRegisterInfo.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <cassert>
38
39 using namespace llvm;
40
41 #define DEBUG_TYPE "x86-vzeroupper"
42
43 STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
44
45 namespace {
46
47 class VZeroUpperInserter : public MachineFunctionPass {
48 public:
VZeroUpperInserter()49 VZeroUpperInserter() : MachineFunctionPass(ID) {}
50
51 bool runOnMachineFunction(MachineFunction &MF) override;
52
getRequiredProperties() const53 MachineFunctionProperties getRequiredProperties() const override {
54 return MachineFunctionProperties().set(
55 MachineFunctionProperties::Property::NoVRegs);
56 }
57
getPassName() const58 StringRef getPassName() const override { return "X86 vzeroupper inserter"; }
59
60 private:
61 void processBasicBlock(MachineBasicBlock &MBB);
62 void insertVZeroUpper(MachineBasicBlock::iterator I,
63 MachineBasicBlock &MBB);
64 void addDirtySuccessor(MachineBasicBlock &MBB);
65
66 using BlockExitState = enum { PASS_THROUGH, EXITS_CLEAN, EXITS_DIRTY };
67
68 static const char* getBlockExitStateName(BlockExitState ST);
69
70 // Core algorithm state:
71 // BlockState - Each block is either:
72 // - PASS_THROUGH: There are neither YMM/ZMM dirtying instructions nor
73 // vzeroupper instructions in this block.
74 // - EXITS_CLEAN: There is (or will be) a vzeroupper instruction in this
75 // block that will ensure that YMM/ZMM is clean on exit.
76 // - EXITS_DIRTY: An instruction in the block dirties YMM/ZMM and no
77 // subsequent vzeroupper in the block clears it.
78 //
79 // AddedToDirtySuccessors - This flag is raised when a block is added to the
80 // DirtySuccessors list to ensure that it's not
81 // added multiple times.
82 //
83 // FirstUnguardedCall - Records the location of the first unguarded call in
84 // each basic block that may need to be guarded by a
85 // vzeroupper. We won't know whether it actually needs
86 // to be guarded until we discover a predecessor that
87 // is DIRTY_OUT.
88 struct BlockState {
89 BlockExitState ExitState = PASS_THROUGH;
90 bool AddedToDirtySuccessors = false;
91 MachineBasicBlock::iterator FirstUnguardedCall;
92
93 BlockState() = default;
94 };
95
96 using BlockStateMap = SmallVector<BlockState, 8>;
97 using DirtySuccessorsWorkList = SmallVector<MachineBasicBlock *, 8>;
98
99 BlockStateMap BlockStates;
100 DirtySuccessorsWorkList DirtySuccessors;
101 bool EverMadeChange;
102 bool IsX86INTR;
103 const TargetInstrInfo *TII;
104
105 static char ID;
106 };
107
108 } // end anonymous namespace
109
110 char VZeroUpperInserter::ID = 0;
111
createX86IssueVZeroUpperPass()112 FunctionPass *llvm::createX86IssueVZeroUpperPass() {
113 return new VZeroUpperInserter();
114 }
115
116 #ifndef NDEBUG
getBlockExitStateName(BlockExitState ST)117 const char* VZeroUpperInserter::getBlockExitStateName(BlockExitState ST) {
118 switch (ST) {
119 case PASS_THROUGH: return "Pass-through";
120 case EXITS_DIRTY: return "Exits-dirty";
121 case EXITS_CLEAN: return "Exits-clean";
122 }
123 llvm_unreachable("Invalid block exit state.");
124 }
125 #endif
126
127 /// VZEROUPPER cleans state that is related to Y/ZMM0-15 only.
128 /// Thus, there is no need to check for Y/ZMM16 and above.
isYmmOrZmmReg(unsigned Reg)129 static bool isYmmOrZmmReg(unsigned Reg) {
130 return (Reg >= X86::YMM0 && Reg <= X86::YMM15) ||
131 (Reg >= X86::ZMM0 && Reg <= X86::ZMM15);
132 }
133
checkFnHasLiveInYmmOrZmm(MachineRegisterInfo & MRI)134 static bool checkFnHasLiveInYmmOrZmm(MachineRegisterInfo &MRI) {
135 for (std::pair<unsigned, unsigned> LI : MRI.liveins())
136 if (isYmmOrZmmReg(LI.first))
137 return true;
138
139 return false;
140 }
141
clobbersAllYmmAndZmmRegs(const MachineOperand & MO)142 static bool clobbersAllYmmAndZmmRegs(const MachineOperand &MO) {
143 for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
144 if (!MO.clobbersPhysReg(reg))
145 return false;
146 }
147 for (unsigned reg = X86::ZMM0; reg <= X86::ZMM15; ++reg) {
148 if (!MO.clobbersPhysReg(reg))
149 return false;
150 }
151 return true;
152 }
153
hasYmmOrZmmReg(MachineInstr & MI)154 static bool hasYmmOrZmmReg(MachineInstr &MI) {
155 for (const MachineOperand &MO : MI.operands()) {
156 if (MI.isCall() && MO.isRegMask() && !clobbersAllYmmAndZmmRegs(MO))
157 return true;
158 if (!MO.isReg())
159 continue;
160 if (MO.isDebug())
161 continue;
162 if (isYmmOrZmmReg(MO.getReg()))
163 return true;
164 }
165 return false;
166 }
167
168 /// Check if given call instruction has a RegMask operand.
callHasRegMask(MachineInstr & MI)169 static bool callHasRegMask(MachineInstr &MI) {
170 assert(MI.isCall() && "Can only be called on call instructions.");
171 for (const MachineOperand &MO : MI.operands()) {
172 if (MO.isRegMask())
173 return true;
174 }
175 return false;
176 }
177
178 /// Insert a vzeroupper instruction before I.
insertVZeroUpper(MachineBasicBlock::iterator I,MachineBasicBlock & MBB)179 void VZeroUpperInserter::insertVZeroUpper(MachineBasicBlock::iterator I,
180 MachineBasicBlock &MBB) {
181 DebugLoc dl = I->getDebugLoc();
182 BuildMI(MBB, I, dl, TII->get(X86::VZEROUPPER));
183 ++NumVZU;
184 EverMadeChange = true;
185 }
186
187 /// Add MBB to the DirtySuccessors list if it hasn't already been added.
addDirtySuccessor(MachineBasicBlock & MBB)188 void VZeroUpperInserter::addDirtySuccessor(MachineBasicBlock &MBB) {
189 if (!BlockStates[MBB.getNumber()].AddedToDirtySuccessors) {
190 DirtySuccessors.push_back(&MBB);
191 BlockStates[MBB.getNumber()].AddedToDirtySuccessors = true;
192 }
193 }
194
195 /// Loop over all of the instructions in the basic block, inserting vzeroupper
196 /// instructions before function calls.
processBasicBlock(MachineBasicBlock & MBB)197 void VZeroUpperInserter::processBasicBlock(MachineBasicBlock &MBB) {
198 // Start by assuming that the block is PASS_THROUGH which implies no unguarded
199 // calls.
200 BlockExitState CurState = PASS_THROUGH;
201 BlockStates[MBB.getNumber()].FirstUnguardedCall = MBB.end();
202
203 for (MachineInstr &MI : MBB) {
204 bool IsCall = MI.isCall();
205 bool IsReturn = MI.isReturn();
206 bool IsControlFlow = IsCall || IsReturn;
207
208 // No need for vzeroupper before iret in interrupt handler function,
209 // epilogue will restore YMM/ZMM registers if needed.
210 if (IsX86INTR && IsReturn)
211 continue;
212
213 // An existing VZERO* instruction resets the state.
214 if (MI.getOpcode() == X86::VZEROALL || MI.getOpcode() == X86::VZEROUPPER) {
215 CurState = EXITS_CLEAN;
216 continue;
217 }
218
219 // Shortcut: don't need to check regular instructions in dirty state.
220 if (!IsControlFlow && CurState == EXITS_DIRTY)
221 continue;
222
223 if (hasYmmOrZmmReg(MI)) {
224 // We found a ymm/zmm-using instruction; this could be an AVX/AVX512
225 // instruction, or it could be control flow.
226 CurState = EXITS_DIRTY;
227 continue;
228 }
229
230 // Check for control-flow out of the current function (which might
231 // indirectly execute SSE instructions).
232 if (!IsControlFlow)
233 continue;
234
235 // If the call has no RegMask, skip it as well. It usually happens on
236 // helper function calls (such as '_chkstk', '_ftol2') where standard
237 // calling convention is not used (RegMask is not used to mark register
238 // clobbered and register usage (def/implicit-def/use) is well-defined and
239 // explicitly specified.
240 if (IsCall && !callHasRegMask(MI))
241 continue;
242
243 // The VZEROUPPER instruction resets the upper 128 bits of YMM0-YMM15
244 // registers. In addition, the processor changes back to Clean state, after
245 // which execution of SSE instructions or AVX instructions has no transition
246 // penalty. Add the VZEROUPPER instruction before any function call/return
247 // that might execute SSE code.
248 // FIXME: In some cases, we may want to move the VZEROUPPER into a
249 // predecessor block.
250 if (CurState == EXITS_DIRTY) {
251 // After the inserted VZEROUPPER the state becomes clean again, but
252 // other YMM/ZMM may appear before other subsequent calls or even before
253 // the end of the BB.
254 insertVZeroUpper(MI, MBB);
255 CurState = EXITS_CLEAN;
256 } else if (CurState == PASS_THROUGH) {
257 // If this block is currently in pass-through state and we encounter a
258 // call then whether we need a vzeroupper or not depends on whether this
259 // block has successors that exit dirty. Record the location of the call,
260 // and set the state to EXITS_CLEAN, but do not insert the vzeroupper yet.
261 // It will be inserted later if necessary.
262 BlockStates[MBB.getNumber()].FirstUnguardedCall = MI;
263 CurState = EXITS_CLEAN;
264 }
265 }
266
267 LLVM_DEBUG(dbgs() << "MBB #" << MBB.getNumber() << " exit state: "
268 << getBlockExitStateName(CurState) << '\n');
269
270 if (CurState == EXITS_DIRTY)
271 for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
272 SE = MBB.succ_end();
273 SI != SE; ++SI)
274 addDirtySuccessor(**SI);
275
276 BlockStates[MBB.getNumber()].ExitState = CurState;
277 }
278
279 /// Loop over all of the basic blocks, inserting vzeroupper instructions before
280 /// function calls.
runOnMachineFunction(MachineFunction & MF)281 bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
282 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
283 if (!ST.hasAVX() || ST.hasFastPartialYMMorZMMWrite())
284 return false;
285 TII = ST.getInstrInfo();
286 MachineRegisterInfo &MRI = MF.getRegInfo();
287 EverMadeChange = false;
288 IsX86INTR = MF.getFunction().getCallingConv() == CallingConv::X86_INTR;
289
290 bool FnHasLiveInYmmOrZmm = checkFnHasLiveInYmmOrZmm(MRI);
291
292 // Fast check: if the function doesn't use any ymm/zmm registers, we don't
293 // need to insert any VZEROUPPER instructions. This is constant-time, so it
294 // is cheap in the common case of no ymm/zmm use.
295 bool YmmOrZmmUsed = FnHasLiveInYmmOrZmm;
296 const TargetRegisterClass *RCs[2] = {&X86::VR256RegClass, &X86::VR512RegClass};
297 for (auto *RC : RCs) {
298 if (!YmmOrZmmUsed) {
299 for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end(); i != e;
300 i++) {
301 if (!MRI.reg_nodbg_empty(*i)) {
302 YmmOrZmmUsed = true;
303 break;
304 }
305 }
306 }
307 }
308 if (!YmmOrZmmUsed) {
309 return false;
310 }
311
312 assert(BlockStates.empty() && DirtySuccessors.empty() &&
313 "X86VZeroUpper state should be clear");
314 BlockStates.resize(MF.getNumBlockIDs());
315
316 // Process all blocks. This will compute block exit states, record the first
317 // unguarded call in each block, and add successors of dirty blocks to the
318 // DirtySuccessors list.
319 for (MachineBasicBlock &MBB : MF)
320 processBasicBlock(MBB);
321
322 // If any YMM/ZMM regs are live-in to this function, add the entry block to
323 // the DirtySuccessors list
324 if (FnHasLiveInYmmOrZmm)
325 addDirtySuccessor(MF.front());
326
327 // Re-visit all blocks that are successors of EXITS_DIRTY blocks. Add
328 // vzeroupper instructions to unguarded calls, and propagate EXITS_DIRTY
329 // through PASS_THROUGH blocks.
330 while (!DirtySuccessors.empty()) {
331 MachineBasicBlock &MBB = *DirtySuccessors.back();
332 DirtySuccessors.pop_back();
333 BlockState &BBState = BlockStates[MBB.getNumber()];
334
335 // MBB is a successor of a dirty block, so its first call needs to be
336 // guarded.
337 if (BBState.FirstUnguardedCall != MBB.end())
338 insertVZeroUpper(BBState.FirstUnguardedCall, MBB);
339
340 // If this successor was a pass-through block, then it is now dirty. Its
341 // successors need to be added to the worklist (if they haven't been
342 // already).
343 if (BBState.ExitState == PASS_THROUGH) {
344 LLVM_DEBUG(dbgs() << "MBB #" << MBB.getNumber()
345 << " was Pass-through, is now Dirty-out.\n");
346 for (MachineBasicBlock *Succ : MBB.successors())
347 addDirtySuccessor(*Succ);
348 }
349 }
350
351 BlockStates.clear();
352 return EverMadeChange;
353 }
354