1 //===-- IPConstantPropagation.cpp - Propagate constants through calls -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements an _extremely_ simple interprocedural constant
11 // propagation pass.  It could certainly be improved in many different ways,
12 // like using a worklist.  This pass makes arguments dead, but does not remove
13 // them.  The existing dead argument elimination pass should be run after this
14 // to clean up the mess.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Transforms/IPO.h"
27 using namespace llvm;
28 
29 #define DEBUG_TYPE "ipconstprop"
30 
31 STATISTIC(NumArgumentsProped, "Number of args turned into constants");
32 STATISTIC(NumReturnValProped, "Number of return values turned into constants");
33 
34 namespace {
35   /// IPCP - The interprocedural constant propagation pass
36   ///
37   struct IPCP : public ModulePass {
38     static char ID; // Pass identification, replacement for typeid
IPCP__anon51f023860111::IPCP39     IPCP() : ModulePass(ID) {
40       initializeIPCPPass(*PassRegistry::getPassRegistry());
41     }
42 
43     bool runOnModule(Module &M) override;
44   };
45 }
46 
47 /// PropagateConstantsIntoArguments - Look at all uses of the specified
48 /// function.  If all uses are direct call sites, and all pass a particular
49 /// constant in for an argument, propagate that constant in as the argument.
50 ///
PropagateConstantsIntoArguments(Function & F)51 static bool PropagateConstantsIntoArguments(Function &F) {
52   if (F.arg_empty() || F.use_empty()) return false; // No arguments? Early exit.
53 
54   // For each argument, keep track of its constant value and whether it is a
55   // constant or not.  The bool is driven to true when found to be non-constant.
56   SmallVector<std::pair<Constant*, bool>, 16> ArgumentConstants;
57   ArgumentConstants.resize(F.arg_size());
58 
59   unsigned NumNonconstant = 0;
60   for (Use &U : F.uses()) {
61     User *UR = U.getUser();
62     // Ignore blockaddress uses.
63     if (isa<BlockAddress>(UR)) continue;
64 
65     // Used by a non-instruction, or not the callee of a function, do not
66     // transform.
67     if (!isa<CallInst>(UR) && !isa<InvokeInst>(UR))
68       return false;
69 
70     CallSite CS(cast<Instruction>(UR));
71     if (!CS.isCallee(&U))
72       return false;
73 
74     // Check out all of the potentially constant arguments.  Note that we don't
75     // inspect varargs here.
76     CallSite::arg_iterator AI = CS.arg_begin();
77     Function::arg_iterator Arg = F.arg_begin();
78     for (unsigned i = 0, e = ArgumentConstants.size(); i != e;
79          ++i, ++AI, ++Arg) {
80 
81       // If this argument is known non-constant, ignore it.
82       if (ArgumentConstants[i].second)
83         continue;
84 
85       Constant *C = dyn_cast<Constant>(*AI);
86       if (C && ArgumentConstants[i].first == nullptr) {
87         ArgumentConstants[i].first = C;   // First constant seen.
88       } else if (C && ArgumentConstants[i].first == C) {
89         // Still the constant value we think it is.
90       } else if (*AI == &*Arg) {
91         // Ignore recursive calls passing argument down.
92       } else {
93         // Argument became non-constant.  If all arguments are non-constant now,
94         // give up on this function.
95         if (++NumNonconstant == ArgumentConstants.size())
96           return false;
97         ArgumentConstants[i].second = true;
98       }
99     }
100   }
101 
102   // If we got to this point, there is a constant argument!
103   assert(NumNonconstant != ArgumentConstants.size());
104   bool MadeChange = false;
105   Function::arg_iterator AI = F.arg_begin();
106   for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI) {
107     // Do we have a constant argument?
108     if (ArgumentConstants[i].second || AI->use_empty() ||
109         AI->hasInAllocaAttr() || (AI->hasByValAttr() && !F.onlyReadsMemory()))
110       continue;
111 
112     Value *V = ArgumentConstants[i].first;
113     if (!V) V = UndefValue::get(AI->getType());
114     AI->replaceAllUsesWith(V);
115     ++NumArgumentsProped;
116     MadeChange = true;
117   }
118   return MadeChange;
119 }
120 
121 
122 // Check to see if this function returns one or more constants. If so, replace
123 // all callers that use those return values with the constant value. This will
124 // leave in the actual return values and instructions, but deadargelim will
125 // clean that up.
126 //
127 // Additionally if a function always returns one of its arguments directly,
128 // callers will be updated to use the value they pass in directly instead of
129 // using the return value.
PropagateConstantReturn(Function & F)130 static bool PropagateConstantReturn(Function &F) {
131   if (F.getReturnType()->isVoidTy())
132     return false; // No return value.
133 
134   // We can infer and propagate the return value only when we know that the
135   // definition we'll get at link time is *exactly* the definition we see now.
136   // For more details, see GlobalValue::mayBeDerefined.
137   if (!F.isDefinitionExact())
138     return false;
139 
140   // Don't touch naked functions. The may contain asm returning
141   // value we don't see, so we may end up interprocedurally propagating
142   // the return value incorrectly.
143   if (F.hasFnAttribute(Attribute::Naked))
144     return false;
145 
146   // Check to see if this function returns a constant.
147   SmallVector<Value *,4> RetVals;
148   StructType *STy = dyn_cast<StructType>(F.getReturnType());
149   if (STy)
150     for (unsigned i = 0, e = STy->getNumElements(); i < e; ++i)
151       RetVals.push_back(UndefValue::get(STy->getElementType(i)));
152   else
153     RetVals.push_back(UndefValue::get(F.getReturnType()));
154 
155   unsigned NumNonConstant = 0;
156   for (BasicBlock &BB : F)
157     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
158       for (unsigned i = 0, e = RetVals.size(); i != e; ++i) {
159         // Already found conflicting return values?
160         Value *RV = RetVals[i];
161         if (!RV)
162           continue;
163 
164         // Find the returned value
165         Value *V;
166         if (!STy)
167           V = RI->getOperand(0);
168         else
169           V = FindInsertedValue(RI->getOperand(0), i);
170 
171         if (V) {
172           // Ignore undefs, we can change them into anything
173           if (isa<UndefValue>(V))
174             continue;
175 
176           // Try to see if all the rets return the same constant or argument.
177           if (isa<Constant>(V) || isa<Argument>(V)) {
178             if (isa<UndefValue>(RV)) {
179               // No value found yet? Try the current one.
180               RetVals[i] = V;
181               continue;
182             }
183             // Returning the same value? Good.
184             if (RV == V)
185               continue;
186           }
187         }
188         // Different or no known return value? Don't propagate this return
189         // value.
190         RetVals[i] = nullptr;
191         // All values non-constant? Stop looking.
192         if (++NumNonConstant == RetVals.size())
193           return false;
194       }
195     }
196 
197   // If we got here, the function returns at least one constant value.  Loop
198   // over all users, replacing any uses of the return value with the returned
199   // constant.
200   bool MadeChange = false;
201   for (Use &U : F.uses()) {
202     CallSite CS(U.getUser());
203     Instruction* Call = CS.getInstruction();
204 
205     // Not a call instruction or a call instruction that's not calling F
206     // directly?
207     if (!Call || !CS.isCallee(&U))
208       continue;
209 
210     // Call result not used?
211     if (Call->use_empty())
212       continue;
213 
214     MadeChange = true;
215 
216     if (!STy) {
217       Value* New = RetVals[0];
218       if (Argument *A = dyn_cast<Argument>(New))
219         // Was an argument returned? Then find the corresponding argument in
220         // the call instruction and use that.
221         New = CS.getArgument(A->getArgNo());
222       Call->replaceAllUsesWith(New);
223       continue;
224     }
225 
226     for (auto I = Call->user_begin(), E = Call->user_end(); I != E;) {
227       Instruction *Ins = cast<Instruction>(*I);
228 
229       // Increment now, so we can remove the use
230       ++I;
231 
232       // Find the index of the retval to replace with
233       int index = -1;
234       if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Ins))
235         if (EV->hasIndices())
236           index = *EV->idx_begin();
237 
238       // If this use uses a specific return value, and we have a replacement,
239       // replace it.
240       if (index != -1) {
241         Value *New = RetVals[index];
242         if (New) {
243           if (Argument *A = dyn_cast<Argument>(New))
244             // Was an argument returned? Then find the corresponding argument in
245             // the call instruction and use that.
246             New = CS.getArgument(A->getArgNo());
247           Ins->replaceAllUsesWith(New);
248           Ins->eraseFromParent();
249         }
250       }
251     }
252   }
253 
254   if (MadeChange) ++NumReturnValProped;
255   return MadeChange;
256 }
257 
258 char IPCP::ID = 0;
259 INITIALIZE_PASS(IPCP, "ipconstprop",
260                 "Interprocedural constant propagation", false, false)
261 
createIPConstantPropagationPass()262 ModulePass *llvm::createIPConstantPropagationPass() { return new IPCP(); }
263 
runOnModule(Module & M)264 bool IPCP::runOnModule(Module &M) {
265   if (skipModule(M))
266     return false;
267 
268   bool Changed = false;
269   bool LocalChange = true;
270 
271   // FIXME: instead of using smart algorithms, we just iterate until we stop
272   // making changes.
273   while (LocalChange) {
274     LocalChange = false;
275     for (Function &F : M)
276       if (!F.isDeclaration()) {
277         // Delete any klingons.
278         F.removeDeadConstantUsers();
279         if (F.hasLocalLinkage())
280           LocalChange |= PropagateConstantsIntoArguments(F);
281         Changed |= PropagateConstantReturn(F);
282       }
283     Changed |= LocalChange;
284   }
285   return Changed;
286 }
287