1 //===-- IPConstantPropagation.cpp - Propagate constants through calls -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements an _extremely_ simple interprocedural constant
11 // propagation pass. It could certainly be improved in many different ways,
12 // like using a worklist. This pass makes arguments dead, but does not remove
13 // them. The existing dead argument elimination pass should be run after this
14 // to clean up the mess.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Transforms/IPO.h"
27 using namespace llvm;
28
29 #define DEBUG_TYPE "ipconstprop"
30
31 STATISTIC(NumArgumentsProped, "Number of args turned into constants");
32 STATISTIC(NumReturnValProped, "Number of return values turned into constants");
33
34 namespace {
35 /// IPCP - The interprocedural constant propagation pass
36 ///
37 struct IPCP : public ModulePass {
38 static char ID; // Pass identification, replacement for typeid
IPCP__anon51f023860111::IPCP39 IPCP() : ModulePass(ID) {
40 initializeIPCPPass(*PassRegistry::getPassRegistry());
41 }
42
43 bool runOnModule(Module &M) override;
44 };
45 }
46
47 /// PropagateConstantsIntoArguments - Look at all uses of the specified
48 /// function. If all uses are direct call sites, and all pass a particular
49 /// constant in for an argument, propagate that constant in as the argument.
50 ///
PropagateConstantsIntoArguments(Function & F)51 static bool PropagateConstantsIntoArguments(Function &F) {
52 if (F.arg_empty() || F.use_empty()) return false; // No arguments? Early exit.
53
54 // For each argument, keep track of its constant value and whether it is a
55 // constant or not. The bool is driven to true when found to be non-constant.
56 SmallVector<std::pair<Constant*, bool>, 16> ArgumentConstants;
57 ArgumentConstants.resize(F.arg_size());
58
59 unsigned NumNonconstant = 0;
60 for (Use &U : F.uses()) {
61 User *UR = U.getUser();
62 // Ignore blockaddress uses.
63 if (isa<BlockAddress>(UR)) continue;
64
65 // Used by a non-instruction, or not the callee of a function, do not
66 // transform.
67 if (!isa<CallInst>(UR) && !isa<InvokeInst>(UR))
68 return false;
69
70 CallSite CS(cast<Instruction>(UR));
71 if (!CS.isCallee(&U))
72 return false;
73
74 // Check out all of the potentially constant arguments. Note that we don't
75 // inspect varargs here.
76 CallSite::arg_iterator AI = CS.arg_begin();
77 Function::arg_iterator Arg = F.arg_begin();
78 for (unsigned i = 0, e = ArgumentConstants.size(); i != e;
79 ++i, ++AI, ++Arg) {
80
81 // If this argument is known non-constant, ignore it.
82 if (ArgumentConstants[i].second)
83 continue;
84
85 Constant *C = dyn_cast<Constant>(*AI);
86 if (C && ArgumentConstants[i].first == nullptr) {
87 ArgumentConstants[i].first = C; // First constant seen.
88 } else if (C && ArgumentConstants[i].first == C) {
89 // Still the constant value we think it is.
90 } else if (*AI == &*Arg) {
91 // Ignore recursive calls passing argument down.
92 } else {
93 // Argument became non-constant. If all arguments are non-constant now,
94 // give up on this function.
95 if (++NumNonconstant == ArgumentConstants.size())
96 return false;
97 ArgumentConstants[i].second = true;
98 }
99 }
100 }
101
102 // If we got to this point, there is a constant argument!
103 assert(NumNonconstant != ArgumentConstants.size());
104 bool MadeChange = false;
105 Function::arg_iterator AI = F.arg_begin();
106 for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI) {
107 // Do we have a constant argument?
108 if (ArgumentConstants[i].second || AI->use_empty() ||
109 AI->hasInAllocaAttr() || (AI->hasByValAttr() && !F.onlyReadsMemory()))
110 continue;
111
112 Value *V = ArgumentConstants[i].first;
113 if (!V) V = UndefValue::get(AI->getType());
114 AI->replaceAllUsesWith(V);
115 ++NumArgumentsProped;
116 MadeChange = true;
117 }
118 return MadeChange;
119 }
120
121
122 // Check to see if this function returns one or more constants. If so, replace
123 // all callers that use those return values with the constant value. This will
124 // leave in the actual return values and instructions, but deadargelim will
125 // clean that up.
126 //
127 // Additionally if a function always returns one of its arguments directly,
128 // callers will be updated to use the value they pass in directly instead of
129 // using the return value.
PropagateConstantReturn(Function & F)130 static bool PropagateConstantReturn(Function &F) {
131 if (F.getReturnType()->isVoidTy())
132 return false; // No return value.
133
134 // We can infer and propagate the return value only when we know that the
135 // definition we'll get at link time is *exactly* the definition we see now.
136 // For more details, see GlobalValue::mayBeDerefined.
137 if (!F.isDefinitionExact())
138 return false;
139
140 // Don't touch naked functions. The may contain asm returning
141 // value we don't see, so we may end up interprocedurally propagating
142 // the return value incorrectly.
143 if (F.hasFnAttribute(Attribute::Naked))
144 return false;
145
146 // Check to see if this function returns a constant.
147 SmallVector<Value *,4> RetVals;
148 StructType *STy = dyn_cast<StructType>(F.getReturnType());
149 if (STy)
150 for (unsigned i = 0, e = STy->getNumElements(); i < e; ++i)
151 RetVals.push_back(UndefValue::get(STy->getElementType(i)));
152 else
153 RetVals.push_back(UndefValue::get(F.getReturnType()));
154
155 unsigned NumNonConstant = 0;
156 for (BasicBlock &BB : F)
157 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
158 for (unsigned i = 0, e = RetVals.size(); i != e; ++i) {
159 // Already found conflicting return values?
160 Value *RV = RetVals[i];
161 if (!RV)
162 continue;
163
164 // Find the returned value
165 Value *V;
166 if (!STy)
167 V = RI->getOperand(0);
168 else
169 V = FindInsertedValue(RI->getOperand(0), i);
170
171 if (V) {
172 // Ignore undefs, we can change them into anything
173 if (isa<UndefValue>(V))
174 continue;
175
176 // Try to see if all the rets return the same constant or argument.
177 if (isa<Constant>(V) || isa<Argument>(V)) {
178 if (isa<UndefValue>(RV)) {
179 // No value found yet? Try the current one.
180 RetVals[i] = V;
181 continue;
182 }
183 // Returning the same value? Good.
184 if (RV == V)
185 continue;
186 }
187 }
188 // Different or no known return value? Don't propagate this return
189 // value.
190 RetVals[i] = nullptr;
191 // All values non-constant? Stop looking.
192 if (++NumNonConstant == RetVals.size())
193 return false;
194 }
195 }
196
197 // If we got here, the function returns at least one constant value. Loop
198 // over all users, replacing any uses of the return value with the returned
199 // constant.
200 bool MadeChange = false;
201 for (Use &U : F.uses()) {
202 CallSite CS(U.getUser());
203 Instruction* Call = CS.getInstruction();
204
205 // Not a call instruction or a call instruction that's not calling F
206 // directly?
207 if (!Call || !CS.isCallee(&U))
208 continue;
209
210 // Call result not used?
211 if (Call->use_empty())
212 continue;
213
214 MadeChange = true;
215
216 if (!STy) {
217 Value* New = RetVals[0];
218 if (Argument *A = dyn_cast<Argument>(New))
219 // Was an argument returned? Then find the corresponding argument in
220 // the call instruction and use that.
221 New = CS.getArgument(A->getArgNo());
222 Call->replaceAllUsesWith(New);
223 continue;
224 }
225
226 for (auto I = Call->user_begin(), E = Call->user_end(); I != E;) {
227 Instruction *Ins = cast<Instruction>(*I);
228
229 // Increment now, so we can remove the use
230 ++I;
231
232 // Find the index of the retval to replace with
233 int index = -1;
234 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Ins))
235 if (EV->hasIndices())
236 index = *EV->idx_begin();
237
238 // If this use uses a specific return value, and we have a replacement,
239 // replace it.
240 if (index != -1) {
241 Value *New = RetVals[index];
242 if (New) {
243 if (Argument *A = dyn_cast<Argument>(New))
244 // Was an argument returned? Then find the corresponding argument in
245 // the call instruction and use that.
246 New = CS.getArgument(A->getArgNo());
247 Ins->replaceAllUsesWith(New);
248 Ins->eraseFromParent();
249 }
250 }
251 }
252 }
253
254 if (MadeChange) ++NumReturnValProped;
255 return MadeChange;
256 }
257
258 char IPCP::ID = 0;
259 INITIALIZE_PASS(IPCP, "ipconstprop",
260 "Interprocedural constant propagation", false, false)
261
createIPConstantPropagationPass()262 ModulePass *llvm::createIPConstantPropagationPass() { return new IPCP(); }
263
runOnModule(Module & M)264 bool IPCP::runOnModule(Module &M) {
265 if (skipModule(M))
266 return false;
267
268 bool Changed = false;
269 bool LocalChange = true;
270
271 // FIXME: instead of using smart algorithms, we just iterate until we stop
272 // making changes.
273 while (LocalChange) {
274 LocalChange = false;
275 for (Function &F : M)
276 if (!F.isDeclaration()) {
277 // Delete any klingons.
278 F.removeDeadConstantUsers();
279 if (F.hasLocalLinkage())
280 LocalChange |= PropagateConstantsIntoArguments(F);
281 Changed |= PropagateConstantReturn(F);
282 }
283 Changed |= LocalChange;
284 }
285 return Changed;
286 }
287