1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
11 #include "llvm/Analysis/BasicAliasAnalysis.h"
12 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
13 #include "llvm/Analysis/ProfileSummaryInfo.h"
14 #include "llvm/Analysis/TypeMetadataUtils.h"
15 #include "llvm/Bitcode/BitcodeWriter.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/DebugInfo.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/IR/PassManager.h"
21 #include "llvm/Object/ModuleSymbolTable.h"
22 #include "llvm/Pass.h"
23 #include "llvm/Support/ScopedPrinter.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Transforms/IPO.h"
26 #include "llvm/Transforms/IPO/FunctionAttrs.h"
27 #include "llvm/Transforms/IPO/FunctionImport.h"
28 #include "llvm/Transforms/Utils/Cloning.h"
29 #include "llvm/Transforms/Utils/ModuleUtils.h"
30 using namespace llvm;
31
32 namespace {
33
34 // Promote each local-linkage entity defined by ExportM and used by ImportM by
35 // changing visibility and appending the given ModuleId.
promoteInternals(Module & ExportM,Module & ImportM,StringRef ModuleId,SetVector<GlobalValue * > & PromoteExtra)36 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId,
37 SetVector<GlobalValue *> &PromoteExtra) {
38 DenseMap<const Comdat *, Comdat *> RenamedComdats;
39 for (auto &ExportGV : ExportM.global_values()) {
40 if (!ExportGV.hasLocalLinkage())
41 continue;
42
43 auto Name = ExportGV.getName();
44 GlobalValue *ImportGV = nullptr;
45 if (!PromoteExtra.count(&ExportGV)) {
46 ImportGV = ImportM.getNamedValue(Name);
47 if (!ImportGV)
48 continue;
49 ImportGV->removeDeadConstantUsers();
50 if (ImportGV->use_empty()) {
51 ImportGV->eraseFromParent();
52 continue;
53 }
54 }
55
56 std::string NewName = (Name + ModuleId).str();
57
58 if (const auto *C = ExportGV.getComdat())
59 if (C->getName() == Name)
60 RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName));
61
62 ExportGV.setName(NewName);
63 ExportGV.setLinkage(GlobalValue::ExternalLinkage);
64 ExportGV.setVisibility(GlobalValue::HiddenVisibility);
65
66 if (ImportGV) {
67 ImportGV->setName(NewName);
68 ImportGV->setVisibility(GlobalValue::HiddenVisibility);
69 }
70 }
71
72 if (!RenamedComdats.empty())
73 for (auto &GO : ExportM.global_objects())
74 if (auto *C = GO.getComdat()) {
75 auto Replacement = RenamedComdats.find(C);
76 if (Replacement != RenamedComdats.end())
77 GO.setComdat(Replacement->second);
78 }
79 }
80
81 // Promote all internal (i.e. distinct) type ids used by the module by replacing
82 // them with external type ids formed using the module id.
83 //
84 // Note that this needs to be done before we clone the module because each clone
85 // will receive its own set of distinct metadata nodes.
promoteTypeIds(Module & M,StringRef ModuleId)86 void promoteTypeIds(Module &M, StringRef ModuleId) {
87 DenseMap<Metadata *, Metadata *> LocalToGlobal;
88 auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
89 Metadata *MD =
90 cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();
91
92 if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
93 Metadata *&GlobalMD = LocalToGlobal[MD];
94 if (!GlobalMD) {
95 std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str();
96 GlobalMD = MDString::get(M.getContext(), NewName);
97 }
98
99 CI->setArgOperand(ArgNo,
100 MetadataAsValue::get(M.getContext(), GlobalMD));
101 }
102 };
103
104 if (Function *TypeTestFunc =
105 M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
106 for (const Use &U : TypeTestFunc->uses()) {
107 auto CI = cast<CallInst>(U.getUser());
108 ExternalizeTypeId(CI, 1);
109 }
110 }
111
112 if (Function *TypeCheckedLoadFunc =
113 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
114 for (const Use &U : TypeCheckedLoadFunc->uses()) {
115 auto CI = cast<CallInst>(U.getUser());
116 ExternalizeTypeId(CI, 2);
117 }
118 }
119
120 for (GlobalObject &GO : M.global_objects()) {
121 SmallVector<MDNode *, 1> MDs;
122 GO.getMetadata(LLVMContext::MD_type, MDs);
123
124 GO.eraseMetadata(LLVMContext::MD_type);
125 for (auto MD : MDs) {
126 auto I = LocalToGlobal.find(MD->getOperand(1));
127 if (I == LocalToGlobal.end()) {
128 GO.addMetadata(LLVMContext::MD_type, *MD);
129 continue;
130 }
131 GO.addMetadata(
132 LLVMContext::MD_type,
133 *MDNode::get(M.getContext(), {MD->getOperand(0), I->second}));
134 }
135 }
136 }
137
138 // Drop unused globals, and drop type information from function declarations.
139 // FIXME: If we made functions typeless then there would be no need to do this.
simplifyExternals(Module & M)140 void simplifyExternals(Module &M) {
141 FunctionType *EmptyFT =
142 FunctionType::get(Type::getVoidTy(M.getContext()), false);
143
144 for (auto I = M.begin(), E = M.end(); I != E;) {
145 Function &F = *I++;
146 if (F.isDeclaration() && F.use_empty()) {
147 F.eraseFromParent();
148 continue;
149 }
150
151 if (!F.isDeclaration() || F.getFunctionType() == EmptyFT ||
152 // Changing the type of an intrinsic may invalidate the IR.
153 F.getName().startswith("llvm."))
154 continue;
155
156 Function *NewF =
157 Function::Create(EmptyFT, GlobalValue::ExternalLinkage, "", &M);
158 NewF->setVisibility(F.getVisibility());
159 NewF->takeName(&F);
160 F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType()));
161 F.eraseFromParent();
162 }
163
164 for (auto I = M.global_begin(), E = M.global_end(); I != E;) {
165 GlobalVariable &GV = *I++;
166 if (GV.isDeclaration() && GV.use_empty()) {
167 GV.eraseFromParent();
168 continue;
169 }
170 }
171 }
172
173 static void
filterModule(Module * M,function_ref<bool (const GlobalValue *)> ShouldKeepDefinition)174 filterModule(Module *M,
175 function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
176 std::vector<GlobalValue *> V;
177 for (GlobalValue &GV : M->global_values())
178 if (!ShouldKeepDefinition(&GV))
179 V.push_back(&GV);
180
181 for (GlobalValue *GV : V)
182 if (!convertToDeclaration(*GV))
183 GV->eraseFromParent();
184 }
185
forEachVirtualFunction(Constant * C,function_ref<void (Function *)> Fn)186 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) {
187 if (auto *F = dyn_cast<Function>(C))
188 return Fn(F);
189 if (isa<GlobalValue>(C))
190 return;
191 for (Value *Op : C->operands())
192 forEachVirtualFunction(cast<Constant>(Op), Fn);
193 }
194
195 // If it's possible to split M into regular and thin LTO parts, do so and write
196 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a
197 // regular LTO bitcode file to OS.
splitAndWriteThinLTOBitcode(raw_ostream & OS,raw_ostream * ThinLinkOS,function_ref<AAResults & (Function &)> AARGetter,Module & M)198 void splitAndWriteThinLTOBitcode(
199 raw_ostream &OS, raw_ostream *ThinLinkOS,
200 function_ref<AAResults &(Function &)> AARGetter, Module &M) {
201 std::string ModuleId = getUniqueModuleId(&M);
202 if (ModuleId.empty()) {
203 // We couldn't generate a module ID for this module, write it out as a
204 // regular LTO module with an index for summary-based dead stripping.
205 ProfileSummaryInfo PSI(M);
206 M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
207 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
208 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index);
209
210 if (ThinLinkOS)
211 // We don't have a ThinLTO part, but still write the module to the
212 // ThinLinkOS if requested so that the expected output file is produced.
213 WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false,
214 &Index);
215
216 return;
217 }
218
219 promoteTypeIds(M, ModuleId);
220
221 // Returns whether a global has attached type metadata. Such globals may
222 // participate in CFI or whole-program devirtualization, so they need to
223 // appear in the merged module instead of the thin LTO module.
224 auto HasTypeMetadata = [](const GlobalObject *GO) {
225 return GO->hasMetadata(LLVMContext::MD_type);
226 };
227
228 // Collect the set of virtual functions that are eligible for virtual constant
229 // propagation. Each eligible function must not access memory, must return
230 // an integer of width <=64 bits, must take at least one argument, must not
231 // use its first argument (assumed to be "this") and all arguments other than
232 // the first one must be of <=64 bit integer type.
233 //
234 // Note that we test whether this copy of the function is readnone, rather
235 // than testing function attributes, which must hold for any copy of the
236 // function, even a less optimized version substituted at link time. This is
237 // sound because the virtual constant propagation optimizations effectively
238 // inline all implementations of the virtual function into each call site,
239 // rather than using function attributes to perform local optimization.
240 std::set<const Function *> EligibleVirtualFns;
241 // If any member of a comdat lives in MergedM, put all members of that
242 // comdat in MergedM to keep the comdat together.
243 DenseSet<const Comdat *> MergedMComdats;
244 for (GlobalVariable &GV : M.globals())
245 if (HasTypeMetadata(&GV)) {
246 if (const auto *C = GV.getComdat())
247 MergedMComdats.insert(C);
248 forEachVirtualFunction(GV.getInitializer(), [&](Function *F) {
249 auto *RT = dyn_cast<IntegerType>(F->getReturnType());
250 if (!RT || RT->getBitWidth() > 64 || F->arg_empty() ||
251 !F->arg_begin()->use_empty())
252 return;
253 for (auto &Arg : make_range(std::next(F->arg_begin()), F->arg_end())) {
254 auto *ArgT = dyn_cast<IntegerType>(Arg.getType());
255 if (!ArgT || ArgT->getBitWidth() > 64)
256 return;
257 }
258 if (!F->isDeclaration() &&
259 computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone)
260 EligibleVirtualFns.insert(F);
261 });
262 }
263
264 ValueToValueMapTy VMap;
265 std::unique_ptr<Module> MergedM(
266 CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool {
267 if (const auto *C = GV->getComdat())
268 if (MergedMComdats.count(C))
269 return true;
270 if (auto *F = dyn_cast<Function>(GV))
271 return EligibleVirtualFns.count(F);
272 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
273 return HasTypeMetadata(GVar);
274 return false;
275 }));
276 StripDebugInfo(*MergedM);
277 MergedM->setModuleInlineAsm("");
278
279 for (Function &F : *MergedM)
280 if (!F.isDeclaration()) {
281 // Reset the linkage of all functions eligible for virtual constant
282 // propagation. The canonical definitions live in the thin LTO module so
283 // that they can be imported.
284 F.setLinkage(GlobalValue::AvailableExternallyLinkage);
285 F.setComdat(nullptr);
286 }
287
288 SetVector<GlobalValue *> CfiFunctions;
289 for (auto &F : M)
290 if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F))
291 CfiFunctions.insert(&F);
292
293 // Remove all globals with type metadata, globals with comdats that live in
294 // MergedM, and aliases pointing to such globals from the thin LTO module.
295 filterModule(&M, [&](const GlobalValue *GV) {
296 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
297 if (HasTypeMetadata(GVar))
298 return false;
299 if (const auto *C = GV->getComdat())
300 if (MergedMComdats.count(C))
301 return false;
302 return true;
303 });
304
305 promoteInternals(*MergedM, M, ModuleId, CfiFunctions);
306 promoteInternals(M, *MergedM, ModuleId, CfiFunctions);
307
308 auto &Ctx = MergedM->getContext();
309 SmallVector<MDNode *, 8> CfiFunctionMDs;
310 for (auto V : CfiFunctions) {
311 Function &F = *cast<Function>(V);
312 SmallVector<MDNode *, 2> Types;
313 F.getMetadata(LLVMContext::MD_type, Types);
314
315 SmallVector<Metadata *, 4> Elts;
316 Elts.push_back(MDString::get(Ctx, F.getName()));
317 CfiFunctionLinkage Linkage;
318 if (!F.isDeclarationForLinker())
319 Linkage = CFL_Definition;
320 else if (F.isWeakForLinker())
321 Linkage = CFL_WeakDeclaration;
322 else
323 Linkage = CFL_Declaration;
324 Elts.push_back(ConstantAsMetadata::get(
325 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage)));
326 for (auto Type : Types)
327 Elts.push_back(Type);
328 CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts));
329 }
330
331 if(!CfiFunctionMDs.empty()) {
332 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions");
333 for (auto MD : CfiFunctionMDs)
334 NMD->addOperand(MD);
335 }
336
337 SmallVector<MDNode *, 8> FunctionAliases;
338 for (auto &A : M.aliases()) {
339 if (!isa<Function>(A.getAliasee()))
340 continue;
341
342 auto *F = cast<Function>(A.getAliasee());
343
344 Metadata *Elts[] = {
345 MDString::get(Ctx, A.getName()),
346 MDString::get(Ctx, F->getName()),
347 ConstantAsMetadata::get(
348 ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())),
349 ConstantAsMetadata::get(
350 ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())),
351 };
352
353 FunctionAliases.push_back(MDTuple::get(Ctx, Elts));
354 }
355
356 if (!FunctionAliases.empty()) {
357 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases");
358 for (auto MD : FunctionAliases)
359 NMD->addOperand(MD);
360 }
361
362 SmallVector<MDNode *, 8> Symvers;
363 ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) {
364 Function *F = M.getFunction(Name);
365 if (!F || F->use_empty())
366 return;
367
368 Symvers.push_back(MDTuple::get(
369 Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)}));
370 });
371
372 if (!Symvers.empty()) {
373 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers");
374 for (auto MD : Symvers)
375 NMD->addOperand(MD);
376 }
377
378 simplifyExternals(*MergedM);
379
380 // FIXME: Try to re-use BSI and PFI from the original module here.
381 ProfileSummaryInfo PSI(M);
382 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
383
384 // Mark the merged module as requiring full LTO. We still want an index for
385 // it though, so that it can participate in summary-based dead stripping.
386 MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
387 ModuleSummaryIndex MergedMIndex =
388 buildModuleSummaryIndex(*MergedM, nullptr, &PSI);
389
390 SmallVector<char, 0> Buffer;
391
392 BitcodeWriter W(Buffer);
393 // Save the module hash produced for the full bitcode, which will
394 // be used in the backends, and use that in the minimized bitcode
395 // produced for the full link.
396 ModuleHash ModHash = {{0}};
397 W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index,
398 /*GenerateHash=*/true, &ModHash);
399 W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex);
400 W.writeSymtab();
401 W.writeStrtab();
402 OS << Buffer;
403
404 // If a minimized bitcode module was requested for the thin link, only
405 // the information that is needed by thin link will be written in the
406 // given OS (the merged module will be written as usual).
407 if (ThinLinkOS) {
408 Buffer.clear();
409 BitcodeWriter W2(Buffer);
410 StripDebugInfo(M);
411 W2.writeThinLinkBitcode(M, Index, ModHash);
412 W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false,
413 &MergedMIndex);
414 W2.writeSymtab();
415 W2.writeStrtab();
416 *ThinLinkOS << Buffer;
417 }
418 }
419
420 // Returns whether this module needs to be split because it uses type metadata.
requiresSplit(Module & M)421 bool requiresSplit(Module &M) {
422 for (auto &GO : M.global_objects()) {
423 if (GO.hasMetadata(LLVMContext::MD_type))
424 return true;
425 }
426
427 return false;
428 }
429
writeThinLTOBitcode(raw_ostream & OS,raw_ostream * ThinLinkOS,function_ref<AAResults & (Function &)> AARGetter,Module & M,const ModuleSummaryIndex * Index)430 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
431 function_ref<AAResults &(Function &)> AARGetter,
432 Module &M, const ModuleSummaryIndex *Index) {
433 // See if this module has any type metadata. If so, we need to split it.
434 if (requiresSplit(M))
435 return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
436
437 // Otherwise we can just write it out as a regular module.
438
439 // Save the module hash produced for the full bitcode, which will
440 // be used in the backends, and use that in the minimized bitcode
441 // produced for the full link.
442 ModuleHash ModHash = {{0}};
443 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
444 /*GenerateHash=*/true, &ModHash);
445 // If a minimized bitcode module was requested for the thin link, only
446 // the information that is needed by thin link will be written in the
447 // given OS.
448 if (ThinLinkOS && Index)
449 WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash);
450 }
451
452 class WriteThinLTOBitcode : public ModulePass {
453 raw_ostream &OS; // raw_ostream to print on
454 // The output stream on which to emit a minimized module for use
455 // just in the thin link, if requested.
456 raw_ostream *ThinLinkOS;
457
458 public:
459 static char ID; // Pass identification, replacement for typeid
WriteThinLTOBitcode()460 WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) {
461 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
462 }
463
WriteThinLTOBitcode(raw_ostream & o,raw_ostream * ThinLinkOS)464 explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS)
465 : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) {
466 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
467 }
468
getPassName() const469 StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; }
470
runOnModule(Module & M)471 bool runOnModule(Module &M) override {
472 const ModuleSummaryIndex *Index =
473 &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex());
474 writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index);
475 return true;
476 }
getAnalysisUsage(AnalysisUsage & AU) const477 void getAnalysisUsage(AnalysisUsage &AU) const override {
478 AU.setPreservesAll();
479 AU.addRequired<AssumptionCacheTracker>();
480 AU.addRequired<ModuleSummaryIndexWrapperPass>();
481 AU.addRequired<TargetLibraryInfoWrapperPass>();
482 }
483 };
484 } // anonymous namespace
485
486 char WriteThinLTOBitcode::ID = 0;
487 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode",
488 "Write ThinLTO Bitcode", false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)489 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
490 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
491 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
492 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode",
493 "Write ThinLTO Bitcode", false, true)
494
495 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str,
496 raw_ostream *ThinLinkOS) {
497 return new WriteThinLTOBitcode(Str, ThinLinkOS);
498 }
499
500 PreservedAnalyses
run(Module & M,ModuleAnalysisManager & AM)501 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) {
502 FunctionAnalysisManager &FAM =
503 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
504 writeThinLTOBitcode(OS, ThinLinkOS,
505 [&FAM](Function &F) -> AAResults & {
506 return FAM.getResult<AAManager>(F);
507 },
508 M, &AM.getResult<ModuleSummaryIndexAnalysis>(M));
509 return PreservedAnalyses::all();
510 }
511