1 //===- AddressSanitizer.cpp - memory error detector -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of AddressSanitizer, an address sanity checker.
11 // Details of the algorithm:
12 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/BinaryFormat/MachO.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/Comdat.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DIBuilder.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugInfoMetadata.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalAlias.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InlineAsm.h"
50 #include "llvm/IR/InstVisitor.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/MDBuilder.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Use.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/MC/MCSectionMachO.h"
64 #include "llvm/Pass.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/ScopedPrinter.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Transforms/Instrumentation.h"
73 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/ModuleUtils.h"
76 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iomanip>
82 #include <limits>
83 #include <memory>
84 #include <sstream>
85 #include <string>
86 #include <tuple>
87
88 using namespace llvm;
89
90 #define DEBUG_TYPE "asan"
91
92 static const uint64_t kDefaultShadowScale = 3;
93 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
94 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
95 static const uint64_t kDynamicShadowSentinel =
96 std::numeric_limits<uint64_t>::max();
97 static const uint64_t kIOSShadowOffset32 = 1ULL << 30;
98 static const uint64_t kIOSSimShadowOffset32 = 1ULL << 30;
99 static const uint64_t kIOSSimShadowOffset64 = kDefaultShadowOffset64;
100 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G.
101 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
102 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
103 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
104 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
105 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
106 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
107 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
108 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
109 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
110 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
111 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
112 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40;
113 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
114
115 static const uint64_t kMyriadShadowScale = 5;
116 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL;
117 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL;
118 static const uint64_t kMyriadTagShift = 29;
119 static const uint64_t kMyriadDDRTag = 4;
120 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL;
121
122 // The shadow memory space is dynamically allocated.
123 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
124
125 static const size_t kMinStackMallocSize = 1 << 6; // 64B
126 static const size_t kMaxStackMallocSize = 1 << 16; // 64K
127 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
128 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
129
130 static const char *const kAsanModuleCtorName = "asan.module_ctor";
131 static const char *const kAsanModuleDtorName = "asan.module_dtor";
132 static const uint64_t kAsanCtorAndDtorPriority = 1;
133 static const char *const kAsanReportErrorTemplate = "__asan_report_";
134 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
135 static const char *const kAsanUnregisterGlobalsName =
136 "__asan_unregister_globals";
137 static const char *const kAsanRegisterImageGlobalsName =
138 "__asan_register_image_globals";
139 static const char *const kAsanUnregisterImageGlobalsName =
140 "__asan_unregister_image_globals";
141 static const char *const kAsanRegisterElfGlobalsName =
142 "__asan_register_elf_globals";
143 static const char *const kAsanUnregisterElfGlobalsName =
144 "__asan_unregister_elf_globals";
145 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
146 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
147 static const char *const kAsanInitName = "__asan_init";
148 static const char *const kAsanVersionCheckNamePrefix =
149 "__asan_version_mismatch_check_v";
150 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
151 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
152 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
153 static const int kMaxAsanStackMallocSizeClass = 10;
154 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
155 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
156 static const char *const kAsanGenPrefix = "___asan_gen_";
157 static const char *const kODRGenPrefix = "__odr_asan_gen_";
158 static const char *const kSanCovGenPrefix = "__sancov_gen_";
159 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_";
160 static const char *const kAsanPoisonStackMemoryName =
161 "__asan_poison_stack_memory";
162 static const char *const kAsanUnpoisonStackMemoryName =
163 "__asan_unpoison_stack_memory";
164
165 // ASan version script has __asan_* wildcard. Triple underscore prevents a
166 // linker (gold) warning about attempting to export a local symbol.
167 static const char *const kAsanGlobalsRegisteredFlagName =
168 "___asan_globals_registered";
169
170 static const char *const kAsanOptionDetectUseAfterReturn =
171 "__asan_option_detect_stack_use_after_return";
172
173 static const char *const kAsanShadowMemoryDynamicAddress =
174 "__asan_shadow_memory_dynamic_address";
175
176 static const char *const kAsanAllocaPoison = "__asan_alloca_poison";
177 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison";
178
179 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
180 static const size_t kNumberOfAccessSizes = 5;
181
182 static const unsigned kAllocaRzSize = 32;
183
184 // Command-line flags.
185
186 static cl::opt<bool> ClEnableKasan(
187 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
188 cl::Hidden, cl::init(false));
189
190 static cl::opt<bool> ClRecover(
191 "asan-recover",
192 cl::desc("Enable recovery mode (continue-after-error)."),
193 cl::Hidden, cl::init(false));
194
195 // This flag may need to be replaced with -f[no-]asan-reads.
196 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
197 cl::desc("instrument read instructions"),
198 cl::Hidden, cl::init(true));
199
200 static cl::opt<bool> ClInstrumentWrites(
201 "asan-instrument-writes", cl::desc("instrument write instructions"),
202 cl::Hidden, cl::init(true));
203
204 static cl::opt<bool> ClInstrumentAtomics(
205 "asan-instrument-atomics",
206 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
207 cl::init(true));
208
209 static cl::opt<bool> ClAlwaysSlowPath(
210 "asan-always-slow-path",
211 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
212 cl::init(false));
213
214 static cl::opt<bool> ClForceDynamicShadow(
215 "asan-force-dynamic-shadow",
216 cl::desc("Load shadow address into a local variable for each function"),
217 cl::Hidden, cl::init(false));
218
219 static cl::opt<bool>
220 ClWithIfunc("asan-with-ifunc",
221 cl::desc("Access dynamic shadow through an ifunc global on "
222 "platforms that support this"),
223 cl::Hidden, cl::init(true));
224
225 static cl::opt<bool> ClWithIfuncSuppressRemat(
226 "asan-with-ifunc-suppress-remat",
227 cl::desc("Suppress rematerialization of dynamic shadow address by passing "
228 "it through inline asm in prologue."),
229 cl::Hidden, cl::init(true));
230
231 // This flag limits the number of instructions to be instrumented
232 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
233 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
234 // set it to 10000.
235 static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
236 "asan-max-ins-per-bb", cl::init(10000),
237 cl::desc("maximal number of instructions to instrument in any given BB"),
238 cl::Hidden);
239
240 // This flag may need to be replaced with -f[no]asan-stack.
241 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
242 cl::Hidden, cl::init(true));
243 static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
244 "asan-max-inline-poisoning-size",
245 cl::desc(
246 "Inline shadow poisoning for blocks up to the given size in bytes."),
247 cl::Hidden, cl::init(64));
248
249 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
250 cl::desc("Check stack-use-after-return"),
251 cl::Hidden, cl::init(true));
252
253 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
254 cl::desc("Create redzones for byval "
255 "arguments (extra copy "
256 "required)"), cl::Hidden,
257 cl::init(true));
258
259 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
260 cl::desc("Check stack-use-after-scope"),
261 cl::Hidden, cl::init(false));
262
263 // This flag may need to be replaced with -f[no]asan-globals.
264 static cl::opt<bool> ClGlobals("asan-globals",
265 cl::desc("Handle global objects"), cl::Hidden,
266 cl::init(true));
267
268 static cl::opt<bool> ClInitializers("asan-initialization-order",
269 cl::desc("Handle C++ initializer order"),
270 cl::Hidden, cl::init(true));
271
272 static cl::opt<bool> ClInvalidPointerPairs(
273 "asan-detect-invalid-pointer-pair",
274 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
275 cl::init(false));
276
277 static cl::opt<unsigned> ClRealignStack(
278 "asan-realign-stack",
279 cl::desc("Realign stack to the value of this flag (power of two)"),
280 cl::Hidden, cl::init(32));
281
282 static cl::opt<int> ClInstrumentationWithCallsThreshold(
283 "asan-instrumentation-with-call-threshold",
284 cl::desc(
285 "If the function being instrumented contains more than "
286 "this number of memory accesses, use callbacks instead of "
287 "inline checks (-1 means never use callbacks)."),
288 cl::Hidden, cl::init(7000));
289
290 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
291 "asan-memory-access-callback-prefix",
292 cl::desc("Prefix for memory access callbacks"), cl::Hidden,
293 cl::init("__asan_"));
294
295 static cl::opt<bool>
296 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
297 cl::desc("instrument dynamic allocas"),
298 cl::Hidden, cl::init(true));
299
300 static cl::opt<bool> ClSkipPromotableAllocas(
301 "asan-skip-promotable-allocas",
302 cl::desc("Do not instrument promotable allocas"), cl::Hidden,
303 cl::init(true));
304
305 // These flags allow to change the shadow mapping.
306 // The shadow mapping looks like
307 // Shadow = (Mem >> scale) + offset
308
309 static cl::opt<int> ClMappingScale("asan-mapping-scale",
310 cl::desc("scale of asan shadow mapping"),
311 cl::Hidden, cl::init(0));
312
313 static cl::opt<unsigned long long> ClMappingOffset(
314 "asan-mapping-offset",
315 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), cl::Hidden,
316 cl::init(0));
317
318 // Optimization flags. Not user visible, used mostly for testing
319 // and benchmarking the tool.
320
321 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
322 cl::Hidden, cl::init(true));
323
324 static cl::opt<bool> ClOptSameTemp(
325 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
326 cl::Hidden, cl::init(true));
327
328 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
329 cl::desc("Don't instrument scalar globals"),
330 cl::Hidden, cl::init(true));
331
332 static cl::opt<bool> ClOptStack(
333 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
334 cl::Hidden, cl::init(false));
335
336 static cl::opt<bool> ClDynamicAllocaStack(
337 "asan-stack-dynamic-alloca",
338 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
339 cl::init(true));
340
341 static cl::opt<uint32_t> ClForceExperiment(
342 "asan-force-experiment",
343 cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
344 cl::init(0));
345
346 static cl::opt<bool>
347 ClUsePrivateAliasForGlobals("asan-use-private-alias",
348 cl::desc("Use private aliases for global"
349 " variables"),
350 cl::Hidden, cl::init(false));
351
352 static cl::opt<bool>
353 ClUseGlobalsGC("asan-globals-live-support",
354 cl::desc("Use linker features to support dead "
355 "code stripping of globals"),
356 cl::Hidden, cl::init(true));
357
358 // This is on by default even though there is a bug in gold:
359 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
360 static cl::opt<bool>
361 ClWithComdat("asan-with-comdat",
362 cl::desc("Place ASan constructors in comdat sections"),
363 cl::Hidden, cl::init(true));
364
365 // Debug flags.
366
367 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
368 cl::init(0));
369
370 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
371 cl::Hidden, cl::init(0));
372
373 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
374 cl::desc("Debug func"));
375
376 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
377 cl::Hidden, cl::init(-1));
378
379 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
380 cl::Hidden, cl::init(-1));
381
382 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
383 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
384 STATISTIC(NumOptimizedAccessesToGlobalVar,
385 "Number of optimized accesses to global vars");
386 STATISTIC(NumOptimizedAccessesToStackVar,
387 "Number of optimized accesses to stack vars");
388
389 namespace {
390
391 /// Frontend-provided metadata for source location.
392 struct LocationMetadata {
393 StringRef Filename;
394 int LineNo = 0;
395 int ColumnNo = 0;
396
397 LocationMetadata() = default;
398
empty__anond0cac1aa0111::LocationMetadata399 bool empty() const { return Filename.empty(); }
400
parse__anond0cac1aa0111::LocationMetadata401 void parse(MDNode *MDN) {
402 assert(MDN->getNumOperands() == 3);
403 MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
404 Filename = DIFilename->getString();
405 LineNo =
406 mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
407 ColumnNo =
408 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
409 }
410 };
411
412 /// Frontend-provided metadata for global variables.
413 class GlobalsMetadata {
414 public:
415 struct Entry {
416 LocationMetadata SourceLoc;
417 StringRef Name;
418 bool IsDynInit = false;
419 bool IsBlacklisted = false;
420
421 Entry() = default;
422 };
423
424 GlobalsMetadata() = default;
425
reset()426 void reset() {
427 inited_ = false;
428 Entries.clear();
429 }
430
init(Module & M)431 void init(Module &M) {
432 assert(!inited_);
433 inited_ = true;
434 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
435 if (!Globals) return;
436 for (auto MDN : Globals->operands()) {
437 // Metadata node contains the global and the fields of "Entry".
438 assert(MDN->getNumOperands() == 5);
439 auto *GV = mdconst::extract_or_null<GlobalVariable>(MDN->getOperand(0));
440 // The optimizer may optimize away a global entirely.
441 if (!GV) continue;
442 // We can already have an entry for GV if it was merged with another
443 // global.
444 Entry &E = Entries[GV];
445 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
446 E.SourceLoc.parse(Loc);
447 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
448 E.Name = Name->getString();
449 ConstantInt *IsDynInit =
450 mdconst::extract<ConstantInt>(MDN->getOperand(3));
451 E.IsDynInit |= IsDynInit->isOne();
452 ConstantInt *IsBlacklisted =
453 mdconst::extract<ConstantInt>(MDN->getOperand(4));
454 E.IsBlacklisted |= IsBlacklisted->isOne();
455 }
456 }
457
458 /// Returns metadata entry for a given global.
get(GlobalVariable * G) const459 Entry get(GlobalVariable *G) const {
460 auto Pos = Entries.find(G);
461 return (Pos != Entries.end()) ? Pos->second : Entry();
462 }
463
464 private:
465 bool inited_ = false;
466 DenseMap<GlobalVariable *, Entry> Entries;
467 };
468
469 /// This struct defines the shadow mapping using the rule:
470 /// shadow = (mem >> Scale) ADD-or-OR Offset.
471 /// If InGlobal is true, then
472 /// extern char __asan_shadow[];
473 /// shadow = (mem >> Scale) + &__asan_shadow
474 struct ShadowMapping {
475 int Scale;
476 uint64_t Offset;
477 bool OrShadowOffset;
478 bool InGlobal;
479 };
480
481 } // end anonymous namespace
482
getShadowMapping(Triple & TargetTriple,int LongSize,bool IsKasan)483 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
484 bool IsKasan) {
485 bool IsAndroid = TargetTriple.isAndroid();
486 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
487 bool IsFreeBSD = TargetTriple.isOSFreeBSD();
488 bool IsNetBSD = TargetTriple.isOSNetBSD();
489 bool IsPS4CPU = TargetTriple.isPS4CPU();
490 bool IsLinux = TargetTriple.isOSLinux();
491 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
492 TargetTriple.getArch() == Triple::ppc64le;
493 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
494 bool IsX86 = TargetTriple.getArch() == Triple::x86;
495 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
496 bool IsMIPS32 = TargetTriple.isMIPS32();
497 bool IsMIPS64 = TargetTriple.isMIPS64();
498 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
499 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64;
500 bool IsWindows = TargetTriple.isOSWindows();
501 bool IsFuchsia = TargetTriple.isOSFuchsia();
502 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
503
504 ShadowMapping Mapping;
505
506 Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale;
507 if (ClMappingScale.getNumOccurrences() > 0) {
508 Mapping.Scale = ClMappingScale;
509 }
510
511 if (LongSize == 32) {
512 if (IsAndroid)
513 Mapping.Offset = kDynamicShadowSentinel;
514 else if (IsMIPS32)
515 Mapping.Offset = kMIPS32_ShadowOffset32;
516 else if (IsFreeBSD)
517 Mapping.Offset = kFreeBSD_ShadowOffset32;
518 else if (IsNetBSD)
519 Mapping.Offset = kNetBSD_ShadowOffset32;
520 else if (IsIOS)
521 // If we're targeting iOS and x86, the binary is built for iOS simulator.
522 Mapping.Offset = IsX86 ? kIOSSimShadowOffset32 : kIOSShadowOffset32;
523 else if (IsWindows)
524 Mapping.Offset = kWindowsShadowOffset32;
525 else if (IsMyriad) {
526 uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 -
527 (kMyriadMemorySize32 >> Mapping.Scale));
528 Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale);
529 }
530 else
531 Mapping.Offset = kDefaultShadowOffset32;
532 } else { // LongSize == 64
533 // Fuchsia is always PIE, which means that the beginning of the address
534 // space is always available.
535 if (IsFuchsia)
536 Mapping.Offset = 0;
537 else if (IsPPC64)
538 Mapping.Offset = kPPC64_ShadowOffset64;
539 else if (IsSystemZ)
540 Mapping.Offset = kSystemZ_ShadowOffset64;
541 else if (IsFreeBSD)
542 Mapping.Offset = kFreeBSD_ShadowOffset64;
543 else if (IsNetBSD)
544 Mapping.Offset = kNetBSD_ShadowOffset64;
545 else if (IsPS4CPU)
546 Mapping.Offset = kPS4CPU_ShadowOffset64;
547 else if (IsLinux && IsX86_64) {
548 if (IsKasan)
549 Mapping.Offset = kLinuxKasan_ShadowOffset64;
550 else
551 Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
552 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
553 } else if (IsWindows && IsX86_64) {
554 Mapping.Offset = kWindowsShadowOffset64;
555 } else if (IsMIPS64)
556 Mapping.Offset = kMIPS64_ShadowOffset64;
557 else if (IsIOS)
558 // If we're targeting iOS and x86, the binary is built for iOS simulator.
559 // We are using dynamic shadow offset on the 64-bit devices.
560 Mapping.Offset =
561 IsX86_64 ? kIOSSimShadowOffset64 : kDynamicShadowSentinel;
562 else if (IsAArch64)
563 Mapping.Offset = kAArch64_ShadowOffset64;
564 else
565 Mapping.Offset = kDefaultShadowOffset64;
566 }
567
568 if (ClForceDynamicShadow) {
569 Mapping.Offset = kDynamicShadowSentinel;
570 }
571
572 if (ClMappingOffset.getNumOccurrences() > 0) {
573 Mapping.Offset = ClMappingOffset;
574 }
575
576 // OR-ing shadow offset if more efficient (at least on x86) if the offset
577 // is a power of two, but on ppc64 we have to use add since the shadow
578 // offset is not necessary 1/8-th of the address space. On SystemZ,
579 // we could OR the constant in a single instruction, but it's more
580 // efficient to load it once and use indexed addressing.
581 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU &&
582 !(Mapping.Offset & (Mapping.Offset - 1)) &&
583 Mapping.Offset != kDynamicShadowSentinel;
584 bool IsAndroidWithIfuncSupport =
585 IsAndroid && !TargetTriple.isAndroidVersionLT(21);
586 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
587
588 return Mapping;
589 }
590
RedzoneSizeForScale(int MappingScale)591 static size_t RedzoneSizeForScale(int MappingScale) {
592 // Redzone used for stack and globals is at least 32 bytes.
593 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
594 return std::max(32U, 1U << MappingScale);
595 }
596
597 namespace {
598
599 /// AddressSanitizer: instrument the code in module to find memory bugs.
600 struct AddressSanitizer : public FunctionPass {
601 // Pass identification, replacement for typeid
602 static char ID;
603
AddressSanitizer__anond0cac1aa0211::AddressSanitizer604 explicit AddressSanitizer(bool CompileKernel = false, bool Recover = false,
605 bool UseAfterScope = false)
606 : FunctionPass(ID), UseAfterScope(UseAfterScope || ClUseAfterScope) {
607 this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover;
608 this->CompileKernel = ClEnableKasan.getNumOccurrences() > 0 ?
609 ClEnableKasan : CompileKernel;
610 initializeAddressSanitizerPass(*PassRegistry::getPassRegistry());
611 }
612
getPassName__anond0cac1aa0211::AddressSanitizer613 StringRef getPassName() const override {
614 return "AddressSanitizerFunctionPass";
615 }
616
getAnalysisUsage__anond0cac1aa0211::AddressSanitizer617 void getAnalysisUsage(AnalysisUsage &AU) const override {
618 AU.addRequired<DominatorTreeWrapperPass>();
619 AU.addRequired<TargetLibraryInfoWrapperPass>();
620 }
621
getAllocaSizeInBytes__anond0cac1aa0211::AddressSanitizer622 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
623 uint64_t ArraySize = 1;
624 if (AI.isArrayAllocation()) {
625 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
626 assert(CI && "non-constant array size");
627 ArraySize = CI->getZExtValue();
628 }
629 Type *Ty = AI.getAllocatedType();
630 uint64_t SizeInBytes =
631 AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
632 return SizeInBytes * ArraySize;
633 }
634
635 /// Check if we want (and can) handle this alloca.
636 bool isInterestingAlloca(const AllocaInst &AI);
637
638 /// If it is an interesting memory access, return the PointerOperand
639 /// and set IsWrite/Alignment. Otherwise return nullptr.
640 /// MaybeMask is an output parameter for the mask Value, if we're looking at a
641 /// masked load/store.
642 Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
643 uint64_t *TypeSize, unsigned *Alignment,
644 Value **MaybeMask = nullptr);
645
646 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I,
647 bool UseCalls, const DataLayout &DL);
648 void instrumentPointerComparisonOrSubtraction(Instruction *I);
649 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
650 Value *Addr, uint32_t TypeSize, bool IsWrite,
651 Value *SizeArgument, bool UseCalls, uint32_t Exp);
652 void instrumentUnusualSizeOrAlignment(Instruction *I,
653 Instruction *InsertBefore, Value *Addr,
654 uint32_t TypeSize, bool IsWrite,
655 Value *SizeArgument, bool UseCalls,
656 uint32_t Exp);
657 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
658 Value *ShadowValue, uint32_t TypeSize);
659 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
660 bool IsWrite, size_t AccessSizeIndex,
661 Value *SizeArgument, uint32_t Exp);
662 void instrumentMemIntrinsic(MemIntrinsic *MI);
663 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
664 bool runOnFunction(Function &F) override;
665 bool maybeInsertAsanInitAtFunctionEntry(Function &F);
666 void maybeInsertDynamicShadowAtFunctionEntry(Function &F);
667 void markEscapedLocalAllocas(Function &F);
668 bool doInitialization(Module &M) override;
669 bool doFinalization(Module &M) override;
670
getDominatorTree__anond0cac1aa0211::AddressSanitizer671 DominatorTree &getDominatorTree() const { return *DT; }
672
673 private:
674 friend struct FunctionStackPoisoner;
675
676 void initializeCallbacks(Module &M);
677
678 bool LooksLikeCodeInBug11395(Instruction *I);
679 bool GlobalIsLinkerInitialized(GlobalVariable *G);
680 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
681 uint64_t TypeSize) const;
682
683 /// Helper to cleanup per-function state.
684 struct FunctionStateRAII {
685 AddressSanitizer *Pass;
686
FunctionStateRAII__anond0cac1aa0211::AddressSanitizer::FunctionStateRAII687 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
688 assert(Pass->ProcessedAllocas.empty() &&
689 "last pass forgot to clear cache");
690 assert(!Pass->LocalDynamicShadow);
691 }
692
~FunctionStateRAII__anond0cac1aa0211::AddressSanitizer::FunctionStateRAII693 ~FunctionStateRAII() {
694 Pass->LocalDynamicShadow = nullptr;
695 Pass->ProcessedAllocas.clear();
696 }
697 };
698
699 LLVMContext *C;
700 Triple TargetTriple;
701 int LongSize;
702 bool CompileKernel;
703 bool Recover;
704 bool UseAfterScope;
705 Type *IntptrTy;
706 ShadowMapping Mapping;
707 DominatorTree *DT;
708 Function *AsanHandleNoReturnFunc;
709 Function *AsanPtrCmpFunction, *AsanPtrSubFunction;
710 Constant *AsanShadowGlobal;
711
712 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
713 Function *AsanErrorCallback[2][2][kNumberOfAccessSizes];
714 Function *AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
715
716 // These arrays is indexed by AccessIsWrite and Experiment.
717 Function *AsanErrorCallbackSized[2][2];
718 Function *AsanMemoryAccessCallbackSized[2][2];
719
720 Function *AsanMemmove, *AsanMemcpy, *AsanMemset;
721 InlineAsm *EmptyAsm;
722 Value *LocalDynamicShadow = nullptr;
723 GlobalsMetadata GlobalsMD;
724 DenseMap<const AllocaInst *, bool> ProcessedAllocas;
725 };
726
727 class AddressSanitizerModule : public ModulePass {
728 public:
729 // Pass identification, replacement for typeid
730 static char ID;
731
AddressSanitizerModule(bool CompileKernel=false,bool Recover=false,bool UseGlobalsGC=true)732 explicit AddressSanitizerModule(bool CompileKernel = false,
733 bool Recover = false,
734 bool UseGlobalsGC = true)
735 : ModulePass(ID),
736 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC),
737 // Not a typo: ClWithComdat is almost completely pointless without
738 // ClUseGlobalsGC (because then it only works on modules without
739 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
740 // and both suffer from gold PR19002 for which UseGlobalsGC constructor
741 // argument is designed as workaround. Therefore, disable both
742 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
743 // do globals-gc.
744 UseCtorComdat(UseGlobalsGC && ClWithComdat) {
745 this->Recover = ClRecover.getNumOccurrences() > 0 ?
746 ClRecover : Recover;
747 this->CompileKernel = ClEnableKasan.getNumOccurrences() > 0 ?
748 ClEnableKasan : CompileKernel;
749 }
750
751 bool runOnModule(Module &M) override;
getPassName() const752 StringRef getPassName() const override { return "AddressSanitizerModule"; }
753
754 private:
755 void initializeCallbacks(Module &M);
756
757 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
758 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
759 ArrayRef<GlobalVariable *> ExtendedGlobals,
760 ArrayRef<Constant *> MetadataInitializers);
761 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
762 ArrayRef<GlobalVariable *> ExtendedGlobals,
763 ArrayRef<Constant *> MetadataInitializers,
764 const std::string &UniqueModuleId);
765 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
766 ArrayRef<GlobalVariable *> ExtendedGlobals,
767 ArrayRef<Constant *> MetadataInitializers);
768 void
769 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
770 ArrayRef<GlobalVariable *> ExtendedGlobals,
771 ArrayRef<Constant *> MetadataInitializers);
772
773 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
774 StringRef OriginalName);
775 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
776 StringRef InternalSuffix);
777 IRBuilder<> CreateAsanModuleDtor(Module &M);
778
779 bool ShouldInstrumentGlobal(GlobalVariable *G);
780 bool ShouldUseMachOGlobalsSection() const;
781 StringRef getGlobalMetadataSection() const;
782 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
783 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
MinRedzoneSizeForGlobal() const784 size_t MinRedzoneSizeForGlobal() const {
785 return RedzoneSizeForScale(Mapping.Scale);
786 }
787 int GetAsanVersion(const Module &M) const;
788
789 GlobalsMetadata GlobalsMD;
790 bool CompileKernel;
791 bool Recover;
792 bool UseGlobalsGC;
793 bool UseCtorComdat;
794 Type *IntptrTy;
795 LLVMContext *C;
796 Triple TargetTriple;
797 ShadowMapping Mapping;
798 Function *AsanPoisonGlobals;
799 Function *AsanUnpoisonGlobals;
800 Function *AsanRegisterGlobals;
801 Function *AsanUnregisterGlobals;
802 Function *AsanRegisterImageGlobals;
803 Function *AsanUnregisterImageGlobals;
804 Function *AsanRegisterElfGlobals;
805 Function *AsanUnregisterElfGlobals;
806
807 Function *AsanCtorFunction = nullptr;
808 Function *AsanDtorFunction = nullptr;
809 };
810
811 // Stack poisoning does not play well with exception handling.
812 // When an exception is thrown, we essentially bypass the code
813 // that unpoisones the stack. This is why the run-time library has
814 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
815 // stack in the interceptor. This however does not work inside the
816 // actual function which catches the exception. Most likely because the
817 // compiler hoists the load of the shadow value somewhere too high.
818 // This causes asan to report a non-existing bug on 453.povray.
819 // It sounds like an LLVM bug.
820 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
821 Function &F;
822 AddressSanitizer &ASan;
823 DIBuilder DIB;
824 LLVMContext *C;
825 Type *IntptrTy;
826 Type *IntptrPtrTy;
827 ShadowMapping Mapping;
828
829 SmallVector<AllocaInst *, 16> AllocaVec;
830 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
831 SmallVector<Instruction *, 8> RetVec;
832 unsigned StackAlignment;
833
834 Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
835 *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
836 Function *AsanSetShadowFunc[0x100] = {};
837 Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
838 Function *AsanAllocaPoisonFunc, *AsanAllocasUnpoisonFunc;
839
840 // Stores a place and arguments of poisoning/unpoisoning call for alloca.
841 struct AllocaPoisonCall {
842 IntrinsicInst *InsBefore;
843 AllocaInst *AI;
844 uint64_t Size;
845 bool DoPoison;
846 };
847 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
848 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
849
850 SmallVector<AllocaInst *, 1> DynamicAllocaVec;
851 SmallVector<IntrinsicInst *, 1> StackRestoreVec;
852 AllocaInst *DynamicAllocaLayout = nullptr;
853 IntrinsicInst *LocalEscapeCall = nullptr;
854
855 // Maps Value to an AllocaInst from which the Value is originated.
856 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>;
857 AllocaForValueMapTy AllocaForValue;
858
859 bool HasNonEmptyInlineAsm = false;
860 bool HasReturnsTwiceCall = false;
861 std::unique_ptr<CallInst> EmptyInlineAsm;
862
FunctionStackPoisoner__anond0cac1aa0211::FunctionStackPoisoner863 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
864 : F(F),
865 ASan(ASan),
866 DIB(*F.getParent(), /*AllowUnresolved*/ false),
867 C(ASan.C),
868 IntptrTy(ASan.IntptrTy),
869 IntptrPtrTy(PointerType::get(IntptrTy, 0)),
870 Mapping(ASan.Mapping),
871 StackAlignment(1 << Mapping.Scale),
872 EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {}
873
runOnFunction__anond0cac1aa0211::FunctionStackPoisoner874 bool runOnFunction() {
875 if (!ClStack) return false;
876
877 if (ClRedzoneByvalArgs)
878 copyArgsPassedByValToAllocas();
879
880 // Collect alloca, ret, lifetime instructions etc.
881 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
882
883 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
884
885 initializeCallbacks(*F.getParent());
886
887 processDynamicAllocas();
888 processStaticAllocas();
889
890 if (ClDebugStack) {
891 LLVM_DEBUG(dbgs() << F);
892 }
893 return true;
894 }
895
896 // Arguments marked with the "byval" attribute are implicitly copied without
897 // using an alloca instruction. To produce redzones for those arguments, we
898 // copy them a second time into memory allocated with an alloca instruction.
899 void copyArgsPassedByValToAllocas();
900
901 // Finds all Alloca instructions and puts
902 // poisoned red zones around all of them.
903 // Then unpoison everything back before the function returns.
904 void processStaticAllocas();
905 void processDynamicAllocas();
906
907 void createDynamicAllocasInitStorage();
908
909 // ----------------------- Visitors.
910 /// Collect all Ret instructions.
visitReturnInst__anond0cac1aa0211::FunctionStackPoisoner911 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); }
912
913 /// Collect all Resume instructions.
visitResumeInst__anond0cac1aa0211::FunctionStackPoisoner914 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
915
916 /// Collect all CatchReturnInst instructions.
visitCleanupReturnInst__anond0cac1aa0211::FunctionStackPoisoner917 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
918
unpoisonDynamicAllocasBeforeInst__anond0cac1aa0211::FunctionStackPoisoner919 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
920 Value *SavedStack) {
921 IRBuilder<> IRB(InstBefore);
922 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
923 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
924 // need to adjust extracted SP to compute the address of the most recent
925 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
926 // this purpose.
927 if (!isa<ReturnInst>(InstBefore)) {
928 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
929 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
930 {IntptrTy});
931
932 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
933
934 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
935 DynamicAreaOffset);
936 }
937
938 IRB.CreateCall(AsanAllocasUnpoisonFunc,
939 {IRB.CreateLoad(DynamicAllocaLayout), DynamicAreaPtr});
940 }
941
942 // Unpoison dynamic allocas redzones.
unpoisonDynamicAllocas__anond0cac1aa0211::FunctionStackPoisoner943 void unpoisonDynamicAllocas() {
944 for (auto &Ret : RetVec)
945 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
946
947 for (auto &StackRestoreInst : StackRestoreVec)
948 unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
949 StackRestoreInst->getOperand(0));
950 }
951
952 // Deploy and poison redzones around dynamic alloca call. To do this, we
953 // should replace this call with another one with changed parameters and
954 // replace all its uses with new address, so
955 // addr = alloca type, old_size, align
956 // is replaced by
957 // new_size = (old_size + additional_size) * sizeof(type)
958 // tmp = alloca i8, new_size, max(align, 32)
959 // addr = tmp + 32 (first 32 bytes are for the left redzone).
960 // Additional_size is added to make new memory allocation contain not only
961 // requested memory, but also left, partial and right redzones.
962 void handleDynamicAllocaCall(AllocaInst *AI);
963
964 /// Collect Alloca instructions we want (and can) handle.
visitAllocaInst__anond0cac1aa0211::FunctionStackPoisoner965 void visitAllocaInst(AllocaInst &AI) {
966 if (!ASan.isInterestingAlloca(AI)) {
967 if (AI.isStaticAlloca()) {
968 // Skip over allocas that are present *before* the first instrumented
969 // alloca, we don't want to move those around.
970 if (AllocaVec.empty())
971 return;
972
973 StaticAllocasToMoveUp.push_back(&AI);
974 }
975 return;
976 }
977
978 StackAlignment = std::max(StackAlignment, AI.getAlignment());
979 if (!AI.isStaticAlloca())
980 DynamicAllocaVec.push_back(&AI);
981 else
982 AllocaVec.push_back(&AI);
983 }
984
985 /// Collect lifetime intrinsic calls to check for use-after-scope
986 /// errors.
visitIntrinsicInst__anond0cac1aa0211::FunctionStackPoisoner987 void visitIntrinsicInst(IntrinsicInst &II) {
988 Intrinsic::ID ID = II.getIntrinsicID();
989 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
990 if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
991 if (!ASan.UseAfterScope)
992 return;
993 if (ID != Intrinsic::lifetime_start && ID != Intrinsic::lifetime_end)
994 return;
995 // Found lifetime intrinsic, add ASan instrumentation if necessary.
996 ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
997 // If size argument is undefined, don't do anything.
998 if (Size->isMinusOne()) return;
999 // Check that size doesn't saturate uint64_t and can
1000 // be stored in IntptrTy.
1001 const uint64_t SizeValue = Size->getValue().getLimitedValue();
1002 if (SizeValue == ~0ULL ||
1003 !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
1004 return;
1005 // Find alloca instruction that corresponds to llvm.lifetime argument.
1006 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
1007 if (!AI || !ASan.isInterestingAlloca(*AI))
1008 return;
1009 bool DoPoison = (ID == Intrinsic::lifetime_end);
1010 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
1011 if (AI->isStaticAlloca())
1012 StaticAllocaPoisonCallVec.push_back(APC);
1013 else if (ClInstrumentDynamicAllocas)
1014 DynamicAllocaPoisonCallVec.push_back(APC);
1015 }
1016
visitCallSite__anond0cac1aa0211::FunctionStackPoisoner1017 void visitCallSite(CallSite CS) {
1018 Instruction *I = CS.getInstruction();
1019 if (CallInst *CI = dyn_cast<CallInst>(I)) {
1020 HasNonEmptyInlineAsm |= CI->isInlineAsm() &&
1021 !CI->isIdenticalTo(EmptyInlineAsm.get()) &&
1022 I != ASan.LocalDynamicShadow;
1023 HasReturnsTwiceCall |= CI->canReturnTwice();
1024 }
1025 }
1026
1027 // ---------------------- Helpers.
1028 void initializeCallbacks(Module &M);
1029
doesDominateAllExits__anond0cac1aa0211::FunctionStackPoisoner1030 bool doesDominateAllExits(const Instruction *I) const {
1031 for (auto Ret : RetVec) {
1032 if (!ASan.getDominatorTree().dominates(I, Ret)) return false;
1033 }
1034 return true;
1035 }
1036
1037 /// Finds alloca where the value comes from.
1038 AllocaInst *findAllocaForValue(Value *V);
1039
1040 // Copies bytes from ShadowBytes into shadow memory for indexes where
1041 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1042 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1043 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1044 IRBuilder<> &IRB, Value *ShadowBase);
1045 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1046 size_t Begin, size_t End, IRBuilder<> &IRB,
1047 Value *ShadowBase);
1048 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
1049 ArrayRef<uint8_t> ShadowBytes, size_t Begin,
1050 size_t End, IRBuilder<> &IRB, Value *ShadowBase);
1051
1052 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
1053
1054 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
1055 bool Dynamic);
1056 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
1057 Instruction *ThenTerm, Value *ValueIfFalse);
1058 };
1059
1060 } // end anonymous namespace
1061
1062 char AddressSanitizer::ID = 0;
1063
1064 INITIALIZE_PASS_BEGIN(
1065 AddressSanitizer, "asan",
1066 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1067 false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)1068 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1069 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1070 INITIALIZE_PASS_END(
1071 AddressSanitizer, "asan",
1072 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1073 false)
1074
1075 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel,
1076 bool Recover,
1077 bool UseAfterScope) {
1078 assert(!CompileKernel || Recover);
1079 return new AddressSanitizer(CompileKernel, Recover, UseAfterScope);
1080 }
1081
1082 char AddressSanitizerModule::ID = 0;
1083
1084 INITIALIZE_PASS(
1085 AddressSanitizerModule, "asan-module",
1086 "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
1087 "ModulePass",
1088 false, false)
1089
createAddressSanitizerModulePass(bool CompileKernel,bool Recover,bool UseGlobalsGC)1090 ModulePass *llvm::createAddressSanitizerModulePass(bool CompileKernel,
1091 bool Recover,
1092 bool UseGlobalsGC) {
1093 assert(!CompileKernel || Recover);
1094 return new AddressSanitizerModule(CompileKernel, Recover, UseGlobalsGC);
1095 }
1096
TypeSizeToSizeIndex(uint32_t TypeSize)1097 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
1098 size_t Res = countTrailingZeros(TypeSize / 8);
1099 assert(Res < kNumberOfAccessSizes);
1100 return Res;
1101 }
1102
1103 // Create a constant for Str so that we can pass it to the run-time lib.
createPrivateGlobalForString(Module & M,StringRef Str,bool AllowMerging)1104 static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str,
1105 bool AllowMerging) {
1106 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
1107 // We use private linkage for module-local strings. If they can be merged
1108 // with another one, we set the unnamed_addr attribute.
1109 GlobalVariable *GV =
1110 new GlobalVariable(M, StrConst->getType(), true,
1111 GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix);
1112 if (AllowMerging) GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1113 GV->setAlignment(1); // Strings may not be merged w/o setting align 1.
1114 return GV;
1115 }
1116
1117 /// Create a global describing a source location.
createPrivateGlobalForSourceLoc(Module & M,LocationMetadata MD)1118 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
1119 LocationMetadata MD) {
1120 Constant *LocData[] = {
1121 createPrivateGlobalForString(M, MD.Filename, true),
1122 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
1123 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
1124 };
1125 auto LocStruct = ConstantStruct::getAnon(LocData);
1126 auto GV = new GlobalVariable(M, LocStruct->getType(), true,
1127 GlobalValue::PrivateLinkage, LocStruct,
1128 kAsanGenPrefix);
1129 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1130 return GV;
1131 }
1132
1133 /// Check if \p G has been created by a trusted compiler pass.
GlobalWasGeneratedByCompiler(GlobalVariable * G)1134 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
1135 // Do not instrument asan globals.
1136 if (G->getName().startswith(kAsanGenPrefix) ||
1137 G->getName().startswith(kSanCovGenPrefix) ||
1138 G->getName().startswith(kODRGenPrefix))
1139 return true;
1140
1141 // Do not instrument gcov counter arrays.
1142 if (G->getName() == "__llvm_gcov_ctr")
1143 return true;
1144
1145 return false;
1146 }
1147
memToShadow(Value * Shadow,IRBuilder<> & IRB)1148 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
1149 // Shadow >> scale
1150 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
1151 if (Mapping.Offset == 0) return Shadow;
1152 // (Shadow >> scale) | offset
1153 Value *ShadowBase;
1154 if (LocalDynamicShadow)
1155 ShadowBase = LocalDynamicShadow;
1156 else
1157 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
1158 if (Mapping.OrShadowOffset)
1159 return IRB.CreateOr(Shadow, ShadowBase);
1160 else
1161 return IRB.CreateAdd(Shadow, ShadowBase);
1162 }
1163
1164 // Instrument memset/memmove/memcpy
instrumentMemIntrinsic(MemIntrinsic * MI)1165 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
1166 IRBuilder<> IRB(MI);
1167 if (isa<MemTransferInst>(MI)) {
1168 IRB.CreateCall(
1169 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
1170 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1171 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
1172 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1173 } else if (isa<MemSetInst>(MI)) {
1174 IRB.CreateCall(
1175 AsanMemset,
1176 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1177 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
1178 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1179 }
1180 MI->eraseFromParent();
1181 }
1182
1183 /// Check if we want (and can) handle this alloca.
isInterestingAlloca(const AllocaInst & AI)1184 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1185 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
1186
1187 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
1188 return PreviouslySeenAllocaInfo->getSecond();
1189
1190 bool IsInteresting =
1191 (AI.getAllocatedType()->isSized() &&
1192 // alloca() may be called with 0 size, ignore it.
1193 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
1194 // We are only interested in allocas not promotable to registers.
1195 // Promotable allocas are common under -O0.
1196 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
1197 // inalloca allocas are not treated as static, and we don't want
1198 // dynamic alloca instrumentation for them as well.
1199 !AI.isUsedWithInAlloca() &&
1200 // swifterror allocas are register promoted by ISel
1201 !AI.isSwiftError());
1202
1203 ProcessedAllocas[&AI] = IsInteresting;
1204 return IsInteresting;
1205 }
1206
isInterestingMemoryAccess(Instruction * I,bool * IsWrite,uint64_t * TypeSize,unsigned * Alignment,Value ** MaybeMask)1207 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I,
1208 bool *IsWrite,
1209 uint64_t *TypeSize,
1210 unsigned *Alignment,
1211 Value **MaybeMask) {
1212 // Skip memory accesses inserted by another instrumentation.
1213 if (I->getMetadata("nosanitize")) return nullptr;
1214
1215 // Do not instrument the load fetching the dynamic shadow address.
1216 if (LocalDynamicShadow == I)
1217 return nullptr;
1218
1219 Value *PtrOperand = nullptr;
1220 const DataLayout &DL = I->getModule()->getDataLayout();
1221 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1222 if (!ClInstrumentReads) return nullptr;
1223 *IsWrite = false;
1224 *TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
1225 *Alignment = LI->getAlignment();
1226 PtrOperand = LI->getPointerOperand();
1227 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1228 if (!ClInstrumentWrites) return nullptr;
1229 *IsWrite = true;
1230 *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
1231 *Alignment = SI->getAlignment();
1232 PtrOperand = SI->getPointerOperand();
1233 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
1234 if (!ClInstrumentAtomics) return nullptr;
1235 *IsWrite = true;
1236 *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
1237 *Alignment = 0;
1238 PtrOperand = RMW->getPointerOperand();
1239 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
1240 if (!ClInstrumentAtomics) return nullptr;
1241 *IsWrite = true;
1242 *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
1243 *Alignment = 0;
1244 PtrOperand = XCHG->getPointerOperand();
1245 } else if (auto CI = dyn_cast<CallInst>(I)) {
1246 auto *F = dyn_cast<Function>(CI->getCalledValue());
1247 if (F && (F->getName().startswith("llvm.masked.load.") ||
1248 F->getName().startswith("llvm.masked.store."))) {
1249 unsigned OpOffset = 0;
1250 if (F->getName().startswith("llvm.masked.store.")) {
1251 if (!ClInstrumentWrites)
1252 return nullptr;
1253 // Masked store has an initial operand for the value.
1254 OpOffset = 1;
1255 *IsWrite = true;
1256 } else {
1257 if (!ClInstrumentReads)
1258 return nullptr;
1259 *IsWrite = false;
1260 }
1261
1262 auto BasePtr = CI->getOperand(0 + OpOffset);
1263 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType();
1264 *TypeSize = DL.getTypeStoreSizeInBits(Ty);
1265 if (auto AlignmentConstant =
1266 dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
1267 *Alignment = (unsigned)AlignmentConstant->getZExtValue();
1268 else
1269 *Alignment = 1; // No alignment guarantees. We probably got Undef
1270 if (MaybeMask)
1271 *MaybeMask = CI->getOperand(2 + OpOffset);
1272 PtrOperand = BasePtr;
1273 }
1274 }
1275
1276 if (PtrOperand) {
1277 // Do not instrument acesses from different address spaces; we cannot deal
1278 // with them.
1279 Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType());
1280 if (PtrTy->getPointerAddressSpace() != 0)
1281 return nullptr;
1282
1283 // Ignore swifterror addresses.
1284 // swifterror memory addresses are mem2reg promoted by instruction
1285 // selection. As such they cannot have regular uses like an instrumentation
1286 // function and it makes no sense to track them as memory.
1287 if (PtrOperand->isSwiftError())
1288 return nullptr;
1289 }
1290
1291 // Treat memory accesses to promotable allocas as non-interesting since they
1292 // will not cause memory violations. This greatly speeds up the instrumented
1293 // executable at -O0.
1294 if (ClSkipPromotableAllocas)
1295 if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand))
1296 return isInterestingAlloca(*AI) ? AI : nullptr;
1297
1298 return PtrOperand;
1299 }
1300
isPointerOperand(Value * V)1301 static bool isPointerOperand(Value *V) {
1302 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
1303 }
1304
1305 // This is a rough heuristic; it may cause both false positives and
1306 // false negatives. The proper implementation requires cooperation with
1307 // the frontend.
isInterestingPointerComparisonOrSubtraction(Instruction * I)1308 static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) {
1309 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
1310 if (!Cmp->isRelational()) return false;
1311 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1312 if (BO->getOpcode() != Instruction::Sub) return false;
1313 } else {
1314 return false;
1315 }
1316 return isPointerOperand(I->getOperand(0)) &&
1317 isPointerOperand(I->getOperand(1));
1318 }
1319
GlobalIsLinkerInitialized(GlobalVariable * G)1320 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1321 // If a global variable does not have dynamic initialization we don't
1322 // have to instrument it. However, if a global does not have initializer
1323 // at all, we assume it has dynamic initializer (in other TU).
1324 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
1325 }
1326
instrumentPointerComparisonOrSubtraction(Instruction * I)1327 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1328 Instruction *I) {
1329 IRBuilder<> IRB(I);
1330 Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1331 Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1332 for (Value *&i : Param) {
1333 if (i->getType()->isPointerTy())
1334 i = IRB.CreatePointerCast(i, IntptrTy);
1335 }
1336 IRB.CreateCall(F, Param);
1337 }
1338
doInstrumentAddress(AddressSanitizer * Pass,Instruction * I,Instruction * InsertBefore,Value * Addr,unsigned Alignment,unsigned Granularity,uint32_t TypeSize,bool IsWrite,Value * SizeArgument,bool UseCalls,uint32_t Exp)1339 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
1340 Instruction *InsertBefore, Value *Addr,
1341 unsigned Alignment, unsigned Granularity,
1342 uint32_t TypeSize, bool IsWrite,
1343 Value *SizeArgument, bool UseCalls,
1344 uint32_t Exp) {
1345 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1346 // if the data is properly aligned.
1347 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
1348 TypeSize == 128) &&
1349 (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
1350 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
1351 nullptr, UseCalls, Exp);
1352 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
1353 IsWrite, nullptr, UseCalls, Exp);
1354 }
1355
instrumentMaskedLoadOrStore(AddressSanitizer * Pass,const DataLayout & DL,Type * IntptrTy,Value * Mask,Instruction * I,Value * Addr,unsigned Alignment,unsigned Granularity,uint32_t TypeSize,bool IsWrite,Value * SizeArgument,bool UseCalls,uint32_t Exp)1356 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
1357 const DataLayout &DL, Type *IntptrTy,
1358 Value *Mask, Instruction *I,
1359 Value *Addr, unsigned Alignment,
1360 unsigned Granularity, uint32_t TypeSize,
1361 bool IsWrite, Value *SizeArgument,
1362 bool UseCalls, uint32_t Exp) {
1363 auto *VTy = cast<PointerType>(Addr->getType())->getElementType();
1364 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
1365 unsigned Num = VTy->getVectorNumElements();
1366 auto Zero = ConstantInt::get(IntptrTy, 0);
1367 for (unsigned Idx = 0; Idx < Num; ++Idx) {
1368 Value *InstrumentedAddress = nullptr;
1369 Instruction *InsertBefore = I;
1370 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
1371 // dyn_cast as we might get UndefValue
1372 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
1373 if (Masked->isZero())
1374 // Mask is constant false, so no instrumentation needed.
1375 continue;
1376 // If we have a true or undef value, fall through to doInstrumentAddress
1377 // with InsertBefore == I
1378 }
1379 } else {
1380 IRBuilder<> IRB(I);
1381 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
1382 TerminatorInst *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
1383 InsertBefore = ThenTerm;
1384 }
1385
1386 IRBuilder<> IRB(InsertBefore);
1387 InstrumentedAddress =
1388 IRB.CreateGEP(Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
1389 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
1390 Granularity, ElemTypeSize, IsWrite, SizeArgument,
1391 UseCalls, Exp);
1392 }
1393 }
1394
instrumentMop(ObjectSizeOffsetVisitor & ObjSizeVis,Instruction * I,bool UseCalls,const DataLayout & DL)1395 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1396 Instruction *I, bool UseCalls,
1397 const DataLayout &DL) {
1398 bool IsWrite = false;
1399 unsigned Alignment = 0;
1400 uint64_t TypeSize = 0;
1401 Value *MaybeMask = nullptr;
1402 Value *Addr =
1403 isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask);
1404 assert(Addr);
1405
1406 // Optimization experiments.
1407 // The experiments can be used to evaluate potential optimizations that remove
1408 // instrumentation (assess false negatives). Instead of completely removing
1409 // some instrumentation, you set Exp to a non-zero value (mask of optimization
1410 // experiments that want to remove instrumentation of this instruction).
1411 // If Exp is non-zero, this pass will emit special calls into runtime
1412 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1413 // make runtime terminate the program in a special way (with a different
1414 // exit status). Then you run the new compiler on a buggy corpus, collect
1415 // the special terminations (ideally, you don't see them at all -- no false
1416 // negatives) and make the decision on the optimization.
1417 uint32_t Exp = ClForceExperiment;
1418
1419 if (ClOpt && ClOptGlobals) {
1420 // If initialization order checking is disabled, a simple access to a
1421 // dynamically initialized global is always valid.
1422 GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL));
1423 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1424 isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
1425 NumOptimizedAccessesToGlobalVar++;
1426 return;
1427 }
1428 }
1429
1430 if (ClOpt && ClOptStack) {
1431 // A direct inbounds access to a stack variable is always valid.
1432 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
1433 isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
1434 NumOptimizedAccessesToStackVar++;
1435 return;
1436 }
1437 }
1438
1439 if (IsWrite)
1440 NumInstrumentedWrites++;
1441 else
1442 NumInstrumentedReads++;
1443
1444 unsigned Granularity = 1 << Mapping.Scale;
1445 if (MaybeMask) {
1446 instrumentMaskedLoadOrStore(this, DL, IntptrTy, MaybeMask, I, Addr,
1447 Alignment, Granularity, TypeSize, IsWrite,
1448 nullptr, UseCalls, Exp);
1449 } else {
1450 doInstrumentAddress(this, I, I, Addr, Alignment, Granularity, TypeSize,
1451 IsWrite, nullptr, UseCalls, Exp);
1452 }
1453 }
1454
generateCrashCode(Instruction * InsertBefore,Value * Addr,bool IsWrite,size_t AccessSizeIndex,Value * SizeArgument,uint32_t Exp)1455 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1456 Value *Addr, bool IsWrite,
1457 size_t AccessSizeIndex,
1458 Value *SizeArgument,
1459 uint32_t Exp) {
1460 IRBuilder<> IRB(InsertBefore);
1461 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1462 CallInst *Call = nullptr;
1463 if (SizeArgument) {
1464 if (Exp == 0)
1465 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1466 {Addr, SizeArgument});
1467 else
1468 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1469 {Addr, SizeArgument, ExpVal});
1470 } else {
1471 if (Exp == 0)
1472 Call =
1473 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1474 else
1475 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1476 {Addr, ExpVal});
1477 }
1478
1479 // We don't do Call->setDoesNotReturn() because the BB already has
1480 // UnreachableInst at the end.
1481 // This EmptyAsm is required to avoid callback merge.
1482 IRB.CreateCall(EmptyAsm, {});
1483 return Call;
1484 }
1485
createSlowPathCmp(IRBuilder<> & IRB,Value * AddrLong,Value * ShadowValue,uint32_t TypeSize)1486 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1487 Value *ShadowValue,
1488 uint32_t TypeSize) {
1489 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1490 // Addr & (Granularity - 1)
1491 Value *LastAccessedByte =
1492 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1493 // (Addr & (Granularity - 1)) + size - 1
1494 if (TypeSize / 8 > 1)
1495 LastAccessedByte = IRB.CreateAdd(
1496 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
1497 // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1498 LastAccessedByte =
1499 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1500 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1501 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1502 }
1503
instrumentAddress(Instruction * OrigIns,Instruction * InsertBefore,Value * Addr,uint32_t TypeSize,bool IsWrite,Value * SizeArgument,bool UseCalls,uint32_t Exp)1504 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1505 Instruction *InsertBefore, Value *Addr,
1506 uint32_t TypeSize, bool IsWrite,
1507 Value *SizeArgument, bool UseCalls,
1508 uint32_t Exp) {
1509 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
1510
1511 IRBuilder<> IRB(InsertBefore);
1512 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1513 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
1514
1515 if (UseCalls) {
1516 if (Exp == 0)
1517 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1518 AddrLong);
1519 else
1520 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1521 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1522 return;
1523 }
1524
1525 if (IsMyriad) {
1526 // Strip the cache bit and do range check.
1527 // AddrLong &= ~kMyriadCacheBitMask32
1528 AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32);
1529 // Tag = AddrLong >> kMyriadTagShift
1530 Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift);
1531 // Tag == kMyriadDDRTag
1532 Value *TagCheck =
1533 IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag));
1534
1535 TerminatorInst *TagCheckTerm = SplitBlockAndInsertIfThen(
1536 TagCheck, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1537 assert(cast<BranchInst>(TagCheckTerm)->isUnconditional());
1538 IRB.SetInsertPoint(TagCheckTerm);
1539 InsertBefore = TagCheckTerm;
1540 }
1541
1542 Type *ShadowTy =
1543 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
1544 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1545 Value *ShadowPtr = memToShadow(AddrLong, IRB);
1546 Value *CmpVal = Constant::getNullValue(ShadowTy);
1547 Value *ShadowValue =
1548 IRB.CreateLoad(IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
1549
1550 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
1551 size_t Granularity = 1ULL << Mapping.Scale;
1552 TerminatorInst *CrashTerm = nullptr;
1553
1554 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
1555 // We use branch weights for the slow path check, to indicate that the slow
1556 // path is rarely taken. This seems to be the case for SPEC benchmarks.
1557 TerminatorInst *CheckTerm = SplitBlockAndInsertIfThen(
1558 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1559 assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1560 BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1561 IRB.SetInsertPoint(CheckTerm);
1562 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
1563 if (Recover) {
1564 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1565 } else {
1566 BasicBlock *CrashBlock =
1567 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1568 CrashTerm = new UnreachableInst(*C, CrashBlock);
1569 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1570 ReplaceInstWithInst(CheckTerm, NewTerm);
1571 }
1572 } else {
1573 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1574 }
1575
1576 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1577 AccessSizeIndex, SizeArgument, Exp);
1578 Crash->setDebugLoc(OrigIns->getDebugLoc());
1579 }
1580
1581 // Instrument unusual size or unusual alignment.
1582 // We can not do it with a single check, so we do 1-byte check for the first
1583 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1584 // to report the actual access size.
instrumentUnusualSizeOrAlignment(Instruction * I,Instruction * InsertBefore,Value * Addr,uint32_t TypeSize,bool IsWrite,Value * SizeArgument,bool UseCalls,uint32_t Exp)1585 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1586 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
1587 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1588 IRBuilder<> IRB(InsertBefore);
1589 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
1590 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1591 if (UseCalls) {
1592 if (Exp == 0)
1593 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1594 {AddrLong, Size});
1595 else
1596 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1597 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1598 } else {
1599 Value *LastByte = IRB.CreateIntToPtr(
1600 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
1601 Addr->getType());
1602 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
1603 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
1604 }
1605 }
1606
poisonOneInitializer(Function & GlobalInit,GlobalValue * ModuleName)1607 void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit,
1608 GlobalValue *ModuleName) {
1609 // Set up the arguments to our poison/unpoison functions.
1610 IRBuilder<> IRB(&GlobalInit.front(),
1611 GlobalInit.front().getFirstInsertionPt());
1612
1613 // Add a call to poison all external globals before the given function starts.
1614 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1615 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1616
1617 // Add calls to unpoison all globals before each return instruction.
1618 for (auto &BB : GlobalInit.getBasicBlockList())
1619 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1620 CallInst::Create(AsanUnpoisonGlobals, "", RI);
1621 }
1622
createInitializerPoisonCalls(Module & M,GlobalValue * ModuleName)1623 void AddressSanitizerModule::createInitializerPoisonCalls(
1624 Module &M, GlobalValue *ModuleName) {
1625 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1626 if (!GV)
1627 return;
1628
1629 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1630 if (!CA)
1631 return;
1632
1633 for (Use &OP : CA->operands()) {
1634 if (isa<ConstantAggregateZero>(OP)) continue;
1635 ConstantStruct *CS = cast<ConstantStruct>(OP);
1636
1637 // Must have a function or null ptr.
1638 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1639 if (F->getName() == kAsanModuleCtorName) continue;
1640 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1641 // Don't instrument CTORs that will run before asan.module_ctor.
1642 if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue;
1643 poisonOneInitializer(*F, ModuleName);
1644 }
1645 }
1646 }
1647
ShouldInstrumentGlobal(GlobalVariable * G)1648 bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
1649 Type *Ty = G->getValueType();
1650 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
1651
1652 if (GlobalsMD.get(G).IsBlacklisted) return false;
1653 if (!Ty->isSized()) return false;
1654 if (!G->hasInitializer()) return false;
1655 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
1656 // Touch only those globals that will not be defined in other modules.
1657 // Don't handle ODR linkage types and COMDATs since other modules may be built
1658 // without ASan.
1659 if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
1660 G->getLinkage() != GlobalVariable::PrivateLinkage &&
1661 G->getLinkage() != GlobalVariable::InternalLinkage)
1662 return false;
1663 if (G->hasComdat()) return false;
1664 // Two problems with thread-locals:
1665 // - The address of the main thread's copy can't be computed at link-time.
1666 // - Need to poison all copies, not just the main thread's one.
1667 if (G->isThreadLocal()) return false;
1668 // For now, just ignore this Global if the alignment is large.
1669 if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;
1670
1671 if (G->hasSection()) {
1672 StringRef Section = G->getSection();
1673
1674 // Globals from llvm.metadata aren't emitted, do not instrument them.
1675 if (Section == "llvm.metadata") return false;
1676 // Do not instrument globals from special LLVM sections.
1677 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;
1678
1679 // Do not instrument function pointers to initialization and termination
1680 // routines: dynamic linker will not properly handle redzones.
1681 if (Section.startswith(".preinit_array") ||
1682 Section.startswith(".init_array") ||
1683 Section.startswith(".fini_array")) {
1684 return false;
1685 }
1686
1687 // On COFF, if the section name contains '$', it is highly likely that the
1688 // user is using section sorting to create an array of globals similar to
1689 // the way initialization callbacks are registered in .init_array and
1690 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
1691 // to such globals is counterproductive, because the intent is that they
1692 // will form an array, and out-of-bounds accesses are expected.
1693 // See https://github.com/google/sanitizers/issues/305
1694 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1695 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
1696 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
1697 << *G << "\n");
1698 return false;
1699 }
1700
1701 if (TargetTriple.isOSBinFormatMachO()) {
1702 StringRef ParsedSegment, ParsedSection;
1703 unsigned TAA = 0, StubSize = 0;
1704 bool TAAParsed;
1705 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(
1706 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize);
1707 assert(ErrorCode.empty() && "Invalid section specifier.");
1708
1709 // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1710 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1711 // them.
1712 if (ParsedSegment == "__OBJC" ||
1713 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
1714 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
1715 return false;
1716 }
1717 // See https://github.com/google/sanitizers/issues/32
1718 // Constant CFString instances are compiled in the following way:
1719 // -- the string buffer is emitted into
1720 // __TEXT,__cstring,cstring_literals
1721 // -- the constant NSConstantString structure referencing that buffer
1722 // is placed into __DATA,__cfstring
1723 // Therefore there's no point in placing redzones into __DATA,__cfstring.
1724 // Moreover, it causes the linker to crash on OS X 10.7
1725 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
1726 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
1727 return false;
1728 }
1729 // The linker merges the contents of cstring_literals and removes the
1730 // trailing zeroes.
1731 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
1732 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
1733 return false;
1734 }
1735 }
1736 }
1737
1738 return true;
1739 }
1740
1741 // On Mach-O platforms, we emit global metadata in a separate section of the
1742 // binary in order to allow the linker to properly dead strip. This is only
1743 // supported on recent versions of ld64.
ShouldUseMachOGlobalsSection() const1744 bool AddressSanitizerModule::ShouldUseMachOGlobalsSection() const {
1745 if (!TargetTriple.isOSBinFormatMachO())
1746 return false;
1747
1748 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
1749 return true;
1750 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
1751 return true;
1752 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
1753 return true;
1754
1755 return false;
1756 }
1757
getGlobalMetadataSection() const1758 StringRef AddressSanitizerModule::getGlobalMetadataSection() const {
1759 switch (TargetTriple.getObjectFormat()) {
1760 case Triple::COFF: return ".ASAN$GL";
1761 case Triple::ELF: return "asan_globals";
1762 case Triple::MachO: return "__DATA,__asan_globals,regular";
1763 default: break;
1764 }
1765 llvm_unreachable("unsupported object format");
1766 }
1767
initializeCallbacks(Module & M)1768 void AddressSanitizerModule::initializeCallbacks(Module &M) {
1769 IRBuilder<> IRB(*C);
1770
1771 // Declare our poisoning and unpoisoning functions.
1772 AsanPoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1773 kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy));
1774 AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
1775 AsanUnpoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1776 kAsanUnpoisonGlobalsName, IRB.getVoidTy()));
1777 AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
1778
1779 // Declare functions that register/unregister globals.
1780 AsanRegisterGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1781 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy));
1782 AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
1783 AsanUnregisterGlobals = checkSanitizerInterfaceFunction(
1784 M.getOrInsertFunction(kAsanUnregisterGlobalsName, IRB.getVoidTy(),
1785 IntptrTy, IntptrTy));
1786 AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
1787
1788 // Declare the functions that find globals in a shared object and then invoke
1789 // the (un)register function on them.
1790 AsanRegisterImageGlobals =
1791 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1792 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy));
1793 AsanRegisterImageGlobals->setLinkage(Function::ExternalLinkage);
1794
1795 AsanUnregisterImageGlobals =
1796 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1797 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy));
1798 AsanUnregisterImageGlobals->setLinkage(Function::ExternalLinkage);
1799
1800 AsanRegisterElfGlobals = checkSanitizerInterfaceFunction(
1801 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
1802 IntptrTy, IntptrTy, IntptrTy));
1803 AsanRegisterElfGlobals->setLinkage(Function::ExternalLinkage);
1804
1805 AsanUnregisterElfGlobals = checkSanitizerInterfaceFunction(
1806 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
1807 IntptrTy, IntptrTy, IntptrTy));
1808 AsanUnregisterElfGlobals->setLinkage(Function::ExternalLinkage);
1809 }
1810
1811 // Put the metadata and the instrumented global in the same group. This ensures
1812 // that the metadata is discarded if the instrumented global is discarded.
SetComdatForGlobalMetadata(GlobalVariable * G,GlobalVariable * Metadata,StringRef InternalSuffix)1813 void AddressSanitizerModule::SetComdatForGlobalMetadata(
1814 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
1815 Module &M = *G->getParent();
1816 Comdat *C = G->getComdat();
1817 if (!C) {
1818 if (!G->hasName()) {
1819 // If G is unnamed, it must be internal. Give it an artificial name
1820 // so we can put it in a comdat.
1821 assert(G->hasLocalLinkage());
1822 G->setName(Twine(kAsanGenPrefix) + "_anon_global");
1823 }
1824
1825 if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
1826 std::string Name = G->getName();
1827 Name += InternalSuffix;
1828 C = M.getOrInsertComdat(Name);
1829 } else {
1830 C = M.getOrInsertComdat(G->getName());
1831 }
1832
1833 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
1834 // linkage to internal linkage so that a symbol table entry is emitted. This
1835 // is necessary in order to create the comdat group.
1836 if (TargetTriple.isOSBinFormatCOFF()) {
1837 C->setSelectionKind(Comdat::NoDuplicates);
1838 if (G->hasPrivateLinkage())
1839 G->setLinkage(GlobalValue::InternalLinkage);
1840 }
1841 G->setComdat(C);
1842 }
1843
1844 assert(G->hasComdat());
1845 Metadata->setComdat(G->getComdat());
1846 }
1847
1848 // Create a separate metadata global and put it in the appropriate ASan
1849 // global registration section.
1850 GlobalVariable *
CreateMetadataGlobal(Module & M,Constant * Initializer,StringRef OriginalName)1851 AddressSanitizerModule::CreateMetadataGlobal(Module &M, Constant *Initializer,
1852 StringRef OriginalName) {
1853 auto Linkage = TargetTriple.isOSBinFormatMachO()
1854 ? GlobalVariable::InternalLinkage
1855 : GlobalVariable::PrivateLinkage;
1856 GlobalVariable *Metadata = new GlobalVariable(
1857 M, Initializer->getType(), false, Linkage, Initializer,
1858 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
1859 Metadata->setSection(getGlobalMetadataSection());
1860 return Metadata;
1861 }
1862
CreateAsanModuleDtor(Module & M)1863 IRBuilder<> AddressSanitizerModule::CreateAsanModuleDtor(Module &M) {
1864 AsanDtorFunction =
1865 Function::Create(FunctionType::get(Type::getVoidTy(*C), false),
1866 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
1867 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
1868
1869 return IRBuilder<>(ReturnInst::Create(*C, AsanDtorBB));
1870 }
1871
InstrumentGlobalsCOFF(IRBuilder<> & IRB,Module & M,ArrayRef<GlobalVariable * > ExtendedGlobals,ArrayRef<Constant * > MetadataInitializers)1872 void AddressSanitizerModule::InstrumentGlobalsCOFF(
1873 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
1874 ArrayRef<Constant *> MetadataInitializers) {
1875 assert(ExtendedGlobals.size() == MetadataInitializers.size());
1876 auto &DL = M.getDataLayout();
1877
1878 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
1879 Constant *Initializer = MetadataInitializers[i];
1880 GlobalVariable *G = ExtendedGlobals[i];
1881 GlobalVariable *Metadata =
1882 CreateMetadataGlobal(M, Initializer, G->getName());
1883
1884 // The MSVC linker always inserts padding when linking incrementally. We
1885 // cope with that by aligning each struct to its size, which must be a power
1886 // of two.
1887 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
1888 assert(isPowerOf2_32(SizeOfGlobalStruct) &&
1889 "global metadata will not be padded appropriately");
1890 Metadata->setAlignment(SizeOfGlobalStruct);
1891
1892 SetComdatForGlobalMetadata(G, Metadata, "");
1893 }
1894 }
1895
InstrumentGlobalsELF(IRBuilder<> & IRB,Module & M,ArrayRef<GlobalVariable * > ExtendedGlobals,ArrayRef<Constant * > MetadataInitializers,const std::string & UniqueModuleId)1896 void AddressSanitizerModule::InstrumentGlobalsELF(
1897 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
1898 ArrayRef<Constant *> MetadataInitializers,
1899 const std::string &UniqueModuleId) {
1900 assert(ExtendedGlobals.size() == MetadataInitializers.size());
1901
1902 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
1903 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
1904 GlobalVariable *G = ExtendedGlobals[i];
1905 GlobalVariable *Metadata =
1906 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
1907 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
1908 Metadata->setMetadata(LLVMContext::MD_associated, MD);
1909 MetadataGlobals[i] = Metadata;
1910
1911 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
1912 }
1913
1914 // Update llvm.compiler.used, adding the new metadata globals. This is
1915 // needed so that during LTO these variables stay alive.
1916 if (!MetadataGlobals.empty())
1917 appendToCompilerUsed(M, MetadataGlobals);
1918
1919 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
1920 // to look up the loaded image that contains it. Second, we can store in it
1921 // whether registration has already occurred, to prevent duplicate
1922 // registration.
1923 //
1924 // Common linkage ensures that there is only one global per shared library.
1925 GlobalVariable *RegisteredFlag = new GlobalVariable(
1926 M, IntptrTy, false, GlobalVariable::CommonLinkage,
1927 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
1928 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
1929
1930 // Create start and stop symbols.
1931 GlobalVariable *StartELFMetadata = new GlobalVariable(
1932 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
1933 "__start_" + getGlobalMetadataSection());
1934 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
1935 GlobalVariable *StopELFMetadata = new GlobalVariable(
1936 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
1937 "__stop_" + getGlobalMetadataSection());
1938 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
1939
1940 // Create a call to register the globals with the runtime.
1941 IRB.CreateCall(AsanRegisterElfGlobals,
1942 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
1943 IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
1944 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
1945
1946 // We also need to unregister globals at the end, e.g., when a shared library
1947 // gets closed.
1948 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
1949 IRB_Dtor.CreateCall(AsanUnregisterElfGlobals,
1950 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
1951 IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
1952 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
1953 }
1954
InstrumentGlobalsMachO(IRBuilder<> & IRB,Module & M,ArrayRef<GlobalVariable * > ExtendedGlobals,ArrayRef<Constant * > MetadataInitializers)1955 void AddressSanitizerModule::InstrumentGlobalsMachO(
1956 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
1957 ArrayRef<Constant *> MetadataInitializers) {
1958 assert(ExtendedGlobals.size() == MetadataInitializers.size());
1959
1960 // On recent Mach-O platforms, use a structure which binds the liveness of
1961 // the global variable to the metadata struct. Keep the list of "Liveness" GV
1962 // created to be added to llvm.compiler.used
1963 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
1964 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
1965
1966 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
1967 Constant *Initializer = MetadataInitializers[i];
1968 GlobalVariable *G = ExtendedGlobals[i];
1969 GlobalVariable *Metadata =
1970 CreateMetadataGlobal(M, Initializer, G->getName());
1971
1972 // On recent Mach-O platforms, we emit the global metadata in a way that
1973 // allows the linker to properly strip dead globals.
1974 auto LivenessBinder =
1975 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
1976 ConstantExpr::getPointerCast(Metadata, IntptrTy));
1977 GlobalVariable *Liveness = new GlobalVariable(
1978 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
1979 Twine("__asan_binder_") + G->getName());
1980 Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
1981 LivenessGlobals[i] = Liveness;
1982 }
1983
1984 // Update llvm.compiler.used, adding the new liveness globals. This is
1985 // needed so that during LTO these variables stay alive. The alternative
1986 // would be to have the linker handling the LTO symbols, but libLTO
1987 // current API does not expose access to the section for each symbol.
1988 if (!LivenessGlobals.empty())
1989 appendToCompilerUsed(M, LivenessGlobals);
1990
1991 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
1992 // to look up the loaded image that contains it. Second, we can store in it
1993 // whether registration has already occurred, to prevent duplicate
1994 // registration.
1995 //
1996 // common linkage ensures that there is only one global per shared library.
1997 GlobalVariable *RegisteredFlag = new GlobalVariable(
1998 M, IntptrTy, false, GlobalVariable::CommonLinkage,
1999 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2000 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2001
2002 IRB.CreateCall(AsanRegisterImageGlobals,
2003 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2004
2005 // We also need to unregister globals at the end, e.g., when a shared library
2006 // gets closed.
2007 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
2008 IRB_Dtor.CreateCall(AsanUnregisterImageGlobals,
2009 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2010 }
2011
InstrumentGlobalsWithMetadataArray(IRBuilder<> & IRB,Module & M,ArrayRef<GlobalVariable * > ExtendedGlobals,ArrayRef<Constant * > MetadataInitializers)2012 void AddressSanitizerModule::InstrumentGlobalsWithMetadataArray(
2013 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2014 ArrayRef<Constant *> MetadataInitializers) {
2015 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2016 unsigned N = ExtendedGlobals.size();
2017 assert(N > 0);
2018
2019 // On platforms that don't have a custom metadata section, we emit an array
2020 // of global metadata structures.
2021 ArrayType *ArrayOfGlobalStructTy =
2022 ArrayType::get(MetadataInitializers[0]->getType(), N);
2023 auto AllGlobals = new GlobalVariable(
2024 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
2025 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
2026 if (Mapping.Scale > 3)
2027 AllGlobals->setAlignment(1ULL << Mapping.Scale);
2028
2029 IRB.CreateCall(AsanRegisterGlobals,
2030 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2031 ConstantInt::get(IntptrTy, N)});
2032
2033 // We also need to unregister globals at the end, e.g., when a shared library
2034 // gets closed.
2035 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
2036 IRB_Dtor.CreateCall(AsanUnregisterGlobals,
2037 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2038 ConstantInt::get(IntptrTy, N)});
2039 }
2040
2041 // This function replaces all global variables with new variables that have
2042 // trailing redzones. It also creates a function that poisons
2043 // redzones and inserts this function into llvm.global_ctors.
2044 // Sets *CtorComdat to true if the global registration code emitted into the
2045 // asan constructor is comdat-compatible.
InstrumentGlobals(IRBuilder<> & IRB,Module & M,bool * CtorComdat)2046 bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat) {
2047 *CtorComdat = false;
2048 GlobalsMD.init(M);
2049
2050 SmallVector<GlobalVariable *, 16> GlobalsToChange;
2051
2052 for (auto &G : M.globals()) {
2053 if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G);
2054 }
2055
2056 size_t n = GlobalsToChange.size();
2057 if (n == 0) {
2058 *CtorComdat = true;
2059 return false;
2060 }
2061
2062 auto &DL = M.getDataLayout();
2063
2064 // A global is described by a structure
2065 // size_t beg;
2066 // size_t size;
2067 // size_t size_with_redzone;
2068 // const char *name;
2069 // const char *module_name;
2070 // size_t has_dynamic_init;
2071 // void *source_location;
2072 // size_t odr_indicator;
2073 // We initialize an array of such structures and pass it to a run-time call.
2074 StructType *GlobalStructTy =
2075 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
2076 IntptrTy, IntptrTy, IntptrTy);
2077 SmallVector<GlobalVariable *, 16> NewGlobals(n);
2078 SmallVector<Constant *, 16> Initializers(n);
2079
2080 bool HasDynamicallyInitializedGlobals = false;
2081
2082 // We shouldn't merge same module names, as this string serves as unique
2083 // module ID in runtime.
2084 GlobalVariable *ModuleName = createPrivateGlobalForString(
2085 M, M.getModuleIdentifier(), /*AllowMerging*/ false);
2086
2087 for (size_t i = 0; i < n; i++) {
2088 static const uint64_t kMaxGlobalRedzone = 1 << 18;
2089 GlobalVariable *G = GlobalsToChange[i];
2090
2091 auto MD = GlobalsMD.get(G);
2092 StringRef NameForGlobal = G->getName();
2093 // Create string holding the global name (use global name from metadata
2094 // if it's available, otherwise just write the name of global variable).
2095 GlobalVariable *Name = createPrivateGlobalForString(
2096 M, MD.Name.empty() ? NameForGlobal : MD.Name,
2097 /*AllowMerging*/ true);
2098
2099 Type *Ty = G->getValueType();
2100 uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
2101 uint64_t MinRZ = MinRedzoneSizeForGlobal();
2102 // MinRZ <= RZ <= kMaxGlobalRedzone
2103 // and trying to make RZ to be ~ 1/4 of SizeInBytes.
2104 uint64_t RZ = std::max(
2105 MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ));
2106 uint64_t RightRedzoneSize = RZ;
2107 // Round up to MinRZ
2108 if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
2109 assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
2110 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
2111
2112 StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
2113 Constant *NewInitializer = ConstantStruct::get(
2114 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
2115
2116 // Create a new global variable with enough space for a redzone.
2117 GlobalValue::LinkageTypes Linkage = G->getLinkage();
2118 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
2119 Linkage = GlobalValue::InternalLinkage;
2120 GlobalVariable *NewGlobal =
2121 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer,
2122 "", G, G->getThreadLocalMode());
2123 NewGlobal->copyAttributesFrom(G);
2124 NewGlobal->setAlignment(MinRZ);
2125
2126 // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2127 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
2128 G->isConstant()) {
2129 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
2130 if (Seq && Seq->isCString())
2131 NewGlobal->setSection("__TEXT,__asan_cstring,regular");
2132 }
2133
2134 // Transfer the debug info. The payload starts at offset zero so we can
2135 // copy the debug info over as is.
2136 SmallVector<DIGlobalVariableExpression *, 1> GVs;
2137 G->getDebugInfo(GVs);
2138 for (auto *GV : GVs)
2139 NewGlobal->addDebugInfo(GV);
2140
2141 Value *Indices2[2];
2142 Indices2[0] = IRB.getInt32(0);
2143 Indices2[1] = IRB.getInt32(0);
2144
2145 G->replaceAllUsesWith(
2146 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
2147 NewGlobal->takeName(G);
2148 G->eraseFromParent();
2149 NewGlobals[i] = NewGlobal;
2150
2151 Constant *SourceLoc;
2152 if (!MD.SourceLoc.empty()) {
2153 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
2154 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
2155 } else {
2156 SourceLoc = ConstantInt::get(IntptrTy, 0);
2157 }
2158
2159 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
2160 GlobalValue *InstrumentedGlobal = NewGlobal;
2161
2162 bool CanUsePrivateAliases =
2163 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
2164 TargetTriple.isOSBinFormatWasm();
2165 if (CanUsePrivateAliases && ClUsePrivateAliasForGlobals) {
2166 // Create local alias for NewGlobal to avoid crash on ODR between
2167 // instrumented and non-instrumented libraries.
2168 auto *GA = GlobalAlias::create(GlobalValue::InternalLinkage,
2169 NameForGlobal + M.getName(), NewGlobal);
2170
2171 // With local aliases, we need to provide another externally visible
2172 // symbol __odr_asan_XXX to detect ODR violation.
2173 auto *ODRIndicatorSym =
2174 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
2175 Constant::getNullValue(IRB.getInt8Ty()),
2176 kODRGenPrefix + NameForGlobal, nullptr,
2177 NewGlobal->getThreadLocalMode());
2178
2179 // Set meaningful attributes for indicator symbol.
2180 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
2181 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
2182 ODRIndicatorSym->setAlignment(1);
2183 ODRIndicator = ODRIndicatorSym;
2184 InstrumentedGlobal = GA;
2185 }
2186
2187 Constant *Initializer = ConstantStruct::get(
2188 GlobalStructTy,
2189 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
2190 ConstantInt::get(IntptrTy, SizeInBytes),
2191 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
2192 ConstantExpr::getPointerCast(Name, IntptrTy),
2193 ConstantExpr::getPointerCast(ModuleName, IntptrTy),
2194 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
2195 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
2196
2197 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
2198
2199 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
2200
2201 Initializers[i] = Initializer;
2202 }
2203
2204 // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2205 // ConstantMerge'ing them.
2206 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
2207 for (size_t i = 0; i < n; i++) {
2208 GlobalVariable *G = NewGlobals[i];
2209 if (G->getName().empty()) continue;
2210 GlobalsToAddToUsedList.push_back(G);
2211 }
2212 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
2213
2214 std::string ELFUniqueModuleId =
2215 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M)
2216 : "";
2217
2218 if (!ELFUniqueModuleId.empty()) {
2219 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId);
2220 *CtorComdat = true;
2221 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
2222 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
2223 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
2224 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
2225 } else {
2226 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
2227 }
2228
2229 // Create calls for poisoning before initializers run and unpoisoning after.
2230 if (HasDynamicallyInitializedGlobals)
2231 createInitializerPoisonCalls(M, ModuleName);
2232
2233 LLVM_DEBUG(dbgs() << M);
2234 return true;
2235 }
2236
GetAsanVersion(const Module & M) const2237 int AddressSanitizerModule::GetAsanVersion(const Module &M) const {
2238 int LongSize = M.getDataLayout().getPointerSizeInBits();
2239 bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
2240 int Version = 8;
2241 // 32-bit Android is one version ahead because of the switch to dynamic
2242 // shadow.
2243 Version += (LongSize == 32 && isAndroid);
2244 return Version;
2245 }
2246
runOnModule(Module & M)2247 bool AddressSanitizerModule::runOnModule(Module &M) {
2248 C = &(M.getContext());
2249 int LongSize = M.getDataLayout().getPointerSizeInBits();
2250 IntptrTy = Type::getIntNTy(*C, LongSize);
2251 TargetTriple = Triple(M.getTargetTriple());
2252 Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel);
2253 initializeCallbacks(M);
2254
2255 if (CompileKernel)
2256 return false;
2257
2258 // Create a module constructor. A destructor is created lazily because not all
2259 // platforms, and not all modules need it.
2260 std::string VersionCheckName =
2261 kAsanVersionCheckNamePrefix + std::to_string(GetAsanVersion(M));
2262 std::tie(AsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions(
2263 M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{},
2264 /*InitArgs=*/{}, VersionCheckName);
2265
2266 bool CtorComdat = true;
2267 bool Changed = false;
2268 // TODO(glider): temporarily disabled globals instrumentation for KASan.
2269 if (ClGlobals) {
2270 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
2271 Changed |= InstrumentGlobals(IRB, M, &CtorComdat);
2272 }
2273
2274 // Put the constructor and destructor in comdat if both
2275 // (1) global instrumentation is not TU-specific
2276 // (2) target is ELF.
2277 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
2278 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
2279 appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority,
2280 AsanCtorFunction);
2281 if (AsanDtorFunction) {
2282 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
2283 appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority,
2284 AsanDtorFunction);
2285 }
2286 } else {
2287 appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority);
2288 if (AsanDtorFunction)
2289 appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority);
2290 }
2291
2292 return Changed;
2293 }
2294
initializeCallbacks(Module & M)2295 void AddressSanitizer::initializeCallbacks(Module &M) {
2296 IRBuilder<> IRB(*C);
2297 // Create __asan_report* callbacks.
2298 // IsWrite, TypeSize and Exp are encoded in the function name.
2299 for (int Exp = 0; Exp < 2; Exp++) {
2300 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
2301 const std::string TypeStr = AccessIsWrite ? "store" : "load";
2302 const std::string ExpStr = Exp ? "exp_" : "";
2303 const std::string EndingStr = Recover ? "_noabort" : "";
2304
2305 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
2306 SmallVector<Type *, 2> Args1{1, IntptrTy};
2307 if (Exp) {
2308 Type *ExpType = Type::getInt32Ty(*C);
2309 Args2.push_back(ExpType);
2310 Args1.push_back(ExpType);
2311 }
2312 AsanErrorCallbackSized[AccessIsWrite][Exp] =
2313 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2314 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
2315 FunctionType::get(IRB.getVoidTy(), Args2, false)));
2316
2317 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] =
2318 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2319 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
2320 FunctionType::get(IRB.getVoidTy(), Args2, false)));
2321
2322 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
2323 AccessSizeIndex++) {
2324 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
2325 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2326 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2327 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
2328 FunctionType::get(IRB.getVoidTy(), Args1, false)));
2329
2330 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2331 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2332 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
2333 FunctionType::get(IRB.getVoidTy(), Args1, false)));
2334 }
2335 }
2336 }
2337
2338 const std::string MemIntrinCallbackPrefix =
2339 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
2340 AsanMemmove = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2341 MemIntrinCallbackPrefix + "memmove", IRB.getInt8PtrTy(),
2342 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy));
2343 AsanMemcpy = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2344 MemIntrinCallbackPrefix + "memcpy", IRB.getInt8PtrTy(),
2345 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy));
2346 AsanMemset = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2347 MemIntrinCallbackPrefix + "memset", IRB.getInt8PtrTy(),
2348 IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy));
2349
2350 AsanHandleNoReturnFunc = checkSanitizerInterfaceFunction(
2351 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()));
2352
2353 AsanPtrCmpFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2354 kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy));
2355 AsanPtrSubFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2356 kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy));
2357 // We insert an empty inline asm after __asan_report* to avoid callback merge.
2358 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
2359 StringRef(""), StringRef(""),
2360 /*hasSideEffects=*/true);
2361 if (Mapping.InGlobal)
2362 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
2363 ArrayType::get(IRB.getInt8Ty(), 0));
2364 }
2365
2366 // virtual
doInitialization(Module & M)2367 bool AddressSanitizer::doInitialization(Module &M) {
2368 // Initialize the private fields. No one has accessed them before.
2369 GlobalsMD.init(M);
2370
2371 C = &(M.getContext());
2372 LongSize = M.getDataLayout().getPointerSizeInBits();
2373 IntptrTy = Type::getIntNTy(*C, LongSize);
2374 TargetTriple = Triple(M.getTargetTriple());
2375
2376 Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel);
2377 return true;
2378 }
2379
doFinalization(Module & M)2380 bool AddressSanitizer::doFinalization(Module &M) {
2381 GlobalsMD.reset();
2382 return false;
2383 }
2384
maybeInsertAsanInitAtFunctionEntry(Function & F)2385 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
2386 // For each NSObject descendant having a +load method, this method is invoked
2387 // by the ObjC runtime before any of the static constructors is called.
2388 // Therefore we need to instrument such methods with a call to __asan_init
2389 // at the beginning in order to initialize our runtime before any access to
2390 // the shadow memory.
2391 // We cannot just ignore these methods, because they may call other
2392 // instrumented functions.
2393 if (F.getName().find(" load]") != std::string::npos) {
2394 Function *AsanInitFunction =
2395 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
2396 IRBuilder<> IRB(&F.front(), F.front().begin());
2397 IRB.CreateCall(AsanInitFunction, {});
2398 return true;
2399 }
2400 return false;
2401 }
2402
maybeInsertDynamicShadowAtFunctionEntry(Function & F)2403 void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
2404 // Generate code only when dynamic addressing is needed.
2405 if (Mapping.Offset != kDynamicShadowSentinel)
2406 return;
2407
2408 IRBuilder<> IRB(&F.front().front());
2409 if (Mapping.InGlobal) {
2410 if (ClWithIfuncSuppressRemat) {
2411 // An empty inline asm with input reg == output reg.
2412 // An opaque pointer-to-int cast, basically.
2413 InlineAsm *Asm = InlineAsm::get(
2414 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
2415 StringRef(""), StringRef("=r,0"),
2416 /*hasSideEffects=*/false);
2417 LocalDynamicShadow =
2418 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
2419 } else {
2420 LocalDynamicShadow =
2421 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
2422 }
2423 } else {
2424 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
2425 kAsanShadowMemoryDynamicAddress, IntptrTy);
2426 LocalDynamicShadow = IRB.CreateLoad(GlobalDynamicAddress);
2427 }
2428 }
2429
markEscapedLocalAllocas(Function & F)2430 void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
2431 // Find the one possible call to llvm.localescape and pre-mark allocas passed
2432 // to it as uninteresting. This assumes we haven't started processing allocas
2433 // yet. This check is done up front because iterating the use list in
2434 // isInterestingAlloca would be algorithmically slower.
2435 assert(ProcessedAllocas.empty() && "must process localescape before allocas");
2436
2437 // Try to get the declaration of llvm.localescape. If it's not in the module,
2438 // we can exit early.
2439 if (!F.getParent()->getFunction("llvm.localescape")) return;
2440
2441 // Look for a call to llvm.localescape call in the entry block. It can't be in
2442 // any other block.
2443 for (Instruction &I : F.getEntryBlock()) {
2444 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
2445 if (II && II->getIntrinsicID() == Intrinsic::localescape) {
2446 // We found a call. Mark all the allocas passed in as uninteresting.
2447 for (Value *Arg : II->arg_operands()) {
2448 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
2449 assert(AI && AI->isStaticAlloca() &&
2450 "non-static alloca arg to localescape");
2451 ProcessedAllocas[AI] = false;
2452 }
2453 break;
2454 }
2455 }
2456 }
2457
runOnFunction(Function & F)2458 bool AddressSanitizer::runOnFunction(Function &F) {
2459 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
2460 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
2461 if (F.getName().startswith("__asan_")) return false;
2462
2463 bool FunctionModified = false;
2464
2465 // If needed, insert __asan_init before checking for SanitizeAddress attr.
2466 // This function needs to be called even if the function body is not
2467 // instrumented.
2468 if (maybeInsertAsanInitAtFunctionEntry(F))
2469 FunctionModified = true;
2470
2471 // Leave if the function doesn't need instrumentation.
2472 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
2473
2474 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
2475
2476 initializeCallbacks(*F.getParent());
2477 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2478
2479 FunctionStateRAII CleanupObj(this);
2480
2481 maybeInsertDynamicShadowAtFunctionEntry(F);
2482
2483 // We can't instrument allocas used with llvm.localescape. Only static allocas
2484 // can be passed to that intrinsic.
2485 markEscapedLocalAllocas(F);
2486
2487 // We want to instrument every address only once per basic block (unless there
2488 // are calls between uses).
2489 SmallPtrSet<Value *, 16> TempsToInstrument;
2490 SmallVector<Instruction *, 16> ToInstrument;
2491 SmallVector<Instruction *, 8> NoReturnCalls;
2492 SmallVector<BasicBlock *, 16> AllBlocks;
2493 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
2494 int NumAllocas = 0;
2495 bool IsWrite;
2496 unsigned Alignment;
2497 uint64_t TypeSize;
2498 const TargetLibraryInfo *TLI =
2499 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
2500
2501 // Fill the set of memory operations to instrument.
2502 for (auto &BB : F) {
2503 AllBlocks.push_back(&BB);
2504 TempsToInstrument.clear();
2505 int NumInsnsPerBB = 0;
2506 for (auto &Inst : BB) {
2507 if (LooksLikeCodeInBug11395(&Inst)) return false;
2508 Value *MaybeMask = nullptr;
2509 if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize,
2510 &Alignment, &MaybeMask)) {
2511 if (ClOpt && ClOptSameTemp) {
2512 // If we have a mask, skip instrumentation if we've already
2513 // instrumented the full object. But don't add to TempsToInstrument
2514 // because we might get another load/store with a different mask.
2515 if (MaybeMask) {
2516 if (TempsToInstrument.count(Addr))
2517 continue; // We've seen this (whole) temp in the current BB.
2518 } else {
2519 if (!TempsToInstrument.insert(Addr).second)
2520 continue; // We've seen this temp in the current BB.
2521 }
2522 }
2523 } else if (ClInvalidPointerPairs &&
2524 isInterestingPointerComparisonOrSubtraction(&Inst)) {
2525 PointerComparisonsOrSubtracts.push_back(&Inst);
2526 continue;
2527 } else if (isa<MemIntrinsic>(Inst)) {
2528 // ok, take it.
2529 } else {
2530 if (isa<AllocaInst>(Inst)) NumAllocas++;
2531 CallSite CS(&Inst);
2532 if (CS) {
2533 // A call inside BB.
2534 TempsToInstrument.clear();
2535 if (CS.doesNotReturn()) NoReturnCalls.push_back(CS.getInstruction());
2536 }
2537 if (CallInst *CI = dyn_cast<CallInst>(&Inst))
2538 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
2539 continue;
2540 }
2541 ToInstrument.push_back(&Inst);
2542 NumInsnsPerBB++;
2543 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
2544 }
2545 }
2546
2547 bool UseCalls =
2548 (ClInstrumentationWithCallsThreshold >= 0 &&
2549 ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold);
2550 const DataLayout &DL = F.getParent()->getDataLayout();
2551 ObjectSizeOpts ObjSizeOpts;
2552 ObjSizeOpts.RoundToAlign = true;
2553 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
2554
2555 // Instrument.
2556 int NumInstrumented = 0;
2557 for (auto Inst : ToInstrument) {
2558 if (ClDebugMin < 0 || ClDebugMax < 0 ||
2559 (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
2560 if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment))
2561 instrumentMop(ObjSizeVis, Inst, UseCalls,
2562 F.getParent()->getDataLayout());
2563 else
2564 instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
2565 }
2566 NumInstrumented++;
2567 }
2568
2569 FunctionStackPoisoner FSP(F, *this);
2570 bool ChangedStack = FSP.runOnFunction();
2571
2572 // We must unpoison the stack before every NoReturn call (throw, _exit, etc).
2573 // See e.g. https://github.com/google/sanitizers/issues/37
2574 for (auto CI : NoReturnCalls) {
2575 IRBuilder<> IRB(CI);
2576 IRB.CreateCall(AsanHandleNoReturnFunc, {});
2577 }
2578
2579 for (auto Inst : PointerComparisonsOrSubtracts) {
2580 instrumentPointerComparisonOrSubtraction(Inst);
2581 NumInstrumented++;
2582 }
2583
2584 if (NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty())
2585 FunctionModified = true;
2586
2587 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
2588 << F << "\n");
2589
2590 return FunctionModified;
2591 }
2592
2593 // Workaround for bug 11395: we don't want to instrument stack in functions
2594 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
2595 // FIXME: remove once the bug 11395 is fixed.
LooksLikeCodeInBug11395(Instruction * I)2596 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
2597 if (LongSize != 32) return false;
2598 CallInst *CI = dyn_cast<CallInst>(I);
2599 if (!CI || !CI->isInlineAsm()) return false;
2600 if (CI->getNumArgOperands() <= 5) return false;
2601 // We have inline assembly with quite a few arguments.
2602 return true;
2603 }
2604
initializeCallbacks(Module & M)2605 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
2606 IRBuilder<> IRB(*C);
2607 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
2608 std::string Suffix = itostr(i);
2609 AsanStackMallocFunc[i] = checkSanitizerInterfaceFunction(
2610 M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy,
2611 IntptrTy));
2612 AsanStackFreeFunc[i] = checkSanitizerInterfaceFunction(
2613 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
2614 IRB.getVoidTy(), IntptrTy, IntptrTy));
2615 }
2616 if (ASan.UseAfterScope) {
2617 AsanPoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
2618 M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(),
2619 IntptrTy, IntptrTy));
2620 AsanUnpoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
2621 M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(),
2622 IntptrTy, IntptrTy));
2623 }
2624
2625 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
2626 std::ostringstream Name;
2627 Name << kAsanSetShadowPrefix;
2628 Name << std::setw(2) << std::setfill('0') << std::hex << Val;
2629 AsanSetShadowFunc[Val] =
2630 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2631 Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy));
2632 }
2633
2634 AsanAllocaPoisonFunc = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2635 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy));
2636 AsanAllocasUnpoisonFunc =
2637 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2638 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy));
2639 }
2640
copyToShadowInline(ArrayRef<uint8_t> ShadowMask,ArrayRef<uint8_t> ShadowBytes,size_t Begin,size_t End,IRBuilder<> & IRB,Value * ShadowBase)2641 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
2642 ArrayRef<uint8_t> ShadowBytes,
2643 size_t Begin, size_t End,
2644 IRBuilder<> &IRB,
2645 Value *ShadowBase) {
2646 if (Begin >= End)
2647 return;
2648
2649 const size_t LargestStoreSizeInBytes =
2650 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
2651
2652 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
2653
2654 // Poison given range in shadow using larges store size with out leading and
2655 // trailing zeros in ShadowMask. Zeros never change, so they need neither
2656 // poisoning nor up-poisoning. Still we don't mind if some of them get into a
2657 // middle of a store.
2658 for (size_t i = Begin; i < End;) {
2659 if (!ShadowMask[i]) {
2660 assert(!ShadowBytes[i]);
2661 ++i;
2662 continue;
2663 }
2664
2665 size_t StoreSizeInBytes = LargestStoreSizeInBytes;
2666 // Fit store size into the range.
2667 while (StoreSizeInBytes > End - i)
2668 StoreSizeInBytes /= 2;
2669
2670 // Minimize store size by trimming trailing zeros.
2671 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
2672 while (j <= StoreSizeInBytes / 2)
2673 StoreSizeInBytes /= 2;
2674 }
2675
2676 uint64_t Val = 0;
2677 for (size_t j = 0; j < StoreSizeInBytes; j++) {
2678 if (IsLittleEndian)
2679 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
2680 else
2681 Val = (Val << 8) | ShadowBytes[i + j];
2682 }
2683
2684 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
2685 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
2686 IRB.CreateAlignedStore(
2687 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 1);
2688
2689 i += StoreSizeInBytes;
2690 }
2691 }
2692
copyToShadow(ArrayRef<uint8_t> ShadowMask,ArrayRef<uint8_t> ShadowBytes,IRBuilder<> & IRB,Value * ShadowBase)2693 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
2694 ArrayRef<uint8_t> ShadowBytes,
2695 IRBuilder<> &IRB, Value *ShadowBase) {
2696 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
2697 }
2698
copyToShadow(ArrayRef<uint8_t> ShadowMask,ArrayRef<uint8_t> ShadowBytes,size_t Begin,size_t End,IRBuilder<> & IRB,Value * ShadowBase)2699 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
2700 ArrayRef<uint8_t> ShadowBytes,
2701 size_t Begin, size_t End,
2702 IRBuilder<> &IRB, Value *ShadowBase) {
2703 assert(ShadowMask.size() == ShadowBytes.size());
2704 size_t Done = Begin;
2705 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
2706 if (!ShadowMask[i]) {
2707 assert(!ShadowBytes[i]);
2708 continue;
2709 }
2710 uint8_t Val = ShadowBytes[i];
2711 if (!AsanSetShadowFunc[Val])
2712 continue;
2713
2714 // Skip same values.
2715 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
2716 }
2717
2718 if (j - i >= ClMaxInlinePoisoningSize) {
2719 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
2720 IRB.CreateCall(AsanSetShadowFunc[Val],
2721 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
2722 ConstantInt::get(IntptrTy, j - i)});
2723 Done = j;
2724 }
2725 }
2726
2727 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
2728 }
2729
2730 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
2731 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
StackMallocSizeClass(uint64_t LocalStackSize)2732 static int StackMallocSizeClass(uint64_t LocalStackSize) {
2733 assert(LocalStackSize <= kMaxStackMallocSize);
2734 uint64_t MaxSize = kMinStackMallocSize;
2735 for (int i = 0;; i++, MaxSize *= 2)
2736 if (LocalStackSize <= MaxSize) return i;
2737 llvm_unreachable("impossible LocalStackSize");
2738 }
2739
copyArgsPassedByValToAllocas()2740 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
2741 Instruction *CopyInsertPoint = &F.front().front();
2742 if (CopyInsertPoint == ASan.LocalDynamicShadow) {
2743 // Insert after the dynamic shadow location is determined
2744 CopyInsertPoint = CopyInsertPoint->getNextNode();
2745 assert(CopyInsertPoint);
2746 }
2747 IRBuilder<> IRB(CopyInsertPoint);
2748 const DataLayout &DL = F.getParent()->getDataLayout();
2749 for (Argument &Arg : F.args()) {
2750 if (Arg.hasByValAttr()) {
2751 Type *Ty = Arg.getType()->getPointerElementType();
2752 unsigned Align = Arg.getParamAlignment();
2753 if (Align == 0) Align = DL.getABITypeAlignment(Ty);
2754
2755 AllocaInst *AI = IRB.CreateAlloca(
2756 Ty, nullptr,
2757 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
2758 ".byval");
2759 AI->setAlignment(Align);
2760 Arg.replaceAllUsesWith(AI);
2761
2762 uint64_t AllocSize = DL.getTypeAllocSize(Ty);
2763 IRB.CreateMemCpy(AI, Align, &Arg, Align, AllocSize);
2764 }
2765 }
2766 }
2767
createPHI(IRBuilder<> & IRB,Value * Cond,Value * ValueIfTrue,Instruction * ThenTerm,Value * ValueIfFalse)2768 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
2769 Value *ValueIfTrue,
2770 Instruction *ThenTerm,
2771 Value *ValueIfFalse) {
2772 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
2773 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
2774 PHI->addIncoming(ValueIfFalse, CondBlock);
2775 BasicBlock *ThenBlock = ThenTerm->getParent();
2776 PHI->addIncoming(ValueIfTrue, ThenBlock);
2777 return PHI;
2778 }
2779
createAllocaForLayout(IRBuilder<> & IRB,const ASanStackFrameLayout & L,bool Dynamic)2780 Value *FunctionStackPoisoner::createAllocaForLayout(
2781 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
2782 AllocaInst *Alloca;
2783 if (Dynamic) {
2784 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
2785 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
2786 "MyAlloca");
2787 } else {
2788 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
2789 nullptr, "MyAlloca");
2790 assert(Alloca->isStaticAlloca());
2791 }
2792 assert((ClRealignStack & (ClRealignStack - 1)) == 0);
2793 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
2794 Alloca->setAlignment(FrameAlignment);
2795 return IRB.CreatePointerCast(Alloca, IntptrTy);
2796 }
2797
createDynamicAllocasInitStorage()2798 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
2799 BasicBlock &FirstBB = *F.begin();
2800 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
2801 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
2802 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
2803 DynamicAllocaLayout->setAlignment(32);
2804 }
2805
processDynamicAllocas()2806 void FunctionStackPoisoner::processDynamicAllocas() {
2807 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
2808 assert(DynamicAllocaPoisonCallVec.empty());
2809 return;
2810 }
2811
2812 // Insert poison calls for lifetime intrinsics for dynamic allocas.
2813 for (const auto &APC : DynamicAllocaPoisonCallVec) {
2814 assert(APC.InsBefore);
2815 assert(APC.AI);
2816 assert(ASan.isInterestingAlloca(*APC.AI));
2817 assert(!APC.AI->isStaticAlloca());
2818
2819 IRBuilder<> IRB(APC.InsBefore);
2820 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
2821 // Dynamic allocas will be unpoisoned unconditionally below in
2822 // unpoisonDynamicAllocas.
2823 // Flag that we need unpoison static allocas.
2824 }
2825
2826 // Handle dynamic allocas.
2827 createDynamicAllocasInitStorage();
2828 for (auto &AI : DynamicAllocaVec)
2829 handleDynamicAllocaCall(AI);
2830 unpoisonDynamicAllocas();
2831 }
2832
processStaticAllocas()2833 void FunctionStackPoisoner::processStaticAllocas() {
2834 if (AllocaVec.empty()) {
2835 assert(StaticAllocaPoisonCallVec.empty());
2836 return;
2837 }
2838
2839 int StackMallocIdx = -1;
2840 DebugLoc EntryDebugLocation;
2841 if (auto SP = F.getSubprogram())
2842 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP);
2843
2844 Instruction *InsBefore = AllocaVec[0];
2845 IRBuilder<> IRB(InsBefore);
2846 IRB.SetCurrentDebugLocation(EntryDebugLocation);
2847
2848 // Make sure non-instrumented allocas stay in the entry block. Otherwise,
2849 // debug info is broken, because only entry-block allocas are treated as
2850 // regular stack slots.
2851 auto InsBeforeB = InsBefore->getParent();
2852 assert(InsBeforeB == &F.getEntryBlock());
2853 for (auto *AI : StaticAllocasToMoveUp)
2854 if (AI->getParent() == InsBeforeB)
2855 AI->moveBefore(InsBefore);
2856
2857 // If we have a call to llvm.localescape, keep it in the entry block.
2858 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
2859
2860 SmallVector<ASanStackVariableDescription, 16> SVD;
2861 SVD.reserve(AllocaVec.size());
2862 for (AllocaInst *AI : AllocaVec) {
2863 ASanStackVariableDescription D = {AI->getName().data(),
2864 ASan.getAllocaSizeInBytes(*AI),
2865 0,
2866 AI->getAlignment(),
2867 AI,
2868 0,
2869 0};
2870 SVD.push_back(D);
2871 }
2872
2873 // Minimal header size (left redzone) is 4 pointers,
2874 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
2875 size_t Granularity = 1ULL << Mapping.Scale;
2876 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity);
2877 const ASanStackFrameLayout &L =
2878 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
2879
2880 // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
2881 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
2882 for (auto &Desc : SVD)
2883 AllocaToSVDMap[Desc.AI] = &Desc;
2884
2885 // Update SVD with information from lifetime intrinsics.
2886 for (const auto &APC : StaticAllocaPoisonCallVec) {
2887 assert(APC.InsBefore);
2888 assert(APC.AI);
2889 assert(ASan.isInterestingAlloca(*APC.AI));
2890 assert(APC.AI->isStaticAlloca());
2891
2892 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
2893 Desc.LifetimeSize = Desc.Size;
2894 if (const DILocation *FnLoc = EntryDebugLocation.get()) {
2895 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
2896 if (LifetimeLoc->getFile() == FnLoc->getFile())
2897 if (unsigned Line = LifetimeLoc->getLine())
2898 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
2899 }
2900 }
2901 }
2902
2903 auto DescriptionString = ComputeASanStackFrameDescription(SVD);
2904 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
2905 uint64_t LocalStackSize = L.FrameSize;
2906 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel &&
2907 LocalStackSize <= kMaxStackMallocSize;
2908 bool DoDynamicAlloca = ClDynamicAllocaStack;
2909 // Don't do dynamic alloca or stack malloc if:
2910 // 1) There is inline asm: too often it makes assumptions on which registers
2911 // are available.
2912 // 2) There is a returns_twice call (typically setjmp), which is
2913 // optimization-hostile, and doesn't play well with introduced indirect
2914 // register-relative calculation of local variable addresses.
2915 DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
2916 DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
2917
2918 Value *StaticAlloca =
2919 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
2920
2921 Value *FakeStack;
2922 Value *LocalStackBase;
2923 Value *LocalStackBaseAlloca;
2924 bool Deref;
2925
2926 if (DoStackMalloc) {
2927 LocalStackBaseAlloca =
2928 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
2929 // void *FakeStack = __asan_option_detect_stack_use_after_return
2930 // ? __asan_stack_malloc_N(LocalStackSize)
2931 // : nullptr;
2932 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
2933 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
2934 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
2935 Value *UseAfterReturnIsEnabled =
2936 IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUseAfterReturn),
2937 Constant::getNullValue(IRB.getInt32Ty()));
2938 Instruction *Term =
2939 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
2940 IRBuilder<> IRBIf(Term);
2941 IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
2942 StackMallocIdx = StackMallocSizeClass(LocalStackSize);
2943 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
2944 Value *FakeStackValue =
2945 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
2946 ConstantInt::get(IntptrTy, LocalStackSize));
2947 IRB.SetInsertPoint(InsBefore);
2948 IRB.SetCurrentDebugLocation(EntryDebugLocation);
2949 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
2950 ConstantInt::get(IntptrTy, 0));
2951
2952 Value *NoFakeStack =
2953 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
2954 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
2955 IRBIf.SetInsertPoint(Term);
2956 IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
2957 Value *AllocaValue =
2958 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
2959
2960 IRB.SetInsertPoint(InsBefore);
2961 IRB.SetCurrentDebugLocation(EntryDebugLocation);
2962 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
2963 IRB.SetCurrentDebugLocation(EntryDebugLocation);
2964 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
2965 Deref = true;
2966 } else {
2967 // void *FakeStack = nullptr;
2968 // void *LocalStackBase = alloca(LocalStackSize);
2969 FakeStack = ConstantInt::get(IntptrTy, 0);
2970 LocalStackBase =
2971 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
2972 LocalStackBaseAlloca = LocalStackBase;
2973 Deref = false;
2974 }
2975
2976 // Replace Alloca instructions with base+offset.
2977 for (const auto &Desc : SVD) {
2978 AllocaInst *AI = Desc.AI;
2979 replaceDbgDeclareForAlloca(AI, LocalStackBaseAlloca, DIB, Deref,
2980 Desc.Offset, DIExpression::NoDeref);
2981 Value *NewAllocaPtr = IRB.CreateIntToPtr(
2982 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
2983 AI->getType());
2984 AI->replaceAllUsesWith(NewAllocaPtr);
2985 }
2986
2987 // The left-most redzone has enough space for at least 4 pointers.
2988 // Write the Magic value to redzone[0].
2989 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
2990 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
2991 BasePlus0);
2992 // Write the frame description constant to redzone[1].
2993 Value *BasePlus1 = IRB.CreateIntToPtr(
2994 IRB.CreateAdd(LocalStackBase,
2995 ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
2996 IntptrPtrTy);
2997 GlobalVariable *StackDescriptionGlobal =
2998 createPrivateGlobalForString(*F.getParent(), DescriptionString,
2999 /*AllowMerging*/ true);
3000 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
3001 IRB.CreateStore(Description, BasePlus1);
3002 // Write the PC to redzone[2].
3003 Value *BasePlus2 = IRB.CreateIntToPtr(
3004 IRB.CreateAdd(LocalStackBase,
3005 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
3006 IntptrPtrTy);
3007 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
3008
3009 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
3010
3011 // Poison the stack red zones at the entry.
3012 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
3013 // As mask we must use most poisoned case: red zones and after scope.
3014 // As bytes we can use either the same or just red zones only.
3015 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
3016
3017 if (!StaticAllocaPoisonCallVec.empty()) {
3018 const auto &ShadowInScope = GetShadowBytes(SVD, L);
3019
3020 // Poison static allocas near lifetime intrinsics.
3021 for (const auto &APC : StaticAllocaPoisonCallVec) {
3022 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3023 assert(Desc.Offset % L.Granularity == 0);
3024 size_t Begin = Desc.Offset / L.Granularity;
3025 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
3026
3027 IRBuilder<> IRB(APC.InsBefore);
3028 copyToShadow(ShadowAfterScope,
3029 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
3030 IRB, ShadowBase);
3031 }
3032 }
3033
3034 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
3035 SmallVector<uint8_t, 64> ShadowAfterReturn;
3036
3037 // (Un)poison the stack before all ret instructions.
3038 for (auto Ret : RetVec) {
3039 IRBuilder<> IRBRet(Ret);
3040 // Mark the current frame as retired.
3041 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
3042 BasePlus0);
3043 if (DoStackMalloc) {
3044 assert(StackMallocIdx >= 0);
3045 // if FakeStack != 0 // LocalStackBase == FakeStack
3046 // // In use-after-return mode, poison the whole stack frame.
3047 // if StackMallocIdx <= 4
3048 // // For small sizes inline the whole thing:
3049 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3050 // **SavedFlagPtr(FakeStack) = 0
3051 // else
3052 // __asan_stack_free_N(FakeStack, LocalStackSize)
3053 // else
3054 // <This is not a fake stack; unpoison the redzones>
3055 Value *Cmp =
3056 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
3057 TerminatorInst *ThenTerm, *ElseTerm;
3058 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
3059
3060 IRBuilder<> IRBPoison(ThenTerm);
3061 if (StackMallocIdx <= 4) {
3062 int ClassSize = kMinStackMallocSize << StackMallocIdx;
3063 ShadowAfterReturn.resize(ClassSize / L.Granularity,
3064 kAsanStackUseAfterReturnMagic);
3065 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
3066 ShadowBase);
3067 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
3068 FakeStack,
3069 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
3070 Value *SavedFlagPtr = IRBPoison.CreateLoad(
3071 IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
3072 IRBPoison.CreateStore(
3073 Constant::getNullValue(IRBPoison.getInt8Ty()),
3074 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
3075 } else {
3076 // For larger frames call __asan_stack_free_*.
3077 IRBPoison.CreateCall(
3078 AsanStackFreeFunc[StackMallocIdx],
3079 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
3080 }
3081
3082 IRBuilder<> IRBElse(ElseTerm);
3083 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
3084 } else {
3085 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
3086 }
3087 }
3088
3089 // We are done. Remove the old unused alloca instructions.
3090 for (auto AI : AllocaVec) AI->eraseFromParent();
3091 }
3092
poisonAlloca(Value * V,uint64_t Size,IRBuilder<> & IRB,bool DoPoison)3093 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
3094 IRBuilder<> &IRB, bool DoPoison) {
3095 // For now just insert the call to ASan runtime.
3096 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
3097 Value *SizeArg = ConstantInt::get(IntptrTy, Size);
3098 IRB.CreateCall(
3099 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
3100 {AddrArg, SizeArg});
3101 }
3102
3103 // Handling llvm.lifetime intrinsics for a given %alloca:
3104 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3105 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3106 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3107 // could be poisoned by previous llvm.lifetime.end instruction, as the
3108 // variable may go in and out of scope several times, e.g. in loops).
3109 // (3) if we poisoned at least one %alloca in a function,
3110 // unpoison the whole stack frame at function exit.
3111
findAllocaForValue(Value * V)3112 AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
3113 if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
3114 // We're interested only in allocas we can handle.
3115 return ASan.isInterestingAlloca(*AI) ? AI : nullptr;
3116 // See if we've already calculated (or started to calculate) alloca for a
3117 // given value.
3118 AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
3119 if (I != AllocaForValue.end()) return I->second;
3120 // Store 0 while we're calculating alloca for value V to avoid
3121 // infinite recursion if the value references itself.
3122 AllocaForValue[V] = nullptr;
3123 AllocaInst *Res = nullptr;
3124 if (CastInst *CI = dyn_cast<CastInst>(V))
3125 Res = findAllocaForValue(CI->getOperand(0));
3126 else if (PHINode *PN = dyn_cast<PHINode>(V)) {
3127 for (Value *IncValue : PN->incoming_values()) {
3128 // Allow self-referencing phi-nodes.
3129 if (IncValue == PN) continue;
3130 AllocaInst *IncValueAI = findAllocaForValue(IncValue);
3131 // AI for incoming values should exist and should all be equal.
3132 if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
3133 return nullptr;
3134 Res = IncValueAI;
3135 }
3136 } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) {
3137 Res = findAllocaForValue(EP->getPointerOperand());
3138 } else {
3139 LLVM_DEBUG(dbgs() << "Alloca search canceled on unknown instruction: " << *V
3140 << "\n");
3141 }
3142 if (Res) AllocaForValue[V] = Res;
3143 return Res;
3144 }
3145
handleDynamicAllocaCall(AllocaInst * AI)3146 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
3147 IRBuilder<> IRB(AI);
3148
3149 const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment());
3150 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
3151
3152 Value *Zero = Constant::getNullValue(IntptrTy);
3153 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
3154 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
3155
3156 // Since we need to extend alloca with additional memory to locate
3157 // redzones, and OldSize is number of allocated blocks with
3158 // ElementSize size, get allocated memory size in bytes by
3159 // OldSize * ElementSize.
3160 const unsigned ElementSize =
3161 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
3162 Value *OldSize =
3163 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
3164 ConstantInt::get(IntptrTy, ElementSize));
3165
3166 // PartialSize = OldSize % 32
3167 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
3168
3169 // Misalign = kAllocaRzSize - PartialSize;
3170 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
3171
3172 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3173 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
3174 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
3175
3176 // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
3177 // Align is added to locate left redzone, PartialPadding for possible
3178 // partial redzone and kAllocaRzSize for right redzone respectively.
3179 Value *AdditionalChunkSize = IRB.CreateAdd(
3180 ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding);
3181
3182 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
3183
3184 // Insert new alloca with new NewSize and Align params.
3185 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
3186 NewAlloca->setAlignment(Align);
3187
3188 // NewAddress = Address + Align
3189 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
3190 ConstantInt::get(IntptrTy, Align));
3191
3192 // Insert __asan_alloca_poison call for new created alloca.
3193 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
3194
3195 // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3196 // for unpoisoning stuff.
3197 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
3198
3199 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
3200
3201 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3202 AI->replaceAllUsesWith(NewAddressPtr);
3203
3204 // We are done. Erase old alloca from parent.
3205 AI->eraseFromParent();
3206 }
3207
3208 // isSafeAccess returns true if Addr is always inbounds with respect to its
3209 // base object. For example, it is a field access or an array access with
3210 // constant inbounds index.
isSafeAccess(ObjectSizeOffsetVisitor & ObjSizeVis,Value * Addr,uint64_t TypeSize) const3211 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
3212 Value *Addr, uint64_t TypeSize) const {
3213 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
3214 if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
3215 uint64_t Size = SizeOffset.first.getZExtValue();
3216 int64_t Offset = SizeOffset.second.getSExtValue();
3217 // Three checks are required to ensure safety:
3218 // . Offset >= 0 (since the offset is given from the base ptr)
3219 // . Size >= Offset (unsigned)
3220 // . Size - Offset >= NeededSize (unsigned)
3221 return Offset >= 0 && Size >= uint64_t(Offset) &&
3222 Size - uint64_t(Offset) >= TypeSize / 8;
3223 }
3224