1 //===- BoundsChecking.cpp - Instrumentation for run-time bounds checking --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/Transforms/Instrumentation/BoundsChecking.h"
11 #include "llvm/ADT/Statistic.h"
12 #include "llvm/ADT/Twine.h"
13 #include "llvm/Analysis/MemoryBuiltins.h"
14 #include "llvm/Analysis/ScalarEvolution.h"
15 #include "llvm/Analysis/TargetFolder.h"
16 #include "llvm/Analysis/TargetLibraryInfo.h"
17 #include "llvm/IR/BasicBlock.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/InstIterator.h"
23 #include "llvm/IR/InstrTypes.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Value.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <cstdint>
35 #include <vector>
36
37 using namespace llvm;
38
39 #define DEBUG_TYPE "bounds-checking"
40
41 static cl::opt<bool> SingleTrapBB("bounds-checking-single-trap",
42 cl::desc("Use one trap block per function"));
43
44 STATISTIC(ChecksAdded, "Bounds checks added");
45 STATISTIC(ChecksSkipped, "Bounds checks skipped");
46 STATISTIC(ChecksUnable, "Bounds checks unable to add");
47
48 using BuilderTy = IRBuilder<TargetFolder>;
49
50 /// Gets the conditions under which memory accessing instructions will overflow.
51 ///
52 /// \p Ptr is the pointer that will be read/written, and \p InstVal is either
53 /// the result from the load or the value being stored. It is used to determine
54 /// the size of memory block that is touched.
55 ///
56 /// Returns the condition under which the access will overflow.
getBoundsCheckCond(Value * Ptr,Value * InstVal,const DataLayout & DL,TargetLibraryInfo & TLI,ObjectSizeOffsetEvaluator & ObjSizeEval,BuilderTy & IRB,ScalarEvolution & SE)57 static Value *getBoundsCheckCond(Value *Ptr, Value *InstVal,
58 const DataLayout &DL, TargetLibraryInfo &TLI,
59 ObjectSizeOffsetEvaluator &ObjSizeEval,
60 BuilderTy &IRB, ScalarEvolution &SE) {
61 uint64_t NeededSize = DL.getTypeStoreSize(InstVal->getType());
62 LLVM_DEBUG(dbgs() << "Instrument " << *Ptr << " for " << Twine(NeededSize)
63 << " bytes\n");
64
65 SizeOffsetEvalType SizeOffset = ObjSizeEval.compute(Ptr);
66
67 if (!ObjSizeEval.bothKnown(SizeOffset)) {
68 ++ChecksUnable;
69 return nullptr;
70 }
71
72 Value *Size = SizeOffset.first;
73 Value *Offset = SizeOffset.second;
74 ConstantInt *SizeCI = dyn_cast<ConstantInt>(Size);
75
76 Type *IntTy = DL.getIntPtrType(Ptr->getType());
77 Value *NeededSizeVal = ConstantInt::get(IntTy, NeededSize);
78
79 auto SizeRange = SE.getUnsignedRange(SE.getSCEV(Size));
80 auto OffsetRange = SE.getUnsignedRange(SE.getSCEV(Offset));
81 auto NeededSizeRange = SE.getUnsignedRange(SE.getSCEV(NeededSizeVal));
82
83 // three checks are required to ensure safety:
84 // . Offset >= 0 (since the offset is given from the base ptr)
85 // . Size >= Offset (unsigned)
86 // . Size - Offset >= NeededSize (unsigned)
87 //
88 // optimization: if Size >= 0 (signed), skip 1st check
89 // FIXME: add NSW/NUW here? -- we dont care if the subtraction overflows
90 Value *ObjSize = IRB.CreateSub(Size, Offset);
91 Value *Cmp2 = SizeRange.getUnsignedMin().uge(OffsetRange.getUnsignedMax())
92 ? ConstantInt::getFalse(Ptr->getContext())
93 : IRB.CreateICmpULT(Size, Offset);
94 Value *Cmp3 = SizeRange.sub(OffsetRange)
95 .getUnsignedMin()
96 .uge(NeededSizeRange.getUnsignedMax())
97 ? ConstantInt::getFalse(Ptr->getContext())
98 : IRB.CreateICmpULT(ObjSize, NeededSizeVal);
99 Value *Or = IRB.CreateOr(Cmp2, Cmp3);
100 if ((!SizeCI || SizeCI->getValue().slt(0)) &&
101 !SizeRange.getSignedMin().isNonNegative()) {
102 Value *Cmp1 = IRB.CreateICmpSLT(Offset, ConstantInt::get(IntTy, 0));
103 Or = IRB.CreateOr(Cmp1, Or);
104 }
105
106 return Or;
107 }
108
109 /// Adds run-time bounds checks to memory accessing instructions.
110 ///
111 /// \p Or is the condition that should guard the trap.
112 ///
113 /// \p GetTrapBB is a callable that returns the trap BB to use on failure.
114 template <typename GetTrapBBT>
insertBoundsCheck(Value * Or,BuilderTy IRB,GetTrapBBT GetTrapBB)115 static void insertBoundsCheck(Value *Or, BuilderTy IRB, GetTrapBBT GetTrapBB) {
116 // check if the comparison is always false
117 ConstantInt *C = dyn_cast_or_null<ConstantInt>(Or);
118 if (C) {
119 ++ChecksSkipped;
120 // If non-zero, nothing to do.
121 if (!C->getZExtValue())
122 return;
123 }
124 ++ChecksAdded;
125
126 BasicBlock::iterator SplitI = IRB.GetInsertPoint();
127 BasicBlock *OldBB = SplitI->getParent();
128 BasicBlock *Cont = OldBB->splitBasicBlock(SplitI);
129 OldBB->getTerminator()->eraseFromParent();
130
131 if (C) {
132 // If we have a constant zero, unconditionally branch.
133 // FIXME: We should really handle this differently to bypass the splitting
134 // the block.
135 BranchInst::Create(GetTrapBB(IRB), OldBB);
136 return;
137 }
138
139 // Create the conditional branch.
140 BranchInst::Create(GetTrapBB(IRB), Cont, Or, OldBB);
141 }
142
addBoundsChecking(Function & F,TargetLibraryInfo & TLI,ScalarEvolution & SE)143 static bool addBoundsChecking(Function &F, TargetLibraryInfo &TLI,
144 ScalarEvolution &SE) {
145 const DataLayout &DL = F.getParent()->getDataLayout();
146 ObjectSizeOffsetEvaluator ObjSizeEval(DL, &TLI, F.getContext(),
147 /*RoundToAlign=*/true);
148
149 // check HANDLE_MEMORY_INST in include/llvm/Instruction.def for memory
150 // touching instructions
151 SmallVector<std::pair<Instruction *, Value *>, 4> TrapInfo;
152 for (Instruction &I : instructions(F)) {
153 Value *Or = nullptr;
154 BuilderTy IRB(I.getParent(), BasicBlock::iterator(&I), TargetFolder(DL));
155 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
156 Or = getBoundsCheckCond(LI->getPointerOperand(), LI, DL, TLI,
157 ObjSizeEval, IRB, SE);
158 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
159 Or = getBoundsCheckCond(SI->getPointerOperand(), SI->getValueOperand(),
160 DL, TLI, ObjSizeEval, IRB, SE);
161 } else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
162 Or = getBoundsCheckCond(AI->getPointerOperand(), AI->getCompareOperand(),
163 DL, TLI, ObjSizeEval, IRB, SE);
164 } else if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
165 Or = getBoundsCheckCond(AI->getPointerOperand(), AI->getValOperand(), DL,
166 TLI, ObjSizeEval, IRB, SE);
167 }
168 if (Or)
169 TrapInfo.push_back(std::make_pair(&I, Or));
170 }
171
172 // Create a trapping basic block on demand using a callback. Depending on
173 // flags, this will either create a single block for the entire function or
174 // will create a fresh block every time it is called.
175 BasicBlock *TrapBB = nullptr;
176 auto GetTrapBB = [&TrapBB](BuilderTy &IRB) {
177 if (TrapBB && SingleTrapBB)
178 return TrapBB;
179
180 Function *Fn = IRB.GetInsertBlock()->getParent();
181 // FIXME: This debug location doesn't make a lot of sense in the
182 // `SingleTrapBB` case.
183 auto DebugLoc = IRB.getCurrentDebugLocation();
184 IRBuilder<>::InsertPointGuard Guard(IRB);
185 TrapBB = BasicBlock::Create(Fn->getContext(), "trap", Fn);
186 IRB.SetInsertPoint(TrapBB);
187
188 auto *F = Intrinsic::getDeclaration(Fn->getParent(), Intrinsic::trap);
189 CallInst *TrapCall = IRB.CreateCall(F, {});
190 TrapCall->setDoesNotReturn();
191 TrapCall->setDoesNotThrow();
192 TrapCall->setDebugLoc(DebugLoc);
193 IRB.CreateUnreachable();
194
195 return TrapBB;
196 };
197
198 // Add the checks.
199 for (const auto &Entry : TrapInfo) {
200 Instruction *Inst = Entry.first;
201 BuilderTy IRB(Inst->getParent(), BasicBlock::iterator(Inst), TargetFolder(DL));
202 insertBoundsCheck(Entry.second, IRB, GetTrapBB);
203 }
204
205 return !TrapInfo.empty();
206 }
207
run(Function & F,FunctionAnalysisManager & AM)208 PreservedAnalyses BoundsCheckingPass::run(Function &F, FunctionAnalysisManager &AM) {
209 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
210 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
211
212 if (!addBoundsChecking(F, TLI, SE))
213 return PreservedAnalyses::all();
214
215 return PreservedAnalyses::none();
216 }
217
218 namespace {
219 struct BoundsCheckingLegacyPass : public FunctionPass {
220 static char ID;
221
BoundsCheckingLegacyPass__anon4a6950520211::BoundsCheckingLegacyPass222 BoundsCheckingLegacyPass() : FunctionPass(ID) {
223 initializeBoundsCheckingLegacyPassPass(*PassRegistry::getPassRegistry());
224 }
225
runOnFunction__anon4a6950520211::BoundsCheckingLegacyPass226 bool runOnFunction(Function &F) override {
227 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
228 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
229 return addBoundsChecking(F, TLI, SE);
230 }
231
getAnalysisUsage__anon4a6950520211::BoundsCheckingLegacyPass232 void getAnalysisUsage(AnalysisUsage &AU) const override {
233 AU.addRequired<TargetLibraryInfoWrapperPass>();
234 AU.addRequired<ScalarEvolutionWrapperPass>();
235 }
236 };
237 } // namespace
238
239 char BoundsCheckingLegacyPass::ID = 0;
240 INITIALIZE_PASS_BEGIN(BoundsCheckingLegacyPass, "bounds-checking",
241 "Run-time bounds checking", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)242 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
243 INITIALIZE_PASS_END(BoundsCheckingLegacyPass, "bounds-checking",
244 "Run-time bounds checking", false, false)
245
246 FunctionPass *llvm::createBoundsCheckingLegacyPass() {
247 return new BoundsCheckingLegacyPass();
248 }
249