1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer, a race detector.
11 //
12 // The tool is under development, for the details about previous versions see
13 // http://code.google.com/p/data-race-test
14 //
15 // The instrumentation phase is quite simple:
16 // - Insert calls to run-time library before every memory access.
17 // - Optimizations may apply to avoid instrumenting some of the accesses.
18 // - Insert calls at function entry/exit.
19 // The rest is handled by the run-time library.
20 //===----------------------------------------------------------------------===//
21
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/ProfileData/InstrProf.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Instrumentation.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/EscapeEnumerator.h"
48 #include "llvm/Transforms/Utils/ModuleUtils.h"
49
50 using namespace llvm;
51
52 #define DEBUG_TYPE "tsan"
53
54 static cl::opt<bool> ClInstrumentMemoryAccesses(
55 "tsan-instrument-memory-accesses", cl::init(true),
56 cl::desc("Instrument memory accesses"), cl::Hidden);
57 static cl::opt<bool> ClInstrumentFuncEntryExit(
58 "tsan-instrument-func-entry-exit", cl::init(true),
59 cl::desc("Instrument function entry and exit"), cl::Hidden);
60 static cl::opt<bool> ClHandleCxxExceptions(
61 "tsan-handle-cxx-exceptions", cl::init(true),
62 cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"),
63 cl::Hidden);
64 static cl::opt<bool> ClInstrumentAtomics(
65 "tsan-instrument-atomics", cl::init(true),
66 cl::desc("Instrument atomics"), cl::Hidden);
67 static cl::opt<bool> ClInstrumentMemIntrinsics(
68 "tsan-instrument-memintrinsics", cl::init(true),
69 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
70
71 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
72 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
73 STATISTIC(NumOmittedReadsBeforeWrite,
74 "Number of reads ignored due to following writes");
75 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
76 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
77 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
78 STATISTIC(NumOmittedReadsFromConstantGlobals,
79 "Number of reads from constant globals");
80 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
81 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
82
83 static const char *const kTsanModuleCtorName = "tsan.module_ctor";
84 static const char *const kTsanInitName = "__tsan_init";
85
86 namespace {
87
88 /// ThreadSanitizer: instrument the code in module to find races.
89 struct ThreadSanitizer : public FunctionPass {
ThreadSanitizer__anon173a843c0111::ThreadSanitizer90 ThreadSanitizer() : FunctionPass(ID) {}
91 StringRef getPassName() const override;
92 void getAnalysisUsage(AnalysisUsage &AU) const override;
93 bool runOnFunction(Function &F) override;
94 bool doInitialization(Module &M) override;
95 static char ID; // Pass identification, replacement for typeid.
96
97 private:
98 void initializeCallbacks(Module &M);
99 bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL);
100 bool instrumentAtomic(Instruction *I, const DataLayout &DL);
101 bool instrumentMemIntrinsic(Instruction *I);
102 void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
103 SmallVectorImpl<Instruction *> &All,
104 const DataLayout &DL);
105 bool addrPointsToConstantData(Value *Addr);
106 int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL);
107 void InsertRuntimeIgnores(Function &F);
108
109 Type *IntptrTy;
110 IntegerType *OrdTy;
111 // Callbacks to run-time library are computed in doInitialization.
112 Function *TsanFuncEntry;
113 Function *TsanFuncExit;
114 Function *TsanIgnoreBegin;
115 Function *TsanIgnoreEnd;
116 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
117 static const size_t kNumberOfAccessSizes = 5;
118 Function *TsanRead[kNumberOfAccessSizes];
119 Function *TsanWrite[kNumberOfAccessSizes];
120 Function *TsanUnalignedRead[kNumberOfAccessSizes];
121 Function *TsanUnalignedWrite[kNumberOfAccessSizes];
122 Function *TsanAtomicLoad[kNumberOfAccessSizes];
123 Function *TsanAtomicStore[kNumberOfAccessSizes];
124 Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes];
125 Function *TsanAtomicCAS[kNumberOfAccessSizes];
126 Function *TsanAtomicThreadFence;
127 Function *TsanAtomicSignalFence;
128 Function *TsanVptrUpdate;
129 Function *TsanVptrLoad;
130 Function *MemmoveFn, *MemcpyFn, *MemsetFn;
131 Function *TsanCtorFunction;
132 };
133 } // namespace
134
135 char ThreadSanitizer::ID = 0;
136 INITIALIZE_PASS_BEGIN(
137 ThreadSanitizer, "tsan",
138 "ThreadSanitizer: detects data races.",
139 false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)140 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
141 INITIALIZE_PASS_END(
142 ThreadSanitizer, "tsan",
143 "ThreadSanitizer: detects data races.",
144 false, false)
145
146 StringRef ThreadSanitizer::getPassName() const { return "ThreadSanitizer"; }
147
getAnalysisUsage(AnalysisUsage & AU) const148 void ThreadSanitizer::getAnalysisUsage(AnalysisUsage &AU) const {
149 AU.addRequired<TargetLibraryInfoWrapperPass>();
150 }
151
createThreadSanitizerPass()152 FunctionPass *llvm::createThreadSanitizerPass() {
153 return new ThreadSanitizer();
154 }
155
initializeCallbacks(Module & M)156 void ThreadSanitizer::initializeCallbacks(Module &M) {
157 IRBuilder<> IRB(M.getContext());
158 AttributeList Attr;
159 Attr = Attr.addAttribute(M.getContext(), AttributeList::FunctionIndex,
160 Attribute::NoUnwind);
161 // Initialize the callbacks.
162 TsanFuncEntry = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
163 "__tsan_func_entry", Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()));
164 TsanFuncExit = checkSanitizerInterfaceFunction(
165 M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy()));
166 TsanIgnoreBegin = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
167 "__tsan_ignore_thread_begin", Attr, IRB.getVoidTy()));
168 TsanIgnoreEnd = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
169 "__tsan_ignore_thread_end", Attr, IRB.getVoidTy()));
170 OrdTy = IRB.getInt32Ty();
171 for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
172 const unsigned ByteSize = 1U << i;
173 const unsigned BitSize = ByteSize * 8;
174 std::string ByteSizeStr = utostr(ByteSize);
175 std::string BitSizeStr = utostr(BitSize);
176 SmallString<32> ReadName("__tsan_read" + ByteSizeStr);
177 TsanRead[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
178 ReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()));
179
180 SmallString<32> WriteName("__tsan_write" + ByteSizeStr);
181 TsanWrite[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
182 WriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()));
183
184 SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr);
185 TsanUnalignedRead[i] =
186 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
187 UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()));
188
189 SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr);
190 TsanUnalignedWrite[i] =
191 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
192 UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()));
193
194 Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
195 Type *PtrTy = Ty->getPointerTo();
196 SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load");
197 TsanAtomicLoad[i] = checkSanitizerInterfaceFunction(
198 M.getOrInsertFunction(AtomicLoadName, Attr, Ty, PtrTy, OrdTy));
199
200 SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store");
201 TsanAtomicStore[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
202 AtomicStoreName, Attr, IRB.getVoidTy(), PtrTy, Ty, OrdTy));
203
204 for (int op = AtomicRMWInst::FIRST_BINOP;
205 op <= AtomicRMWInst::LAST_BINOP; ++op) {
206 TsanAtomicRMW[op][i] = nullptr;
207 const char *NamePart = nullptr;
208 if (op == AtomicRMWInst::Xchg)
209 NamePart = "_exchange";
210 else if (op == AtomicRMWInst::Add)
211 NamePart = "_fetch_add";
212 else if (op == AtomicRMWInst::Sub)
213 NamePart = "_fetch_sub";
214 else if (op == AtomicRMWInst::And)
215 NamePart = "_fetch_and";
216 else if (op == AtomicRMWInst::Or)
217 NamePart = "_fetch_or";
218 else if (op == AtomicRMWInst::Xor)
219 NamePart = "_fetch_xor";
220 else if (op == AtomicRMWInst::Nand)
221 NamePart = "_fetch_nand";
222 else
223 continue;
224 SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
225 TsanAtomicRMW[op][i] = checkSanitizerInterfaceFunction(
226 M.getOrInsertFunction(RMWName, Attr, Ty, PtrTy, Ty, OrdTy));
227 }
228
229 SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr +
230 "_compare_exchange_val");
231 TsanAtomicCAS[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
232 AtomicCASName, Attr, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy));
233 }
234 TsanVptrUpdate = checkSanitizerInterfaceFunction(
235 M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(),
236 IRB.getInt8PtrTy(), IRB.getInt8PtrTy()));
237 TsanVptrLoad = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
238 "__tsan_vptr_read", Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()));
239 TsanAtomicThreadFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
240 "__tsan_atomic_thread_fence", Attr, IRB.getVoidTy(), OrdTy));
241 TsanAtomicSignalFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
242 "__tsan_atomic_signal_fence", Attr, IRB.getVoidTy(), OrdTy));
243
244 MemmoveFn = checkSanitizerInterfaceFunction(
245 M.getOrInsertFunction("memmove", Attr, IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
246 IRB.getInt8PtrTy(), IntptrTy));
247 MemcpyFn = checkSanitizerInterfaceFunction(
248 M.getOrInsertFunction("memcpy", Attr, IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
249 IRB.getInt8PtrTy(), IntptrTy));
250 MemsetFn = checkSanitizerInterfaceFunction(
251 M.getOrInsertFunction("memset", Attr, IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
252 IRB.getInt32Ty(), IntptrTy));
253 }
254
doInitialization(Module & M)255 bool ThreadSanitizer::doInitialization(Module &M) {
256 const DataLayout &DL = M.getDataLayout();
257 IntptrTy = DL.getIntPtrType(M.getContext());
258 std::tie(TsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions(
259 M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{},
260 /*InitArgs=*/{});
261
262 appendToGlobalCtors(M, TsanCtorFunction, 0);
263
264 return true;
265 }
266
isVtableAccess(Instruction * I)267 static bool isVtableAccess(Instruction *I) {
268 if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
269 return Tag->isTBAAVtableAccess();
270 return false;
271 }
272
273 // Do not instrument known races/"benign races" that come from compiler
274 // instrumentatin. The user has no way of suppressing them.
shouldInstrumentReadWriteFromAddress(const Module * M,Value * Addr)275 static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) {
276 // Peel off GEPs and BitCasts.
277 Addr = Addr->stripInBoundsOffsets();
278
279 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
280 if (GV->hasSection()) {
281 StringRef SectionName = GV->getSection();
282 // Check if the global is in the PGO counters section.
283 auto OF = Triple(M->getTargetTriple()).getObjectFormat();
284 if (SectionName.endswith(
285 getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false)))
286 return false;
287 }
288
289 // Check if the global is private gcov data.
290 if (GV->getName().startswith("__llvm_gcov") ||
291 GV->getName().startswith("__llvm_gcda"))
292 return false;
293 }
294
295 // Do not instrument acesses from different address spaces; we cannot deal
296 // with them.
297 if (Addr) {
298 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
299 if (PtrTy->getPointerAddressSpace() != 0)
300 return false;
301 }
302
303 return true;
304 }
305
addrPointsToConstantData(Value * Addr)306 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
307 // If this is a GEP, just analyze its pointer operand.
308 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
309 Addr = GEP->getPointerOperand();
310
311 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
312 if (GV->isConstant()) {
313 // Reads from constant globals can not race with any writes.
314 NumOmittedReadsFromConstantGlobals++;
315 return true;
316 }
317 } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
318 if (isVtableAccess(L)) {
319 // Reads from a vtable pointer can not race with any writes.
320 NumOmittedReadsFromVtable++;
321 return true;
322 }
323 }
324 return false;
325 }
326
327 // Instrumenting some of the accesses may be proven redundant.
328 // Currently handled:
329 // - read-before-write (within same BB, no calls between)
330 // - not captured variables
331 //
332 // We do not handle some of the patterns that should not survive
333 // after the classic compiler optimizations.
334 // E.g. two reads from the same temp should be eliminated by CSE,
335 // two writes should be eliminated by DSE, etc.
336 //
337 // 'Local' is a vector of insns within the same BB (no calls between).
338 // 'All' is a vector of insns that will be instrumented.
chooseInstructionsToInstrument(SmallVectorImpl<Instruction * > & Local,SmallVectorImpl<Instruction * > & All,const DataLayout & DL)339 void ThreadSanitizer::chooseInstructionsToInstrument(
340 SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All,
341 const DataLayout &DL) {
342 SmallPtrSet<Value*, 8> WriteTargets;
343 // Iterate from the end.
344 for (Instruction *I : reverse(Local)) {
345 if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
346 Value *Addr = Store->getPointerOperand();
347 if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
348 continue;
349 WriteTargets.insert(Addr);
350 } else {
351 LoadInst *Load = cast<LoadInst>(I);
352 Value *Addr = Load->getPointerOperand();
353 if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
354 continue;
355 if (WriteTargets.count(Addr)) {
356 // We will write to this temp, so no reason to analyze the read.
357 NumOmittedReadsBeforeWrite++;
358 continue;
359 }
360 if (addrPointsToConstantData(Addr)) {
361 // Addr points to some constant data -- it can not race with any writes.
362 continue;
363 }
364 }
365 Value *Addr = isa<StoreInst>(*I)
366 ? cast<StoreInst>(I)->getPointerOperand()
367 : cast<LoadInst>(I)->getPointerOperand();
368 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
369 !PointerMayBeCaptured(Addr, true, true)) {
370 // The variable is addressable but not captured, so it cannot be
371 // referenced from a different thread and participate in a data race
372 // (see llvm/Analysis/CaptureTracking.h for details).
373 NumOmittedNonCaptured++;
374 continue;
375 }
376 All.push_back(I);
377 }
378 Local.clear();
379 }
380
isAtomic(Instruction * I)381 static bool isAtomic(Instruction *I) {
382 // TODO: Ask TTI whether synchronization scope is between threads.
383 if (LoadInst *LI = dyn_cast<LoadInst>(I))
384 return LI->isAtomic() && LI->getSyncScopeID() != SyncScope::SingleThread;
385 if (StoreInst *SI = dyn_cast<StoreInst>(I))
386 return SI->isAtomic() && SI->getSyncScopeID() != SyncScope::SingleThread;
387 if (isa<AtomicRMWInst>(I))
388 return true;
389 if (isa<AtomicCmpXchgInst>(I))
390 return true;
391 if (isa<FenceInst>(I))
392 return true;
393 return false;
394 }
395
InsertRuntimeIgnores(Function & F)396 void ThreadSanitizer::InsertRuntimeIgnores(Function &F) {
397 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
398 IRB.CreateCall(TsanIgnoreBegin);
399 EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions);
400 while (IRBuilder<> *AtExit = EE.Next()) {
401 AtExit->CreateCall(TsanIgnoreEnd);
402 }
403 }
404
runOnFunction(Function & F)405 bool ThreadSanitizer::runOnFunction(Function &F) {
406 // This is required to prevent instrumenting call to __tsan_init from within
407 // the module constructor.
408 if (&F == TsanCtorFunction)
409 return false;
410 initializeCallbacks(*F.getParent());
411 SmallVector<Instruction*, 8> AllLoadsAndStores;
412 SmallVector<Instruction*, 8> LocalLoadsAndStores;
413 SmallVector<Instruction*, 8> AtomicAccesses;
414 SmallVector<Instruction*, 8> MemIntrinCalls;
415 bool Res = false;
416 bool HasCalls = false;
417 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
418 const DataLayout &DL = F.getParent()->getDataLayout();
419 const TargetLibraryInfo *TLI =
420 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
421
422 // Traverse all instructions, collect loads/stores/returns, check for calls.
423 for (auto &BB : F) {
424 for (auto &Inst : BB) {
425 if (isAtomic(&Inst))
426 AtomicAccesses.push_back(&Inst);
427 else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
428 LocalLoadsAndStores.push_back(&Inst);
429 else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
430 if (CallInst *CI = dyn_cast<CallInst>(&Inst))
431 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
432 if (isa<MemIntrinsic>(Inst))
433 MemIntrinCalls.push_back(&Inst);
434 HasCalls = true;
435 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
436 DL);
437 }
438 }
439 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
440 }
441
442 // We have collected all loads and stores.
443 // FIXME: many of these accesses do not need to be checked for races
444 // (e.g. variables that do not escape, etc).
445
446 // Instrument memory accesses only if we want to report bugs in the function.
447 if (ClInstrumentMemoryAccesses && SanitizeFunction)
448 for (auto Inst : AllLoadsAndStores) {
449 Res |= instrumentLoadOrStore(Inst, DL);
450 }
451
452 // Instrument atomic memory accesses in any case (they can be used to
453 // implement synchronization).
454 if (ClInstrumentAtomics)
455 for (auto Inst : AtomicAccesses) {
456 Res |= instrumentAtomic(Inst, DL);
457 }
458
459 if (ClInstrumentMemIntrinsics && SanitizeFunction)
460 for (auto Inst : MemIntrinCalls) {
461 Res |= instrumentMemIntrinsic(Inst);
462 }
463
464 if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) {
465 assert(!F.hasFnAttribute(Attribute::SanitizeThread));
466 if (HasCalls)
467 InsertRuntimeIgnores(F);
468 }
469
470 // Instrument function entry/exit points if there were instrumented accesses.
471 if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
472 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
473 Value *ReturnAddress = IRB.CreateCall(
474 Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
475 IRB.getInt32(0));
476 IRB.CreateCall(TsanFuncEntry, ReturnAddress);
477
478 EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions);
479 while (IRBuilder<> *AtExit = EE.Next()) {
480 AtExit->CreateCall(TsanFuncExit, {});
481 }
482 Res = true;
483 }
484 return Res;
485 }
486
instrumentLoadOrStore(Instruction * I,const DataLayout & DL)487 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I,
488 const DataLayout &DL) {
489 IRBuilder<> IRB(I);
490 bool IsWrite = isa<StoreInst>(*I);
491 Value *Addr = IsWrite
492 ? cast<StoreInst>(I)->getPointerOperand()
493 : cast<LoadInst>(I)->getPointerOperand();
494
495 // swifterror memory addresses are mem2reg promoted by instruction selection.
496 // As such they cannot have regular uses like an instrumentation function and
497 // it makes no sense to track them as memory.
498 if (Addr->isSwiftError())
499 return false;
500
501 int Idx = getMemoryAccessFuncIndex(Addr, DL);
502 if (Idx < 0)
503 return false;
504 if (IsWrite && isVtableAccess(I)) {
505 LLVM_DEBUG(dbgs() << " VPTR : " << *I << "\n");
506 Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
507 // StoredValue may be a vector type if we are storing several vptrs at once.
508 // In this case, just take the first element of the vector since this is
509 // enough to find vptr races.
510 if (isa<VectorType>(StoredValue->getType()))
511 StoredValue = IRB.CreateExtractElement(
512 StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
513 if (StoredValue->getType()->isIntegerTy())
514 StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
515 // Call TsanVptrUpdate.
516 IRB.CreateCall(TsanVptrUpdate,
517 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
518 IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())});
519 NumInstrumentedVtableWrites++;
520 return true;
521 }
522 if (!IsWrite && isVtableAccess(I)) {
523 IRB.CreateCall(TsanVptrLoad,
524 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
525 NumInstrumentedVtableReads++;
526 return true;
527 }
528 const unsigned Alignment = IsWrite
529 ? cast<StoreInst>(I)->getAlignment()
530 : cast<LoadInst>(I)->getAlignment();
531 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
532 const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
533 Value *OnAccessFunc = nullptr;
534 if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0)
535 OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
536 else
537 OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx];
538 IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
539 if (IsWrite) NumInstrumentedWrites++;
540 else NumInstrumentedReads++;
541 return true;
542 }
543
createOrdering(IRBuilder<> * IRB,AtomicOrdering ord)544 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
545 uint32_t v = 0;
546 switch (ord) {
547 case AtomicOrdering::NotAtomic:
548 llvm_unreachable("unexpected atomic ordering!");
549 case AtomicOrdering::Unordered: LLVM_FALLTHROUGH;
550 case AtomicOrdering::Monotonic: v = 0; break;
551 // Not specified yet:
552 // case AtomicOrdering::Consume: v = 1; break;
553 case AtomicOrdering::Acquire: v = 2; break;
554 case AtomicOrdering::Release: v = 3; break;
555 case AtomicOrdering::AcquireRelease: v = 4; break;
556 case AtomicOrdering::SequentiallyConsistent: v = 5; break;
557 }
558 return IRB->getInt32(v);
559 }
560
561 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
562 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
563 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
564 // instead we simply replace them with regular function calls, which are then
565 // intercepted by the run-time.
566 // Since tsan is running after everyone else, the calls should not be
567 // replaced back with intrinsics. If that becomes wrong at some point,
568 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
instrumentMemIntrinsic(Instruction * I)569 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
570 IRBuilder<> IRB(I);
571 if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
572 IRB.CreateCall(
573 MemsetFn,
574 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
575 IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
576 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
577 I->eraseFromParent();
578 } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
579 IRB.CreateCall(
580 isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
581 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
582 IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
583 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
584 I->eraseFromParent();
585 }
586 return false;
587 }
588
589 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
590 // standards. For background see C++11 standard. A slightly older, publicly
591 // available draft of the standard (not entirely up-to-date, but close enough
592 // for casual browsing) is available here:
593 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
594 // The following page contains more background information:
595 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
596
instrumentAtomic(Instruction * I,const DataLayout & DL)597 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) {
598 IRBuilder<> IRB(I);
599 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
600 Value *Addr = LI->getPointerOperand();
601 int Idx = getMemoryAccessFuncIndex(Addr, DL);
602 if (Idx < 0)
603 return false;
604 const unsigned ByteSize = 1U << Idx;
605 const unsigned BitSize = ByteSize * 8;
606 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
607 Type *PtrTy = Ty->getPointerTo();
608 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
609 createOrdering(&IRB, LI->getOrdering())};
610 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
611 Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args);
612 Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy);
613 I->replaceAllUsesWith(Cast);
614 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
615 Value *Addr = SI->getPointerOperand();
616 int Idx = getMemoryAccessFuncIndex(Addr, DL);
617 if (Idx < 0)
618 return false;
619 const unsigned ByteSize = 1U << Idx;
620 const unsigned BitSize = ByteSize * 8;
621 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
622 Type *PtrTy = Ty->getPointerTo();
623 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
624 IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty),
625 createOrdering(&IRB, SI->getOrdering())};
626 CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args);
627 ReplaceInstWithInst(I, C);
628 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
629 Value *Addr = RMWI->getPointerOperand();
630 int Idx = getMemoryAccessFuncIndex(Addr, DL);
631 if (Idx < 0)
632 return false;
633 Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx];
634 if (!F)
635 return false;
636 const unsigned ByteSize = 1U << Idx;
637 const unsigned BitSize = ByteSize * 8;
638 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
639 Type *PtrTy = Ty->getPointerTo();
640 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
641 IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
642 createOrdering(&IRB, RMWI->getOrdering())};
643 CallInst *C = CallInst::Create(F, Args);
644 ReplaceInstWithInst(I, C);
645 } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
646 Value *Addr = CASI->getPointerOperand();
647 int Idx = getMemoryAccessFuncIndex(Addr, DL);
648 if (Idx < 0)
649 return false;
650 const unsigned ByteSize = 1U << Idx;
651 const unsigned BitSize = ByteSize * 8;
652 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
653 Type *PtrTy = Ty->getPointerTo();
654 Value *CmpOperand =
655 IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty);
656 Value *NewOperand =
657 IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty);
658 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
659 CmpOperand,
660 NewOperand,
661 createOrdering(&IRB, CASI->getSuccessOrdering()),
662 createOrdering(&IRB, CASI->getFailureOrdering())};
663 CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
664 Value *Success = IRB.CreateICmpEQ(C, CmpOperand);
665 Value *OldVal = C;
666 Type *OrigOldValTy = CASI->getNewValOperand()->getType();
667 if (Ty != OrigOldValTy) {
668 // The value is a pointer, so we need to cast the return value.
669 OldVal = IRB.CreateIntToPtr(C, OrigOldValTy);
670 }
671
672 Value *Res =
673 IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0);
674 Res = IRB.CreateInsertValue(Res, Success, 1);
675
676 I->replaceAllUsesWith(Res);
677 I->eraseFromParent();
678 } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
679 Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
680 Function *F = FI->getSyncScopeID() == SyncScope::SingleThread ?
681 TsanAtomicSignalFence : TsanAtomicThreadFence;
682 CallInst *C = CallInst::Create(F, Args);
683 ReplaceInstWithInst(I, C);
684 }
685 return true;
686 }
687
getMemoryAccessFuncIndex(Value * Addr,const DataLayout & DL)688 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr,
689 const DataLayout &DL) {
690 Type *OrigPtrTy = Addr->getType();
691 Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
692 assert(OrigTy->isSized());
693 uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
694 if (TypeSize != 8 && TypeSize != 16 &&
695 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
696 NumAccessesWithBadSize++;
697 // Ignore all unusual sizes.
698 return -1;
699 }
700 size_t Idx = countTrailingZeros(TypeSize / 8);
701 assert(Idx < kNumberOfAccessSizes);
702 return Idx;
703 }
704