1 //===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This file defines ObjC ARC optimizations. ARC stands for Automatic
12 /// Reference Counting and is a system for managing reference counts for objects
13 /// in Objective C.
14 ///
15 /// The optimizations performed include elimination of redundant, partially
16 /// redundant, and inconsequential reference count operations, elimination of
17 /// redundant weak pointer operations, and numerous minor simplifications.
18 ///
19 /// WARNING: This file knows about certain library functions. It recognizes them
20 /// by name, and hardwires knowledge of their semantics.
21 ///
22 /// WARNING: This file knows about how certain Objective-C library functions are
23 /// used. Naive LLVM IR transformations which would otherwise be
24 /// behavior-preserving may break these assumptions.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "ARCRuntimeEntryPoints.h"
29 #include "BlotMapVector.h"
30 #include "DependencyAnalysis.h"
31 #include "ObjCARC.h"
32 #include "ProvenanceAnalysis.h"
33 #include "PtrState.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/None.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/Analysis/AliasAnalysis.h"
41 #include "llvm/Analysis/EHPersonalities.h"
42 #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
43 #include "llvm/Analysis/ObjCARCAnalysisUtils.h"
44 #include "llvm/Analysis/ObjCARCInstKind.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/CFG.h"
47 #include "llvm/IR/CallSite.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalVariable.h"
53 #include "llvm/IR/InstIterator.h"
54 #include "llvm/IR/InstrTypes.h"
55 #include "llvm/IR/Instruction.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/User.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include <cassert>
69 #include <iterator>
70 #include <utility>
71 
72 using namespace llvm;
73 using namespace llvm::objcarc;
74 
75 #define DEBUG_TYPE "objc-arc-opts"
76 
77 /// \defgroup ARCUtilities Utility declarations/definitions specific to ARC.
78 /// @{
79 
80 /// This is similar to GetRCIdentityRoot but it stops as soon
81 /// as it finds a value with multiple uses.
FindSingleUseIdentifiedObject(const Value * Arg)82 static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
83   // ConstantData (like ConstantPointerNull and UndefValue) is used across
84   // modules.  It's never a single-use value.
85   if (isa<ConstantData>(Arg))
86     return nullptr;
87 
88   if (Arg->hasOneUse()) {
89     if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
90       return FindSingleUseIdentifiedObject(BC->getOperand(0));
91     if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
92       if (GEP->hasAllZeroIndices())
93         return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
94     if (IsForwarding(GetBasicARCInstKind(Arg)))
95       return FindSingleUseIdentifiedObject(
96                cast<CallInst>(Arg)->getArgOperand(0));
97     if (!IsObjCIdentifiedObject(Arg))
98       return nullptr;
99     return Arg;
100   }
101 
102   // If we found an identifiable object but it has multiple uses, but they are
103   // trivial uses, we can still consider this to be a single-use value.
104   if (IsObjCIdentifiedObject(Arg)) {
105     for (const User *U : Arg->users())
106       if (!U->use_empty() || GetRCIdentityRoot(U) != Arg)
107          return nullptr;
108 
109     return Arg;
110   }
111 
112   return nullptr;
113 }
114 
115 /// @}
116 ///
117 /// \defgroup ARCOpt ARC Optimization.
118 /// @{
119 
120 // TODO: On code like this:
121 //
122 // objc_retain(%x)
123 // stuff_that_cannot_release()
124 // objc_autorelease(%x)
125 // stuff_that_cannot_release()
126 // objc_retain(%x)
127 // stuff_that_cannot_release()
128 // objc_autorelease(%x)
129 //
130 // The second retain and autorelease can be deleted.
131 
132 // TODO: It should be possible to delete
133 // objc_autoreleasePoolPush and objc_autoreleasePoolPop
134 // pairs if nothing is actually autoreleased between them. Also, autorelease
135 // calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
136 // after inlining) can be turned into plain release calls.
137 
138 // TODO: Critical-edge splitting. If the optimial insertion point is
139 // a critical edge, the current algorithm has to fail, because it doesn't
140 // know how to split edges. It should be possible to make the optimizer
141 // think in terms of edges, rather than blocks, and then split critical
142 // edges on demand.
143 
144 // TODO: OptimizeSequences could generalized to be Interprocedural.
145 
146 // TODO: Recognize that a bunch of other objc runtime calls have
147 // non-escaping arguments and non-releasing arguments, and may be
148 // non-autoreleasing.
149 
150 // TODO: Sink autorelease calls as far as possible. Unfortunately we
151 // usually can't sink them past other calls, which would be the main
152 // case where it would be useful.
153 
154 // TODO: The pointer returned from objc_loadWeakRetained is retained.
155 
156 // TODO: Delete release+retain pairs (rare).
157 
158 STATISTIC(NumNoops,       "Number of no-op objc calls eliminated");
159 STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
160 STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
161 STATISTIC(NumRets,        "Number of return value forwarding "
162                           "retain+autoreleases eliminated");
163 STATISTIC(NumRRs,         "Number of retain+release paths eliminated");
164 STATISTIC(NumPeeps,       "Number of calls peephole-optimized");
165 #ifndef NDEBUG
166 STATISTIC(NumRetainsBeforeOpt,
167           "Number of retains before optimization");
168 STATISTIC(NumReleasesBeforeOpt,
169           "Number of releases before optimization");
170 STATISTIC(NumRetainsAfterOpt,
171           "Number of retains after optimization");
172 STATISTIC(NumReleasesAfterOpt,
173           "Number of releases after optimization");
174 #endif
175 
176 namespace {
177 
178   /// Per-BasicBlock state.
179   class BBState {
180     /// The number of unique control paths from the entry which can reach this
181     /// block.
182     unsigned TopDownPathCount = 0;
183 
184     /// The number of unique control paths to exits from this block.
185     unsigned BottomUpPathCount = 0;
186 
187     /// The top-down traversal uses this to record information known about a
188     /// pointer at the bottom of each block.
189     BlotMapVector<const Value *, TopDownPtrState> PerPtrTopDown;
190 
191     /// The bottom-up traversal uses this to record information known about a
192     /// pointer at the top of each block.
193     BlotMapVector<const Value *, BottomUpPtrState> PerPtrBottomUp;
194 
195     /// Effective predecessors of the current block ignoring ignorable edges and
196     /// ignored backedges.
197     SmallVector<BasicBlock *, 2> Preds;
198 
199     /// Effective successors of the current block ignoring ignorable edges and
200     /// ignored backedges.
201     SmallVector<BasicBlock *, 2> Succs;
202 
203   public:
204     static const unsigned OverflowOccurredValue;
205 
206     BBState() = default;
207 
208     using top_down_ptr_iterator = decltype(PerPtrTopDown)::iterator;
209     using const_top_down_ptr_iterator = decltype(PerPtrTopDown)::const_iterator;
210 
top_down_ptr_begin()211     top_down_ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
top_down_ptr_end()212     top_down_ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
top_down_ptr_begin() const213     const_top_down_ptr_iterator top_down_ptr_begin() const {
214       return PerPtrTopDown.begin();
215     }
top_down_ptr_end() const216     const_top_down_ptr_iterator top_down_ptr_end() const {
217       return PerPtrTopDown.end();
218     }
hasTopDownPtrs() const219     bool hasTopDownPtrs() const {
220       return !PerPtrTopDown.empty();
221     }
222 
223     using bottom_up_ptr_iterator = decltype(PerPtrBottomUp)::iterator;
224     using const_bottom_up_ptr_iterator =
225         decltype(PerPtrBottomUp)::const_iterator;
226 
bottom_up_ptr_begin()227     bottom_up_ptr_iterator bottom_up_ptr_begin() {
228       return PerPtrBottomUp.begin();
229     }
bottom_up_ptr_end()230     bottom_up_ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
bottom_up_ptr_begin() const231     const_bottom_up_ptr_iterator bottom_up_ptr_begin() const {
232       return PerPtrBottomUp.begin();
233     }
bottom_up_ptr_end() const234     const_bottom_up_ptr_iterator bottom_up_ptr_end() const {
235       return PerPtrBottomUp.end();
236     }
hasBottomUpPtrs() const237     bool hasBottomUpPtrs() const {
238       return !PerPtrBottomUp.empty();
239     }
240 
241     /// Mark this block as being an entry block, which has one path from the
242     /// entry by definition.
SetAsEntry()243     void SetAsEntry() { TopDownPathCount = 1; }
244 
245     /// Mark this block as being an exit block, which has one path to an exit by
246     /// definition.
SetAsExit()247     void SetAsExit()  { BottomUpPathCount = 1; }
248 
249     /// Attempt to find the PtrState object describing the top down state for
250     /// pointer Arg. Return a new initialized PtrState describing the top down
251     /// state for Arg if we do not find one.
getPtrTopDownState(const Value * Arg)252     TopDownPtrState &getPtrTopDownState(const Value *Arg) {
253       return PerPtrTopDown[Arg];
254     }
255 
256     /// Attempt to find the PtrState object describing the bottom up state for
257     /// pointer Arg. Return a new initialized PtrState describing the bottom up
258     /// state for Arg if we do not find one.
getPtrBottomUpState(const Value * Arg)259     BottomUpPtrState &getPtrBottomUpState(const Value *Arg) {
260       return PerPtrBottomUp[Arg];
261     }
262 
263     /// Attempt to find the PtrState object describing the bottom up state for
264     /// pointer Arg.
findPtrBottomUpState(const Value * Arg)265     bottom_up_ptr_iterator findPtrBottomUpState(const Value *Arg) {
266       return PerPtrBottomUp.find(Arg);
267     }
268 
clearBottomUpPointers()269     void clearBottomUpPointers() {
270       PerPtrBottomUp.clear();
271     }
272 
clearTopDownPointers()273     void clearTopDownPointers() {
274       PerPtrTopDown.clear();
275     }
276 
277     void InitFromPred(const BBState &Other);
278     void InitFromSucc(const BBState &Other);
279     void MergePred(const BBState &Other);
280     void MergeSucc(const BBState &Other);
281 
282     /// Compute the number of possible unique paths from an entry to an exit
283     /// which pass through this block. This is only valid after both the
284     /// top-down and bottom-up traversals are complete.
285     ///
286     /// Returns true if overflow occurred. Returns false if overflow did not
287     /// occur.
GetAllPathCountWithOverflow(unsigned & PathCount) const288     bool GetAllPathCountWithOverflow(unsigned &PathCount) const {
289       if (TopDownPathCount == OverflowOccurredValue ||
290           BottomUpPathCount == OverflowOccurredValue)
291         return true;
292       unsigned long long Product =
293         (unsigned long long)TopDownPathCount*BottomUpPathCount;
294       // Overflow occurred if any of the upper bits of Product are set or if all
295       // the lower bits of Product are all set.
296       return (Product >> 32) ||
297              ((PathCount = Product) == OverflowOccurredValue);
298     }
299 
300     // Specialized CFG utilities.
301     using edge_iterator = SmallVectorImpl<BasicBlock *>::const_iterator;
302 
pred_begin() const303     edge_iterator pred_begin() const { return Preds.begin(); }
pred_end() const304     edge_iterator pred_end() const { return Preds.end(); }
succ_begin() const305     edge_iterator succ_begin() const { return Succs.begin(); }
succ_end() const306     edge_iterator succ_end() const { return Succs.end(); }
307 
addSucc(BasicBlock * Succ)308     void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); }
addPred(BasicBlock * Pred)309     void addPred(BasicBlock *Pred) { Preds.push_back(Pred); }
310 
isExit() const311     bool isExit() const { return Succs.empty(); }
312   };
313 
314 } // end anonymous namespace
315 
316 const unsigned BBState::OverflowOccurredValue = 0xffffffff;
317 
318 namespace llvm {
319 
320 raw_ostream &operator<<(raw_ostream &OS,
321                         BBState &BBState) LLVM_ATTRIBUTE_UNUSED;
322 
323 } // end namespace llvm
324 
InitFromPred(const BBState & Other)325 void BBState::InitFromPred(const BBState &Other) {
326   PerPtrTopDown = Other.PerPtrTopDown;
327   TopDownPathCount = Other.TopDownPathCount;
328 }
329 
InitFromSucc(const BBState & Other)330 void BBState::InitFromSucc(const BBState &Other) {
331   PerPtrBottomUp = Other.PerPtrBottomUp;
332   BottomUpPathCount = Other.BottomUpPathCount;
333 }
334 
335 /// The top-down traversal uses this to merge information about predecessors to
336 /// form the initial state for a new block.
MergePred(const BBState & Other)337 void BBState::MergePred(const BBState &Other) {
338   if (TopDownPathCount == OverflowOccurredValue)
339     return;
340 
341   // Other.TopDownPathCount can be 0, in which case it is either dead or a
342   // loop backedge. Loop backedges are special.
343   TopDownPathCount += Other.TopDownPathCount;
344 
345   // In order to be consistent, we clear the top down pointers when by adding
346   // TopDownPathCount becomes OverflowOccurredValue even though "true" overflow
347   // has not occurred.
348   if (TopDownPathCount == OverflowOccurredValue) {
349     clearTopDownPointers();
350     return;
351   }
352 
353   // Check for overflow. If we have overflow, fall back to conservative
354   // behavior.
355   if (TopDownPathCount < Other.TopDownPathCount) {
356     TopDownPathCount = OverflowOccurredValue;
357     clearTopDownPointers();
358     return;
359   }
360 
361   // For each entry in the other set, if our set has an entry with the same key,
362   // merge the entries. Otherwise, copy the entry and merge it with an empty
363   // entry.
364   for (auto MI = Other.top_down_ptr_begin(), ME = Other.top_down_ptr_end();
365        MI != ME; ++MI) {
366     auto Pair = PerPtrTopDown.insert(*MI);
367     Pair.first->second.Merge(Pair.second ? TopDownPtrState() : MI->second,
368                              /*TopDown=*/true);
369   }
370 
371   // For each entry in our set, if the other set doesn't have an entry with the
372   // same key, force it to merge with an empty entry.
373   for (auto MI = top_down_ptr_begin(), ME = top_down_ptr_end(); MI != ME; ++MI)
374     if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
375       MI->second.Merge(TopDownPtrState(), /*TopDown=*/true);
376 }
377 
378 /// The bottom-up traversal uses this to merge information about successors to
379 /// form the initial state for a new block.
MergeSucc(const BBState & Other)380 void BBState::MergeSucc(const BBState &Other) {
381   if (BottomUpPathCount == OverflowOccurredValue)
382     return;
383 
384   // Other.BottomUpPathCount can be 0, in which case it is either dead or a
385   // loop backedge. Loop backedges are special.
386   BottomUpPathCount += Other.BottomUpPathCount;
387 
388   // In order to be consistent, we clear the top down pointers when by adding
389   // BottomUpPathCount becomes OverflowOccurredValue even though "true" overflow
390   // has not occurred.
391   if (BottomUpPathCount == OverflowOccurredValue) {
392     clearBottomUpPointers();
393     return;
394   }
395 
396   // Check for overflow. If we have overflow, fall back to conservative
397   // behavior.
398   if (BottomUpPathCount < Other.BottomUpPathCount) {
399     BottomUpPathCount = OverflowOccurredValue;
400     clearBottomUpPointers();
401     return;
402   }
403 
404   // For each entry in the other set, if our set has an entry with the
405   // same key, merge the entries. Otherwise, copy the entry and merge
406   // it with an empty entry.
407   for (auto MI = Other.bottom_up_ptr_begin(), ME = Other.bottom_up_ptr_end();
408        MI != ME; ++MI) {
409     auto Pair = PerPtrBottomUp.insert(*MI);
410     Pair.first->second.Merge(Pair.second ? BottomUpPtrState() : MI->second,
411                              /*TopDown=*/false);
412   }
413 
414   // For each entry in our set, if the other set doesn't have an entry
415   // with the same key, force it to merge with an empty entry.
416   for (auto MI = bottom_up_ptr_begin(), ME = bottom_up_ptr_end(); MI != ME;
417        ++MI)
418     if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
419       MI->second.Merge(BottomUpPtrState(), /*TopDown=*/false);
420 }
421 
operator <<(raw_ostream & OS,BBState & BBInfo)422 raw_ostream &llvm::operator<<(raw_ostream &OS, BBState &BBInfo) {
423   // Dump the pointers we are tracking.
424   OS << "    TopDown State:\n";
425   if (!BBInfo.hasTopDownPtrs()) {
426     LLVM_DEBUG(dbgs() << "        NONE!\n");
427   } else {
428     for (auto I = BBInfo.top_down_ptr_begin(), E = BBInfo.top_down_ptr_end();
429          I != E; ++I) {
430       const PtrState &P = I->second;
431       OS << "        Ptr: " << *I->first
432          << "\n            KnownSafe:        " << (P.IsKnownSafe()?"true":"false")
433          << "\n            ImpreciseRelease: "
434            << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n"
435          << "            HasCFGHazards:    "
436            << (P.IsCFGHazardAfflicted()?"true":"false") << "\n"
437          << "            KnownPositive:    "
438            << (P.HasKnownPositiveRefCount()?"true":"false") << "\n"
439          << "            Seq:              "
440          << P.GetSeq() << "\n";
441     }
442   }
443 
444   OS << "    BottomUp State:\n";
445   if (!BBInfo.hasBottomUpPtrs()) {
446     LLVM_DEBUG(dbgs() << "        NONE!\n");
447   } else {
448     for (auto I = BBInfo.bottom_up_ptr_begin(), E = BBInfo.bottom_up_ptr_end();
449          I != E; ++I) {
450       const PtrState &P = I->second;
451       OS << "        Ptr: " << *I->first
452          << "\n            KnownSafe:        " << (P.IsKnownSafe()?"true":"false")
453          << "\n            ImpreciseRelease: "
454            << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n"
455          << "            HasCFGHazards:    "
456            << (P.IsCFGHazardAfflicted()?"true":"false") << "\n"
457          << "            KnownPositive:    "
458            << (P.HasKnownPositiveRefCount()?"true":"false") << "\n"
459          << "            Seq:              "
460          << P.GetSeq() << "\n";
461     }
462   }
463 
464   return OS;
465 }
466 
467 namespace {
468 
469   /// The main ARC optimization pass.
470   class ObjCARCOpt : public FunctionPass {
471     bool Changed;
472     ProvenanceAnalysis PA;
473 
474     /// A cache of references to runtime entry point constants.
475     ARCRuntimeEntryPoints EP;
476 
477     /// A cache of MDKinds that can be passed into other functions to propagate
478     /// MDKind identifiers.
479     ARCMDKindCache MDKindCache;
480 
481     /// A flag indicating whether this optimization pass should run.
482     bool Run;
483 
484     /// Flags which determine whether each of the interesting runtime functions
485     /// is in fact used in the current function.
486     unsigned UsedInThisFunction;
487 
488     bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
489     void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
490                                    ARCInstKind &Class);
491     void OptimizeIndividualCalls(Function &F);
492 
493     void CheckForCFGHazards(const BasicBlock *BB,
494                             DenseMap<const BasicBlock *, BBState> &BBStates,
495                             BBState &MyStates) const;
496     bool VisitInstructionBottomUp(Instruction *Inst, BasicBlock *BB,
497                                   BlotMapVector<Value *, RRInfo> &Retains,
498                                   BBState &MyStates);
499     bool VisitBottomUp(BasicBlock *BB,
500                        DenseMap<const BasicBlock *, BBState> &BBStates,
501                        BlotMapVector<Value *, RRInfo> &Retains);
502     bool VisitInstructionTopDown(Instruction *Inst,
503                                  DenseMap<Value *, RRInfo> &Releases,
504                                  BBState &MyStates);
505     bool VisitTopDown(BasicBlock *BB,
506                       DenseMap<const BasicBlock *, BBState> &BBStates,
507                       DenseMap<Value *, RRInfo> &Releases);
508     bool Visit(Function &F, DenseMap<const BasicBlock *, BBState> &BBStates,
509                BlotMapVector<Value *, RRInfo> &Retains,
510                DenseMap<Value *, RRInfo> &Releases);
511 
512     void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
513                    BlotMapVector<Value *, RRInfo> &Retains,
514                    DenseMap<Value *, RRInfo> &Releases,
515                    SmallVectorImpl<Instruction *> &DeadInsts, Module *M);
516 
517     bool
518     PairUpRetainsAndReleases(DenseMap<const BasicBlock *, BBState> &BBStates,
519                              BlotMapVector<Value *, RRInfo> &Retains,
520                              DenseMap<Value *, RRInfo> &Releases, Module *M,
521                              Instruction * Retain,
522                              SmallVectorImpl<Instruction *> &DeadInsts,
523                              RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
524                              Value *Arg, bool KnownSafe,
525                              bool &AnyPairsCompletelyEliminated);
526 
527     bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
528                               BlotMapVector<Value *, RRInfo> &Retains,
529                               DenseMap<Value *, RRInfo> &Releases, Module *M);
530 
531     void OptimizeWeakCalls(Function &F);
532 
533     bool OptimizeSequences(Function &F);
534 
535     void OptimizeReturns(Function &F);
536 
537 #ifndef NDEBUG
538     void GatherStatistics(Function &F, bool AfterOptimization = false);
539 #endif
540 
541     void getAnalysisUsage(AnalysisUsage &AU) const override;
542     bool doInitialization(Module &M) override;
543     bool runOnFunction(Function &F) override;
544     void releaseMemory() override;
545 
546   public:
547     static char ID;
548 
ObjCARCOpt()549     ObjCARCOpt() : FunctionPass(ID) {
550       initializeObjCARCOptPass(*PassRegistry::getPassRegistry());
551     }
552   };
553 
554 } // end anonymous namespace
555 
556 char ObjCARCOpt::ID = 0;
557 
558 INITIALIZE_PASS_BEGIN(ObjCARCOpt,
559                       "objc-arc", "ObjC ARC optimization", false, false)
INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)560 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
561 INITIALIZE_PASS_END(ObjCARCOpt,
562                     "objc-arc", "ObjC ARC optimization", false, false)
563 
564 Pass *llvm::createObjCARCOptPass() {
565   return new ObjCARCOpt();
566 }
567 
getAnalysisUsage(AnalysisUsage & AU) const568 void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const {
569   AU.addRequired<ObjCARCAAWrapperPass>();
570   AU.addRequired<AAResultsWrapperPass>();
571   // ARC optimization doesn't currently split critical edges.
572   AU.setPreservesCFG();
573 }
574 
575 /// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is
576 /// not a return value.  Or, if it can be paired with an
577 /// objc_autoreleaseReturnValue, delete the pair and return true.
578 bool
OptimizeRetainRVCall(Function & F,Instruction * RetainRV)579 ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
580   // Check for the argument being from an immediately preceding call or invoke.
581   const Value *Arg = GetArgRCIdentityRoot(RetainRV);
582   ImmutableCallSite CS(Arg);
583   if (const Instruction *Call = CS.getInstruction()) {
584     if (Call->getParent() == RetainRV->getParent()) {
585       BasicBlock::const_iterator I(Call);
586       ++I;
587       while (IsNoopInstruction(&*I))
588         ++I;
589       if (&*I == RetainRV)
590         return false;
591     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
592       BasicBlock *RetainRVParent = RetainRV->getParent();
593       if (II->getNormalDest() == RetainRVParent) {
594         BasicBlock::const_iterator I = RetainRVParent->begin();
595         while (IsNoopInstruction(&*I))
596           ++I;
597         if (&*I == RetainRV)
598           return false;
599       }
600     }
601   }
602 
603   // Check for being preceded by an objc_autoreleaseReturnValue on the same
604   // pointer. In this case, we can delete the pair.
605   BasicBlock::iterator I = RetainRV->getIterator(),
606                        Begin = RetainRV->getParent()->begin();
607   if (I != Begin) {
608     do
609       --I;
610     while (I != Begin && IsNoopInstruction(&*I));
611     if (GetBasicARCInstKind(&*I) == ARCInstKind::AutoreleaseRV &&
612         GetArgRCIdentityRoot(&*I) == Arg) {
613       Changed = true;
614       ++NumPeeps;
615 
616       LLVM_DEBUG(dbgs() << "Erasing autoreleaseRV,retainRV pair: " << *I << "\n"
617                         << "Erasing " << *RetainRV << "\n");
618 
619       EraseInstruction(&*I);
620       EraseInstruction(RetainRV);
621       return true;
622     }
623   }
624 
625   // Turn it to a plain objc_retain.
626   Changed = true;
627   ++NumPeeps;
628 
629   LLVM_DEBUG(dbgs() << "Transforming objc_retainAutoreleasedReturnValue => "
630                        "objc_retain since the operand is not a return value.\n"
631                        "Old = "
632                     << *RetainRV << "\n");
633 
634   Constant *NewDecl = EP.get(ARCRuntimeEntryPointKind::Retain);
635   cast<CallInst>(RetainRV)->setCalledFunction(NewDecl);
636 
637   LLVM_DEBUG(dbgs() << "New = " << *RetainRV << "\n");
638 
639   return false;
640 }
641 
642 /// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not
643 /// used as a return value.
OptimizeAutoreleaseRVCall(Function & F,Instruction * AutoreleaseRV,ARCInstKind & Class)644 void ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F,
645                                            Instruction *AutoreleaseRV,
646                                            ARCInstKind &Class) {
647   // Check for a return of the pointer value.
648   const Value *Ptr = GetArgRCIdentityRoot(AutoreleaseRV);
649 
650   // If the argument is ConstantPointerNull or UndefValue, its other users
651   // aren't actually interesting to look at.
652   if (isa<ConstantData>(Ptr))
653     return;
654 
655   SmallVector<const Value *, 2> Users;
656   Users.push_back(Ptr);
657 
658   // Add PHIs that are equivalent to Ptr to Users.
659   if (const PHINode *PN = dyn_cast<PHINode>(Ptr))
660     getEquivalentPHIs(*PN, Users);
661 
662   do {
663     Ptr = Users.pop_back_val();
664     for (const User *U : Ptr->users()) {
665       if (isa<ReturnInst>(U) || GetBasicARCInstKind(U) == ARCInstKind::RetainRV)
666         return;
667       if (isa<BitCastInst>(U))
668         Users.push_back(U);
669     }
670   } while (!Users.empty());
671 
672   Changed = true;
673   ++NumPeeps;
674 
675   LLVM_DEBUG(
676       dbgs() << "Transforming objc_autoreleaseReturnValue => "
677                 "objc_autorelease since its operand is not used as a return "
678                 "value.\n"
679                 "Old = "
680              << *AutoreleaseRV << "\n");
681 
682   CallInst *AutoreleaseRVCI = cast<CallInst>(AutoreleaseRV);
683   Constant *NewDecl = EP.get(ARCRuntimeEntryPointKind::Autorelease);
684   AutoreleaseRVCI->setCalledFunction(NewDecl);
685   AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease.
686   Class = ARCInstKind::Autorelease;
687 
688   LLVM_DEBUG(dbgs() << "New: " << *AutoreleaseRV << "\n");
689 }
690 
691 namespace {
692 Instruction *
CloneCallInstForBB(CallInst & CI,BasicBlock & BB,const DenseMap<BasicBlock *,ColorVector> & BlockColors)693 CloneCallInstForBB(CallInst &CI, BasicBlock &BB,
694                    const DenseMap<BasicBlock *, ColorVector> &BlockColors) {
695   SmallVector<OperandBundleDef, 1> OpBundles;
696   for (unsigned I = 0, E = CI.getNumOperandBundles(); I != E; ++I) {
697     auto Bundle = CI.getOperandBundleAt(I);
698     // Funclets will be reassociated in the future.
699     if (Bundle.getTagID() == LLVMContext::OB_funclet)
700       continue;
701     OpBundles.emplace_back(Bundle);
702   }
703 
704   if (!BlockColors.empty()) {
705     const ColorVector &CV = BlockColors.find(&BB)->second;
706     assert(CV.size() == 1 && "non-unique color for block!");
707     Instruction *EHPad = CV.front()->getFirstNonPHI();
708     if (EHPad->isEHPad())
709       OpBundles.emplace_back("funclet", EHPad);
710   }
711 
712   return CallInst::Create(&CI, OpBundles);
713 }
714 }
715 
716 /// Visit each call, one at a time, and make simplifications without doing any
717 /// additional analysis.
OptimizeIndividualCalls(Function & F)718 void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
719   LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeIndividualCalls ==\n");
720   // Reset all the flags in preparation for recomputing them.
721   UsedInThisFunction = 0;
722 
723   DenseMap<BasicBlock *, ColorVector> BlockColors;
724   if (F.hasPersonalityFn() &&
725       isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
726     BlockColors = colorEHFunclets(F);
727 
728   // Visit all objc_* calls in F.
729   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
730     Instruction *Inst = &*I++;
731 
732     ARCInstKind Class = GetBasicARCInstKind(Inst);
733 
734     LLVM_DEBUG(dbgs() << "Visiting: Class: " << Class << "; " << *Inst << "\n");
735 
736     switch (Class) {
737     default: break;
738 
739     // Delete no-op casts. These function calls have special semantics, but
740     // the semantics are entirely implemented via lowering in the front-end,
741     // so by the time they reach the optimizer, they are just no-op calls
742     // which return their argument.
743     //
744     // There are gray areas here, as the ability to cast reference-counted
745     // pointers to raw void* and back allows code to break ARC assumptions,
746     // however these are currently considered to be unimportant.
747     case ARCInstKind::NoopCast:
748       Changed = true;
749       ++NumNoops;
750       LLVM_DEBUG(dbgs() << "Erasing no-op cast: " << *Inst << "\n");
751       EraseInstruction(Inst);
752       continue;
753 
754     // If the pointer-to-weak-pointer is null, it's undefined behavior.
755     case ARCInstKind::StoreWeak:
756     case ARCInstKind::LoadWeak:
757     case ARCInstKind::LoadWeakRetained:
758     case ARCInstKind::InitWeak:
759     case ARCInstKind::DestroyWeak: {
760       CallInst *CI = cast<CallInst>(Inst);
761       if (IsNullOrUndef(CI->getArgOperand(0))) {
762         Changed = true;
763         Type *Ty = CI->getArgOperand(0)->getType();
764         new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
765                       Constant::getNullValue(Ty),
766                       CI);
767         Value *NewValue = UndefValue::get(CI->getType());
768         LLVM_DEBUG(
769             dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
770                       "\nOld = "
771                    << *CI << "\nNew = " << *NewValue << "\n");
772         CI->replaceAllUsesWith(NewValue);
773         CI->eraseFromParent();
774         continue;
775       }
776       break;
777     }
778     case ARCInstKind::CopyWeak:
779     case ARCInstKind::MoveWeak: {
780       CallInst *CI = cast<CallInst>(Inst);
781       if (IsNullOrUndef(CI->getArgOperand(0)) ||
782           IsNullOrUndef(CI->getArgOperand(1))) {
783         Changed = true;
784         Type *Ty = CI->getArgOperand(0)->getType();
785         new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
786                       Constant::getNullValue(Ty),
787                       CI);
788 
789         Value *NewValue = UndefValue::get(CI->getType());
790         LLVM_DEBUG(
791             dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
792                       "\nOld = "
793                    << *CI << "\nNew = " << *NewValue << "\n");
794 
795         CI->replaceAllUsesWith(NewValue);
796         CI->eraseFromParent();
797         continue;
798       }
799       break;
800     }
801     case ARCInstKind::RetainRV:
802       if (OptimizeRetainRVCall(F, Inst))
803         continue;
804       break;
805     case ARCInstKind::AutoreleaseRV:
806       OptimizeAutoreleaseRVCall(F, Inst, Class);
807       break;
808     }
809 
810     // objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
811     if (IsAutorelease(Class) && Inst->use_empty()) {
812       CallInst *Call = cast<CallInst>(Inst);
813       const Value *Arg = Call->getArgOperand(0);
814       Arg = FindSingleUseIdentifiedObject(Arg);
815       if (Arg) {
816         Changed = true;
817         ++NumAutoreleases;
818 
819         // Create the declaration lazily.
820         LLVMContext &C = Inst->getContext();
821 
822         Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Release);
823         CallInst *NewCall = CallInst::Create(Decl, Call->getArgOperand(0), "",
824                                              Call);
825         NewCall->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease),
826                              MDNode::get(C, None));
827 
828         LLVM_DEBUG(
829             dbgs() << "Replacing autorelease{,RV}(x) with objc_release(x) "
830                       "since x is otherwise unused.\nOld: "
831                    << *Call << "\nNew: " << *NewCall << "\n");
832 
833         EraseInstruction(Call);
834         Inst = NewCall;
835         Class = ARCInstKind::Release;
836       }
837     }
838 
839     // For functions which can never be passed stack arguments, add
840     // a tail keyword.
841     if (IsAlwaysTail(Class)) {
842       Changed = true;
843       LLVM_DEBUG(
844           dbgs() << "Adding tail keyword to function since it can never be "
845                     "passed stack args: "
846                  << *Inst << "\n");
847       cast<CallInst>(Inst)->setTailCall();
848     }
849 
850     // Ensure that functions that can never have a "tail" keyword due to the
851     // semantics of ARC truly do not do so.
852     if (IsNeverTail(Class)) {
853       Changed = true;
854       LLVM_DEBUG(dbgs() << "Removing tail keyword from function: " << *Inst
855                         << "\n");
856       cast<CallInst>(Inst)->setTailCall(false);
857     }
858 
859     // Set nounwind as needed.
860     if (IsNoThrow(Class)) {
861       Changed = true;
862       LLVM_DEBUG(dbgs() << "Found no throw class. Setting nounwind on: "
863                         << *Inst << "\n");
864       cast<CallInst>(Inst)->setDoesNotThrow();
865     }
866 
867     if (!IsNoopOnNull(Class)) {
868       UsedInThisFunction |= 1 << unsigned(Class);
869       continue;
870     }
871 
872     const Value *Arg = GetArgRCIdentityRoot(Inst);
873 
874     // ARC calls with null are no-ops. Delete them.
875     if (IsNullOrUndef(Arg)) {
876       Changed = true;
877       ++NumNoops;
878       LLVM_DEBUG(dbgs() << "ARC calls with  null are no-ops. Erasing: " << *Inst
879                         << "\n");
880       EraseInstruction(Inst);
881       continue;
882     }
883 
884     // Keep track of which of retain, release, autorelease, and retain_block
885     // are actually present in this function.
886     UsedInThisFunction |= 1 << unsigned(Class);
887 
888     // If Arg is a PHI, and one or more incoming values to the
889     // PHI are null, and the call is control-equivalent to the PHI, and there
890     // are no relevant side effects between the PHI and the call, and the call
891     // is not a release that doesn't have the clang.imprecise_release tag, the
892     // call could be pushed up to just those paths with non-null incoming
893     // values. For now, don't bother splitting critical edges for this.
894     if (Class == ARCInstKind::Release &&
895         !Inst->getMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease)))
896       continue;
897 
898     SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
899     Worklist.push_back(std::make_pair(Inst, Arg));
900     do {
901       std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
902       Inst = Pair.first;
903       Arg = Pair.second;
904 
905       const PHINode *PN = dyn_cast<PHINode>(Arg);
906       if (!PN) continue;
907 
908       // Determine if the PHI has any null operands, or any incoming
909       // critical edges.
910       bool HasNull = false;
911       bool HasCriticalEdges = false;
912       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
913         Value *Incoming =
914           GetRCIdentityRoot(PN->getIncomingValue(i));
915         if (IsNullOrUndef(Incoming))
916           HasNull = true;
917         else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back())
918                    .getNumSuccessors() != 1) {
919           HasCriticalEdges = true;
920           break;
921         }
922       }
923       // If we have null operands and no critical edges, optimize.
924       if (!HasCriticalEdges && HasNull) {
925         SmallPtrSet<Instruction *, 4> DependingInstructions;
926         SmallPtrSet<const BasicBlock *, 4> Visited;
927 
928         // Check that there is nothing that cares about the reference
929         // count between the call and the phi.
930         switch (Class) {
931         case ARCInstKind::Retain:
932         case ARCInstKind::RetainBlock:
933           // These can always be moved up.
934           break;
935         case ARCInstKind::Release:
936           // These can't be moved across things that care about the retain
937           // count.
938           FindDependencies(NeedsPositiveRetainCount, Arg,
939                            Inst->getParent(), Inst,
940                            DependingInstructions, Visited, PA);
941           break;
942         case ARCInstKind::Autorelease:
943           // These can't be moved across autorelease pool scope boundaries.
944           FindDependencies(AutoreleasePoolBoundary, Arg,
945                            Inst->getParent(), Inst,
946                            DependingInstructions, Visited, PA);
947           break;
948         case ARCInstKind::ClaimRV:
949         case ARCInstKind::RetainRV:
950         case ARCInstKind::AutoreleaseRV:
951           // Don't move these; the RV optimization depends on the autoreleaseRV
952           // being tail called, and the retainRV being immediately after a call
953           // (which might still happen if we get lucky with codegen layout, but
954           // it's not worth taking the chance).
955           continue;
956         default:
957           llvm_unreachable("Invalid dependence flavor");
958         }
959 
960         if (DependingInstructions.size() == 1 &&
961             *DependingInstructions.begin() == PN) {
962           Changed = true;
963           ++NumPartialNoops;
964           // Clone the call into each predecessor that has a non-null value.
965           CallInst *CInst = cast<CallInst>(Inst);
966           Type *ParamTy = CInst->getArgOperand(0)->getType();
967           for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
968             Value *Incoming =
969               GetRCIdentityRoot(PN->getIncomingValue(i));
970             if (!IsNullOrUndef(Incoming)) {
971               Value *Op = PN->getIncomingValue(i);
972               Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
973               CallInst *Clone = cast<CallInst>(CloneCallInstForBB(
974                   *CInst, *InsertPos->getParent(), BlockColors));
975               if (Op->getType() != ParamTy)
976                 Op = new BitCastInst(Op, ParamTy, "", InsertPos);
977               Clone->setArgOperand(0, Op);
978               Clone->insertBefore(InsertPos);
979 
980               LLVM_DEBUG(dbgs() << "Cloning " << *CInst
981                                 << "\n"
982                                    "And inserting clone at "
983                                 << *InsertPos << "\n");
984               Worklist.push_back(std::make_pair(Clone, Incoming));
985             }
986           }
987           // Erase the original call.
988           LLVM_DEBUG(dbgs() << "Erasing: " << *CInst << "\n");
989           EraseInstruction(CInst);
990           continue;
991         }
992       }
993     } while (!Worklist.empty());
994   }
995 }
996 
997 /// If we have a top down pointer in the S_Use state, make sure that there are
998 /// no CFG hazards by checking the states of various bottom up pointers.
CheckForUseCFGHazard(const Sequence SuccSSeq,const bool SuccSRRIKnownSafe,TopDownPtrState & S,bool & SomeSuccHasSame,bool & AllSuccsHaveSame,bool & NotAllSeqEqualButKnownSafe,bool & ShouldContinue)999 static void CheckForUseCFGHazard(const Sequence SuccSSeq,
1000                                  const bool SuccSRRIKnownSafe,
1001                                  TopDownPtrState &S,
1002                                  bool &SomeSuccHasSame,
1003                                  bool &AllSuccsHaveSame,
1004                                  bool &NotAllSeqEqualButKnownSafe,
1005                                  bool &ShouldContinue) {
1006   switch (SuccSSeq) {
1007   case S_CanRelease: {
1008     if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) {
1009       S.ClearSequenceProgress();
1010       break;
1011     }
1012     S.SetCFGHazardAfflicted(true);
1013     ShouldContinue = true;
1014     break;
1015   }
1016   case S_Use:
1017     SomeSuccHasSame = true;
1018     break;
1019   case S_Stop:
1020   case S_Release:
1021   case S_MovableRelease:
1022     if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
1023       AllSuccsHaveSame = false;
1024     else
1025       NotAllSeqEqualButKnownSafe = true;
1026     break;
1027   case S_Retain:
1028     llvm_unreachable("bottom-up pointer in retain state!");
1029   case S_None:
1030     llvm_unreachable("This should have been handled earlier.");
1031   }
1032 }
1033 
1034 /// If we have a Top Down pointer in the S_CanRelease state, make sure that
1035 /// there are no CFG hazards by checking the states of various bottom up
1036 /// pointers.
CheckForCanReleaseCFGHazard(const Sequence SuccSSeq,const bool SuccSRRIKnownSafe,TopDownPtrState & S,bool & SomeSuccHasSame,bool & AllSuccsHaveSame,bool & NotAllSeqEqualButKnownSafe)1037 static void CheckForCanReleaseCFGHazard(const Sequence SuccSSeq,
1038                                         const bool SuccSRRIKnownSafe,
1039                                         TopDownPtrState &S,
1040                                         bool &SomeSuccHasSame,
1041                                         bool &AllSuccsHaveSame,
1042                                         bool &NotAllSeqEqualButKnownSafe) {
1043   switch (SuccSSeq) {
1044   case S_CanRelease:
1045     SomeSuccHasSame = true;
1046     break;
1047   case S_Stop:
1048   case S_Release:
1049   case S_MovableRelease:
1050   case S_Use:
1051     if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
1052       AllSuccsHaveSame = false;
1053     else
1054       NotAllSeqEqualButKnownSafe = true;
1055     break;
1056   case S_Retain:
1057     llvm_unreachable("bottom-up pointer in retain state!");
1058   case S_None:
1059     llvm_unreachable("This should have been handled earlier.");
1060   }
1061 }
1062 
1063 /// Check for critical edges, loop boundaries, irreducible control flow, or
1064 /// other CFG structures where moving code across the edge would result in it
1065 /// being executed more.
1066 void
CheckForCFGHazards(const BasicBlock * BB,DenseMap<const BasicBlock *,BBState> & BBStates,BBState & MyStates) const1067 ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
1068                                DenseMap<const BasicBlock *, BBState> &BBStates,
1069                                BBState &MyStates) const {
1070   // If any top-down local-use or possible-dec has a succ which is earlier in
1071   // the sequence, forget it.
1072   for (auto I = MyStates.top_down_ptr_begin(), E = MyStates.top_down_ptr_end();
1073        I != E; ++I) {
1074     TopDownPtrState &S = I->second;
1075     const Sequence Seq = I->second.GetSeq();
1076 
1077     // We only care about S_Retain, S_CanRelease, and S_Use.
1078     if (Seq == S_None)
1079       continue;
1080 
1081     // Make sure that if extra top down states are added in the future that this
1082     // code is updated to handle it.
1083     assert((Seq == S_Retain || Seq == S_CanRelease || Seq == S_Use) &&
1084            "Unknown top down sequence state.");
1085 
1086     const Value *Arg = I->first;
1087     const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
1088     bool SomeSuccHasSame = false;
1089     bool AllSuccsHaveSame = true;
1090     bool NotAllSeqEqualButKnownSafe = false;
1091 
1092     succ_const_iterator SI(TI), SE(TI, false);
1093 
1094     for (; SI != SE; ++SI) {
1095       // If VisitBottomUp has pointer information for this successor, take
1096       // what we know about it.
1097       const DenseMap<const BasicBlock *, BBState>::iterator BBI =
1098         BBStates.find(*SI);
1099       assert(BBI != BBStates.end());
1100       const BottomUpPtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
1101       const Sequence SuccSSeq = SuccS.GetSeq();
1102 
1103       // If bottom up, the pointer is in an S_None state, clear the sequence
1104       // progress since the sequence in the bottom up state finished
1105       // suggesting a mismatch in between retains/releases. This is true for
1106       // all three cases that we are handling here: S_Retain, S_Use, and
1107       // S_CanRelease.
1108       if (SuccSSeq == S_None) {
1109         S.ClearSequenceProgress();
1110         continue;
1111       }
1112 
1113       // If we have S_Use or S_CanRelease, perform our check for cfg hazard
1114       // checks.
1115       const bool SuccSRRIKnownSafe = SuccS.IsKnownSafe();
1116 
1117       // *NOTE* We do not use Seq from above here since we are allowing for
1118       // S.GetSeq() to change while we are visiting basic blocks.
1119       switch(S.GetSeq()) {
1120       case S_Use: {
1121         bool ShouldContinue = false;
1122         CheckForUseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, SomeSuccHasSame,
1123                              AllSuccsHaveSame, NotAllSeqEqualButKnownSafe,
1124                              ShouldContinue);
1125         if (ShouldContinue)
1126           continue;
1127         break;
1128       }
1129       case S_CanRelease:
1130         CheckForCanReleaseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S,
1131                                     SomeSuccHasSame, AllSuccsHaveSame,
1132                                     NotAllSeqEqualButKnownSafe);
1133         break;
1134       case S_Retain:
1135       case S_None:
1136       case S_Stop:
1137       case S_Release:
1138       case S_MovableRelease:
1139         break;
1140       }
1141     }
1142 
1143     // If the state at the other end of any of the successor edges
1144     // matches the current state, require all edges to match. This
1145     // guards against loops in the middle of a sequence.
1146     if (SomeSuccHasSame && !AllSuccsHaveSame) {
1147       S.ClearSequenceProgress();
1148     } else if (NotAllSeqEqualButKnownSafe) {
1149       // If we would have cleared the state foregoing the fact that we are known
1150       // safe, stop code motion. This is because whether or not it is safe to
1151       // remove RR pairs via KnownSafe is an orthogonal concept to whether we
1152       // are allowed to perform code motion.
1153       S.SetCFGHazardAfflicted(true);
1154     }
1155   }
1156 }
1157 
VisitInstructionBottomUp(Instruction * Inst,BasicBlock * BB,BlotMapVector<Value *,RRInfo> & Retains,BBState & MyStates)1158 bool ObjCARCOpt::VisitInstructionBottomUp(
1159     Instruction *Inst, BasicBlock *BB, BlotMapVector<Value *, RRInfo> &Retains,
1160     BBState &MyStates) {
1161   bool NestingDetected = false;
1162   ARCInstKind Class = GetARCInstKind(Inst);
1163   const Value *Arg = nullptr;
1164 
1165   LLVM_DEBUG(dbgs() << "        Class: " << Class << "\n");
1166 
1167   switch (Class) {
1168   case ARCInstKind::Release: {
1169     Arg = GetArgRCIdentityRoot(Inst);
1170 
1171     BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg);
1172     NestingDetected |= S.InitBottomUp(MDKindCache, Inst);
1173     break;
1174   }
1175   case ARCInstKind::RetainBlock:
1176     // In OptimizeIndividualCalls, we have strength reduced all optimizable
1177     // objc_retainBlocks to objc_retains. Thus at this point any
1178     // objc_retainBlocks that we see are not optimizable.
1179     break;
1180   case ARCInstKind::Retain:
1181   case ARCInstKind::RetainRV: {
1182     Arg = GetArgRCIdentityRoot(Inst);
1183     BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg);
1184     if (S.MatchWithRetain()) {
1185       // Don't do retain+release tracking for ARCInstKind::RetainRV, because
1186       // it's better to let it remain as the first instruction after a call.
1187       if (Class != ARCInstKind::RetainRV) {
1188         LLVM_DEBUG(dbgs() << "        Matching with: " << *Inst << "\n");
1189         Retains[Inst] = S.GetRRInfo();
1190       }
1191       S.ClearSequenceProgress();
1192     }
1193     // A retain moving bottom up can be a use.
1194     break;
1195   }
1196   case ARCInstKind::AutoreleasepoolPop:
1197     // Conservatively, clear MyStates for all known pointers.
1198     MyStates.clearBottomUpPointers();
1199     return NestingDetected;
1200   case ARCInstKind::AutoreleasepoolPush:
1201   case ARCInstKind::None:
1202     // These are irrelevant.
1203     return NestingDetected;
1204   default:
1205     break;
1206   }
1207 
1208   // Consider any other possible effects of this instruction on each
1209   // pointer being tracked.
1210   for (auto MI = MyStates.bottom_up_ptr_begin(),
1211             ME = MyStates.bottom_up_ptr_end();
1212        MI != ME; ++MI) {
1213     const Value *Ptr = MI->first;
1214     if (Ptr == Arg)
1215       continue; // Handled above.
1216     BottomUpPtrState &S = MI->second;
1217 
1218     if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class))
1219       continue;
1220 
1221     S.HandlePotentialUse(BB, Inst, Ptr, PA, Class);
1222   }
1223 
1224   return NestingDetected;
1225 }
1226 
VisitBottomUp(BasicBlock * BB,DenseMap<const BasicBlock *,BBState> & BBStates,BlotMapVector<Value *,RRInfo> & Retains)1227 bool ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
1228                                DenseMap<const BasicBlock *, BBState> &BBStates,
1229                                BlotMapVector<Value *, RRInfo> &Retains) {
1230   LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::VisitBottomUp ==\n");
1231 
1232   bool NestingDetected = false;
1233   BBState &MyStates = BBStates[BB];
1234 
1235   // Merge the states from each successor to compute the initial state
1236   // for the current block.
1237   BBState::edge_iterator SI(MyStates.succ_begin()),
1238                          SE(MyStates.succ_end());
1239   if (SI != SE) {
1240     const BasicBlock *Succ = *SI;
1241     DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
1242     assert(I != BBStates.end());
1243     MyStates.InitFromSucc(I->second);
1244     ++SI;
1245     for (; SI != SE; ++SI) {
1246       Succ = *SI;
1247       I = BBStates.find(Succ);
1248       assert(I != BBStates.end());
1249       MyStates.MergeSucc(I->second);
1250     }
1251   }
1252 
1253   LLVM_DEBUG(dbgs() << "Before:\n"
1254                     << BBStates[BB] << "\n"
1255                     << "Performing Dataflow:\n");
1256 
1257   // Visit all the instructions, bottom-up.
1258   for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
1259     Instruction *Inst = &*std::prev(I);
1260 
1261     // Invoke instructions are visited as part of their successors (below).
1262     if (isa<InvokeInst>(Inst))
1263       continue;
1264 
1265     LLVM_DEBUG(dbgs() << "    Visiting " << *Inst << "\n");
1266 
1267     NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates);
1268   }
1269 
1270   // If there's a predecessor with an invoke, visit the invoke as if it were
1271   // part of this block, since we can't insert code after an invoke in its own
1272   // block, and we don't want to split critical edges.
1273   for (BBState::edge_iterator PI(MyStates.pred_begin()),
1274        PE(MyStates.pred_end()); PI != PE; ++PI) {
1275     BasicBlock *Pred = *PI;
1276     if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back()))
1277       NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates);
1278   }
1279 
1280   LLVM_DEBUG(dbgs() << "\nFinal State:\n" << BBStates[BB] << "\n");
1281 
1282   return NestingDetected;
1283 }
1284 
1285 bool
VisitInstructionTopDown(Instruction * Inst,DenseMap<Value *,RRInfo> & Releases,BBState & MyStates)1286 ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst,
1287                                     DenseMap<Value *, RRInfo> &Releases,
1288                                     BBState &MyStates) {
1289   bool NestingDetected = false;
1290   ARCInstKind Class = GetARCInstKind(Inst);
1291   const Value *Arg = nullptr;
1292 
1293   LLVM_DEBUG(dbgs() << "        Class: " << Class << "\n");
1294 
1295   switch (Class) {
1296   case ARCInstKind::RetainBlock:
1297     // In OptimizeIndividualCalls, we have strength reduced all optimizable
1298     // objc_retainBlocks to objc_retains. Thus at this point any
1299     // objc_retainBlocks that we see are not optimizable. We need to break since
1300     // a retain can be a potential use.
1301     break;
1302   case ARCInstKind::Retain:
1303   case ARCInstKind::RetainRV: {
1304     Arg = GetArgRCIdentityRoot(Inst);
1305     TopDownPtrState &S = MyStates.getPtrTopDownState(Arg);
1306     NestingDetected |= S.InitTopDown(Class, Inst);
1307     // A retain can be a potential use; proceed to the generic checking
1308     // code below.
1309     break;
1310   }
1311   case ARCInstKind::Release: {
1312     Arg = GetArgRCIdentityRoot(Inst);
1313     TopDownPtrState &S = MyStates.getPtrTopDownState(Arg);
1314     // Try to form a tentative pair in between this release instruction and the
1315     // top down pointers that we are tracking.
1316     if (S.MatchWithRelease(MDKindCache, Inst)) {
1317       // If we succeed, copy S's RRInfo into the Release -> {Retain Set
1318       // Map}. Then we clear S.
1319       LLVM_DEBUG(dbgs() << "        Matching with: " << *Inst << "\n");
1320       Releases[Inst] = S.GetRRInfo();
1321       S.ClearSequenceProgress();
1322     }
1323     break;
1324   }
1325   case ARCInstKind::AutoreleasepoolPop:
1326     // Conservatively, clear MyStates for all known pointers.
1327     MyStates.clearTopDownPointers();
1328     return false;
1329   case ARCInstKind::AutoreleasepoolPush:
1330   case ARCInstKind::None:
1331     // These can not be uses of
1332     return false;
1333   default:
1334     break;
1335   }
1336 
1337   // Consider any other possible effects of this instruction on each
1338   // pointer being tracked.
1339   for (auto MI = MyStates.top_down_ptr_begin(),
1340             ME = MyStates.top_down_ptr_end();
1341        MI != ME; ++MI) {
1342     const Value *Ptr = MI->first;
1343     if (Ptr == Arg)
1344       continue; // Handled above.
1345     TopDownPtrState &S = MI->second;
1346     if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class))
1347       continue;
1348 
1349     S.HandlePotentialUse(Inst, Ptr, PA, Class);
1350   }
1351 
1352   return NestingDetected;
1353 }
1354 
1355 bool
VisitTopDown(BasicBlock * BB,DenseMap<const BasicBlock *,BBState> & BBStates,DenseMap<Value *,RRInfo> & Releases)1356 ObjCARCOpt::VisitTopDown(BasicBlock *BB,
1357                          DenseMap<const BasicBlock *, BBState> &BBStates,
1358                          DenseMap<Value *, RRInfo> &Releases) {
1359   LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::VisitTopDown ==\n");
1360   bool NestingDetected = false;
1361   BBState &MyStates = BBStates[BB];
1362 
1363   // Merge the states from each predecessor to compute the initial state
1364   // for the current block.
1365   BBState::edge_iterator PI(MyStates.pred_begin()),
1366                          PE(MyStates.pred_end());
1367   if (PI != PE) {
1368     const BasicBlock *Pred = *PI;
1369     DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
1370     assert(I != BBStates.end());
1371     MyStates.InitFromPred(I->second);
1372     ++PI;
1373     for (; PI != PE; ++PI) {
1374       Pred = *PI;
1375       I = BBStates.find(Pred);
1376       assert(I != BBStates.end());
1377       MyStates.MergePred(I->second);
1378     }
1379   }
1380 
1381   LLVM_DEBUG(dbgs() << "Before:\n"
1382                     << BBStates[BB] << "\n"
1383                     << "Performing Dataflow:\n");
1384 
1385   // Visit all the instructions, top-down.
1386   for (Instruction &Inst : *BB) {
1387     LLVM_DEBUG(dbgs() << "    Visiting " << Inst << "\n");
1388 
1389     NestingDetected |= VisitInstructionTopDown(&Inst, Releases, MyStates);
1390   }
1391 
1392   LLVM_DEBUG(dbgs() << "\nState Before Checking for CFG Hazards:\n"
1393                     << BBStates[BB] << "\n\n");
1394   CheckForCFGHazards(BB, BBStates, MyStates);
1395   LLVM_DEBUG(dbgs() << "Final State:\n" << BBStates[BB] << "\n");
1396   return NestingDetected;
1397 }
1398 
1399 static void
ComputePostOrders(Function & F,SmallVectorImpl<BasicBlock * > & PostOrder,SmallVectorImpl<BasicBlock * > & ReverseCFGPostOrder,unsigned NoObjCARCExceptionsMDKind,DenseMap<const BasicBlock *,BBState> & BBStates)1400 ComputePostOrders(Function &F,
1401                   SmallVectorImpl<BasicBlock *> &PostOrder,
1402                   SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder,
1403                   unsigned NoObjCARCExceptionsMDKind,
1404                   DenseMap<const BasicBlock *, BBState> &BBStates) {
1405   /// The visited set, for doing DFS walks.
1406   SmallPtrSet<BasicBlock *, 16> Visited;
1407 
1408   // Do DFS, computing the PostOrder.
1409   SmallPtrSet<BasicBlock *, 16> OnStack;
1410   SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack;
1411 
1412   // Functions always have exactly one entry block, and we don't have
1413   // any other block that we treat like an entry block.
1414   BasicBlock *EntryBB = &F.getEntryBlock();
1415   BBState &MyStates = BBStates[EntryBB];
1416   MyStates.SetAsEntry();
1417   TerminatorInst *EntryTI = cast<TerminatorInst>(&EntryBB->back());
1418   SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI)));
1419   Visited.insert(EntryBB);
1420   OnStack.insert(EntryBB);
1421   do {
1422   dfs_next_succ:
1423     BasicBlock *CurrBB = SuccStack.back().first;
1424     TerminatorInst *TI = cast<TerminatorInst>(&CurrBB->back());
1425     succ_iterator SE(TI, false);
1426 
1427     while (SuccStack.back().second != SE) {
1428       BasicBlock *SuccBB = *SuccStack.back().second++;
1429       if (Visited.insert(SuccBB).second) {
1430         TerminatorInst *TI = cast<TerminatorInst>(&SuccBB->back());
1431         SuccStack.push_back(std::make_pair(SuccBB, succ_iterator(TI)));
1432         BBStates[CurrBB].addSucc(SuccBB);
1433         BBState &SuccStates = BBStates[SuccBB];
1434         SuccStates.addPred(CurrBB);
1435         OnStack.insert(SuccBB);
1436         goto dfs_next_succ;
1437       }
1438 
1439       if (!OnStack.count(SuccBB)) {
1440         BBStates[CurrBB].addSucc(SuccBB);
1441         BBStates[SuccBB].addPred(CurrBB);
1442       }
1443     }
1444     OnStack.erase(CurrBB);
1445     PostOrder.push_back(CurrBB);
1446     SuccStack.pop_back();
1447   } while (!SuccStack.empty());
1448 
1449   Visited.clear();
1450 
1451   // Do reverse-CFG DFS, computing the reverse-CFG PostOrder.
1452   // Functions may have many exits, and there also blocks which we treat
1453   // as exits due to ignored edges.
1454   SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack;
1455   for (BasicBlock &ExitBB : F) {
1456     BBState &MyStates = BBStates[&ExitBB];
1457     if (!MyStates.isExit())
1458       continue;
1459 
1460     MyStates.SetAsExit();
1461 
1462     PredStack.push_back(std::make_pair(&ExitBB, MyStates.pred_begin()));
1463     Visited.insert(&ExitBB);
1464     while (!PredStack.empty()) {
1465     reverse_dfs_next_succ:
1466       BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end();
1467       while (PredStack.back().second != PE) {
1468         BasicBlock *BB = *PredStack.back().second++;
1469         if (Visited.insert(BB).second) {
1470           PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin()));
1471           goto reverse_dfs_next_succ;
1472         }
1473       }
1474       ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first);
1475     }
1476   }
1477 }
1478 
1479 // Visit the function both top-down and bottom-up.
Visit(Function & F,DenseMap<const BasicBlock *,BBState> & BBStates,BlotMapVector<Value *,RRInfo> & Retains,DenseMap<Value *,RRInfo> & Releases)1480 bool ObjCARCOpt::Visit(Function &F,
1481                        DenseMap<const BasicBlock *, BBState> &BBStates,
1482                        BlotMapVector<Value *, RRInfo> &Retains,
1483                        DenseMap<Value *, RRInfo> &Releases) {
1484   // Use reverse-postorder traversals, because we magically know that loops
1485   // will be well behaved, i.e. they won't repeatedly call retain on a single
1486   // pointer without doing a release. We can't use the ReversePostOrderTraversal
1487   // class here because we want the reverse-CFG postorder to consider each
1488   // function exit point, and we want to ignore selected cycle edges.
1489   SmallVector<BasicBlock *, 16> PostOrder;
1490   SmallVector<BasicBlock *, 16> ReverseCFGPostOrder;
1491   ComputePostOrders(F, PostOrder, ReverseCFGPostOrder,
1492                     MDKindCache.get(ARCMDKindID::NoObjCARCExceptions),
1493                     BBStates);
1494 
1495   // Use reverse-postorder on the reverse CFG for bottom-up.
1496   bool BottomUpNestingDetected = false;
1497   for (BasicBlock *BB : llvm::reverse(ReverseCFGPostOrder))
1498     BottomUpNestingDetected |= VisitBottomUp(BB, BBStates, Retains);
1499 
1500   // Use reverse-postorder for top-down.
1501   bool TopDownNestingDetected = false;
1502   for (BasicBlock *BB : llvm::reverse(PostOrder))
1503     TopDownNestingDetected |= VisitTopDown(BB, BBStates, Releases);
1504 
1505   return TopDownNestingDetected && BottomUpNestingDetected;
1506 }
1507 
1508 /// Move the calls in RetainsToMove and ReleasesToMove.
MoveCalls(Value * Arg,RRInfo & RetainsToMove,RRInfo & ReleasesToMove,BlotMapVector<Value *,RRInfo> & Retains,DenseMap<Value *,RRInfo> & Releases,SmallVectorImpl<Instruction * > & DeadInsts,Module * M)1509 void ObjCARCOpt::MoveCalls(Value *Arg, RRInfo &RetainsToMove,
1510                            RRInfo &ReleasesToMove,
1511                            BlotMapVector<Value *, RRInfo> &Retains,
1512                            DenseMap<Value *, RRInfo> &Releases,
1513                            SmallVectorImpl<Instruction *> &DeadInsts,
1514                            Module *M) {
1515   Type *ArgTy = Arg->getType();
1516   Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext()));
1517 
1518   LLVM_DEBUG(dbgs() << "== ObjCARCOpt::MoveCalls ==\n");
1519 
1520   // Insert the new retain and release calls.
1521   for (Instruction *InsertPt : ReleasesToMove.ReverseInsertPts) {
1522     Value *MyArg = ArgTy == ParamTy ? Arg :
1523                    new BitCastInst(Arg, ParamTy, "", InsertPt);
1524     Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
1525     CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
1526     Call->setDoesNotThrow();
1527     Call->setTailCall();
1528 
1529     LLVM_DEBUG(dbgs() << "Inserting new Retain: " << *Call
1530                       << "\n"
1531                          "At insertion point: "
1532                       << *InsertPt << "\n");
1533   }
1534   for (Instruction *InsertPt : RetainsToMove.ReverseInsertPts) {
1535     Value *MyArg = ArgTy == ParamTy ? Arg :
1536                    new BitCastInst(Arg, ParamTy, "", InsertPt);
1537     Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Release);
1538     CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
1539     // Attach a clang.imprecise_release metadata tag, if appropriate.
1540     if (MDNode *M = ReleasesToMove.ReleaseMetadata)
1541       Call->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease), M);
1542     Call->setDoesNotThrow();
1543     if (ReleasesToMove.IsTailCallRelease)
1544       Call->setTailCall();
1545 
1546     LLVM_DEBUG(dbgs() << "Inserting new Release: " << *Call
1547                       << "\n"
1548                          "At insertion point: "
1549                       << *InsertPt << "\n");
1550   }
1551 
1552   // Delete the original retain and release calls.
1553   for (Instruction *OrigRetain : RetainsToMove.Calls) {
1554     Retains.blot(OrigRetain);
1555     DeadInsts.push_back(OrigRetain);
1556     LLVM_DEBUG(dbgs() << "Deleting retain: " << *OrigRetain << "\n");
1557   }
1558   for (Instruction *OrigRelease : ReleasesToMove.Calls) {
1559     Releases.erase(OrigRelease);
1560     DeadInsts.push_back(OrigRelease);
1561     LLVM_DEBUG(dbgs() << "Deleting release: " << *OrigRelease << "\n");
1562   }
1563 }
1564 
PairUpRetainsAndReleases(DenseMap<const BasicBlock *,BBState> & BBStates,BlotMapVector<Value *,RRInfo> & Retains,DenseMap<Value *,RRInfo> & Releases,Module * M,Instruction * Retain,SmallVectorImpl<Instruction * > & DeadInsts,RRInfo & RetainsToMove,RRInfo & ReleasesToMove,Value * Arg,bool KnownSafe,bool & AnyPairsCompletelyEliminated)1565 bool ObjCARCOpt::PairUpRetainsAndReleases(
1566     DenseMap<const BasicBlock *, BBState> &BBStates,
1567     BlotMapVector<Value *, RRInfo> &Retains,
1568     DenseMap<Value *, RRInfo> &Releases, Module *M,
1569     Instruction *Retain,
1570     SmallVectorImpl<Instruction *> &DeadInsts, RRInfo &RetainsToMove,
1571     RRInfo &ReleasesToMove, Value *Arg, bool KnownSafe,
1572     bool &AnyPairsCompletelyEliminated) {
1573   // If a pair happens in a region where it is known that the reference count
1574   // is already incremented, we can similarly ignore possible decrements unless
1575   // we are dealing with a retainable object with multiple provenance sources.
1576   bool KnownSafeTD = true, KnownSafeBU = true;
1577   bool CFGHazardAfflicted = false;
1578 
1579   // Connect the dots between the top-down-collected RetainsToMove and
1580   // bottom-up-collected ReleasesToMove to form sets of related calls.
1581   // This is an iterative process so that we connect multiple releases
1582   // to multiple retains if needed.
1583   unsigned OldDelta = 0;
1584   unsigned NewDelta = 0;
1585   unsigned OldCount = 0;
1586   unsigned NewCount = 0;
1587   bool FirstRelease = true;
1588   for (SmallVector<Instruction *, 4> NewRetains{Retain};;) {
1589     SmallVector<Instruction *, 4> NewReleases;
1590     for (Instruction *NewRetain : NewRetains) {
1591       auto It = Retains.find(NewRetain);
1592       assert(It != Retains.end());
1593       const RRInfo &NewRetainRRI = It->second;
1594       KnownSafeTD &= NewRetainRRI.KnownSafe;
1595       CFGHazardAfflicted |= NewRetainRRI.CFGHazardAfflicted;
1596       for (Instruction *NewRetainRelease : NewRetainRRI.Calls) {
1597         auto Jt = Releases.find(NewRetainRelease);
1598         if (Jt == Releases.end())
1599           return false;
1600         const RRInfo &NewRetainReleaseRRI = Jt->second;
1601 
1602         // If the release does not have a reference to the retain as well,
1603         // something happened which is unaccounted for. Do not do anything.
1604         //
1605         // This can happen if we catch an additive overflow during path count
1606         // merging.
1607         if (!NewRetainReleaseRRI.Calls.count(NewRetain))
1608           return false;
1609 
1610         if (ReleasesToMove.Calls.insert(NewRetainRelease).second) {
1611           // If we overflow when we compute the path count, don't remove/move
1612           // anything.
1613           const BBState &NRRBBState = BBStates[NewRetainRelease->getParent()];
1614           unsigned PathCount = BBState::OverflowOccurredValue;
1615           if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
1616             return false;
1617           assert(PathCount != BBState::OverflowOccurredValue &&
1618                  "PathCount at this point can not be "
1619                  "OverflowOccurredValue.");
1620           OldDelta -= PathCount;
1621 
1622           // Merge the ReleaseMetadata and IsTailCallRelease values.
1623           if (FirstRelease) {
1624             ReleasesToMove.ReleaseMetadata =
1625               NewRetainReleaseRRI.ReleaseMetadata;
1626             ReleasesToMove.IsTailCallRelease =
1627               NewRetainReleaseRRI.IsTailCallRelease;
1628             FirstRelease = false;
1629           } else {
1630             if (ReleasesToMove.ReleaseMetadata !=
1631                 NewRetainReleaseRRI.ReleaseMetadata)
1632               ReleasesToMove.ReleaseMetadata = nullptr;
1633             if (ReleasesToMove.IsTailCallRelease !=
1634                 NewRetainReleaseRRI.IsTailCallRelease)
1635               ReleasesToMove.IsTailCallRelease = false;
1636           }
1637 
1638           // Collect the optimal insertion points.
1639           if (!KnownSafe)
1640             for (Instruction *RIP : NewRetainReleaseRRI.ReverseInsertPts) {
1641               if (ReleasesToMove.ReverseInsertPts.insert(RIP).second) {
1642                 // If we overflow when we compute the path count, don't
1643                 // remove/move anything.
1644                 const BBState &RIPBBState = BBStates[RIP->getParent()];
1645                 PathCount = BBState::OverflowOccurredValue;
1646                 if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
1647                   return false;
1648                 assert(PathCount != BBState::OverflowOccurredValue &&
1649                        "PathCount at this point can not be "
1650                        "OverflowOccurredValue.");
1651                 NewDelta -= PathCount;
1652               }
1653             }
1654           NewReleases.push_back(NewRetainRelease);
1655         }
1656       }
1657     }
1658     NewRetains.clear();
1659     if (NewReleases.empty()) break;
1660 
1661     // Back the other way.
1662     for (Instruction *NewRelease : NewReleases) {
1663       auto It = Releases.find(NewRelease);
1664       assert(It != Releases.end());
1665       const RRInfo &NewReleaseRRI = It->second;
1666       KnownSafeBU &= NewReleaseRRI.KnownSafe;
1667       CFGHazardAfflicted |= NewReleaseRRI.CFGHazardAfflicted;
1668       for (Instruction *NewReleaseRetain : NewReleaseRRI.Calls) {
1669         auto Jt = Retains.find(NewReleaseRetain);
1670         if (Jt == Retains.end())
1671           return false;
1672         const RRInfo &NewReleaseRetainRRI = Jt->second;
1673 
1674         // If the retain does not have a reference to the release as well,
1675         // something happened which is unaccounted for. Do not do anything.
1676         //
1677         // This can happen if we catch an additive overflow during path count
1678         // merging.
1679         if (!NewReleaseRetainRRI.Calls.count(NewRelease))
1680           return false;
1681 
1682         if (RetainsToMove.Calls.insert(NewReleaseRetain).second) {
1683           // If we overflow when we compute the path count, don't remove/move
1684           // anything.
1685           const BBState &NRRBBState = BBStates[NewReleaseRetain->getParent()];
1686           unsigned PathCount = BBState::OverflowOccurredValue;
1687           if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
1688             return false;
1689           assert(PathCount != BBState::OverflowOccurredValue &&
1690                  "PathCount at this point can not be "
1691                  "OverflowOccurredValue.");
1692           OldDelta += PathCount;
1693           OldCount += PathCount;
1694 
1695           // Collect the optimal insertion points.
1696           if (!KnownSafe)
1697             for (Instruction *RIP : NewReleaseRetainRRI.ReverseInsertPts) {
1698               if (RetainsToMove.ReverseInsertPts.insert(RIP).second) {
1699                 // If we overflow when we compute the path count, don't
1700                 // remove/move anything.
1701                 const BBState &RIPBBState = BBStates[RIP->getParent()];
1702 
1703                 PathCount = BBState::OverflowOccurredValue;
1704                 if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
1705                   return false;
1706                 assert(PathCount != BBState::OverflowOccurredValue &&
1707                        "PathCount at this point can not be "
1708                        "OverflowOccurredValue.");
1709                 NewDelta += PathCount;
1710                 NewCount += PathCount;
1711               }
1712             }
1713           NewRetains.push_back(NewReleaseRetain);
1714         }
1715       }
1716     }
1717     if (NewRetains.empty()) break;
1718   }
1719 
1720   // We can only remove pointers if we are known safe in both directions.
1721   bool UnconditionallySafe = KnownSafeTD && KnownSafeBU;
1722   if (UnconditionallySafe) {
1723     RetainsToMove.ReverseInsertPts.clear();
1724     ReleasesToMove.ReverseInsertPts.clear();
1725     NewCount = 0;
1726   } else {
1727     // Determine whether the new insertion points we computed preserve the
1728     // balance of retain and release calls through the program.
1729     // TODO: If the fully aggressive solution isn't valid, try to find a
1730     // less aggressive solution which is.
1731     if (NewDelta != 0)
1732       return false;
1733 
1734     // At this point, we are not going to remove any RR pairs, but we still are
1735     // able to move RR pairs. If one of our pointers is afflicted with
1736     // CFGHazards, we cannot perform such code motion so exit early.
1737     const bool WillPerformCodeMotion =
1738         !RetainsToMove.ReverseInsertPts.empty() ||
1739         !ReleasesToMove.ReverseInsertPts.empty();
1740     if (CFGHazardAfflicted && WillPerformCodeMotion)
1741       return false;
1742   }
1743 
1744   // Determine whether the original call points are balanced in the retain and
1745   // release calls through the program. If not, conservatively don't touch
1746   // them.
1747   // TODO: It's theoretically possible to do code motion in this case, as
1748   // long as the existing imbalances are maintained.
1749   if (OldDelta != 0)
1750     return false;
1751 
1752   Changed = true;
1753   assert(OldCount != 0 && "Unreachable code?");
1754   NumRRs += OldCount - NewCount;
1755   // Set to true if we completely removed any RR pairs.
1756   AnyPairsCompletelyEliminated = NewCount == 0;
1757 
1758   // We can move calls!
1759   return true;
1760 }
1761 
1762 /// Identify pairings between the retains and releases, and delete and/or move
1763 /// them.
PerformCodePlacement(DenseMap<const BasicBlock *,BBState> & BBStates,BlotMapVector<Value *,RRInfo> & Retains,DenseMap<Value *,RRInfo> & Releases,Module * M)1764 bool ObjCARCOpt::PerformCodePlacement(
1765     DenseMap<const BasicBlock *, BBState> &BBStates,
1766     BlotMapVector<Value *, RRInfo> &Retains,
1767     DenseMap<Value *, RRInfo> &Releases, Module *M) {
1768   LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::PerformCodePlacement ==\n");
1769 
1770   bool AnyPairsCompletelyEliminated = false;
1771   SmallVector<Instruction *, 8> DeadInsts;
1772 
1773   // Visit each retain.
1774   for (BlotMapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
1775                                                       E = Retains.end();
1776        I != E; ++I) {
1777     Value *V = I->first;
1778     if (!V) continue; // blotted
1779 
1780     Instruction *Retain = cast<Instruction>(V);
1781 
1782     LLVM_DEBUG(dbgs() << "Visiting: " << *Retain << "\n");
1783 
1784     Value *Arg = GetArgRCIdentityRoot(Retain);
1785 
1786     // If the object being released is in static or stack storage, we know it's
1787     // not being managed by ObjC reference counting, so we can delete pairs
1788     // regardless of what possible decrements or uses lie between them.
1789     bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg);
1790 
1791     // A constant pointer can't be pointing to an object on the heap. It may
1792     // be reference-counted, but it won't be deleted.
1793     if (const LoadInst *LI = dyn_cast<LoadInst>(Arg))
1794       if (const GlobalVariable *GV =
1795             dyn_cast<GlobalVariable>(
1796               GetRCIdentityRoot(LI->getPointerOperand())))
1797         if (GV->isConstant())
1798           KnownSafe = true;
1799 
1800     // Connect the dots between the top-down-collected RetainsToMove and
1801     // bottom-up-collected ReleasesToMove to form sets of related calls.
1802     RRInfo RetainsToMove, ReleasesToMove;
1803 
1804     bool PerformMoveCalls = PairUpRetainsAndReleases(
1805         BBStates, Retains, Releases, M, Retain, DeadInsts,
1806         RetainsToMove, ReleasesToMove, Arg, KnownSafe,
1807         AnyPairsCompletelyEliminated);
1808 
1809     if (PerformMoveCalls) {
1810       // Ok, everything checks out and we're all set. Let's move/delete some
1811       // code!
1812       MoveCalls(Arg, RetainsToMove, ReleasesToMove,
1813                 Retains, Releases, DeadInsts, M);
1814     }
1815   }
1816 
1817   // Now that we're done moving everything, we can delete the newly dead
1818   // instructions, as we no longer need them as insert points.
1819   while (!DeadInsts.empty())
1820     EraseInstruction(DeadInsts.pop_back_val());
1821 
1822   return AnyPairsCompletelyEliminated;
1823 }
1824 
1825 /// Weak pointer optimizations.
OptimizeWeakCalls(Function & F)1826 void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
1827   LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeWeakCalls ==\n");
1828 
1829   // First, do memdep-style RLE and S2L optimizations. We can't use memdep
1830   // itself because it uses AliasAnalysis and we need to do provenance
1831   // queries instead.
1832   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
1833     Instruction *Inst = &*I++;
1834 
1835     LLVM_DEBUG(dbgs() << "Visiting: " << *Inst << "\n");
1836 
1837     ARCInstKind Class = GetBasicARCInstKind(Inst);
1838     if (Class != ARCInstKind::LoadWeak &&
1839         Class != ARCInstKind::LoadWeakRetained)
1840       continue;
1841 
1842     // Delete objc_loadWeak calls with no users.
1843     if (Class == ARCInstKind::LoadWeak && Inst->use_empty()) {
1844       Inst->eraseFromParent();
1845       continue;
1846     }
1847 
1848     // TODO: For now, just look for an earlier available version of this value
1849     // within the same block. Theoretically, we could do memdep-style non-local
1850     // analysis too, but that would want caching. A better approach would be to
1851     // use the technique that EarlyCSE uses.
1852     inst_iterator Current = std::prev(I);
1853     BasicBlock *CurrentBB = &*Current.getBasicBlockIterator();
1854     for (BasicBlock::iterator B = CurrentBB->begin(),
1855                               J = Current.getInstructionIterator();
1856          J != B; --J) {
1857       Instruction *EarlierInst = &*std::prev(J);
1858       ARCInstKind EarlierClass = GetARCInstKind(EarlierInst);
1859       switch (EarlierClass) {
1860       case ARCInstKind::LoadWeak:
1861       case ARCInstKind::LoadWeakRetained: {
1862         // If this is loading from the same pointer, replace this load's value
1863         // with that one.
1864         CallInst *Call = cast<CallInst>(Inst);
1865         CallInst *EarlierCall = cast<CallInst>(EarlierInst);
1866         Value *Arg = Call->getArgOperand(0);
1867         Value *EarlierArg = EarlierCall->getArgOperand(0);
1868         switch (PA.getAA()->alias(Arg, EarlierArg)) {
1869         case MustAlias:
1870           Changed = true;
1871           // If the load has a builtin retain, insert a plain retain for it.
1872           if (Class == ARCInstKind::LoadWeakRetained) {
1873             Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
1874             CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
1875             CI->setTailCall();
1876           }
1877           // Zap the fully redundant load.
1878           Call->replaceAllUsesWith(EarlierCall);
1879           Call->eraseFromParent();
1880           goto clobbered;
1881         case MayAlias:
1882         case PartialAlias:
1883           goto clobbered;
1884         case NoAlias:
1885           break;
1886         }
1887         break;
1888       }
1889       case ARCInstKind::StoreWeak:
1890       case ARCInstKind::InitWeak: {
1891         // If this is storing to the same pointer and has the same size etc.
1892         // replace this load's value with the stored value.
1893         CallInst *Call = cast<CallInst>(Inst);
1894         CallInst *EarlierCall = cast<CallInst>(EarlierInst);
1895         Value *Arg = Call->getArgOperand(0);
1896         Value *EarlierArg = EarlierCall->getArgOperand(0);
1897         switch (PA.getAA()->alias(Arg, EarlierArg)) {
1898         case MustAlias:
1899           Changed = true;
1900           // If the load has a builtin retain, insert a plain retain for it.
1901           if (Class == ARCInstKind::LoadWeakRetained) {
1902             Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
1903             CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
1904             CI->setTailCall();
1905           }
1906           // Zap the fully redundant load.
1907           Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
1908           Call->eraseFromParent();
1909           goto clobbered;
1910         case MayAlias:
1911         case PartialAlias:
1912           goto clobbered;
1913         case NoAlias:
1914           break;
1915         }
1916         break;
1917       }
1918       case ARCInstKind::MoveWeak:
1919       case ARCInstKind::CopyWeak:
1920         // TOOD: Grab the copied value.
1921         goto clobbered;
1922       case ARCInstKind::AutoreleasepoolPush:
1923       case ARCInstKind::None:
1924       case ARCInstKind::IntrinsicUser:
1925       case ARCInstKind::User:
1926         // Weak pointers are only modified through the weak entry points
1927         // (and arbitrary calls, which could call the weak entry points).
1928         break;
1929       default:
1930         // Anything else could modify the weak pointer.
1931         goto clobbered;
1932       }
1933     }
1934   clobbered:;
1935   }
1936 
1937   // Then, for each destroyWeak with an alloca operand, check to see if
1938   // the alloca and all its users can be zapped.
1939   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
1940     Instruction *Inst = &*I++;
1941     ARCInstKind Class = GetBasicARCInstKind(Inst);
1942     if (Class != ARCInstKind::DestroyWeak)
1943       continue;
1944 
1945     CallInst *Call = cast<CallInst>(Inst);
1946     Value *Arg = Call->getArgOperand(0);
1947     if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
1948       for (User *U : Alloca->users()) {
1949         const Instruction *UserInst = cast<Instruction>(U);
1950         switch (GetBasicARCInstKind(UserInst)) {
1951         case ARCInstKind::InitWeak:
1952         case ARCInstKind::StoreWeak:
1953         case ARCInstKind::DestroyWeak:
1954           continue;
1955         default:
1956           goto done;
1957         }
1958       }
1959       Changed = true;
1960       for (auto UI = Alloca->user_begin(), UE = Alloca->user_end(); UI != UE;) {
1961         CallInst *UserInst = cast<CallInst>(*UI++);
1962         switch (GetBasicARCInstKind(UserInst)) {
1963         case ARCInstKind::InitWeak:
1964         case ARCInstKind::StoreWeak:
1965           // These functions return their second argument.
1966           UserInst->replaceAllUsesWith(UserInst->getArgOperand(1));
1967           break;
1968         case ARCInstKind::DestroyWeak:
1969           // No return value.
1970           break;
1971         default:
1972           llvm_unreachable("alloca really is used!");
1973         }
1974         UserInst->eraseFromParent();
1975       }
1976       Alloca->eraseFromParent();
1977     done:;
1978     }
1979   }
1980 }
1981 
1982 /// Identify program paths which execute sequences of retains and releases which
1983 /// can be eliminated.
OptimizeSequences(Function & F)1984 bool ObjCARCOpt::OptimizeSequences(Function &F) {
1985   // Releases, Retains - These are used to store the results of the main flow
1986   // analysis. These use Value* as the key instead of Instruction* so that the
1987   // map stays valid when we get around to rewriting code and calls get
1988   // replaced by arguments.
1989   DenseMap<Value *, RRInfo> Releases;
1990   BlotMapVector<Value *, RRInfo> Retains;
1991 
1992   // This is used during the traversal of the function to track the
1993   // states for each identified object at each block.
1994   DenseMap<const BasicBlock *, BBState> BBStates;
1995 
1996   // Analyze the CFG of the function, and all instructions.
1997   bool NestingDetected = Visit(F, BBStates, Retains, Releases);
1998 
1999   // Transform.
2000   bool AnyPairsCompletelyEliminated = PerformCodePlacement(BBStates, Retains,
2001                                                            Releases,
2002                                                            F.getParent());
2003 
2004   return AnyPairsCompletelyEliminated && NestingDetected;
2005 }
2006 
2007 /// Check if there is a dependent call earlier that does not have anything in
2008 /// between the Retain and the call that can affect the reference count of their
2009 /// shared pointer argument. Note that Retain need not be in BB.
2010 static bool
HasSafePathToPredecessorCall(const Value * Arg,Instruction * Retain,SmallPtrSetImpl<Instruction * > & DepInsts,SmallPtrSetImpl<const BasicBlock * > & Visited,ProvenanceAnalysis & PA)2011 HasSafePathToPredecessorCall(const Value *Arg, Instruction *Retain,
2012                              SmallPtrSetImpl<Instruction *> &DepInsts,
2013                              SmallPtrSetImpl<const BasicBlock *> &Visited,
2014                              ProvenanceAnalysis &PA) {
2015   FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain,
2016                    DepInsts, Visited, PA);
2017   if (DepInsts.size() != 1)
2018     return false;
2019 
2020   auto *Call = dyn_cast_or_null<CallInst>(*DepInsts.begin());
2021 
2022   // Check that the pointer is the return value of the call.
2023   if (!Call || Arg != Call)
2024     return false;
2025 
2026   // Check that the call is a regular call.
2027   ARCInstKind Class = GetBasicARCInstKind(Call);
2028   return Class == ARCInstKind::CallOrUser || Class == ARCInstKind::Call;
2029 }
2030 
2031 /// Find a dependent retain that precedes the given autorelease for which there
2032 /// is nothing in between the two instructions that can affect the ref count of
2033 /// Arg.
2034 static CallInst *
FindPredecessorRetainWithSafePath(const Value * Arg,BasicBlock * BB,Instruction * Autorelease,SmallPtrSetImpl<Instruction * > & DepInsts,SmallPtrSetImpl<const BasicBlock * > & Visited,ProvenanceAnalysis & PA)2035 FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB,
2036                                   Instruction *Autorelease,
2037                                   SmallPtrSetImpl<Instruction *> &DepInsts,
2038                                   SmallPtrSetImpl<const BasicBlock *> &Visited,
2039                                   ProvenanceAnalysis &PA) {
2040   FindDependencies(CanChangeRetainCount, Arg,
2041                    BB, Autorelease, DepInsts, Visited, PA);
2042   if (DepInsts.size() != 1)
2043     return nullptr;
2044 
2045   auto *Retain = dyn_cast_or_null<CallInst>(*DepInsts.begin());
2046 
2047   // Check that we found a retain with the same argument.
2048   if (!Retain || !IsRetain(GetBasicARCInstKind(Retain)) ||
2049       GetArgRCIdentityRoot(Retain) != Arg) {
2050     return nullptr;
2051   }
2052 
2053   return Retain;
2054 }
2055 
2056 /// Look for an ``autorelease'' instruction dependent on Arg such that there are
2057 /// no instructions dependent on Arg that need a positive ref count in between
2058 /// the autorelease and the ret.
2059 static CallInst *
FindPredecessorAutoreleaseWithSafePath(const Value * Arg,BasicBlock * BB,ReturnInst * Ret,SmallPtrSetImpl<Instruction * > & DepInsts,SmallPtrSetImpl<const BasicBlock * > & V,ProvenanceAnalysis & PA)2060 FindPredecessorAutoreleaseWithSafePath(const Value *Arg, BasicBlock *BB,
2061                                        ReturnInst *Ret,
2062                                        SmallPtrSetImpl<Instruction *> &DepInsts,
2063                                        SmallPtrSetImpl<const BasicBlock *> &V,
2064                                        ProvenanceAnalysis &PA) {
2065   FindDependencies(NeedsPositiveRetainCount, Arg,
2066                    BB, Ret, DepInsts, V, PA);
2067   if (DepInsts.size() != 1)
2068     return nullptr;
2069 
2070   auto *Autorelease = dyn_cast_or_null<CallInst>(*DepInsts.begin());
2071   if (!Autorelease)
2072     return nullptr;
2073   ARCInstKind AutoreleaseClass = GetBasicARCInstKind(Autorelease);
2074   if (!IsAutorelease(AutoreleaseClass))
2075     return nullptr;
2076   if (GetArgRCIdentityRoot(Autorelease) != Arg)
2077     return nullptr;
2078 
2079   return Autorelease;
2080 }
2081 
2082 /// Look for this pattern:
2083 /// \code
2084 ///    %call = call i8* @something(...)
2085 ///    %2 = call i8* @objc_retain(i8* %call)
2086 ///    %3 = call i8* @objc_autorelease(i8* %2)
2087 ///    ret i8* %3
2088 /// \endcode
2089 /// And delete the retain and autorelease.
OptimizeReturns(Function & F)2090 void ObjCARCOpt::OptimizeReturns(Function &F) {
2091   if (!F.getReturnType()->isPointerTy())
2092     return;
2093 
2094   LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeReturns ==\n");
2095 
2096   SmallPtrSet<Instruction *, 4> DependingInstructions;
2097   SmallPtrSet<const BasicBlock *, 4> Visited;
2098   for (BasicBlock &BB: F) {
2099     ReturnInst *Ret = dyn_cast<ReturnInst>(&BB.back());
2100     if (!Ret)
2101       continue;
2102 
2103     LLVM_DEBUG(dbgs() << "Visiting: " << *Ret << "\n");
2104 
2105     const Value *Arg = GetRCIdentityRoot(Ret->getOperand(0));
2106 
2107     // Look for an ``autorelease'' instruction that is a predecessor of Ret and
2108     // dependent on Arg such that there are no instructions dependent on Arg
2109     // that need a positive ref count in between the autorelease and Ret.
2110     CallInst *Autorelease = FindPredecessorAutoreleaseWithSafePath(
2111         Arg, &BB, Ret, DependingInstructions, Visited, PA);
2112     DependingInstructions.clear();
2113     Visited.clear();
2114 
2115     if (!Autorelease)
2116       continue;
2117 
2118     CallInst *Retain = FindPredecessorRetainWithSafePath(
2119         Arg, Autorelease->getParent(), Autorelease, DependingInstructions,
2120         Visited, PA);
2121     DependingInstructions.clear();
2122     Visited.clear();
2123 
2124     if (!Retain)
2125       continue;
2126 
2127     // Check that there is nothing that can affect the reference count
2128     // between the retain and the call.  Note that Retain need not be in BB.
2129     bool HasSafePathToCall = HasSafePathToPredecessorCall(Arg, Retain,
2130                                                           DependingInstructions,
2131                                                           Visited, PA);
2132     DependingInstructions.clear();
2133     Visited.clear();
2134 
2135     if (!HasSafePathToCall)
2136       continue;
2137 
2138     // If so, we can zap the retain and autorelease.
2139     Changed = true;
2140     ++NumRets;
2141     LLVM_DEBUG(dbgs() << "Erasing: " << *Retain << "\nErasing: " << *Autorelease
2142                       << "\n");
2143     EraseInstruction(Retain);
2144     EraseInstruction(Autorelease);
2145   }
2146 }
2147 
2148 #ifndef NDEBUG
2149 void
GatherStatistics(Function & F,bool AfterOptimization)2150 ObjCARCOpt::GatherStatistics(Function &F, bool AfterOptimization) {
2151   Statistic &NumRetains =
2152       AfterOptimization ? NumRetainsAfterOpt : NumRetainsBeforeOpt;
2153   Statistic &NumReleases =
2154       AfterOptimization ? NumReleasesAfterOpt : NumReleasesBeforeOpt;
2155 
2156   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
2157     Instruction *Inst = &*I++;
2158     switch (GetBasicARCInstKind(Inst)) {
2159     default:
2160       break;
2161     case ARCInstKind::Retain:
2162       ++NumRetains;
2163       break;
2164     case ARCInstKind::Release:
2165       ++NumReleases;
2166       break;
2167     }
2168   }
2169 }
2170 #endif
2171 
doInitialization(Module & M)2172 bool ObjCARCOpt::doInitialization(Module &M) {
2173   if (!EnableARCOpts)
2174     return false;
2175 
2176   // If nothing in the Module uses ARC, don't do anything.
2177   Run = ModuleHasARC(M);
2178   if (!Run)
2179     return false;
2180 
2181   // Intuitively, objc_retain and others are nocapture, however in practice
2182   // they are not, because they return their argument value. And objc_release
2183   // calls finalizers which can have arbitrary side effects.
2184   MDKindCache.init(&M);
2185 
2186   // Initialize our runtime entry point cache.
2187   EP.init(&M);
2188 
2189   return false;
2190 }
2191 
runOnFunction(Function & F)2192 bool ObjCARCOpt::runOnFunction(Function &F) {
2193   if (!EnableARCOpts)
2194     return false;
2195 
2196   // If nothing in the Module uses ARC, don't do anything.
2197   if (!Run)
2198     return false;
2199 
2200   Changed = false;
2201 
2202   LLVM_DEBUG(dbgs() << "<<< ObjCARCOpt: Visiting Function: " << F.getName()
2203                     << " >>>"
2204                        "\n");
2205 
2206   PA.setAA(&getAnalysis<AAResultsWrapperPass>().getAAResults());
2207 
2208 #ifndef NDEBUG
2209   if (AreStatisticsEnabled()) {
2210     GatherStatistics(F, false);
2211   }
2212 #endif
2213 
2214   // This pass performs several distinct transformations. As a compile-time aid
2215   // when compiling code that isn't ObjC, skip these if the relevant ObjC
2216   // library functions aren't declared.
2217 
2218   // Preliminary optimizations. This also computes UsedInThisFunction.
2219   OptimizeIndividualCalls(F);
2220 
2221   // Optimizations for weak pointers.
2222   if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::LoadWeak)) |
2223                             (1 << unsigned(ARCInstKind::LoadWeakRetained)) |
2224                             (1 << unsigned(ARCInstKind::StoreWeak)) |
2225                             (1 << unsigned(ARCInstKind::InitWeak)) |
2226                             (1 << unsigned(ARCInstKind::CopyWeak)) |
2227                             (1 << unsigned(ARCInstKind::MoveWeak)) |
2228                             (1 << unsigned(ARCInstKind::DestroyWeak))))
2229     OptimizeWeakCalls(F);
2230 
2231   // Optimizations for retain+release pairs.
2232   if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Retain)) |
2233                             (1 << unsigned(ARCInstKind::RetainRV)) |
2234                             (1 << unsigned(ARCInstKind::RetainBlock))))
2235     if (UsedInThisFunction & (1 << unsigned(ARCInstKind::Release)))
2236       // Run OptimizeSequences until it either stops making changes or
2237       // no retain+release pair nesting is detected.
2238       while (OptimizeSequences(F)) {}
2239 
2240   // Optimizations if objc_autorelease is used.
2241   if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Autorelease)) |
2242                             (1 << unsigned(ARCInstKind::AutoreleaseRV))))
2243     OptimizeReturns(F);
2244 
2245   // Gather statistics after optimization.
2246 #ifndef NDEBUG
2247   if (AreStatisticsEnabled()) {
2248     GatherStatistics(F, true);
2249   }
2250 #endif
2251 
2252   LLVM_DEBUG(dbgs() << "\n");
2253 
2254   return Changed;
2255 }
2256 
releaseMemory()2257 void ObjCARCOpt::releaseMemory() {
2258   PA.clear();
2259 }
2260 
2261 /// @}
2262 ///
2263