1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass identifies expensive constants to hoist and coalesces them to
11 // better prepare it for SelectionDAG-based code generation. This works around
12 // the limitations of the basic-block-at-a-time approach.
13 //
14 // First it scans all instructions for integer constants and calculates its
15 // cost. If the constant can be folded into the instruction (the cost is
16 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
17 // consider it expensive and leave it alone. This is the default behavior and
18 // the default implementation of getIntImmCost will always return TCC_Free.
19 //
20 // If the cost is more than TCC_BASIC, then the integer constant can't be folded
21 // into the instruction and it might be beneficial to hoist the constant.
22 // Similar constants are coalesced to reduce register pressure and
23 // materialization code.
24 //
25 // When a constant is hoisted, it is also hidden behind a bitcast to force it to
26 // be live-out of the basic block. Otherwise the constant would be just
27 // duplicated and each basic block would have its own copy in the SelectionDAG.
28 // The SelectionDAG recognizes such constants as opaque and doesn't perform
29 // certain transformations on them, which would create a new expensive constant.
30 //
31 // This optimization is only applied to integer constants in instructions and
32 // simple (this means not nested) constant cast expressions. For example:
33 // %0 = load i64* inttoptr (i64 big_constant to i64*)
34 //===----------------------------------------------------------------------===//
35 
36 #include "llvm/Transforms/Scalar/ConstantHoisting.h"
37 #include "llvm/ADT/APInt.h"
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/None.h"
40 #include "llvm/ADT/Optional.h"
41 #include "llvm/ADT/SmallPtrSet.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/ADT/Statistic.h"
44 #include "llvm/Analysis/BlockFrequencyInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/IR/BasicBlock.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/BlockFrequency.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Scalar.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstdint>
67 #include <iterator>
68 #include <tuple>
69 #include <utility>
70 
71 using namespace llvm;
72 using namespace consthoist;
73 
74 #define DEBUG_TYPE "consthoist"
75 
76 STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
77 STATISTIC(NumConstantsRebased, "Number of constants rebased");
78 
79 static cl::opt<bool> ConstHoistWithBlockFrequency(
80     "consthoist-with-block-frequency", cl::init(true), cl::Hidden,
81     cl::desc("Enable the use of the block frequency analysis to reduce the "
82              "chance to execute const materialization more frequently than "
83              "without hoisting."));
84 
85 namespace {
86 
87 /// The constant hoisting pass.
88 class ConstantHoistingLegacyPass : public FunctionPass {
89 public:
90   static char ID; // Pass identification, replacement for typeid
91 
ConstantHoistingLegacyPass()92   ConstantHoistingLegacyPass() : FunctionPass(ID) {
93     initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
94   }
95 
96   bool runOnFunction(Function &Fn) override;
97 
getPassName() const98   StringRef getPassName() const override { return "Constant Hoisting"; }
99 
getAnalysisUsage(AnalysisUsage & AU) const100   void getAnalysisUsage(AnalysisUsage &AU) const override {
101     AU.setPreservesCFG();
102     if (ConstHoistWithBlockFrequency)
103       AU.addRequired<BlockFrequencyInfoWrapperPass>();
104     AU.addRequired<DominatorTreeWrapperPass>();
105     AU.addRequired<TargetTransformInfoWrapperPass>();
106   }
107 
releaseMemory()108   void releaseMemory() override { Impl.releaseMemory(); }
109 
110 private:
111   ConstantHoistingPass Impl;
112 };
113 
114 } // end anonymous namespace
115 
116 char ConstantHoistingLegacyPass::ID = 0;
117 
118 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
119                       "Constant Hoisting", false, false)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)120 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
121 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
122 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
123 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
124                     "Constant Hoisting", false, false)
125 
126 FunctionPass *llvm::createConstantHoistingPass() {
127   return new ConstantHoistingLegacyPass();
128 }
129 
130 /// Perform the constant hoisting optimization for the given function.
runOnFunction(Function & Fn)131 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
132   if (skipFunction(Fn))
133     return false;
134 
135   LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
136   LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
137 
138   bool MadeChange =
139       Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
140                    getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
141                    ConstHoistWithBlockFrequency
142                        ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI()
143                        : nullptr,
144                    Fn.getEntryBlock());
145 
146   if (MadeChange) {
147     LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: "
148                       << Fn.getName() << '\n');
149     LLVM_DEBUG(dbgs() << Fn);
150   }
151   LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
152 
153   return MadeChange;
154 }
155 
156 /// Find the constant materialization insertion point.
findMatInsertPt(Instruction * Inst,unsigned Idx) const157 Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
158                                                    unsigned Idx) const {
159   // If the operand is a cast instruction, then we have to materialize the
160   // constant before the cast instruction.
161   if (Idx != ~0U) {
162     Value *Opnd = Inst->getOperand(Idx);
163     if (auto CastInst = dyn_cast<Instruction>(Opnd))
164       if (CastInst->isCast())
165         return CastInst;
166   }
167 
168   // The simple and common case. This also includes constant expressions.
169   if (!isa<PHINode>(Inst) && !Inst->isEHPad())
170     return Inst;
171 
172   // We can't insert directly before a phi node or an eh pad. Insert before
173   // the terminator of the incoming or dominating block.
174   assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
175   if (Idx != ~0U && isa<PHINode>(Inst))
176     return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator();
177 
178   // This must be an EH pad. Iterate over immediate dominators until we find a
179   // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
180   // and terminators.
181   auto IDom = DT->getNode(Inst->getParent())->getIDom();
182   while (IDom->getBlock()->isEHPad()) {
183     assert(Entry != IDom->getBlock() && "eh pad in entry block");
184     IDom = IDom->getIDom();
185   }
186 
187   return IDom->getBlock()->getTerminator();
188 }
189 
190 /// Given \p BBs as input, find another set of BBs which collectively
191 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB
192 /// set found in \p BBs.
findBestInsertionSet(DominatorTree & DT,BlockFrequencyInfo & BFI,BasicBlock * Entry,SmallPtrSet<BasicBlock *,8> & BBs)193 static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI,
194                                  BasicBlock *Entry,
195                                  SmallPtrSet<BasicBlock *, 8> &BBs) {
196   assert(!BBs.count(Entry) && "Assume Entry is not in BBs");
197   // Nodes on the current path to the root.
198   SmallPtrSet<BasicBlock *, 8> Path;
199   // Candidates includes any block 'BB' in set 'BBs' that is not strictly
200   // dominated by any other blocks in set 'BBs', and all nodes in the path
201   // in the dominator tree from Entry to 'BB'.
202   SmallPtrSet<BasicBlock *, 16> Candidates;
203   for (auto BB : BBs) {
204     Path.clear();
205     // Walk up the dominator tree until Entry or another BB in BBs
206     // is reached. Insert the nodes on the way to the Path.
207     BasicBlock *Node = BB;
208     // The "Path" is a candidate path to be added into Candidates set.
209     bool isCandidate = false;
210     do {
211       Path.insert(Node);
212       if (Node == Entry || Candidates.count(Node)) {
213         isCandidate = true;
214         break;
215       }
216       assert(DT.getNode(Node)->getIDom() &&
217              "Entry doens't dominate current Node");
218       Node = DT.getNode(Node)->getIDom()->getBlock();
219     } while (!BBs.count(Node));
220 
221     // If isCandidate is false, Node is another Block in BBs dominating
222     // current 'BB'. Drop the nodes on the Path.
223     if (!isCandidate)
224       continue;
225 
226     // Add nodes on the Path into Candidates.
227     Candidates.insert(Path.begin(), Path.end());
228   }
229 
230   // Sort the nodes in Candidates in top-down order and save the nodes
231   // in Orders.
232   unsigned Idx = 0;
233   SmallVector<BasicBlock *, 16> Orders;
234   Orders.push_back(Entry);
235   while (Idx != Orders.size()) {
236     BasicBlock *Node = Orders[Idx++];
237     for (auto ChildDomNode : DT.getNode(Node)->getChildren()) {
238       if (Candidates.count(ChildDomNode->getBlock()))
239         Orders.push_back(ChildDomNode->getBlock());
240     }
241   }
242 
243   // Visit Orders in bottom-up order.
244   using InsertPtsCostPair =
245       std::pair<SmallPtrSet<BasicBlock *, 16>, BlockFrequency>;
246 
247   // InsertPtsMap is a map from a BB to the best insertion points for the
248   // subtree of BB (subtree not including the BB itself).
249   DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap;
250   InsertPtsMap.reserve(Orders.size() + 1);
251   for (auto RIt = Orders.rbegin(); RIt != Orders.rend(); RIt++) {
252     BasicBlock *Node = *RIt;
253     bool NodeInBBs = BBs.count(Node);
254     SmallPtrSet<BasicBlock *, 16> &InsertPts = InsertPtsMap[Node].first;
255     BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second;
256 
257     // Return the optimal insert points in BBs.
258     if (Node == Entry) {
259       BBs.clear();
260       if (InsertPtsFreq > BFI.getBlockFreq(Node) ||
261           (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1))
262         BBs.insert(Entry);
263       else
264         BBs.insert(InsertPts.begin(), InsertPts.end());
265       break;
266     }
267 
268     BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock();
269     // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
270     // will update its parent's ParentInsertPts and ParentPtsFreq.
271     SmallPtrSet<BasicBlock *, 16> &ParentInsertPts = InsertPtsMap[Parent].first;
272     BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second;
273     // Choose to insert in Node or in subtree of Node.
274     // Don't hoist to EHPad because we may not find a proper place to insert
275     // in EHPad.
276     // If the total frequency of InsertPts is the same as the frequency of the
277     // target Node, and InsertPts contains more than one nodes, choose hoisting
278     // to reduce code size.
279     if (NodeInBBs ||
280         (!Node->isEHPad() &&
281          (InsertPtsFreq > BFI.getBlockFreq(Node) ||
282           (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) {
283       ParentInsertPts.insert(Node);
284       ParentPtsFreq += BFI.getBlockFreq(Node);
285     } else {
286       ParentInsertPts.insert(InsertPts.begin(), InsertPts.end());
287       ParentPtsFreq += InsertPtsFreq;
288     }
289   }
290 }
291 
292 /// Find an insertion point that dominates all uses.
findConstantInsertionPoint(const ConstantInfo & ConstInfo) const293 SmallPtrSet<Instruction *, 8> ConstantHoistingPass::findConstantInsertionPoint(
294     const ConstantInfo &ConstInfo) const {
295   assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
296   // Collect all basic blocks.
297   SmallPtrSet<BasicBlock *, 8> BBs;
298   SmallPtrSet<Instruction *, 8> InsertPts;
299   for (auto const &RCI : ConstInfo.RebasedConstants)
300     for (auto const &U : RCI.Uses)
301       BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
302 
303   if (BBs.count(Entry)) {
304     InsertPts.insert(&Entry->front());
305     return InsertPts;
306   }
307 
308   if (BFI) {
309     findBestInsertionSet(*DT, *BFI, Entry, BBs);
310     for (auto BB : BBs) {
311       BasicBlock::iterator InsertPt = BB->begin();
312       for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
313         ;
314       InsertPts.insert(&*InsertPt);
315     }
316     return InsertPts;
317   }
318 
319   while (BBs.size() >= 2) {
320     BasicBlock *BB, *BB1, *BB2;
321     BB1 = *BBs.begin();
322     BB2 = *std::next(BBs.begin());
323     BB = DT->findNearestCommonDominator(BB1, BB2);
324     if (BB == Entry) {
325       InsertPts.insert(&Entry->front());
326       return InsertPts;
327     }
328     BBs.erase(BB1);
329     BBs.erase(BB2);
330     BBs.insert(BB);
331   }
332   assert((BBs.size() == 1) && "Expected only one element.");
333   Instruction &FirstInst = (*BBs.begin())->front();
334   InsertPts.insert(findMatInsertPt(&FirstInst));
335   return InsertPts;
336 }
337 
338 /// Record constant integer ConstInt for instruction Inst at operand
339 /// index Idx.
340 ///
341 /// The operand at index Idx is not necessarily the constant integer itself. It
342 /// could also be a cast instruction or a constant expression that uses the
343 // constant integer.
collectConstantCandidates(ConstCandMapType & ConstCandMap,Instruction * Inst,unsigned Idx,ConstantInt * ConstInt)344 void ConstantHoistingPass::collectConstantCandidates(
345     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
346     ConstantInt *ConstInt) {
347   unsigned Cost;
348   // Ask the target about the cost of materializing the constant for the given
349   // instruction and operand index.
350   if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
351     Cost = TTI->getIntImmCost(IntrInst->getIntrinsicID(), Idx,
352                               ConstInt->getValue(), ConstInt->getType());
353   else
354     Cost = TTI->getIntImmCost(Inst->getOpcode(), Idx, ConstInt->getValue(),
355                               ConstInt->getType());
356 
357   // Ignore cheap integer constants.
358   if (Cost > TargetTransformInfo::TCC_Basic) {
359     ConstCandMapType::iterator Itr;
360     bool Inserted;
361     std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(ConstInt, 0));
362     if (Inserted) {
363       ConstCandVec.push_back(ConstantCandidate(ConstInt));
364       Itr->second = ConstCandVec.size() - 1;
365     }
366     ConstCandVec[Itr->second].addUser(Inst, Idx, Cost);
367     LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs()
368                    << "Collect constant " << *ConstInt << " from " << *Inst
369                    << " with cost " << Cost << '\n';
370                else dbgs() << "Collect constant " << *ConstInt
371                            << " indirectly from " << *Inst << " via "
372                            << *Inst->getOperand(Idx) << " with cost " << Cost
373                            << '\n';);
374   }
375 }
376 
377 /// Check the operand for instruction Inst at index Idx.
collectConstantCandidates(ConstCandMapType & ConstCandMap,Instruction * Inst,unsigned Idx)378 void ConstantHoistingPass::collectConstantCandidates(
379     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) {
380   Value *Opnd = Inst->getOperand(Idx);
381 
382   // Visit constant integers.
383   if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
384     collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
385     return;
386   }
387 
388   // Visit cast instructions that have constant integers.
389   if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
390     // Only visit cast instructions, which have been skipped. All other
391     // instructions should have already been visited.
392     if (!CastInst->isCast())
393       return;
394 
395     if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
396       // Pretend the constant is directly used by the instruction and ignore
397       // the cast instruction.
398       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
399       return;
400     }
401   }
402 
403   // Visit constant expressions that have constant integers.
404   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
405     // Only visit constant cast expressions.
406     if (!ConstExpr->isCast())
407       return;
408 
409     if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
410       // Pretend the constant is directly used by the instruction and ignore
411       // the constant expression.
412       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
413       return;
414     }
415   }
416 }
417 
418 /// Scan the instruction for expensive integer constants and record them
419 /// in the constant candidate vector.
collectConstantCandidates(ConstCandMapType & ConstCandMap,Instruction * Inst)420 void ConstantHoistingPass::collectConstantCandidates(
421     ConstCandMapType &ConstCandMap, Instruction *Inst) {
422   // Skip all cast instructions. They are visited indirectly later on.
423   if (Inst->isCast())
424     return;
425 
426   // Scan all operands.
427   for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
428     // The cost of materializing the constants (defined in
429     // `TargetTransformInfo::getIntImmCost`) for instructions which only take
430     // constant variables is lower than `TargetTransformInfo::TCC_Basic`. So
431     // it's safe for us to collect constant candidates from all IntrinsicInsts.
432     if (canReplaceOperandWithVariable(Inst, Idx) || isa<IntrinsicInst>(Inst)) {
433       collectConstantCandidates(ConstCandMap, Inst, Idx);
434     }
435   } // end of for all operands
436 }
437 
438 /// Collect all integer constants in the function that cannot be folded
439 /// into an instruction itself.
collectConstantCandidates(Function & Fn)440 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
441   ConstCandMapType ConstCandMap;
442   for (BasicBlock &BB : Fn)
443     for (Instruction &Inst : BB)
444       collectConstantCandidates(ConstCandMap, &Inst);
445 }
446 
447 // This helper function is necessary to deal with values that have different
448 // bit widths (APInt Operator- does not like that). If the value cannot be
449 // represented in uint64 we return an "empty" APInt. This is then interpreted
450 // as the value is not in range.
calculateOffsetDiff(const APInt & V1,const APInt & V2)451 static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) {
452   Optional<APInt> Res = None;
453   unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
454                 V1.getBitWidth() : V2.getBitWidth();
455   uint64_t LimVal1 = V1.getLimitedValue();
456   uint64_t LimVal2 = V2.getLimitedValue();
457 
458   if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
459     return Res;
460 
461   uint64_t Diff = LimVal1 - LimVal2;
462   return APInt(BW, Diff, true);
463 }
464 
465 // From a list of constants, one needs to picked as the base and the other
466 // constants will be transformed into an offset from that base constant. The
467 // question is which we can pick best? For example, consider these constants
468 // and their number of uses:
469 //
470 //  Constants| 2 | 4 | 12 | 42 |
471 //  NumUses  | 3 | 2 |  8 |  7 |
472 //
473 // Selecting constant 12 because it has the most uses will generate negative
474 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
475 // offsets lead to less optimal code generation, then there might be better
476 // solutions. Suppose immediates in the range of 0..35 are most optimally
477 // supported by the architecture, then selecting constant 2 is most optimal
478 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
479 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
480 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
481 // selecting the base constant the range of the offsets is a very important
482 // factor too that we take into account here. This algorithm calculates a total
483 // costs for selecting a constant as the base and substract the costs if
484 // immediates are out of range. It has quadratic complexity, so we call this
485 // function only when we're optimising for size and there are less than 100
486 // constants, we fall back to the straightforward algorithm otherwise
487 // which does not do all the offset calculations.
488 unsigned
maximizeConstantsInRange(ConstCandVecType::iterator S,ConstCandVecType::iterator E,ConstCandVecType::iterator & MaxCostItr)489 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
490                                            ConstCandVecType::iterator E,
491                                            ConstCandVecType::iterator &MaxCostItr) {
492   unsigned NumUses = 0;
493 
494   if(!Entry->getParent()->optForSize() || std::distance(S,E) > 100) {
495     for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
496       NumUses += ConstCand->Uses.size();
497       if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
498         MaxCostItr = ConstCand;
499     }
500     return NumUses;
501   }
502 
503   LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
504   int MaxCost = -1;
505   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
506     auto Value = ConstCand->ConstInt->getValue();
507     Type *Ty = ConstCand->ConstInt->getType();
508     int Cost = 0;
509     NumUses += ConstCand->Uses.size();
510     LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue()
511                       << "\n");
512 
513     for (auto User : ConstCand->Uses) {
514       unsigned Opcode = User.Inst->getOpcode();
515       unsigned OpndIdx = User.OpndIdx;
516       Cost += TTI->getIntImmCost(Opcode, OpndIdx, Value, Ty);
517       LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n");
518 
519       for (auto C2 = S; C2 != E; ++C2) {
520         Optional<APInt> Diff = calculateOffsetDiff(
521                                    C2->ConstInt->getValue(),
522                                    ConstCand->ConstInt->getValue());
523         if (Diff) {
524           const int ImmCosts =
525             TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty);
526           Cost -= ImmCosts;
527           LLVM_DEBUG(dbgs() << "Offset " << Diff.getValue() << " "
528                             << "has penalty: " << ImmCosts << "\n"
529                             << "Adjusted cost: " << Cost << "\n");
530         }
531       }
532     }
533     LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
534     if (Cost > MaxCost) {
535       MaxCost = Cost;
536       MaxCostItr = ConstCand;
537       LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
538                         << "\n");
539     }
540   }
541   return NumUses;
542 }
543 
544 /// Find the base constant within the given range and rebase all other
545 /// constants with respect to the base constant.
findAndMakeBaseConstant(ConstCandVecType::iterator S,ConstCandVecType::iterator E)546 void ConstantHoistingPass::findAndMakeBaseConstant(
547     ConstCandVecType::iterator S, ConstCandVecType::iterator E) {
548   auto MaxCostItr = S;
549   unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
550 
551   // Don't hoist constants that have only one use.
552   if (NumUses <= 1)
553     return;
554 
555   ConstantInfo ConstInfo;
556   ConstInfo.BaseConstant = MaxCostItr->ConstInt;
557   Type *Ty = ConstInfo.BaseConstant->getType();
558 
559   // Rebase the constants with respect to the base constant.
560   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
561     APInt Diff = ConstCand->ConstInt->getValue() -
562                  ConstInfo.BaseConstant->getValue();
563     Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
564     ConstInfo.RebasedConstants.push_back(
565       RebasedConstantInfo(std::move(ConstCand->Uses), Offset));
566   }
567   ConstantVec.push_back(std::move(ConstInfo));
568 }
569 
570 /// Finds and combines constant candidates that can be easily
571 /// rematerialized with an add from a common base constant.
findBaseConstants()572 void ConstantHoistingPass::findBaseConstants() {
573   // Sort the constants by value and type. This invalidates the mapping!
574   llvm::sort(ConstCandVec.begin(), ConstCandVec.end(),
575              [](const ConstantCandidate &LHS, const ConstantCandidate &RHS) {
576     if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
577       return LHS.ConstInt->getType()->getBitWidth() <
578              RHS.ConstInt->getType()->getBitWidth();
579     return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
580   });
581 
582   // Simple linear scan through the sorted constant candidate vector for viable
583   // merge candidates.
584   auto MinValItr = ConstCandVec.begin();
585   for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
586        CC != E; ++CC) {
587     if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
588       // Check if the constant is in range of an add with immediate.
589       APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
590       if ((Diff.getBitWidth() <= 64) &&
591           TTI->isLegalAddImmediate(Diff.getSExtValue()))
592         continue;
593     }
594     // We either have now a different constant type or the constant is not in
595     // range of an add with immediate anymore.
596     findAndMakeBaseConstant(MinValItr, CC);
597     // Start a new base constant search.
598     MinValItr = CC;
599   }
600   // Finalize the last base constant search.
601   findAndMakeBaseConstant(MinValItr, ConstCandVec.end());
602 }
603 
604 /// Updates the operand at Idx in instruction Inst with the result of
605 ///        instruction Mat. If the instruction is a PHI node then special
606 ///        handling for duplicate values form the same incoming basic block is
607 ///        required.
608 /// \return The update will always succeed, but the return value indicated if
609 ///         Mat was used for the update or not.
updateOperand(Instruction * Inst,unsigned Idx,Instruction * Mat)610 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
611   if (auto PHI = dyn_cast<PHINode>(Inst)) {
612     // Check if any previous operand of the PHI node has the same incoming basic
613     // block. This is a very odd case that happens when the incoming basic block
614     // has a switch statement. In this case use the same value as the previous
615     // operand(s), otherwise we will fail verification due to different values.
616     // The values are actually the same, but the variable names are different
617     // and the verifier doesn't like that.
618     BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
619     for (unsigned i = 0; i < Idx; ++i) {
620       if (PHI->getIncomingBlock(i) == IncomingBB) {
621         Value *IncomingVal = PHI->getIncomingValue(i);
622         Inst->setOperand(Idx, IncomingVal);
623         return false;
624       }
625     }
626   }
627 
628   Inst->setOperand(Idx, Mat);
629   return true;
630 }
631 
632 /// Emit materialization code for all rebased constants and update their
633 /// users.
emitBaseConstants(Instruction * Base,Constant * Offset,const ConstantUser & ConstUser)634 void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
635                                              Constant *Offset,
636                                              const ConstantUser &ConstUser) {
637   Instruction *Mat = Base;
638   if (Offset) {
639     Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
640                                                ConstUser.OpndIdx);
641     Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
642                                  "const_mat", InsertionPt);
643 
644     LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
645                       << " + " << *Offset << ") in BB "
646                       << Mat->getParent()->getName() << '\n'
647                       << *Mat << '\n');
648     Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
649   }
650   Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
651 
652   // Visit constant integer.
653   if (isa<ConstantInt>(Opnd)) {
654     LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
655     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
656       Mat->eraseFromParent();
657     LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
658     return;
659   }
660 
661   // Visit cast instruction.
662   if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
663     assert(CastInst->isCast() && "Expected an cast instruction!");
664     // Check if we already have visited this cast instruction before to avoid
665     // unnecessary cloning.
666     Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
667     if (!ClonedCastInst) {
668       ClonedCastInst = CastInst->clone();
669       ClonedCastInst->setOperand(0, Mat);
670       ClonedCastInst->insertAfter(CastInst);
671       // Use the same debug location as the original cast instruction.
672       ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
673       LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
674                         << "To               : " << *ClonedCastInst << '\n');
675     }
676 
677     LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
678     updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
679     LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
680     return;
681   }
682 
683   // Visit constant expression.
684   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
685     Instruction *ConstExprInst = ConstExpr->getAsInstruction();
686     ConstExprInst->setOperand(0, Mat);
687     ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst,
688                                                 ConstUser.OpndIdx));
689 
690     // Use the same debug location as the instruction we are about to update.
691     ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
692 
693     LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
694                       << "From              : " << *ConstExpr << '\n');
695     LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
696     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
697       ConstExprInst->eraseFromParent();
698       if (Offset)
699         Mat->eraseFromParent();
700     }
701     LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
702     return;
703   }
704 }
705 
706 /// Hoist and hide the base constant behind a bitcast and emit
707 /// materialization code for derived constants.
emitBaseConstants()708 bool ConstantHoistingPass::emitBaseConstants() {
709   bool MadeChange = false;
710   for (auto const &ConstInfo : ConstantVec) {
711     // Hoist and hide the base constant behind a bitcast.
712     SmallPtrSet<Instruction *, 8> IPSet = findConstantInsertionPoint(ConstInfo);
713     assert(!IPSet.empty() && "IPSet is empty");
714 
715     unsigned UsesNum = 0;
716     unsigned ReBasesNum = 0;
717     for (Instruction *IP : IPSet) {
718       IntegerType *Ty = ConstInfo.BaseConstant->getType();
719       Instruction *Base =
720           new BitCastInst(ConstInfo.BaseConstant, Ty, "const", IP);
721 
722       Base->setDebugLoc(IP->getDebugLoc());
723 
724       LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseConstant
725                         << ") to BB " << IP->getParent()->getName() << '\n'
726                         << *Base << '\n');
727 
728       // Emit materialization code for all rebased constants.
729       unsigned Uses = 0;
730       for (auto const &RCI : ConstInfo.RebasedConstants) {
731         for (auto const &U : RCI.Uses) {
732           Uses++;
733           BasicBlock *OrigMatInsertBB =
734               findMatInsertPt(U.Inst, U.OpndIdx)->getParent();
735           // If Base constant is to be inserted in multiple places,
736           // generate rebase for U using the Base dominating U.
737           if (IPSet.size() == 1 ||
738               DT->dominates(Base->getParent(), OrigMatInsertBB)) {
739             emitBaseConstants(Base, RCI.Offset, U);
740             ReBasesNum++;
741           }
742 
743           Base->setDebugLoc(DILocation::getMergedLocation(Base->getDebugLoc(), U.Inst->getDebugLoc()));
744         }
745       }
746       UsesNum = Uses;
747 
748       // Use the same debug location as the last user of the constant.
749       assert(!Base->use_empty() && "The use list is empty!?");
750       assert(isa<Instruction>(Base->user_back()) &&
751              "All uses should be instructions.");
752     }
753     (void)UsesNum;
754     (void)ReBasesNum;
755     // Expect all uses are rebased after rebase is done.
756     assert(UsesNum == ReBasesNum && "Not all uses are rebased");
757 
758     NumConstantsHoisted++;
759 
760     // Base constant is also included in ConstInfo.RebasedConstants, so
761     // deduct 1 from ConstInfo.RebasedConstants.size().
762     NumConstantsRebased = ConstInfo.RebasedConstants.size() - 1;
763 
764     MadeChange = true;
765   }
766   return MadeChange;
767 }
768 
769 /// Check all cast instructions we made a copy of and remove them if they
770 /// have no more users.
deleteDeadCastInst() const771 void ConstantHoistingPass::deleteDeadCastInst() const {
772   for (auto const &I : ClonedCastMap)
773     if (I.first->use_empty())
774       I.first->eraseFromParent();
775 }
776 
777 /// Optimize expensive integer constants in the given function.
runImpl(Function & Fn,TargetTransformInfo & TTI,DominatorTree & DT,BlockFrequencyInfo * BFI,BasicBlock & Entry)778 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
779                                    DominatorTree &DT, BlockFrequencyInfo *BFI,
780                                    BasicBlock &Entry) {
781   this->TTI = &TTI;
782   this->DT = &DT;
783   this->BFI = BFI;
784   this->Entry = &Entry;
785   // Collect all constant candidates.
786   collectConstantCandidates(Fn);
787 
788   // There are no constant candidates to worry about.
789   if (ConstCandVec.empty())
790     return false;
791 
792   // Combine constants that can be easily materialized with an add from a common
793   // base constant.
794   findBaseConstants();
795 
796   // There are no constants to emit.
797   if (ConstantVec.empty())
798     return false;
799 
800   // Finally hoist the base constant and emit materialization code for dependent
801   // constants.
802   bool MadeChange = emitBaseConstants();
803 
804   // Cleanup dead instructions.
805   deleteDeadCastInst();
806 
807   return MadeChange;
808 }
809 
run(Function & F,FunctionAnalysisManager & AM)810 PreservedAnalyses ConstantHoistingPass::run(Function &F,
811                                             FunctionAnalysisManager &AM) {
812   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
813   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
814   auto BFI = ConstHoistWithBlockFrequency
815                  ? &AM.getResult<BlockFrequencyAnalysis>(F)
816                  : nullptr;
817   if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock()))
818     return PreservedAnalyses::all();
819 
820   PreservedAnalyses PA;
821   PA.preserveSet<CFGAnalyses>();
822   return PA;
823 }
824