1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global value numbering to eliminate fully redundant
11 // instructions.  It also performs simple dead load elimination.
12 //
13 // Note that this pass does the value numbering itself; it does not use the
14 // ValueNumbering analysis passes.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Transforms/Scalar/GVN.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DepthFirstIterator.h"
21 #include "llvm/ADT/Hashing.h"
22 #include "llvm/ADT/MapVector.h"
23 #include "llvm/ADT/PointerIntPair.h"
24 #include "llvm/ADT/PostOrderIterator.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/AssumptionCache.h"
32 #include "llvm/Analysis/CFG.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/InstructionSimplify.h"
35 #include "llvm/Analysis/LoopInfo.h"
36 #include "llvm/Analysis/MemoryBuiltins.h"
37 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
38 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
39 #include "llvm/Analysis/PHITransAddr.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 #include "llvm/Analysis/ValueTracking.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/Intrinsics.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Metadata.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/PassManager.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/SSAUpdater.h"
75 #include "llvm/Transforms/Utils/VNCoercion.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstdint>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 using namespace llvm::gvn;
84 using namespace llvm::VNCoercion;
85 using namespace PatternMatch;
86 
87 #define DEBUG_TYPE "gvn"
88 
89 STATISTIC(NumGVNInstr,  "Number of instructions deleted");
90 STATISTIC(NumGVNLoad,   "Number of loads deleted");
91 STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
92 STATISTIC(NumGVNBlocks, "Number of blocks merged");
93 STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
94 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
95 STATISTIC(NumPRELoad,   "Number of loads PRE'd");
96 
97 static cl::opt<bool> EnablePRE("enable-pre",
98                                cl::init(true), cl::Hidden);
99 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
100 
101 // Maximum allowed recursion depth.
102 static cl::opt<uint32_t>
103 MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
104                 cl::desc("Max recurse depth (default = 1000)"));
105 
106 struct llvm::GVN::Expression {
107   uint32_t opcode;
108   Type *type;
109   bool commutative = false;
110   SmallVector<uint32_t, 4> varargs;
111 
Expressionllvm::GVN::Expression112   Expression(uint32_t o = ~2U) : opcode(o) {}
113 
operator ==llvm::GVN::Expression114   bool operator==(const Expression &other) const {
115     if (opcode != other.opcode)
116       return false;
117     if (opcode == ~0U || opcode == ~1U)
118       return true;
119     if (type != other.type)
120       return false;
121     if (varargs != other.varargs)
122       return false;
123     return true;
124   }
125 
hash_value(const Expression & Value)126   friend hash_code hash_value(const Expression &Value) {
127     return hash_combine(
128         Value.opcode, Value.type,
129         hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
130   }
131 };
132 
133 namespace llvm {
134 
135 template <> struct DenseMapInfo<GVN::Expression> {
getEmptyKeyllvm::DenseMapInfo136   static inline GVN::Expression getEmptyKey() { return ~0U; }
getTombstoneKeyllvm::DenseMapInfo137   static inline GVN::Expression getTombstoneKey() { return ~1U; }
138 
getHashValuellvm::DenseMapInfo139   static unsigned getHashValue(const GVN::Expression &e) {
140     using llvm::hash_value;
141 
142     return static_cast<unsigned>(hash_value(e));
143   }
144 
isEqualllvm::DenseMapInfo145   static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) {
146     return LHS == RHS;
147   }
148 };
149 
150 } // end namespace llvm
151 
152 /// Represents a particular available value that we know how to materialize.
153 /// Materialization of an AvailableValue never fails.  An AvailableValue is
154 /// implicitly associated with a rematerialization point which is the
155 /// location of the instruction from which it was formed.
156 struct llvm::gvn::AvailableValue {
157   enum ValType {
158     SimpleVal, // A simple offsetted value that is accessed.
159     LoadVal,   // A value produced by a load.
160     MemIntrin, // A memory intrinsic which is loaded from.
161     UndefVal   // A UndefValue representing a value from dead block (which
162                // is not yet physically removed from the CFG).
163   };
164 
165   /// V - The value that is live out of the block.
166   PointerIntPair<Value *, 2, ValType> Val;
167 
168   /// Offset - The byte offset in Val that is interesting for the load query.
169   unsigned Offset;
170 
getllvm::gvn::AvailableValue171   static AvailableValue get(Value *V, unsigned Offset = 0) {
172     AvailableValue Res;
173     Res.Val.setPointer(V);
174     Res.Val.setInt(SimpleVal);
175     Res.Offset = Offset;
176     return Res;
177   }
178 
getMIllvm::gvn::AvailableValue179   static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
180     AvailableValue Res;
181     Res.Val.setPointer(MI);
182     Res.Val.setInt(MemIntrin);
183     Res.Offset = Offset;
184     return Res;
185   }
186 
getLoadllvm::gvn::AvailableValue187   static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) {
188     AvailableValue Res;
189     Res.Val.setPointer(LI);
190     Res.Val.setInt(LoadVal);
191     Res.Offset = Offset;
192     return Res;
193   }
194 
getUndefllvm::gvn::AvailableValue195   static AvailableValue getUndef() {
196     AvailableValue Res;
197     Res.Val.setPointer(nullptr);
198     Res.Val.setInt(UndefVal);
199     Res.Offset = 0;
200     return Res;
201   }
202 
isSimpleValuellvm::gvn::AvailableValue203   bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
isCoercedLoadValuellvm::gvn::AvailableValue204   bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
isMemIntrinValuellvm::gvn::AvailableValue205   bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
isUndefValuellvm::gvn::AvailableValue206   bool isUndefValue() const { return Val.getInt() == UndefVal; }
207 
getSimpleValuellvm::gvn::AvailableValue208   Value *getSimpleValue() const {
209     assert(isSimpleValue() && "Wrong accessor");
210     return Val.getPointer();
211   }
212 
getCoercedLoadValuellvm::gvn::AvailableValue213   LoadInst *getCoercedLoadValue() const {
214     assert(isCoercedLoadValue() && "Wrong accessor");
215     return cast<LoadInst>(Val.getPointer());
216   }
217 
getMemIntrinValuellvm::gvn::AvailableValue218   MemIntrinsic *getMemIntrinValue() const {
219     assert(isMemIntrinValue() && "Wrong accessor");
220     return cast<MemIntrinsic>(Val.getPointer());
221   }
222 
223   /// Emit code at the specified insertion point to adjust the value defined
224   /// here to the specified type. This handles various coercion cases.
225   Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt,
226                                   GVN &gvn) const;
227 };
228 
229 /// Represents an AvailableValue which can be rematerialized at the end of
230 /// the associated BasicBlock.
231 struct llvm::gvn::AvailableValueInBlock {
232   /// BB - The basic block in question.
233   BasicBlock *BB;
234 
235   /// AV - The actual available value
236   AvailableValue AV;
237 
getllvm::gvn::AvailableValueInBlock238   static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
239     AvailableValueInBlock Res;
240     Res.BB = BB;
241     Res.AV = std::move(AV);
242     return Res;
243   }
244 
getllvm::gvn::AvailableValueInBlock245   static AvailableValueInBlock get(BasicBlock *BB, Value *V,
246                                    unsigned Offset = 0) {
247     return get(BB, AvailableValue::get(V, Offset));
248   }
249 
getUndefllvm::gvn::AvailableValueInBlock250   static AvailableValueInBlock getUndef(BasicBlock *BB) {
251     return get(BB, AvailableValue::getUndef());
252   }
253 
254   /// Emit code at the end of this block to adjust the value defined here to
255   /// the specified type. This handles various coercion cases.
MaterializeAdjustedValuellvm::gvn::AvailableValueInBlock256   Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const {
257     return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn);
258   }
259 };
260 
261 //===----------------------------------------------------------------------===//
262 //                     ValueTable Internal Functions
263 //===----------------------------------------------------------------------===//
264 
createExpr(Instruction * I)265 GVN::Expression GVN::ValueTable::createExpr(Instruction *I) {
266   Expression e;
267   e.type = I->getType();
268   e.opcode = I->getOpcode();
269   for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
270        OI != OE; ++OI)
271     e.varargs.push_back(lookupOrAdd(*OI));
272   if (I->isCommutative()) {
273     // Ensure that commutative instructions that only differ by a permutation
274     // of their operands get the same value number by sorting the operand value
275     // numbers.  Since all commutative instructions have two operands it is more
276     // efficient to sort by hand rather than using, say, std::sort.
277     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
278     if (e.varargs[0] > e.varargs[1])
279       std::swap(e.varargs[0], e.varargs[1]);
280     e.commutative = true;
281   }
282 
283   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
284     // Sort the operand value numbers so x<y and y>x get the same value number.
285     CmpInst::Predicate Predicate = C->getPredicate();
286     if (e.varargs[0] > e.varargs[1]) {
287       std::swap(e.varargs[0], e.varargs[1]);
288       Predicate = CmpInst::getSwappedPredicate(Predicate);
289     }
290     e.opcode = (C->getOpcode() << 8) | Predicate;
291     e.commutative = true;
292   } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
293     for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
294          II != IE; ++II)
295       e.varargs.push_back(*II);
296   }
297 
298   return e;
299 }
300 
createCmpExpr(unsigned Opcode,CmpInst::Predicate Predicate,Value * LHS,Value * RHS)301 GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode,
302                                                CmpInst::Predicate Predicate,
303                                                Value *LHS, Value *RHS) {
304   assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
305          "Not a comparison!");
306   Expression e;
307   e.type = CmpInst::makeCmpResultType(LHS->getType());
308   e.varargs.push_back(lookupOrAdd(LHS));
309   e.varargs.push_back(lookupOrAdd(RHS));
310 
311   // Sort the operand value numbers so x<y and y>x get the same value number.
312   if (e.varargs[0] > e.varargs[1]) {
313     std::swap(e.varargs[0], e.varargs[1]);
314     Predicate = CmpInst::getSwappedPredicate(Predicate);
315   }
316   e.opcode = (Opcode << 8) | Predicate;
317   e.commutative = true;
318   return e;
319 }
320 
createExtractvalueExpr(ExtractValueInst * EI)321 GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
322   assert(EI && "Not an ExtractValueInst?");
323   Expression e;
324   e.type = EI->getType();
325   e.opcode = 0;
326 
327   IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
328   if (I != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
329     // EI might be an extract from one of our recognised intrinsics. If it
330     // is we'll synthesize a semantically equivalent expression instead on
331     // an extract value expression.
332     switch (I->getIntrinsicID()) {
333       case Intrinsic::sadd_with_overflow:
334       case Intrinsic::uadd_with_overflow:
335         e.opcode = Instruction::Add;
336         break;
337       case Intrinsic::ssub_with_overflow:
338       case Intrinsic::usub_with_overflow:
339         e.opcode = Instruction::Sub;
340         break;
341       case Intrinsic::smul_with_overflow:
342       case Intrinsic::umul_with_overflow:
343         e.opcode = Instruction::Mul;
344         break;
345       default:
346         break;
347     }
348 
349     if (e.opcode != 0) {
350       // Intrinsic recognized. Grab its args to finish building the expression.
351       assert(I->getNumArgOperands() == 2 &&
352              "Expect two args for recognised intrinsics.");
353       e.varargs.push_back(lookupOrAdd(I->getArgOperand(0)));
354       e.varargs.push_back(lookupOrAdd(I->getArgOperand(1)));
355       return e;
356     }
357   }
358 
359   // Not a recognised intrinsic. Fall back to producing an extract value
360   // expression.
361   e.opcode = EI->getOpcode();
362   for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
363        OI != OE; ++OI)
364     e.varargs.push_back(lookupOrAdd(*OI));
365 
366   for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
367          II != IE; ++II)
368     e.varargs.push_back(*II);
369 
370   return e;
371 }
372 
373 //===----------------------------------------------------------------------===//
374 //                     ValueTable External Functions
375 //===----------------------------------------------------------------------===//
376 
377 GVN::ValueTable::ValueTable() = default;
378 GVN::ValueTable::ValueTable(const ValueTable &) = default;
379 GVN::ValueTable::ValueTable(ValueTable &&) = default;
380 GVN::ValueTable::~ValueTable() = default;
381 
382 /// add - Insert a value into the table with a specified value number.
add(Value * V,uint32_t num)383 void GVN::ValueTable::add(Value *V, uint32_t num) {
384   valueNumbering.insert(std::make_pair(V, num));
385   if (PHINode *PN = dyn_cast<PHINode>(V))
386     NumberingPhi[num] = PN;
387 }
388 
lookupOrAddCall(CallInst * C)389 uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) {
390   if (AA->doesNotAccessMemory(C)) {
391     Expression exp = createExpr(C);
392     uint32_t e = assignExpNewValueNum(exp).first;
393     valueNumbering[C] = e;
394     return e;
395   } else if (AA->onlyReadsMemory(C)) {
396     Expression exp = createExpr(C);
397     auto ValNum = assignExpNewValueNum(exp);
398     if (ValNum.second) {
399       valueNumbering[C] = ValNum.first;
400       return ValNum.first;
401     }
402     if (!MD) {
403       uint32_t e = assignExpNewValueNum(exp).first;
404       valueNumbering[C] = e;
405       return e;
406     }
407 
408     MemDepResult local_dep = MD->getDependency(C);
409 
410     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
411       valueNumbering[C] =  nextValueNumber;
412       return nextValueNumber++;
413     }
414 
415     if (local_dep.isDef()) {
416       CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
417 
418       if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
419         valueNumbering[C] = nextValueNumber;
420         return nextValueNumber++;
421       }
422 
423       for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
424         uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
425         uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
426         if (c_vn != cd_vn) {
427           valueNumbering[C] = nextValueNumber;
428           return nextValueNumber++;
429         }
430       }
431 
432       uint32_t v = lookupOrAdd(local_cdep);
433       valueNumbering[C] = v;
434       return v;
435     }
436 
437     // Non-local case.
438     const MemoryDependenceResults::NonLocalDepInfo &deps =
439       MD->getNonLocalCallDependency(CallSite(C));
440     // FIXME: Move the checking logic to MemDep!
441     CallInst* cdep = nullptr;
442 
443     // Check to see if we have a single dominating call instruction that is
444     // identical to C.
445     for (unsigned i = 0, e = deps.size(); i != e; ++i) {
446       const NonLocalDepEntry *I = &deps[i];
447       if (I->getResult().isNonLocal())
448         continue;
449 
450       // We don't handle non-definitions.  If we already have a call, reject
451       // instruction dependencies.
452       if (!I->getResult().isDef() || cdep != nullptr) {
453         cdep = nullptr;
454         break;
455       }
456 
457       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
458       // FIXME: All duplicated with non-local case.
459       if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
460         cdep = NonLocalDepCall;
461         continue;
462       }
463 
464       cdep = nullptr;
465       break;
466     }
467 
468     if (!cdep) {
469       valueNumbering[C] = nextValueNumber;
470       return nextValueNumber++;
471     }
472 
473     if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
474       valueNumbering[C] = nextValueNumber;
475       return nextValueNumber++;
476     }
477     for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
478       uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
479       uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
480       if (c_vn != cd_vn) {
481         valueNumbering[C] = nextValueNumber;
482         return nextValueNumber++;
483       }
484     }
485 
486     uint32_t v = lookupOrAdd(cdep);
487     valueNumbering[C] = v;
488     return v;
489   } else {
490     valueNumbering[C] = nextValueNumber;
491     return nextValueNumber++;
492   }
493 }
494 
495 /// Returns true if a value number exists for the specified value.
exists(Value * V) const496 bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; }
497 
498 /// lookup_or_add - Returns the value number for the specified value, assigning
499 /// it a new number if it did not have one before.
lookupOrAdd(Value * V)500 uint32_t GVN::ValueTable::lookupOrAdd(Value *V) {
501   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
502   if (VI != valueNumbering.end())
503     return VI->second;
504 
505   if (!isa<Instruction>(V)) {
506     valueNumbering[V] = nextValueNumber;
507     return nextValueNumber++;
508   }
509 
510   Instruction* I = cast<Instruction>(V);
511   Expression exp;
512   switch (I->getOpcode()) {
513     case Instruction::Call:
514       return lookupOrAddCall(cast<CallInst>(I));
515     case Instruction::Add:
516     case Instruction::FAdd:
517     case Instruction::Sub:
518     case Instruction::FSub:
519     case Instruction::Mul:
520     case Instruction::FMul:
521     case Instruction::UDiv:
522     case Instruction::SDiv:
523     case Instruction::FDiv:
524     case Instruction::URem:
525     case Instruction::SRem:
526     case Instruction::FRem:
527     case Instruction::Shl:
528     case Instruction::LShr:
529     case Instruction::AShr:
530     case Instruction::And:
531     case Instruction::Or:
532     case Instruction::Xor:
533     case Instruction::ICmp:
534     case Instruction::FCmp:
535     case Instruction::Trunc:
536     case Instruction::ZExt:
537     case Instruction::SExt:
538     case Instruction::FPToUI:
539     case Instruction::FPToSI:
540     case Instruction::UIToFP:
541     case Instruction::SIToFP:
542     case Instruction::FPTrunc:
543     case Instruction::FPExt:
544     case Instruction::PtrToInt:
545     case Instruction::IntToPtr:
546     case Instruction::BitCast:
547     case Instruction::Select:
548     case Instruction::ExtractElement:
549     case Instruction::InsertElement:
550     case Instruction::ShuffleVector:
551     case Instruction::InsertValue:
552     case Instruction::GetElementPtr:
553       exp = createExpr(I);
554       break;
555     case Instruction::ExtractValue:
556       exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
557       break;
558     case Instruction::PHI:
559       valueNumbering[V] = nextValueNumber;
560       NumberingPhi[nextValueNumber] = cast<PHINode>(V);
561       return nextValueNumber++;
562     default:
563       valueNumbering[V] = nextValueNumber;
564       return nextValueNumber++;
565   }
566 
567   uint32_t e = assignExpNewValueNum(exp).first;
568   valueNumbering[V] = e;
569   return e;
570 }
571 
572 /// Returns the value number of the specified value. Fails if
573 /// the value has not yet been numbered.
lookup(Value * V,bool Verify) const574 uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const {
575   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
576   if (Verify) {
577     assert(VI != valueNumbering.end() && "Value not numbered?");
578     return VI->second;
579   }
580   return (VI != valueNumbering.end()) ? VI->second : 0;
581 }
582 
583 /// Returns the value number of the given comparison,
584 /// assigning it a new number if it did not have one before.  Useful when
585 /// we deduced the result of a comparison, but don't immediately have an
586 /// instruction realizing that comparison to hand.
lookupOrAddCmp(unsigned Opcode,CmpInst::Predicate Predicate,Value * LHS,Value * RHS)587 uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode,
588                                          CmpInst::Predicate Predicate,
589                                          Value *LHS, Value *RHS) {
590   Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
591   return assignExpNewValueNum(exp).first;
592 }
593 
594 /// Remove all entries from the ValueTable.
clear()595 void GVN::ValueTable::clear() {
596   valueNumbering.clear();
597   expressionNumbering.clear();
598   NumberingPhi.clear();
599   PhiTranslateTable.clear();
600   nextValueNumber = 1;
601   Expressions.clear();
602   ExprIdx.clear();
603   nextExprNumber = 0;
604 }
605 
606 /// Remove a value from the value numbering.
erase(Value * V)607 void GVN::ValueTable::erase(Value *V) {
608   uint32_t Num = valueNumbering.lookup(V);
609   valueNumbering.erase(V);
610   // If V is PHINode, V <--> value number is an one-to-one mapping.
611   if (isa<PHINode>(V))
612     NumberingPhi.erase(Num);
613 }
614 
615 /// verifyRemoved - Verify that the value is removed from all internal data
616 /// structures.
verifyRemoved(const Value * V) const617 void GVN::ValueTable::verifyRemoved(const Value *V) const {
618   for (DenseMap<Value*, uint32_t>::const_iterator
619          I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
620     assert(I->first != V && "Inst still occurs in value numbering map!");
621   }
622 }
623 
624 //===----------------------------------------------------------------------===//
625 //                                GVN Pass
626 //===----------------------------------------------------------------------===//
627 
run(Function & F,FunctionAnalysisManager & AM)628 PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) {
629   // FIXME: The order of evaluation of these 'getResult' calls is very
630   // significant! Re-ordering these variables will cause GVN when run alone to
631   // be less effective! We should fix memdep and basic-aa to not exhibit this
632   // behavior, but until then don't change the order here.
633   auto &AC = AM.getResult<AssumptionAnalysis>(F);
634   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
635   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
636   auto &AA = AM.getResult<AAManager>(F);
637   auto &MemDep = AM.getResult<MemoryDependenceAnalysis>(F);
638   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
639   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
640   bool Changed = runImpl(F, AC, DT, TLI, AA, &MemDep, LI, &ORE);
641   if (!Changed)
642     return PreservedAnalyses::all();
643   PreservedAnalyses PA;
644   PA.preserve<DominatorTreeAnalysis>();
645   PA.preserve<GlobalsAA>();
646   PA.preserve<TargetLibraryAnalysis>();
647   return PA;
648 }
649 
650 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump(DenseMap<uint32_t,Value * > & d) const651 LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const {
652   errs() << "{\n";
653   for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
654        E = d.end(); I != E; ++I) {
655       errs() << I->first << "\n";
656       I->second->dump();
657   }
658   errs() << "}\n";
659 }
660 #endif
661 
662 /// Return true if we can prove that the value
663 /// we're analyzing is fully available in the specified block.  As we go, keep
664 /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
665 /// map is actually a tri-state map with the following values:
666 ///   0) we know the block *is not* fully available.
667 ///   1) we know the block *is* fully available.
668 ///   2) we do not know whether the block is fully available or not, but we are
669 ///      currently speculating that it will be.
670 ///   3) we are speculating for this block and have used that to speculate for
671 ///      other blocks.
IsValueFullyAvailableInBlock(BasicBlock * BB,DenseMap<BasicBlock *,char> & FullyAvailableBlocks,uint32_t RecurseDepth)672 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
673                             DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
674                             uint32_t RecurseDepth) {
675   if (RecurseDepth > MaxRecurseDepth)
676     return false;
677 
678   // Optimistically assume that the block is fully available and check to see
679   // if we already know about this block in one lookup.
680   std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
681     FullyAvailableBlocks.insert(std::make_pair(BB, 2));
682 
683   // If the entry already existed for this block, return the precomputed value.
684   if (!IV.second) {
685     // If this is a speculative "available" value, mark it as being used for
686     // speculation of other blocks.
687     if (IV.first->second == 2)
688       IV.first->second = 3;
689     return IV.first->second != 0;
690   }
691 
692   // Otherwise, see if it is fully available in all predecessors.
693   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
694 
695   // If this block has no predecessors, it isn't live-in here.
696   if (PI == PE)
697     goto SpeculationFailure;
698 
699   for (; PI != PE; ++PI)
700     // If the value isn't fully available in one of our predecessors, then it
701     // isn't fully available in this block either.  Undo our previous
702     // optimistic assumption and bail out.
703     if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
704       goto SpeculationFailure;
705 
706   return true;
707 
708 // If we get here, we found out that this is not, after
709 // all, a fully-available block.  We have a problem if we speculated on this and
710 // used the speculation to mark other blocks as available.
711 SpeculationFailure:
712   char &BBVal = FullyAvailableBlocks[BB];
713 
714   // If we didn't speculate on this, just return with it set to false.
715   if (BBVal == 2) {
716     BBVal = 0;
717     return false;
718   }
719 
720   // If we did speculate on this value, we could have blocks set to 1 that are
721   // incorrect.  Walk the (transitive) successors of this block and mark them as
722   // 0 if set to one.
723   SmallVector<BasicBlock*, 32> BBWorklist;
724   BBWorklist.push_back(BB);
725 
726   do {
727     BasicBlock *Entry = BBWorklist.pop_back_val();
728     // Note that this sets blocks to 0 (unavailable) if they happen to not
729     // already be in FullyAvailableBlocks.  This is safe.
730     char &EntryVal = FullyAvailableBlocks[Entry];
731     if (EntryVal == 0) continue;  // Already unavailable.
732 
733     // Mark as unavailable.
734     EntryVal = 0;
735 
736     BBWorklist.append(succ_begin(Entry), succ_end(Entry));
737   } while (!BBWorklist.empty());
738 
739   return false;
740 }
741 
742 /// Given a set of loads specified by ValuesPerBlock,
743 /// construct SSA form, allowing us to eliminate LI.  This returns the value
744 /// that should be used at LI's definition site.
ConstructSSAForLoadSet(LoadInst * LI,SmallVectorImpl<AvailableValueInBlock> & ValuesPerBlock,GVN & gvn)745 static Value *ConstructSSAForLoadSet(LoadInst *LI,
746                          SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
747                                      GVN &gvn) {
748   // Check for the fully redundant, dominating load case.  In this case, we can
749   // just use the dominating value directly.
750   if (ValuesPerBlock.size() == 1 &&
751       gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
752                                                LI->getParent())) {
753     assert(!ValuesPerBlock[0].AV.isUndefValue() &&
754            "Dead BB dominate this block");
755     return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn);
756   }
757 
758   // Otherwise, we have to construct SSA form.
759   SmallVector<PHINode*, 8> NewPHIs;
760   SSAUpdater SSAUpdate(&NewPHIs);
761   SSAUpdate.Initialize(LI->getType(), LI->getName());
762 
763   for (const AvailableValueInBlock &AV : ValuesPerBlock) {
764     BasicBlock *BB = AV.BB;
765 
766     if (SSAUpdate.HasValueForBlock(BB))
767       continue;
768 
769     // If the value is the load that we will be eliminating, and the block it's
770     // available in is the block that the load is in, then don't add it as
771     // SSAUpdater will resolve the value to the relevant phi which may let it
772     // avoid phi construction entirely if there's actually only one value.
773     if (BB == LI->getParent() &&
774         ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == LI) ||
775          (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == LI)))
776       continue;
777 
778     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn));
779   }
780 
781   // Perform PHI construction.
782   return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
783 }
784 
MaterializeAdjustedValue(LoadInst * LI,Instruction * InsertPt,GVN & gvn) const785 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI,
786                                                 Instruction *InsertPt,
787                                                 GVN &gvn) const {
788   Value *Res;
789   Type *LoadTy = LI->getType();
790   const DataLayout &DL = LI->getModule()->getDataLayout();
791   if (isSimpleValue()) {
792     Res = getSimpleValue();
793     if (Res->getType() != LoadTy) {
794       Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
795 
796       LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset
797                         << "  " << *getSimpleValue() << '\n'
798                         << *Res << '\n'
799                         << "\n\n\n");
800     }
801   } else if (isCoercedLoadValue()) {
802     LoadInst *Load = getCoercedLoadValue();
803     if (Load->getType() == LoadTy && Offset == 0) {
804       Res = Load;
805     } else {
806       Res = getLoadValueForLoad(Load, Offset, LoadTy, InsertPt, DL);
807       // We would like to use gvn.markInstructionForDeletion here, but we can't
808       // because the load is already memoized into the leader map table that GVN
809       // tracks.  It is potentially possible to remove the load from the table,
810       // but then there all of the operations based on it would need to be
811       // rehashed.  Just leave the dead load around.
812       gvn.getMemDep().removeInstruction(Load);
813       LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset
814                         << "  " << *getCoercedLoadValue() << '\n'
815                         << *Res << '\n'
816                         << "\n\n\n");
817     }
818   } else if (isMemIntrinValue()) {
819     Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
820                                  InsertPt, DL);
821     LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
822                       << "  " << *getMemIntrinValue() << '\n'
823                       << *Res << '\n'
824                       << "\n\n\n");
825   } else {
826     assert(isUndefValue() && "Should be UndefVal");
827     LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
828     return UndefValue::get(LoadTy);
829   }
830   assert(Res && "failed to materialize?");
831   return Res;
832 }
833 
isLifetimeStart(const Instruction * Inst)834 static bool isLifetimeStart(const Instruction *Inst) {
835   if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
836     return II->getIntrinsicID() == Intrinsic::lifetime_start;
837   return false;
838 }
839 
840 /// Try to locate the three instruction involved in a missed
841 /// load-elimination case that is due to an intervening store.
reportMayClobberedLoad(LoadInst * LI,MemDepResult DepInfo,DominatorTree * DT,OptimizationRemarkEmitter * ORE)842 static void reportMayClobberedLoad(LoadInst *LI, MemDepResult DepInfo,
843                                    DominatorTree *DT,
844                                    OptimizationRemarkEmitter *ORE) {
845   using namespace ore;
846 
847   User *OtherAccess = nullptr;
848 
849   OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", LI);
850   R << "load of type " << NV("Type", LI->getType()) << " not eliminated"
851     << setExtraArgs();
852 
853   for (auto *U : LI->getPointerOperand()->users())
854     if (U != LI && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
855         DT->dominates(cast<Instruction>(U), LI)) {
856       // FIXME: for now give up if there are multiple memory accesses that
857       // dominate the load.  We need further analysis to decide which one is
858       // that we're forwarding from.
859       if (OtherAccess)
860         OtherAccess = nullptr;
861       else
862         OtherAccess = U;
863     }
864 
865   if (OtherAccess)
866     R << " in favor of " << NV("OtherAccess", OtherAccess);
867 
868   R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst());
869 
870   ORE->emit(R);
871 }
872 
AnalyzeLoadAvailability(LoadInst * LI,MemDepResult DepInfo,Value * Address,AvailableValue & Res)873 bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo,
874                                   Value *Address, AvailableValue &Res) {
875   assert((DepInfo.isDef() || DepInfo.isClobber()) &&
876          "expected a local dependence");
877   assert(LI->isUnordered() && "rules below are incorrect for ordered access");
878 
879   const DataLayout &DL = LI->getModule()->getDataLayout();
880 
881   if (DepInfo.isClobber()) {
882     // If the dependence is to a store that writes to a superset of the bits
883     // read by the load, we can extract the bits we need for the load from the
884     // stored value.
885     if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
886       // Can't forward from non-atomic to atomic without violating memory model.
887       if (Address && LI->isAtomic() <= DepSI->isAtomic()) {
888         int Offset =
889           analyzeLoadFromClobberingStore(LI->getType(), Address, DepSI, DL);
890         if (Offset != -1) {
891           Res = AvailableValue::get(DepSI->getValueOperand(), Offset);
892           return true;
893         }
894       }
895     }
896 
897     // Check to see if we have something like this:
898     //    load i32* P
899     //    load i8* (P+1)
900     // if we have this, replace the later with an extraction from the former.
901     if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
902       // If this is a clobber and L is the first instruction in its block, then
903       // we have the first instruction in the entry block.
904       // Can't forward from non-atomic to atomic without violating memory model.
905       if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) {
906         int Offset =
907           analyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);
908 
909         if (Offset != -1) {
910           Res = AvailableValue::getLoad(DepLI, Offset);
911           return true;
912         }
913       }
914     }
915 
916     // If the clobbering value is a memset/memcpy/memmove, see if we can
917     // forward a value on from it.
918     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
919       if (Address && !LI->isAtomic()) {
920         int Offset = analyzeLoadFromClobberingMemInst(LI->getType(), Address,
921                                                       DepMI, DL);
922         if (Offset != -1) {
923           Res = AvailableValue::getMI(DepMI, Offset);
924           return true;
925         }
926       }
927     }
928     // Nothing known about this clobber, have to be conservative
929     LLVM_DEBUG(
930         // fast print dep, using operator<< on instruction is too slow.
931         dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
932         Instruction *I = DepInfo.getInst();
933         dbgs() << " is clobbered by " << *I << '\n';);
934     if (ORE->allowExtraAnalysis(DEBUG_TYPE))
935       reportMayClobberedLoad(LI, DepInfo, DT, ORE);
936 
937     return false;
938   }
939   assert(DepInfo.isDef() && "follows from above");
940 
941   Instruction *DepInst = DepInfo.getInst();
942 
943   // Loading the allocation -> undef.
944   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
945       // Loading immediately after lifetime begin -> undef.
946       isLifetimeStart(DepInst)) {
947     Res = AvailableValue::get(UndefValue::get(LI->getType()));
948     return true;
949   }
950 
951   // Loading from calloc (which zero initializes memory) -> zero
952   if (isCallocLikeFn(DepInst, TLI)) {
953     Res = AvailableValue::get(Constant::getNullValue(LI->getType()));
954     return true;
955   }
956 
957   if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
958     // Reject loads and stores that are to the same address but are of
959     // different types if we have to. If the stored value is larger or equal to
960     // the loaded value, we can reuse it.
961     if (S->getValueOperand()->getType() != LI->getType() &&
962         !canCoerceMustAliasedValueToLoad(S->getValueOperand(),
963                                          LI->getType(), DL))
964       return false;
965 
966     // Can't forward from non-atomic to atomic without violating memory model.
967     if (S->isAtomic() < LI->isAtomic())
968       return false;
969 
970     Res = AvailableValue::get(S->getValueOperand());
971     return true;
972   }
973 
974   if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
975     // If the types mismatch and we can't handle it, reject reuse of the load.
976     // If the stored value is larger or equal to the loaded value, we can reuse
977     // it.
978     if (LD->getType() != LI->getType() &&
979         !canCoerceMustAliasedValueToLoad(LD, LI->getType(), DL))
980       return false;
981 
982     // Can't forward from non-atomic to atomic without violating memory model.
983     if (LD->isAtomic() < LI->isAtomic())
984       return false;
985 
986     Res = AvailableValue::getLoad(LD);
987     return true;
988   }
989 
990   // Unknown def - must be conservative
991   LLVM_DEBUG(
992       // fast print dep, using operator<< on instruction is too slow.
993       dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
994       dbgs() << " has unknown def " << *DepInst << '\n';);
995   return false;
996 }
997 
AnalyzeLoadAvailability(LoadInst * LI,LoadDepVect & Deps,AvailValInBlkVect & ValuesPerBlock,UnavailBlkVect & UnavailableBlocks)998 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
999                                   AvailValInBlkVect &ValuesPerBlock,
1000                                   UnavailBlkVect &UnavailableBlocks) {
1001   // Filter out useless results (non-locals, etc).  Keep track of the blocks
1002   // where we have a value available in repl, also keep track of whether we see
1003   // dependencies that produce an unknown value for the load (such as a call
1004   // that could potentially clobber the load).
1005   unsigned NumDeps = Deps.size();
1006   for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1007     BasicBlock *DepBB = Deps[i].getBB();
1008     MemDepResult DepInfo = Deps[i].getResult();
1009 
1010     if (DeadBlocks.count(DepBB)) {
1011       // Dead dependent mem-op disguise as a load evaluating the same value
1012       // as the load in question.
1013       ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
1014       continue;
1015     }
1016 
1017     if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1018       UnavailableBlocks.push_back(DepBB);
1019       continue;
1020     }
1021 
1022     // The address being loaded in this non-local block may not be the same as
1023     // the pointer operand of the load if PHI translation occurs.  Make sure
1024     // to consider the right address.
1025     Value *Address = Deps[i].getAddress();
1026 
1027     AvailableValue AV;
1028     if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) {
1029       // subtlety: because we know this was a non-local dependency, we know
1030       // it's safe to materialize anywhere between the instruction within
1031       // DepInfo and the end of it's block.
1032       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1033                                                           std::move(AV)));
1034     } else {
1035       UnavailableBlocks.push_back(DepBB);
1036     }
1037   }
1038 
1039   assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() &&
1040          "post condition violation");
1041 }
1042 
PerformLoadPRE(LoadInst * LI,AvailValInBlkVect & ValuesPerBlock,UnavailBlkVect & UnavailableBlocks)1043 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
1044                          UnavailBlkVect &UnavailableBlocks) {
1045   // Okay, we have *some* definitions of the value.  This means that the value
1046   // is available in some of our (transitive) predecessors.  Lets think about
1047   // doing PRE of this load.  This will involve inserting a new load into the
1048   // predecessor when it's not available.  We could do this in general, but
1049   // prefer to not increase code size.  As such, we only do this when we know
1050   // that we only have to insert *one* load (which means we're basically moving
1051   // the load, not inserting a new one).
1052 
1053   SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
1054                                         UnavailableBlocks.end());
1055 
1056   // Let's find the first basic block with more than one predecessor.  Walk
1057   // backwards through predecessors if needed.
1058   BasicBlock *LoadBB = LI->getParent();
1059   BasicBlock *TmpBB = LoadBB;
1060   bool IsSafeToSpeculativelyExecute = isSafeToSpeculativelyExecute(LI);
1061 
1062   // Check that there is no implicit control flow instructions above our load in
1063   // its block. If there is an instruction that doesn't always pass the
1064   // execution to the following instruction, then moving through it may become
1065   // invalid. For example:
1066   //
1067   // int arr[LEN];
1068   // int index = ???;
1069   // ...
1070   // guard(0 <= index && index < LEN);
1071   // use(arr[index]);
1072   //
1073   // It is illegal to move the array access to any point above the guard,
1074   // because if the index is out of bounds we should deoptimize rather than
1075   // access the array.
1076   // Check that there is no guard in this block above our instruction.
1077   if (!IsSafeToSpeculativelyExecute) {
1078     auto It = FirstImplicitControlFlowInsts.find(TmpBB);
1079     if (It != FirstImplicitControlFlowInsts.end()) {
1080       assert(It->second->getParent() == TmpBB &&
1081              "Implicit control flow map broken?");
1082       if (OI->dominates(It->second, LI))
1083         return false;
1084     }
1085   }
1086   while (TmpBB->getSinglePredecessor()) {
1087     TmpBB = TmpBB->getSinglePredecessor();
1088     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1089       return false;
1090     if (Blockers.count(TmpBB))
1091       return false;
1092 
1093     // If any of these blocks has more than one successor (i.e. if the edge we
1094     // just traversed was critical), then there are other paths through this
1095     // block along which the load may not be anticipated.  Hoisting the load
1096     // above this block would be adding the load to execution paths along
1097     // which it was not previously executed.
1098     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1099       return false;
1100 
1101     // Check that there is no implicit control flow in a block above.
1102     if (!IsSafeToSpeculativelyExecute &&
1103         FirstImplicitControlFlowInsts.count(TmpBB))
1104       return false;
1105   }
1106 
1107   assert(TmpBB);
1108   LoadBB = TmpBB;
1109 
1110   // Check to see how many predecessors have the loaded value fully
1111   // available.
1112   MapVector<BasicBlock *, Value *> PredLoads;
1113   DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1114   for (const AvailableValueInBlock &AV : ValuesPerBlock)
1115     FullyAvailableBlocks[AV.BB] = true;
1116   for (BasicBlock *UnavailableBB : UnavailableBlocks)
1117     FullyAvailableBlocks[UnavailableBB] = false;
1118 
1119   SmallVector<BasicBlock *, 4> CriticalEdgePred;
1120   for (BasicBlock *Pred : predecessors(LoadBB)) {
1121     // If any predecessor block is an EH pad that does not allow non-PHI
1122     // instructions before the terminator, we can't PRE the load.
1123     if (Pred->getTerminator()->isEHPad()) {
1124       LLVM_DEBUG(
1125           dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
1126                  << Pred->getName() << "': " << *LI << '\n');
1127       return false;
1128     }
1129 
1130     if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
1131       continue;
1132     }
1133 
1134     if (Pred->getTerminator()->getNumSuccessors() != 1) {
1135       if (isa<IndirectBrInst>(Pred->getTerminator())) {
1136         LLVM_DEBUG(
1137             dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1138                    << Pred->getName() << "': " << *LI << '\n');
1139         return false;
1140       }
1141 
1142       if (LoadBB->isEHPad()) {
1143         LLVM_DEBUG(
1144             dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
1145                    << Pred->getName() << "': " << *LI << '\n');
1146         return false;
1147       }
1148 
1149       CriticalEdgePred.push_back(Pred);
1150     } else {
1151       // Only add the predecessors that will not be split for now.
1152       PredLoads[Pred] = nullptr;
1153     }
1154   }
1155 
1156   // Decide whether PRE is profitable for this load.
1157   unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
1158   assert(NumUnavailablePreds != 0 &&
1159          "Fully available value should already be eliminated!");
1160 
1161   // If this load is unavailable in multiple predecessors, reject it.
1162   // FIXME: If we could restructure the CFG, we could make a common pred with
1163   // all the preds that don't have an available LI and insert a new load into
1164   // that one block.
1165   if (NumUnavailablePreds != 1)
1166       return false;
1167 
1168   // Split critical edges, and update the unavailable predecessors accordingly.
1169   for (BasicBlock *OrigPred : CriticalEdgePred) {
1170     BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1171     assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
1172     PredLoads[NewPred] = nullptr;
1173     LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1174                       << LoadBB->getName() << '\n');
1175   }
1176 
1177   // Check if the load can safely be moved to all the unavailable predecessors.
1178   bool CanDoPRE = true;
1179   const DataLayout &DL = LI->getModule()->getDataLayout();
1180   SmallVector<Instruction*, 8> NewInsts;
1181   for (auto &PredLoad : PredLoads) {
1182     BasicBlock *UnavailablePred = PredLoad.first;
1183 
1184     // Do PHI translation to get its value in the predecessor if necessary.  The
1185     // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1186 
1187     // If all preds have a single successor, then we know it is safe to insert
1188     // the load on the pred (?!?), so we can insert code to materialize the
1189     // pointer if it is not available.
1190     PHITransAddr Address(LI->getPointerOperand(), DL, AC);
1191     Value *LoadPtr = nullptr;
1192     LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1193                                                 *DT, NewInsts);
1194 
1195     // If we couldn't find or insert a computation of this phi translated value,
1196     // we fail PRE.
1197     if (!LoadPtr) {
1198       LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1199                         << *LI->getPointerOperand() << "\n");
1200       CanDoPRE = false;
1201       break;
1202     }
1203 
1204     PredLoad.second = LoadPtr;
1205   }
1206 
1207   if (!CanDoPRE) {
1208     while (!NewInsts.empty()) {
1209       Instruction *I = NewInsts.pop_back_val();
1210       markInstructionForDeletion(I);
1211     }
1212     // HINT: Don't revert the edge-splitting as following transformation may
1213     // also need to split these critical edges.
1214     return !CriticalEdgePred.empty();
1215   }
1216 
1217   // Okay, we can eliminate this load by inserting a reload in the predecessor
1218   // and using PHI construction to get the value in the other predecessors, do
1219   // it.
1220   LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1221   LLVM_DEBUG(if (!NewInsts.empty()) dbgs()
1222              << "INSERTED " << NewInsts.size() << " INSTS: " << *NewInsts.back()
1223              << '\n');
1224 
1225   // Assign value numbers to the new instructions.
1226   for (Instruction *I : NewInsts) {
1227     // Instructions that have been inserted in predecessor(s) to materialize
1228     // the load address do not retain their original debug locations. Doing
1229     // so could lead to confusing (but correct) source attributions.
1230     // FIXME: How do we retain source locations without causing poor debugging
1231     // behavior?
1232     I->setDebugLoc(DebugLoc());
1233 
1234     // FIXME: We really _ought_ to insert these value numbers into their
1235     // parent's availability map.  However, in doing so, we risk getting into
1236     // ordering issues.  If a block hasn't been processed yet, we would be
1237     // marking a value as AVAIL-IN, which isn't what we intend.
1238     VN.lookupOrAdd(I);
1239   }
1240 
1241   for (const auto &PredLoad : PredLoads) {
1242     BasicBlock *UnavailablePred = PredLoad.first;
1243     Value *LoadPtr = PredLoad.second;
1244 
1245     auto *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre",
1246                                  LI->isVolatile(), LI->getAlignment(),
1247                                  LI->getOrdering(), LI->getSyncScopeID(),
1248                                  UnavailablePred->getTerminator());
1249     NewLoad->setDebugLoc(LI->getDebugLoc());
1250 
1251     // Transfer the old load's AA tags to the new load.
1252     AAMDNodes Tags;
1253     LI->getAAMetadata(Tags);
1254     if (Tags)
1255       NewLoad->setAAMetadata(Tags);
1256 
1257     if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load))
1258       NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
1259     if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group))
1260       NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
1261     if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range))
1262       NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
1263 
1264     // We do not propagate the old load's debug location, because the new
1265     // load now lives in a different BB, and we want to avoid a jumpy line
1266     // table.
1267     // FIXME: How do we retain source locations without causing poor debugging
1268     // behavior?
1269 
1270     // Add the newly created load.
1271     ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1272                                                         NewLoad));
1273     MD->invalidateCachedPointerInfo(LoadPtr);
1274     LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1275   }
1276 
1277   // Perform PHI construction.
1278   Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1279   LI->replaceAllUsesWith(V);
1280   if (isa<PHINode>(V))
1281     V->takeName(LI);
1282   if (Instruction *I = dyn_cast<Instruction>(V))
1283     I->setDebugLoc(LI->getDebugLoc());
1284   if (V->getType()->isPtrOrPtrVectorTy())
1285     MD->invalidateCachedPointerInfo(V);
1286   markInstructionForDeletion(LI);
1287   ORE->emit([&]() {
1288     return OptimizationRemark(DEBUG_TYPE, "LoadPRE", LI)
1289            << "load eliminated by PRE";
1290   });
1291   ++NumPRELoad;
1292   return true;
1293 }
1294 
reportLoadElim(LoadInst * LI,Value * AvailableValue,OptimizationRemarkEmitter * ORE)1295 static void reportLoadElim(LoadInst *LI, Value *AvailableValue,
1296                            OptimizationRemarkEmitter *ORE) {
1297   using namespace ore;
1298 
1299   ORE->emit([&]() {
1300     return OptimizationRemark(DEBUG_TYPE, "LoadElim", LI)
1301            << "load of type " << NV("Type", LI->getType()) << " eliminated"
1302            << setExtraArgs() << " in favor of "
1303            << NV("InfavorOfValue", AvailableValue);
1304   });
1305 }
1306 
1307 /// Attempt to eliminate a load whose dependencies are
1308 /// non-local by performing PHI construction.
processNonLocalLoad(LoadInst * LI)1309 bool GVN::processNonLocalLoad(LoadInst *LI) {
1310   // non-local speculations are not allowed under asan.
1311   if (LI->getParent()->getParent()->hasFnAttribute(
1312           Attribute::SanitizeAddress) ||
1313       LI->getParent()->getParent()->hasFnAttribute(
1314           Attribute::SanitizeHWAddress))
1315     return false;
1316 
1317   // Step 1: Find the non-local dependencies of the load.
1318   LoadDepVect Deps;
1319   MD->getNonLocalPointerDependency(LI, Deps);
1320 
1321   // If we had to process more than one hundred blocks to find the
1322   // dependencies, this load isn't worth worrying about.  Optimizing
1323   // it will be too expensive.
1324   unsigned NumDeps = Deps.size();
1325   if (NumDeps > 100)
1326     return false;
1327 
1328   // If we had a phi translation failure, we'll have a single entry which is a
1329   // clobber in the current block.  Reject this early.
1330   if (NumDeps == 1 &&
1331       !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1332     LLVM_DEBUG(dbgs() << "GVN: non-local load "; LI->printAsOperand(dbgs());
1333                dbgs() << " has unknown dependencies\n";);
1334     return false;
1335   }
1336 
1337   // If this load follows a GEP, see if we can PRE the indices before analyzing.
1338   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) {
1339     for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
1340                                         OE = GEP->idx_end();
1341          OI != OE; ++OI)
1342       if (Instruction *I = dyn_cast<Instruction>(OI->get()))
1343         performScalarPRE(I);
1344   }
1345 
1346   // Step 2: Analyze the availability of the load
1347   AvailValInBlkVect ValuesPerBlock;
1348   UnavailBlkVect UnavailableBlocks;
1349   AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
1350 
1351   // If we have no predecessors that produce a known value for this load, exit
1352   // early.
1353   if (ValuesPerBlock.empty())
1354     return false;
1355 
1356   // Step 3: Eliminate fully redundancy.
1357   //
1358   // If all of the instructions we depend on produce a known value for this
1359   // load, then it is fully redundant and we can use PHI insertion to compute
1360   // its value.  Insert PHIs and remove the fully redundant value now.
1361   if (UnavailableBlocks.empty()) {
1362     LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1363 
1364     // Perform PHI construction.
1365     Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1366     LI->replaceAllUsesWith(V);
1367 
1368     if (isa<PHINode>(V))
1369       V->takeName(LI);
1370     if (Instruction *I = dyn_cast<Instruction>(V))
1371       // If instruction I has debug info, then we should not update it.
1372       // Also, if I has a null DebugLoc, then it is still potentially incorrect
1373       // to propagate LI's DebugLoc because LI may not post-dominate I.
1374       if (LI->getDebugLoc() && LI->getParent() == I->getParent())
1375         I->setDebugLoc(LI->getDebugLoc());
1376     if (V->getType()->isPtrOrPtrVectorTy())
1377       MD->invalidateCachedPointerInfo(V);
1378     markInstructionForDeletion(LI);
1379     ++NumGVNLoad;
1380     reportLoadElim(LI, V, ORE);
1381     return true;
1382   }
1383 
1384   // Step 4: Eliminate partial redundancy.
1385   if (!EnablePRE || !EnableLoadPRE)
1386     return false;
1387 
1388   return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
1389 }
1390 
processAssumeIntrinsic(IntrinsicInst * IntrinsicI)1391 bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) {
1392   assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume &&
1393          "This function can only be called with llvm.assume intrinsic");
1394   Value *V = IntrinsicI->getArgOperand(0);
1395 
1396   if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
1397     if (Cond->isZero()) {
1398       Type *Int8Ty = Type::getInt8Ty(V->getContext());
1399       // Insert a new store to null instruction before the load to indicate that
1400       // this code is not reachable.  FIXME: We could insert unreachable
1401       // instruction directly because we can modify the CFG.
1402       new StoreInst(UndefValue::get(Int8Ty),
1403                     Constant::getNullValue(Int8Ty->getPointerTo()),
1404                     IntrinsicI);
1405     }
1406     markInstructionForDeletion(IntrinsicI);
1407     return false;
1408   } else if (isa<Constant>(V)) {
1409     // If it's not false, and constant, it must evaluate to true. This means our
1410     // assume is assume(true), and thus, pointless, and we don't want to do
1411     // anything more here.
1412     return false;
1413   }
1414 
1415   Constant *True = ConstantInt::getTrue(V->getContext());
1416   bool Changed = false;
1417 
1418   for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
1419     BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
1420 
1421     // This property is only true in dominated successors, propagateEquality
1422     // will check dominance for us.
1423     Changed |= propagateEquality(V, True, Edge, false);
1424   }
1425 
1426   // We can replace assume value with true, which covers cases like this:
1427   // call void @llvm.assume(i1 %cmp)
1428   // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
1429   ReplaceWithConstMap[V] = True;
1430 
1431   // If one of *cmp *eq operand is const, adding it to map will cover this:
1432   // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
1433   // call void @llvm.assume(i1 %cmp)
1434   // ret float %0 ; will change it to ret float 3.000000e+00
1435   if (auto *CmpI = dyn_cast<CmpInst>(V)) {
1436     if (CmpI->getPredicate() == CmpInst::Predicate::ICMP_EQ ||
1437         CmpI->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
1438         (CmpI->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
1439          CmpI->getFastMathFlags().noNaNs())) {
1440       Value *CmpLHS = CmpI->getOperand(0);
1441       Value *CmpRHS = CmpI->getOperand(1);
1442       if (isa<Constant>(CmpLHS))
1443         std::swap(CmpLHS, CmpRHS);
1444       auto *RHSConst = dyn_cast<Constant>(CmpRHS);
1445 
1446       // If only one operand is constant.
1447       if (RHSConst != nullptr && !isa<Constant>(CmpLHS))
1448         ReplaceWithConstMap[CmpLHS] = RHSConst;
1449     }
1450   }
1451   return Changed;
1452 }
1453 
patchReplacementInstruction(Instruction * I,Value * Repl)1454 static void patchReplacementInstruction(Instruction *I, Value *Repl) {
1455   auto *ReplInst = dyn_cast<Instruction>(Repl);
1456   if (!ReplInst)
1457     return;
1458 
1459   // Patch the replacement so that it is not more restrictive than the value
1460   // being replaced.
1461   // Note that if 'I' is a load being replaced by some operation,
1462   // for example, by an arithmetic operation, then andIRFlags()
1463   // would just erase all math flags from the original arithmetic
1464   // operation, which is clearly not wanted and not needed.
1465   if (!isa<LoadInst>(I))
1466     ReplInst->andIRFlags(I);
1467 
1468   // FIXME: If both the original and replacement value are part of the
1469   // same control-flow region (meaning that the execution of one
1470   // guarantees the execution of the other), then we can combine the
1471   // noalias scopes here and do better than the general conservative
1472   // answer used in combineMetadata().
1473 
1474   // In general, GVN unifies expressions over different control-flow
1475   // regions, and so we need a conservative combination of the noalias
1476   // scopes.
1477   static const unsigned KnownIDs[] = {
1478       LLVMContext::MD_tbaa,           LLVMContext::MD_alias_scope,
1479       LLVMContext::MD_noalias,        LLVMContext::MD_range,
1480       LLVMContext::MD_fpmath,         LLVMContext::MD_invariant_load,
1481       LLVMContext::MD_invariant_group};
1482   combineMetadata(ReplInst, I, KnownIDs);
1483 }
1484 
patchAndReplaceAllUsesWith(Instruction * I,Value * Repl)1485 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
1486   patchReplacementInstruction(I, Repl);
1487   I->replaceAllUsesWith(Repl);
1488 }
1489 
1490 /// Attempt to eliminate a load, first by eliminating it
1491 /// locally, and then attempting non-local elimination if that fails.
processLoad(LoadInst * L)1492 bool GVN::processLoad(LoadInst *L) {
1493   if (!MD)
1494     return false;
1495 
1496   // This code hasn't been audited for ordered or volatile memory access
1497   if (!L->isUnordered())
1498     return false;
1499 
1500   if (L->use_empty()) {
1501     markInstructionForDeletion(L);
1502     return true;
1503   }
1504 
1505   // ... to a pointer that has been loaded from before...
1506   MemDepResult Dep = MD->getDependency(L);
1507 
1508   // If it is defined in another block, try harder.
1509   if (Dep.isNonLocal())
1510     return processNonLocalLoad(L);
1511 
1512   // Only handle the local case below
1513   if (!Dep.isDef() && !Dep.isClobber()) {
1514     // This might be a NonFuncLocal or an Unknown
1515     LLVM_DEBUG(
1516         // fast print dep, using operator<< on instruction is too slow.
1517         dbgs() << "GVN: load "; L->printAsOperand(dbgs());
1518         dbgs() << " has unknown dependence\n";);
1519     return false;
1520   }
1521 
1522   AvailableValue AV;
1523   if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) {
1524     Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this);
1525 
1526     // Replace the load!
1527     patchAndReplaceAllUsesWith(L, AvailableValue);
1528     markInstructionForDeletion(L);
1529     ++NumGVNLoad;
1530     reportLoadElim(L, AvailableValue, ORE);
1531     // Tell MDA to rexamine the reused pointer since we might have more
1532     // information after forwarding it.
1533     if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy())
1534       MD->invalidateCachedPointerInfo(AvailableValue);
1535     return true;
1536   }
1537 
1538   return false;
1539 }
1540 
1541 /// Return a pair the first field showing the value number of \p Exp and the
1542 /// second field showing whether it is a value number newly created.
1543 std::pair<uint32_t, bool>
assignExpNewValueNum(Expression & Exp)1544 GVN::ValueTable::assignExpNewValueNum(Expression &Exp) {
1545   uint32_t &e = expressionNumbering[Exp];
1546   bool CreateNewValNum = !e;
1547   if (CreateNewValNum) {
1548     Expressions.push_back(Exp);
1549     if (ExprIdx.size() < nextValueNumber + 1)
1550       ExprIdx.resize(nextValueNumber * 2);
1551     e = nextValueNumber;
1552     ExprIdx[nextValueNumber++] = nextExprNumber++;
1553   }
1554   return {e, CreateNewValNum};
1555 }
1556 
1557 /// Return whether all the values related with the same \p num are
1558 /// defined in \p BB.
areAllValsInBB(uint32_t Num,const BasicBlock * BB,GVN & Gvn)1559 bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB,
1560                                      GVN &Gvn) {
1561   LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
1562   while (Vals && Vals->BB == BB)
1563     Vals = Vals->Next;
1564   return !Vals;
1565 }
1566 
1567 /// Wrap phiTranslateImpl to provide caching functionality.
phiTranslate(const BasicBlock * Pred,const BasicBlock * PhiBlock,uint32_t Num,GVN & Gvn)1568 uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred,
1569                                        const BasicBlock *PhiBlock, uint32_t Num,
1570                                        GVN &Gvn) {
1571   auto FindRes = PhiTranslateTable.find({Num, Pred});
1572   if (FindRes != PhiTranslateTable.end())
1573     return FindRes->second;
1574   uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
1575   PhiTranslateTable.insert({{Num, Pred}, NewNum});
1576   return NewNum;
1577 }
1578 
1579 /// Translate value number \p Num using phis, so that it has the values of
1580 /// the phis in BB.
phiTranslateImpl(const BasicBlock * Pred,const BasicBlock * PhiBlock,uint32_t Num,GVN & Gvn)1581 uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred,
1582                                            const BasicBlock *PhiBlock,
1583                                            uint32_t Num, GVN &Gvn) {
1584   if (PHINode *PN = NumberingPhi[Num]) {
1585     for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
1586       if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
1587         if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false))
1588           return TransVal;
1589     }
1590     return Num;
1591   }
1592 
1593   // If there is any value related with Num is defined in a BB other than
1594   // PhiBlock, it cannot depend on a phi in PhiBlock without going through
1595   // a backedge. We can do an early exit in that case to save compile time.
1596   if (!areAllValsInBB(Num, PhiBlock, Gvn))
1597     return Num;
1598 
1599   if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
1600     return Num;
1601   Expression Exp = Expressions[ExprIdx[Num]];
1602 
1603   for (unsigned i = 0; i < Exp.varargs.size(); i++) {
1604     // For InsertValue and ExtractValue, some varargs are index numbers
1605     // instead of value numbers. Those index numbers should not be
1606     // translated.
1607     if ((i > 1 && Exp.opcode == Instruction::InsertValue) ||
1608         (i > 0 && Exp.opcode == Instruction::ExtractValue))
1609       continue;
1610     Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn);
1611   }
1612 
1613   if (Exp.commutative) {
1614     assert(Exp.varargs.size() == 2 && "Unsupported commutative expression!");
1615     if (Exp.varargs[0] > Exp.varargs[1]) {
1616       std::swap(Exp.varargs[0], Exp.varargs[1]);
1617       uint32_t Opcode = Exp.opcode >> 8;
1618       if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)
1619         Exp.opcode = (Opcode << 8) |
1620                      CmpInst::getSwappedPredicate(
1621                          static_cast<CmpInst::Predicate>(Exp.opcode & 255));
1622     }
1623   }
1624 
1625   if (uint32_t NewNum = expressionNumbering[Exp])
1626     return NewNum;
1627   return Num;
1628 }
1629 
1630 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed
1631 /// again.
eraseTranslateCacheEntry(uint32_t Num,const BasicBlock & CurrBlock)1632 void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num,
1633                                                const BasicBlock &CurrBlock) {
1634   for (const BasicBlock *Pred : predecessors(&CurrBlock)) {
1635     auto FindRes = PhiTranslateTable.find({Num, Pred});
1636     if (FindRes != PhiTranslateTable.end())
1637       PhiTranslateTable.erase(FindRes);
1638   }
1639 }
1640 
1641 // In order to find a leader for a given value number at a
1642 // specific basic block, we first obtain the list of all Values for that number,
1643 // and then scan the list to find one whose block dominates the block in
1644 // question.  This is fast because dominator tree queries consist of only
1645 // a few comparisons of DFS numbers.
findLeader(const BasicBlock * BB,uint32_t num)1646 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
1647   LeaderTableEntry Vals = LeaderTable[num];
1648   if (!Vals.Val) return nullptr;
1649 
1650   Value *Val = nullptr;
1651   if (DT->dominates(Vals.BB, BB)) {
1652     Val = Vals.Val;
1653     if (isa<Constant>(Val)) return Val;
1654   }
1655 
1656   LeaderTableEntry* Next = Vals.Next;
1657   while (Next) {
1658     if (DT->dominates(Next->BB, BB)) {
1659       if (isa<Constant>(Next->Val)) return Next->Val;
1660       if (!Val) Val = Next->Val;
1661     }
1662 
1663     Next = Next->Next;
1664   }
1665 
1666   return Val;
1667 }
1668 
1669 /// There is an edge from 'Src' to 'Dst'.  Return
1670 /// true if every path from the entry block to 'Dst' passes via this edge.  In
1671 /// particular 'Dst' must not be reachable via another edge from 'Src'.
isOnlyReachableViaThisEdge(const BasicBlockEdge & E,DominatorTree * DT)1672 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
1673                                        DominatorTree *DT) {
1674   // While in theory it is interesting to consider the case in which Dst has
1675   // more than one predecessor, because Dst might be part of a loop which is
1676   // only reachable from Src, in practice it is pointless since at the time
1677   // GVN runs all such loops have preheaders, which means that Dst will have
1678   // been changed to have only one predecessor, namely Src.
1679   const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
1680   assert((!Pred || Pred == E.getStart()) &&
1681          "No edge between these basic blocks!");
1682   return Pred != nullptr;
1683 }
1684 
assignBlockRPONumber(Function & F)1685 void GVN::assignBlockRPONumber(Function &F) {
1686   uint32_t NextBlockNumber = 1;
1687   ReversePostOrderTraversal<Function *> RPOT(&F);
1688   for (BasicBlock *BB : RPOT)
1689     BlockRPONumber[BB] = NextBlockNumber++;
1690 }
1691 
1692 // Tries to replace instruction with const, using information from
1693 // ReplaceWithConstMap.
replaceOperandsWithConsts(Instruction * Instr) const1694 bool GVN::replaceOperandsWithConsts(Instruction *Instr) const {
1695   bool Changed = false;
1696   for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
1697     Value *Operand = Instr->getOperand(OpNum);
1698     auto it = ReplaceWithConstMap.find(Operand);
1699     if (it != ReplaceWithConstMap.end()) {
1700       assert(!isa<Constant>(Operand) &&
1701              "Replacing constants with constants is invalid");
1702       LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with "
1703                         << *it->second << " in instruction " << *Instr << '\n');
1704       Instr->setOperand(OpNum, it->second);
1705       Changed = true;
1706     }
1707   }
1708   return Changed;
1709 }
1710 
1711 /// The given values are known to be equal in every block
1712 /// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
1713 /// 'RHS' everywhere in the scope.  Returns whether a change was made.
1714 /// If DominatesByEdge is false, then it means that we will propagate the RHS
1715 /// value starting from the end of Root.Start.
propagateEquality(Value * LHS,Value * RHS,const BasicBlockEdge & Root,bool DominatesByEdge)1716 bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
1717                             bool DominatesByEdge) {
1718   SmallVector<std::pair<Value*, Value*>, 4> Worklist;
1719   Worklist.push_back(std::make_pair(LHS, RHS));
1720   bool Changed = false;
1721   // For speed, compute a conservative fast approximation to
1722   // DT->dominates(Root, Root.getEnd());
1723   const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
1724 
1725   while (!Worklist.empty()) {
1726     std::pair<Value*, Value*> Item = Worklist.pop_back_val();
1727     LHS = Item.first; RHS = Item.second;
1728 
1729     if (LHS == RHS)
1730       continue;
1731     assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
1732 
1733     // Don't try to propagate equalities between constants.
1734     if (isa<Constant>(LHS) && isa<Constant>(RHS))
1735       continue;
1736 
1737     // Prefer a constant on the right-hand side, or an Argument if no constants.
1738     if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
1739       std::swap(LHS, RHS);
1740     assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
1741 
1742     // If there is no obvious reason to prefer the left-hand side over the
1743     // right-hand side, ensure the longest lived term is on the right-hand side,
1744     // so the shortest lived term will be replaced by the longest lived.
1745     // This tends to expose more simplifications.
1746     uint32_t LVN = VN.lookupOrAdd(LHS);
1747     if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
1748         (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
1749       // Move the 'oldest' value to the right-hand side, using the value number
1750       // as a proxy for age.
1751       uint32_t RVN = VN.lookupOrAdd(RHS);
1752       if (LVN < RVN) {
1753         std::swap(LHS, RHS);
1754         LVN = RVN;
1755       }
1756     }
1757 
1758     // If value numbering later sees that an instruction in the scope is equal
1759     // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
1760     // the invariant that instructions only occur in the leader table for their
1761     // own value number (this is used by removeFromLeaderTable), do not do this
1762     // if RHS is an instruction (if an instruction in the scope is morphed into
1763     // LHS then it will be turned into RHS by the next GVN iteration anyway, so
1764     // using the leader table is about compiling faster, not optimizing better).
1765     // The leader table only tracks basic blocks, not edges. Only add to if we
1766     // have the simple case where the edge dominates the end.
1767     if (RootDominatesEnd && !isa<Instruction>(RHS))
1768       addToLeaderTable(LVN, RHS, Root.getEnd());
1769 
1770     // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
1771     // LHS always has at least one use that is not dominated by Root, this will
1772     // never do anything if LHS has only one use.
1773     if (!LHS->hasOneUse()) {
1774       unsigned NumReplacements =
1775           DominatesByEdge
1776               ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
1777               : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());
1778 
1779       Changed |= NumReplacements > 0;
1780       NumGVNEqProp += NumReplacements;
1781     }
1782 
1783     // Now try to deduce additional equalities from this one. For example, if
1784     // the known equality was "(A != B)" == "false" then it follows that A and B
1785     // are equal in the scope. Only boolean equalities with an explicit true or
1786     // false RHS are currently supported.
1787     if (!RHS->getType()->isIntegerTy(1))
1788       // Not a boolean equality - bail out.
1789       continue;
1790     ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
1791     if (!CI)
1792       // RHS neither 'true' nor 'false' - bail out.
1793       continue;
1794     // Whether RHS equals 'true'.  Otherwise it equals 'false'.
1795     bool isKnownTrue = CI->isMinusOne();
1796     bool isKnownFalse = !isKnownTrue;
1797 
1798     // If "A && B" is known true then both A and B are known true.  If "A || B"
1799     // is known false then both A and B are known false.
1800     Value *A, *B;
1801     if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
1802         (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
1803       Worklist.push_back(std::make_pair(A, RHS));
1804       Worklist.push_back(std::make_pair(B, RHS));
1805       continue;
1806     }
1807 
1808     // If we are propagating an equality like "(A == B)" == "true" then also
1809     // propagate the equality A == B.  When propagating a comparison such as
1810     // "(A >= B)" == "true", replace all instances of "A < B" with "false".
1811     if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
1812       Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
1813 
1814       // If "A == B" is known true, or "A != B" is known false, then replace
1815       // A with B everywhere in the scope.
1816       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
1817           (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
1818         Worklist.push_back(std::make_pair(Op0, Op1));
1819 
1820       // Handle the floating point versions of equality comparisons too.
1821       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) ||
1822           (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) {
1823 
1824         // Floating point -0.0 and 0.0 compare equal, so we can only
1825         // propagate values if we know that we have a constant and that
1826         // its value is non-zero.
1827 
1828         // FIXME: We should do this optimization if 'no signed zeros' is
1829         // applicable via an instruction-level fast-math-flag or some other
1830         // indicator that relaxed FP semantics are being used.
1831 
1832         if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero())
1833           Worklist.push_back(std::make_pair(Op0, Op1));
1834       }
1835 
1836       // If "A >= B" is known true, replace "A < B" with false everywhere.
1837       CmpInst::Predicate NotPred = Cmp->getInversePredicate();
1838       Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
1839       // Since we don't have the instruction "A < B" immediately to hand, work
1840       // out the value number that it would have and use that to find an
1841       // appropriate instruction (if any).
1842       uint32_t NextNum = VN.getNextUnusedValueNumber();
1843       uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
1844       // If the number we were assigned was brand new then there is no point in
1845       // looking for an instruction realizing it: there cannot be one!
1846       if (Num < NextNum) {
1847         Value *NotCmp = findLeader(Root.getEnd(), Num);
1848         if (NotCmp && isa<Instruction>(NotCmp)) {
1849           unsigned NumReplacements =
1850               DominatesByEdge
1851                   ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
1852                   : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
1853                                              Root.getStart());
1854           Changed |= NumReplacements > 0;
1855           NumGVNEqProp += NumReplacements;
1856         }
1857       }
1858       // Ensure that any instruction in scope that gets the "A < B" value number
1859       // is replaced with false.
1860       // The leader table only tracks basic blocks, not edges. Only add to if we
1861       // have the simple case where the edge dominates the end.
1862       if (RootDominatesEnd)
1863         addToLeaderTable(Num, NotVal, Root.getEnd());
1864 
1865       continue;
1866     }
1867   }
1868 
1869   return Changed;
1870 }
1871 
1872 /// When calculating availability, handle an instruction
1873 /// by inserting it into the appropriate sets
processInstruction(Instruction * I)1874 bool GVN::processInstruction(Instruction *I) {
1875   // Ignore dbg info intrinsics.
1876   if (isa<DbgInfoIntrinsic>(I))
1877     return false;
1878 
1879   // If the instruction can be easily simplified then do so now in preference
1880   // to value numbering it.  Value numbering often exposes redundancies, for
1881   // example if it determines that %y is equal to %x then the instruction
1882   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
1883   const DataLayout &DL = I->getModule()->getDataLayout();
1884   if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) {
1885     bool Changed = false;
1886     if (!I->use_empty()) {
1887       I->replaceAllUsesWith(V);
1888       Changed = true;
1889     }
1890     if (isInstructionTriviallyDead(I, TLI)) {
1891       markInstructionForDeletion(I);
1892       Changed = true;
1893     }
1894     if (Changed) {
1895       if (MD && V->getType()->isPtrOrPtrVectorTy())
1896         MD->invalidateCachedPointerInfo(V);
1897       ++NumGVNSimpl;
1898       return true;
1899     }
1900   }
1901 
1902   if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I))
1903     if (IntrinsicI->getIntrinsicID() == Intrinsic::assume)
1904       return processAssumeIntrinsic(IntrinsicI);
1905 
1906   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1907     if (processLoad(LI))
1908       return true;
1909 
1910     unsigned Num = VN.lookupOrAdd(LI);
1911     addToLeaderTable(Num, LI, LI->getParent());
1912     return false;
1913   }
1914 
1915   // For conditional branches, we can perform simple conditional propagation on
1916   // the condition value itself.
1917   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1918     if (!BI->isConditional())
1919       return false;
1920 
1921     if (isa<Constant>(BI->getCondition()))
1922       return processFoldableCondBr(BI);
1923 
1924     Value *BranchCond = BI->getCondition();
1925     BasicBlock *TrueSucc = BI->getSuccessor(0);
1926     BasicBlock *FalseSucc = BI->getSuccessor(1);
1927     // Avoid multiple edges early.
1928     if (TrueSucc == FalseSucc)
1929       return false;
1930 
1931     BasicBlock *Parent = BI->getParent();
1932     bool Changed = false;
1933 
1934     Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
1935     BasicBlockEdge TrueE(Parent, TrueSucc);
1936     Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
1937 
1938     Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
1939     BasicBlockEdge FalseE(Parent, FalseSucc);
1940     Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
1941 
1942     return Changed;
1943   }
1944 
1945   // For switches, propagate the case values into the case destinations.
1946   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1947     Value *SwitchCond = SI->getCondition();
1948     BasicBlock *Parent = SI->getParent();
1949     bool Changed = false;
1950 
1951     // Remember how many outgoing edges there are to every successor.
1952     SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
1953     for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
1954       ++SwitchEdges[SI->getSuccessor(i)];
1955 
1956     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
1957          i != e; ++i) {
1958       BasicBlock *Dst = i->getCaseSuccessor();
1959       // If there is only a single edge, propagate the case value into it.
1960       if (SwitchEdges.lookup(Dst) == 1) {
1961         BasicBlockEdge E(Parent, Dst);
1962         Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true);
1963       }
1964     }
1965     return Changed;
1966   }
1967 
1968   // Instructions with void type don't return a value, so there's
1969   // no point in trying to find redundancies in them.
1970   if (I->getType()->isVoidTy())
1971     return false;
1972 
1973   uint32_t NextNum = VN.getNextUnusedValueNumber();
1974   unsigned Num = VN.lookupOrAdd(I);
1975 
1976   // Allocations are always uniquely numbered, so we can save time and memory
1977   // by fast failing them.
1978   if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
1979     addToLeaderTable(Num, I, I->getParent());
1980     return false;
1981   }
1982 
1983   // If the number we were assigned was a brand new VN, then we don't
1984   // need to do a lookup to see if the number already exists
1985   // somewhere in the domtree: it can't!
1986   if (Num >= NextNum) {
1987     addToLeaderTable(Num, I, I->getParent());
1988     return false;
1989   }
1990 
1991   // Perform fast-path value-number based elimination of values inherited from
1992   // dominators.
1993   Value *Repl = findLeader(I->getParent(), Num);
1994   if (!Repl) {
1995     // Failure, just remember this instance for future use.
1996     addToLeaderTable(Num, I, I->getParent());
1997     return false;
1998   } else if (Repl == I) {
1999     // If I was the result of a shortcut PRE, it might already be in the table
2000     // and the best replacement for itself. Nothing to do.
2001     return false;
2002   }
2003 
2004   // Remove it!
2005   patchAndReplaceAllUsesWith(I, Repl);
2006   if (MD && Repl->getType()->isPtrOrPtrVectorTy())
2007     MD->invalidateCachedPointerInfo(Repl);
2008   markInstructionForDeletion(I);
2009   return true;
2010 }
2011 
2012 /// runOnFunction - This is the main transformation entry point for a function.
runImpl(Function & F,AssumptionCache & RunAC,DominatorTree & RunDT,const TargetLibraryInfo & RunTLI,AAResults & RunAA,MemoryDependenceResults * RunMD,LoopInfo * LI,OptimizationRemarkEmitter * RunORE)2013 bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
2014                   const TargetLibraryInfo &RunTLI, AAResults &RunAA,
2015                   MemoryDependenceResults *RunMD, LoopInfo *LI,
2016                   OptimizationRemarkEmitter *RunORE) {
2017   AC = &RunAC;
2018   DT = &RunDT;
2019   VN.setDomTree(DT);
2020   TLI = &RunTLI;
2021   VN.setAliasAnalysis(&RunAA);
2022   MD = RunMD;
2023   OrderedInstructions OrderedInstrs(DT);
2024   OI = &OrderedInstrs;
2025   VN.setMemDep(MD);
2026   ORE = RunORE;
2027 
2028   bool Changed = false;
2029   bool ShouldContinue = true;
2030 
2031   // Merge unconditional branches, allowing PRE to catch more
2032   // optimization opportunities.
2033   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2034     BasicBlock *BB = &*FI++;
2035 
2036     bool removedBlock = MergeBlockIntoPredecessor(BB, DT, LI, MD);
2037     if (removedBlock)
2038       ++NumGVNBlocks;
2039 
2040     Changed |= removedBlock;
2041   }
2042 
2043   unsigned Iteration = 0;
2044   while (ShouldContinue) {
2045     LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2046     ShouldContinue = iterateOnFunction(F);
2047     Changed |= ShouldContinue;
2048     ++Iteration;
2049   }
2050 
2051   if (EnablePRE) {
2052     // Fabricate val-num for dead-code in order to suppress assertion in
2053     // performPRE().
2054     assignValNumForDeadCode();
2055     assignBlockRPONumber(F);
2056     bool PREChanged = true;
2057     while (PREChanged) {
2058       PREChanged = performPRE(F);
2059       Changed |= PREChanged;
2060     }
2061   }
2062 
2063   // FIXME: Should perform GVN again after PRE does something.  PRE can move
2064   // computations into blocks where they become fully redundant.  Note that
2065   // we can't do this until PRE's critical edge splitting updates memdep.
2066   // Actually, when this happens, we should just fully integrate PRE into GVN.
2067 
2068   cleanupGlobalSets();
2069   // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2070   // iteration.
2071   DeadBlocks.clear();
2072 
2073   return Changed;
2074 }
2075 
processBlock(BasicBlock * BB)2076 bool GVN::processBlock(BasicBlock *BB) {
2077   // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2078   // (and incrementing BI before processing an instruction).
2079   assert(InstrsToErase.empty() &&
2080          "We expect InstrsToErase to be empty across iterations");
2081   if (DeadBlocks.count(BB))
2082     return false;
2083 
2084   // Clearing map before every BB because it can be used only for single BB.
2085   ReplaceWithConstMap.clear();
2086   bool ChangedFunction = false;
2087 
2088   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2089        BI != BE;) {
2090     if (!ReplaceWithConstMap.empty())
2091       ChangedFunction |= replaceOperandsWithConsts(&*BI);
2092     ChangedFunction |= processInstruction(&*BI);
2093 
2094     if (InstrsToErase.empty()) {
2095       ++BI;
2096       continue;
2097     }
2098 
2099     // If we need some instructions deleted, do it now.
2100     NumGVNInstr += InstrsToErase.size();
2101 
2102     // Avoid iterator invalidation.
2103     bool AtStart = BI == BB->begin();
2104     if (!AtStart)
2105       --BI;
2106 
2107     bool InvalidateImplicitCF = false;
2108     const Instruction *MaybeFirstICF = FirstImplicitControlFlowInsts.lookup(BB);
2109     for (auto *I : InstrsToErase) {
2110       assert(I->getParent() == BB && "Removing instruction from wrong block?");
2111       LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n');
2112       salvageDebugInfo(*I);
2113       if (MD) MD->removeInstruction(I);
2114       LLVM_DEBUG(verifyRemoved(I));
2115       if (MaybeFirstICF == I) {
2116         // We have erased the first ICF in block. The map needs to be updated.
2117         InvalidateImplicitCF = true;
2118         // Do not keep dangling pointer on the erased instruction.
2119         MaybeFirstICF = nullptr;
2120       }
2121       I->eraseFromParent();
2122     }
2123 
2124     OI->invalidateBlock(BB);
2125     InstrsToErase.clear();
2126     if (InvalidateImplicitCF)
2127       fillImplicitControlFlowInfo(BB);
2128 
2129     if (AtStart)
2130       BI = BB->begin();
2131     else
2132       ++BI;
2133   }
2134 
2135   return ChangedFunction;
2136 }
2137 
2138 // Instantiate an expression in a predecessor that lacked it.
performScalarPREInsertion(Instruction * Instr,BasicBlock * Pred,BasicBlock * Curr,unsigned int ValNo)2139 bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
2140                                     BasicBlock *Curr, unsigned int ValNo) {
2141   // Because we are going top-down through the block, all value numbers
2142   // will be available in the predecessor by the time we need them.  Any
2143   // that weren't originally present will have been instantiated earlier
2144   // in this loop.
2145   bool success = true;
2146   for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
2147     Value *Op = Instr->getOperand(i);
2148     if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2149       continue;
2150     // This could be a newly inserted instruction, in which case, we won't
2151     // find a value number, and should give up before we hurt ourselves.
2152     // FIXME: Rewrite the infrastructure to let it easier to value number
2153     // and process newly inserted instructions.
2154     if (!VN.exists(Op)) {
2155       success = false;
2156       break;
2157     }
2158     uint32_t TValNo =
2159         VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this);
2160     if (Value *V = findLeader(Pred, TValNo)) {
2161       Instr->setOperand(i, V);
2162     } else {
2163       success = false;
2164       break;
2165     }
2166   }
2167 
2168   // Fail out if we encounter an operand that is not available in
2169   // the PRE predecessor.  This is typically because of loads which
2170   // are not value numbered precisely.
2171   if (!success)
2172     return false;
2173 
2174   Instr->insertBefore(Pred->getTerminator());
2175   Instr->setName(Instr->getName() + ".pre");
2176   Instr->setDebugLoc(Instr->getDebugLoc());
2177 
2178   unsigned Num = VN.lookupOrAdd(Instr);
2179   VN.add(Instr, Num);
2180 
2181   // Update the availability map to include the new instruction.
2182   addToLeaderTable(Num, Instr, Pred);
2183   return true;
2184 }
2185 
performScalarPRE(Instruction * CurInst)2186 bool GVN::performScalarPRE(Instruction *CurInst) {
2187   if (isa<AllocaInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
2188       isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
2189       CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2190       isa<DbgInfoIntrinsic>(CurInst))
2191     return false;
2192 
2193   // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2194   // sinking the compare again, and it would force the code generator to
2195   // move the i1 from processor flags or predicate registers into a general
2196   // purpose register.
2197   if (isa<CmpInst>(CurInst))
2198     return false;
2199 
2200   // We don't currently value number ANY inline asm calls.
2201   if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2202     if (CallI->isInlineAsm())
2203       return false;
2204 
2205   uint32_t ValNo = VN.lookup(CurInst);
2206 
2207   // Look for the predecessors for PRE opportunities.  We're
2208   // only trying to solve the basic diamond case, where
2209   // a value is computed in the successor and one predecessor,
2210   // but not the other.  We also explicitly disallow cases
2211   // where the successor is its own predecessor, because they're
2212   // more complicated to get right.
2213   unsigned NumWith = 0;
2214   unsigned NumWithout = 0;
2215   BasicBlock *PREPred = nullptr;
2216   BasicBlock *CurrentBlock = CurInst->getParent();
2217 
2218   SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
2219   for (BasicBlock *P : predecessors(CurrentBlock)) {
2220     // We're not interested in PRE where blocks with predecessors that are
2221     // not reachable.
2222     if (!DT->isReachableFromEntry(P)) {
2223       NumWithout = 2;
2224       break;
2225     }
2226     // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and
2227     // when CurInst has operand defined in CurrentBlock (so it may be defined
2228     // by phi in the loop header).
2229     if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] &&
2230         llvm::any_of(CurInst->operands(), [&](const Use &U) {
2231           if (auto *Inst = dyn_cast<Instruction>(U.get()))
2232             return Inst->getParent() == CurrentBlock;
2233           return false;
2234         })) {
2235       NumWithout = 2;
2236       break;
2237     }
2238 
2239     uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this);
2240     Value *predV = findLeader(P, TValNo);
2241     if (!predV) {
2242       predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
2243       PREPred = P;
2244       ++NumWithout;
2245     } else if (predV == CurInst) {
2246       /* CurInst dominates this predecessor. */
2247       NumWithout = 2;
2248       break;
2249     } else {
2250       predMap.push_back(std::make_pair(predV, P));
2251       ++NumWith;
2252     }
2253   }
2254 
2255   // Don't do PRE when it might increase code size, i.e. when
2256   // we would need to insert instructions in more than one pred.
2257   if (NumWithout > 1 || NumWith == 0)
2258     return false;
2259 
2260   // We may have a case where all predecessors have the instruction,
2261   // and we just need to insert a phi node. Otherwise, perform
2262   // insertion.
2263   Instruction *PREInstr = nullptr;
2264 
2265   if (NumWithout != 0) {
2266     if (!isSafeToSpeculativelyExecute(CurInst)) {
2267       // It is only valid to insert a new instruction if the current instruction
2268       // is always executed. An instruction with implicit control flow could
2269       // prevent us from doing it. If we cannot speculate the execution, then
2270       // PRE should be prohibited.
2271       auto It = FirstImplicitControlFlowInsts.find(CurrentBlock);
2272       if (It != FirstImplicitControlFlowInsts.end()) {
2273         assert(It->second->getParent() == CurrentBlock &&
2274                "Implicit control flow map broken?");
2275         if (OI->dominates(It->second, CurInst))
2276           return false;
2277       }
2278     }
2279 
2280     // Don't do PRE across indirect branch.
2281     if (isa<IndirectBrInst>(PREPred->getTerminator()))
2282       return false;
2283 
2284     // We can't do PRE safely on a critical edge, so instead we schedule
2285     // the edge to be split and perform the PRE the next time we iterate
2286     // on the function.
2287     unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2288     if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2289       toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2290       return false;
2291     }
2292     // We need to insert somewhere, so let's give it a shot
2293     PREInstr = CurInst->clone();
2294     if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
2295       // If we failed insertion, make sure we remove the instruction.
2296       LLVM_DEBUG(verifyRemoved(PREInstr));
2297       PREInstr->deleteValue();
2298       return false;
2299     }
2300   }
2301 
2302   // Either we should have filled in the PRE instruction, or we should
2303   // not have needed insertions.
2304   assert(PREInstr != nullptr || NumWithout == 0);
2305 
2306   ++NumGVNPRE;
2307 
2308   // Create a PHI to make the value available in this block.
2309   PHINode *Phi =
2310       PHINode::Create(CurInst->getType(), predMap.size(),
2311                       CurInst->getName() + ".pre-phi", &CurrentBlock->front());
2312   for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2313     if (Value *V = predMap[i].first) {
2314       // If we use an existing value in this phi, we have to patch the original
2315       // value because the phi will be used to replace a later value.
2316       patchReplacementInstruction(CurInst, V);
2317       Phi->addIncoming(V, predMap[i].second);
2318     } else
2319       Phi->addIncoming(PREInstr, PREPred);
2320   }
2321 
2322   VN.add(Phi, ValNo);
2323   // After creating a new PHI for ValNo, the phi translate result for ValNo will
2324   // be changed, so erase the related stale entries in phi translate cache.
2325   VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock);
2326   addToLeaderTable(ValNo, Phi, CurrentBlock);
2327   Phi->setDebugLoc(CurInst->getDebugLoc());
2328   CurInst->replaceAllUsesWith(Phi);
2329   if (MD && Phi->getType()->isPtrOrPtrVectorTy())
2330     MD->invalidateCachedPointerInfo(Phi);
2331   VN.erase(CurInst);
2332   removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2333 
2334   LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2335   if (MD)
2336     MD->removeInstruction(CurInst);
2337   LLVM_DEBUG(verifyRemoved(CurInst));
2338   bool InvalidateImplicitCF =
2339       FirstImplicitControlFlowInsts.lookup(CurInst->getParent()) == CurInst;
2340   // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes
2341   // some assertion failures.
2342   OI->invalidateBlock(CurrentBlock);
2343   CurInst->eraseFromParent();
2344   if (InvalidateImplicitCF)
2345     fillImplicitControlFlowInfo(CurrentBlock);
2346   ++NumGVNInstr;
2347 
2348   return true;
2349 }
2350 
2351 /// Perform a purely local form of PRE that looks for diamond
2352 /// control flow patterns and attempts to perform simple PRE at the join point.
performPRE(Function & F)2353 bool GVN::performPRE(Function &F) {
2354   bool Changed = false;
2355   for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
2356     // Nothing to PRE in the entry block.
2357     if (CurrentBlock == &F.getEntryBlock())
2358       continue;
2359 
2360     // Don't perform PRE on an EH pad.
2361     if (CurrentBlock->isEHPad())
2362       continue;
2363 
2364     for (BasicBlock::iterator BI = CurrentBlock->begin(),
2365                               BE = CurrentBlock->end();
2366          BI != BE;) {
2367       Instruction *CurInst = &*BI++;
2368       Changed |= performScalarPRE(CurInst);
2369     }
2370   }
2371 
2372   if (splitCriticalEdges())
2373     Changed = true;
2374 
2375   return Changed;
2376 }
2377 
2378 /// Split the critical edge connecting the given two blocks, and return
2379 /// the block inserted to the critical edge.
splitCriticalEdges(BasicBlock * Pred,BasicBlock * Succ)2380 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
2381   BasicBlock *BB =
2382       SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT));
2383   if (MD)
2384     MD->invalidateCachedPredecessors();
2385   return BB;
2386 }
2387 
2388 /// Split critical edges found during the previous
2389 /// iteration that may enable further optimization.
splitCriticalEdges()2390 bool GVN::splitCriticalEdges() {
2391   if (toSplit.empty())
2392     return false;
2393   do {
2394     std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2395     SplitCriticalEdge(Edge.first, Edge.second,
2396                       CriticalEdgeSplittingOptions(DT));
2397   } while (!toSplit.empty());
2398   if (MD) MD->invalidateCachedPredecessors();
2399   return true;
2400 }
2401 
2402 /// Executes one iteration of GVN
iterateOnFunction(Function & F)2403 bool GVN::iterateOnFunction(Function &F) {
2404   cleanupGlobalSets();
2405 
2406   // Top-down walk of the dominator tree
2407   bool Changed = false;
2408   // Needed for value numbering with phi construction to work.
2409   // RPOT walks the graph in its constructor and will not be invalidated during
2410   // processBlock.
2411   ReversePostOrderTraversal<Function *> RPOT(&F);
2412 
2413   for (BasicBlock *BB : RPOT)
2414     fillImplicitControlFlowInfo(BB);
2415   for (BasicBlock *BB : RPOT)
2416     Changed |= processBlock(BB);
2417 
2418   return Changed;
2419 }
2420 
cleanupGlobalSets()2421 void GVN::cleanupGlobalSets() {
2422   VN.clear();
2423   LeaderTable.clear();
2424   BlockRPONumber.clear();
2425   TableAllocator.Reset();
2426   FirstImplicitControlFlowInsts.clear();
2427 }
2428 
2429 void
fillImplicitControlFlowInfo(BasicBlock * BB)2430 GVN::fillImplicitControlFlowInfo(BasicBlock *BB) {
2431   // Make sure that all marked instructions are actually deleted by this point,
2432   // so that we don't need to care about omitting them.
2433   assert(InstrsToErase.empty() && "Filling before removed all marked insns?");
2434   auto MayNotTransferExecutionToSuccessor = [&](const Instruction *I) {
2435     // If a block's instruction doesn't always pass the control to its successor
2436     // instruction, mark the block as having implicit control flow. We use them
2437     // to avoid wrong assumptions of sort "if A is executed and B post-dominates
2438     // A, then B is also executed". This is not true is there is an implicit
2439     // control flow instruction (e.g. a guard) between them.
2440     //
2441     // TODO: Currently, isGuaranteedToTransferExecutionToSuccessor returns false
2442     // for volatile stores and loads because they can trap. The discussion on
2443     // whether or not it is correct is still ongoing. We might want to get rid
2444     // of this logic in the future. Anyways, trapping instructions shouldn't
2445     // introduce implicit control flow, so we explicitly allow them here. This
2446     // must be removed once isGuaranteedToTransferExecutionToSuccessor is fixed.
2447     if (isGuaranteedToTransferExecutionToSuccessor(I))
2448       return false;
2449     if (isa<LoadInst>(I)) {
2450       assert(cast<LoadInst>(I)->isVolatile() &&
2451              "Non-volatile load should transfer execution to successor!");
2452       return false;
2453     }
2454     if (isa<StoreInst>(I)) {
2455       assert(cast<StoreInst>(I)->isVolatile() &&
2456              "Non-volatile store should transfer execution to successor!");
2457       return false;
2458     }
2459     return true;
2460   };
2461   FirstImplicitControlFlowInsts.erase(BB);
2462 
2463   for (auto &I : *BB)
2464     if (MayNotTransferExecutionToSuccessor(&I)) {
2465       FirstImplicitControlFlowInsts[BB] = &I;
2466       break;
2467     }
2468 }
2469 
2470 /// Verify that the specified instruction does not occur in our
2471 /// internal data structures.
verifyRemoved(const Instruction * Inst) const2472 void GVN::verifyRemoved(const Instruction *Inst) const {
2473   VN.verifyRemoved(Inst);
2474 
2475   // Walk through the value number scope to make sure the instruction isn't
2476   // ferreted away in it.
2477   for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2478        I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2479     const LeaderTableEntry *Node = &I->second;
2480     assert(Node->Val != Inst && "Inst still in value numbering scope!");
2481 
2482     while (Node->Next) {
2483       Node = Node->Next;
2484       assert(Node->Val != Inst && "Inst still in value numbering scope!");
2485     }
2486   }
2487 }
2488 
2489 /// BB is declared dead, which implied other blocks become dead as well. This
2490 /// function is to add all these blocks to "DeadBlocks". For the dead blocks'
2491 /// live successors, update their phi nodes by replacing the operands
2492 /// corresponding to dead blocks with UndefVal.
addDeadBlock(BasicBlock * BB)2493 void GVN::addDeadBlock(BasicBlock *BB) {
2494   SmallVector<BasicBlock *, 4> NewDead;
2495   SmallSetVector<BasicBlock *, 4> DF;
2496 
2497   NewDead.push_back(BB);
2498   while (!NewDead.empty()) {
2499     BasicBlock *D = NewDead.pop_back_val();
2500     if (DeadBlocks.count(D))
2501       continue;
2502 
2503     // All blocks dominated by D are dead.
2504     SmallVector<BasicBlock *, 8> Dom;
2505     DT->getDescendants(D, Dom);
2506     DeadBlocks.insert(Dom.begin(), Dom.end());
2507 
2508     // Figure out the dominance-frontier(D).
2509     for (BasicBlock *B : Dom) {
2510       for (BasicBlock *S : successors(B)) {
2511         if (DeadBlocks.count(S))
2512           continue;
2513 
2514         bool AllPredDead = true;
2515         for (BasicBlock *P : predecessors(S))
2516           if (!DeadBlocks.count(P)) {
2517             AllPredDead = false;
2518             break;
2519           }
2520 
2521         if (!AllPredDead) {
2522           // S could be proved dead later on. That is why we don't update phi
2523           // operands at this moment.
2524           DF.insert(S);
2525         } else {
2526           // While S is not dominated by D, it is dead by now. This could take
2527           // place if S already have a dead predecessor before D is declared
2528           // dead.
2529           NewDead.push_back(S);
2530         }
2531       }
2532     }
2533   }
2534 
2535   // For the dead blocks' live successors, update their phi nodes by replacing
2536   // the operands corresponding to dead blocks with UndefVal.
2537   for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
2538         I != E; I++) {
2539     BasicBlock *B = *I;
2540     if (DeadBlocks.count(B))
2541       continue;
2542 
2543     SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
2544     for (BasicBlock *P : Preds) {
2545       if (!DeadBlocks.count(P))
2546         continue;
2547 
2548       if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) {
2549         if (BasicBlock *S = splitCriticalEdges(P, B))
2550           DeadBlocks.insert(P = S);
2551       }
2552 
2553       for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) {
2554         PHINode &Phi = cast<PHINode>(*II);
2555         Phi.setIncomingValue(Phi.getBasicBlockIndex(P),
2556                              UndefValue::get(Phi.getType()));
2557       }
2558     }
2559   }
2560 }
2561 
2562 // If the given branch is recognized as a foldable branch (i.e. conditional
2563 // branch with constant condition), it will perform following analyses and
2564 // transformation.
2565 //  1) If the dead out-coming edge is a critical-edge, split it. Let
2566 //     R be the target of the dead out-coming edge.
2567 //  1) Identify the set of dead blocks implied by the branch's dead outcoming
2568 //     edge. The result of this step will be {X| X is dominated by R}
2569 //  2) Identify those blocks which haves at least one dead predecessor. The
2570 //     result of this step will be dominance-frontier(R).
2571 //  3) Update the PHIs in DF(R) by replacing the operands corresponding to
2572 //     dead blocks with "UndefVal" in an hope these PHIs will optimized away.
2573 //
2574 // Return true iff *NEW* dead code are found.
processFoldableCondBr(BranchInst * BI)2575 bool GVN::processFoldableCondBr(BranchInst *BI) {
2576   if (!BI || BI->isUnconditional())
2577     return false;
2578 
2579   // If a branch has two identical successors, we cannot declare either dead.
2580   if (BI->getSuccessor(0) == BI->getSuccessor(1))
2581     return false;
2582 
2583   ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
2584   if (!Cond)
2585     return false;
2586 
2587   BasicBlock *DeadRoot =
2588       Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
2589   if (DeadBlocks.count(DeadRoot))
2590     return false;
2591 
2592   if (!DeadRoot->getSinglePredecessor())
2593     DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
2594 
2595   addDeadBlock(DeadRoot);
2596   return true;
2597 }
2598 
2599 // performPRE() will trigger assert if it comes across an instruction without
2600 // associated val-num. As it normally has far more live instructions than dead
2601 // instructions, it makes more sense just to "fabricate" a val-number for the
2602 // dead code than checking if instruction involved is dead or not.
assignValNumForDeadCode()2603 void GVN::assignValNumForDeadCode() {
2604   for (BasicBlock *BB : DeadBlocks) {
2605     for (Instruction &Inst : *BB) {
2606       unsigned ValNum = VN.lookupOrAdd(&Inst);
2607       addToLeaderTable(ValNum, &Inst, BB);
2608     }
2609   }
2610 }
2611 
2612 class llvm::gvn::GVNLegacyPass : public FunctionPass {
2613 public:
2614   static char ID; // Pass identification, replacement for typeid
2615 
GVNLegacyPass(bool NoLoads=false)2616   explicit GVNLegacyPass(bool NoLoads = false)
2617       : FunctionPass(ID), NoLoads(NoLoads) {
2618     initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
2619   }
2620 
runOnFunction(Function & F)2621   bool runOnFunction(Function &F) override {
2622     if (skipFunction(F))
2623       return false;
2624 
2625     auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
2626 
2627     return Impl.runImpl(
2628         F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
2629         getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
2630         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
2631         getAnalysis<AAResultsWrapperPass>().getAAResults(),
2632         NoLoads ? nullptr
2633                 : &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(),
2634         LIWP ? &LIWP->getLoopInfo() : nullptr,
2635         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE());
2636   }
2637 
getAnalysisUsage(AnalysisUsage & AU) const2638   void getAnalysisUsage(AnalysisUsage &AU) const override {
2639     AU.addRequired<AssumptionCacheTracker>();
2640     AU.addRequired<DominatorTreeWrapperPass>();
2641     AU.addRequired<TargetLibraryInfoWrapperPass>();
2642     if (!NoLoads)
2643       AU.addRequired<MemoryDependenceWrapperPass>();
2644     AU.addRequired<AAResultsWrapperPass>();
2645 
2646     AU.addPreserved<DominatorTreeWrapperPass>();
2647     AU.addPreserved<GlobalsAAWrapperPass>();
2648     AU.addPreserved<TargetLibraryInfoWrapperPass>();
2649     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2650   }
2651 
2652 private:
2653   bool NoLoads;
2654   GVN Impl;
2655 };
2656 
2657 char GVNLegacyPass::ID = 0;
2658 
2659 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)2660 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2661 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
2662 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2663 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2664 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2665 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
2666 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
2667 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
2668 
2669 // The public interface to this file...
2670 FunctionPass *llvm::createGVNPass(bool NoLoads) {
2671   return new GVNLegacyPass(NoLoads);
2672 }
2673