1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global value numbering to eliminate fully redundant
11 // instructions. It also performs simple dead load elimination.
12 //
13 // Note that this pass does the value numbering itself; it does not use the
14 // ValueNumbering analysis passes.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/Transforms/Scalar/GVN.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DepthFirstIterator.h"
21 #include "llvm/ADT/Hashing.h"
22 #include "llvm/ADT/MapVector.h"
23 #include "llvm/ADT/PointerIntPair.h"
24 #include "llvm/ADT/PostOrderIterator.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/AssumptionCache.h"
32 #include "llvm/Analysis/CFG.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/InstructionSimplify.h"
35 #include "llvm/Analysis/LoopInfo.h"
36 #include "llvm/Analysis/MemoryBuiltins.h"
37 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
38 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
39 #include "llvm/Analysis/PHITransAddr.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 #include "llvm/Analysis/ValueTracking.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/Intrinsics.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Metadata.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/PassManager.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/SSAUpdater.h"
75 #include "llvm/Transforms/Utils/VNCoercion.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstdint>
79 #include <utility>
80 #include <vector>
81
82 using namespace llvm;
83 using namespace llvm::gvn;
84 using namespace llvm::VNCoercion;
85 using namespace PatternMatch;
86
87 #define DEBUG_TYPE "gvn"
88
89 STATISTIC(NumGVNInstr, "Number of instructions deleted");
90 STATISTIC(NumGVNLoad, "Number of loads deleted");
91 STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
92 STATISTIC(NumGVNBlocks, "Number of blocks merged");
93 STATISTIC(NumGVNSimpl, "Number of instructions simplified");
94 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
95 STATISTIC(NumPRELoad, "Number of loads PRE'd");
96
97 static cl::opt<bool> EnablePRE("enable-pre",
98 cl::init(true), cl::Hidden);
99 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
100
101 // Maximum allowed recursion depth.
102 static cl::opt<uint32_t>
103 MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
104 cl::desc("Max recurse depth (default = 1000)"));
105
106 struct llvm::GVN::Expression {
107 uint32_t opcode;
108 Type *type;
109 bool commutative = false;
110 SmallVector<uint32_t, 4> varargs;
111
Expressionllvm::GVN::Expression112 Expression(uint32_t o = ~2U) : opcode(o) {}
113
operator ==llvm::GVN::Expression114 bool operator==(const Expression &other) const {
115 if (opcode != other.opcode)
116 return false;
117 if (opcode == ~0U || opcode == ~1U)
118 return true;
119 if (type != other.type)
120 return false;
121 if (varargs != other.varargs)
122 return false;
123 return true;
124 }
125
hash_value(const Expression & Value)126 friend hash_code hash_value(const Expression &Value) {
127 return hash_combine(
128 Value.opcode, Value.type,
129 hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
130 }
131 };
132
133 namespace llvm {
134
135 template <> struct DenseMapInfo<GVN::Expression> {
getEmptyKeyllvm::DenseMapInfo136 static inline GVN::Expression getEmptyKey() { return ~0U; }
getTombstoneKeyllvm::DenseMapInfo137 static inline GVN::Expression getTombstoneKey() { return ~1U; }
138
getHashValuellvm::DenseMapInfo139 static unsigned getHashValue(const GVN::Expression &e) {
140 using llvm::hash_value;
141
142 return static_cast<unsigned>(hash_value(e));
143 }
144
isEqualllvm::DenseMapInfo145 static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) {
146 return LHS == RHS;
147 }
148 };
149
150 } // end namespace llvm
151
152 /// Represents a particular available value that we know how to materialize.
153 /// Materialization of an AvailableValue never fails. An AvailableValue is
154 /// implicitly associated with a rematerialization point which is the
155 /// location of the instruction from which it was formed.
156 struct llvm::gvn::AvailableValue {
157 enum ValType {
158 SimpleVal, // A simple offsetted value that is accessed.
159 LoadVal, // A value produced by a load.
160 MemIntrin, // A memory intrinsic which is loaded from.
161 UndefVal // A UndefValue representing a value from dead block (which
162 // is not yet physically removed from the CFG).
163 };
164
165 /// V - The value that is live out of the block.
166 PointerIntPair<Value *, 2, ValType> Val;
167
168 /// Offset - The byte offset in Val that is interesting for the load query.
169 unsigned Offset;
170
getllvm::gvn::AvailableValue171 static AvailableValue get(Value *V, unsigned Offset = 0) {
172 AvailableValue Res;
173 Res.Val.setPointer(V);
174 Res.Val.setInt(SimpleVal);
175 Res.Offset = Offset;
176 return Res;
177 }
178
getMIllvm::gvn::AvailableValue179 static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
180 AvailableValue Res;
181 Res.Val.setPointer(MI);
182 Res.Val.setInt(MemIntrin);
183 Res.Offset = Offset;
184 return Res;
185 }
186
getLoadllvm::gvn::AvailableValue187 static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) {
188 AvailableValue Res;
189 Res.Val.setPointer(LI);
190 Res.Val.setInt(LoadVal);
191 Res.Offset = Offset;
192 return Res;
193 }
194
getUndefllvm::gvn::AvailableValue195 static AvailableValue getUndef() {
196 AvailableValue Res;
197 Res.Val.setPointer(nullptr);
198 Res.Val.setInt(UndefVal);
199 Res.Offset = 0;
200 return Res;
201 }
202
isSimpleValuellvm::gvn::AvailableValue203 bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
isCoercedLoadValuellvm::gvn::AvailableValue204 bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
isMemIntrinValuellvm::gvn::AvailableValue205 bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
isUndefValuellvm::gvn::AvailableValue206 bool isUndefValue() const { return Val.getInt() == UndefVal; }
207
getSimpleValuellvm::gvn::AvailableValue208 Value *getSimpleValue() const {
209 assert(isSimpleValue() && "Wrong accessor");
210 return Val.getPointer();
211 }
212
getCoercedLoadValuellvm::gvn::AvailableValue213 LoadInst *getCoercedLoadValue() const {
214 assert(isCoercedLoadValue() && "Wrong accessor");
215 return cast<LoadInst>(Val.getPointer());
216 }
217
getMemIntrinValuellvm::gvn::AvailableValue218 MemIntrinsic *getMemIntrinValue() const {
219 assert(isMemIntrinValue() && "Wrong accessor");
220 return cast<MemIntrinsic>(Val.getPointer());
221 }
222
223 /// Emit code at the specified insertion point to adjust the value defined
224 /// here to the specified type. This handles various coercion cases.
225 Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt,
226 GVN &gvn) const;
227 };
228
229 /// Represents an AvailableValue which can be rematerialized at the end of
230 /// the associated BasicBlock.
231 struct llvm::gvn::AvailableValueInBlock {
232 /// BB - The basic block in question.
233 BasicBlock *BB;
234
235 /// AV - The actual available value
236 AvailableValue AV;
237
getllvm::gvn::AvailableValueInBlock238 static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
239 AvailableValueInBlock Res;
240 Res.BB = BB;
241 Res.AV = std::move(AV);
242 return Res;
243 }
244
getllvm::gvn::AvailableValueInBlock245 static AvailableValueInBlock get(BasicBlock *BB, Value *V,
246 unsigned Offset = 0) {
247 return get(BB, AvailableValue::get(V, Offset));
248 }
249
getUndefllvm::gvn::AvailableValueInBlock250 static AvailableValueInBlock getUndef(BasicBlock *BB) {
251 return get(BB, AvailableValue::getUndef());
252 }
253
254 /// Emit code at the end of this block to adjust the value defined here to
255 /// the specified type. This handles various coercion cases.
MaterializeAdjustedValuellvm::gvn::AvailableValueInBlock256 Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const {
257 return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn);
258 }
259 };
260
261 //===----------------------------------------------------------------------===//
262 // ValueTable Internal Functions
263 //===----------------------------------------------------------------------===//
264
createExpr(Instruction * I)265 GVN::Expression GVN::ValueTable::createExpr(Instruction *I) {
266 Expression e;
267 e.type = I->getType();
268 e.opcode = I->getOpcode();
269 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
270 OI != OE; ++OI)
271 e.varargs.push_back(lookupOrAdd(*OI));
272 if (I->isCommutative()) {
273 // Ensure that commutative instructions that only differ by a permutation
274 // of their operands get the same value number by sorting the operand value
275 // numbers. Since all commutative instructions have two operands it is more
276 // efficient to sort by hand rather than using, say, std::sort.
277 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
278 if (e.varargs[0] > e.varargs[1])
279 std::swap(e.varargs[0], e.varargs[1]);
280 e.commutative = true;
281 }
282
283 if (CmpInst *C = dyn_cast<CmpInst>(I)) {
284 // Sort the operand value numbers so x<y and y>x get the same value number.
285 CmpInst::Predicate Predicate = C->getPredicate();
286 if (e.varargs[0] > e.varargs[1]) {
287 std::swap(e.varargs[0], e.varargs[1]);
288 Predicate = CmpInst::getSwappedPredicate(Predicate);
289 }
290 e.opcode = (C->getOpcode() << 8) | Predicate;
291 e.commutative = true;
292 } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
293 for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
294 II != IE; ++II)
295 e.varargs.push_back(*II);
296 }
297
298 return e;
299 }
300
createCmpExpr(unsigned Opcode,CmpInst::Predicate Predicate,Value * LHS,Value * RHS)301 GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode,
302 CmpInst::Predicate Predicate,
303 Value *LHS, Value *RHS) {
304 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
305 "Not a comparison!");
306 Expression e;
307 e.type = CmpInst::makeCmpResultType(LHS->getType());
308 e.varargs.push_back(lookupOrAdd(LHS));
309 e.varargs.push_back(lookupOrAdd(RHS));
310
311 // Sort the operand value numbers so x<y and y>x get the same value number.
312 if (e.varargs[0] > e.varargs[1]) {
313 std::swap(e.varargs[0], e.varargs[1]);
314 Predicate = CmpInst::getSwappedPredicate(Predicate);
315 }
316 e.opcode = (Opcode << 8) | Predicate;
317 e.commutative = true;
318 return e;
319 }
320
createExtractvalueExpr(ExtractValueInst * EI)321 GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
322 assert(EI && "Not an ExtractValueInst?");
323 Expression e;
324 e.type = EI->getType();
325 e.opcode = 0;
326
327 IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
328 if (I != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
329 // EI might be an extract from one of our recognised intrinsics. If it
330 // is we'll synthesize a semantically equivalent expression instead on
331 // an extract value expression.
332 switch (I->getIntrinsicID()) {
333 case Intrinsic::sadd_with_overflow:
334 case Intrinsic::uadd_with_overflow:
335 e.opcode = Instruction::Add;
336 break;
337 case Intrinsic::ssub_with_overflow:
338 case Intrinsic::usub_with_overflow:
339 e.opcode = Instruction::Sub;
340 break;
341 case Intrinsic::smul_with_overflow:
342 case Intrinsic::umul_with_overflow:
343 e.opcode = Instruction::Mul;
344 break;
345 default:
346 break;
347 }
348
349 if (e.opcode != 0) {
350 // Intrinsic recognized. Grab its args to finish building the expression.
351 assert(I->getNumArgOperands() == 2 &&
352 "Expect two args for recognised intrinsics.");
353 e.varargs.push_back(lookupOrAdd(I->getArgOperand(0)));
354 e.varargs.push_back(lookupOrAdd(I->getArgOperand(1)));
355 return e;
356 }
357 }
358
359 // Not a recognised intrinsic. Fall back to producing an extract value
360 // expression.
361 e.opcode = EI->getOpcode();
362 for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
363 OI != OE; ++OI)
364 e.varargs.push_back(lookupOrAdd(*OI));
365
366 for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
367 II != IE; ++II)
368 e.varargs.push_back(*II);
369
370 return e;
371 }
372
373 //===----------------------------------------------------------------------===//
374 // ValueTable External Functions
375 //===----------------------------------------------------------------------===//
376
377 GVN::ValueTable::ValueTable() = default;
378 GVN::ValueTable::ValueTable(const ValueTable &) = default;
379 GVN::ValueTable::ValueTable(ValueTable &&) = default;
380 GVN::ValueTable::~ValueTable() = default;
381
382 /// add - Insert a value into the table with a specified value number.
add(Value * V,uint32_t num)383 void GVN::ValueTable::add(Value *V, uint32_t num) {
384 valueNumbering.insert(std::make_pair(V, num));
385 if (PHINode *PN = dyn_cast<PHINode>(V))
386 NumberingPhi[num] = PN;
387 }
388
lookupOrAddCall(CallInst * C)389 uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) {
390 if (AA->doesNotAccessMemory(C)) {
391 Expression exp = createExpr(C);
392 uint32_t e = assignExpNewValueNum(exp).first;
393 valueNumbering[C] = e;
394 return e;
395 } else if (AA->onlyReadsMemory(C)) {
396 Expression exp = createExpr(C);
397 auto ValNum = assignExpNewValueNum(exp);
398 if (ValNum.second) {
399 valueNumbering[C] = ValNum.first;
400 return ValNum.first;
401 }
402 if (!MD) {
403 uint32_t e = assignExpNewValueNum(exp).first;
404 valueNumbering[C] = e;
405 return e;
406 }
407
408 MemDepResult local_dep = MD->getDependency(C);
409
410 if (!local_dep.isDef() && !local_dep.isNonLocal()) {
411 valueNumbering[C] = nextValueNumber;
412 return nextValueNumber++;
413 }
414
415 if (local_dep.isDef()) {
416 CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
417
418 if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
419 valueNumbering[C] = nextValueNumber;
420 return nextValueNumber++;
421 }
422
423 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
424 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
425 uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
426 if (c_vn != cd_vn) {
427 valueNumbering[C] = nextValueNumber;
428 return nextValueNumber++;
429 }
430 }
431
432 uint32_t v = lookupOrAdd(local_cdep);
433 valueNumbering[C] = v;
434 return v;
435 }
436
437 // Non-local case.
438 const MemoryDependenceResults::NonLocalDepInfo &deps =
439 MD->getNonLocalCallDependency(CallSite(C));
440 // FIXME: Move the checking logic to MemDep!
441 CallInst* cdep = nullptr;
442
443 // Check to see if we have a single dominating call instruction that is
444 // identical to C.
445 for (unsigned i = 0, e = deps.size(); i != e; ++i) {
446 const NonLocalDepEntry *I = &deps[i];
447 if (I->getResult().isNonLocal())
448 continue;
449
450 // We don't handle non-definitions. If we already have a call, reject
451 // instruction dependencies.
452 if (!I->getResult().isDef() || cdep != nullptr) {
453 cdep = nullptr;
454 break;
455 }
456
457 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
458 // FIXME: All duplicated with non-local case.
459 if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
460 cdep = NonLocalDepCall;
461 continue;
462 }
463
464 cdep = nullptr;
465 break;
466 }
467
468 if (!cdep) {
469 valueNumbering[C] = nextValueNumber;
470 return nextValueNumber++;
471 }
472
473 if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
474 valueNumbering[C] = nextValueNumber;
475 return nextValueNumber++;
476 }
477 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
478 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
479 uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
480 if (c_vn != cd_vn) {
481 valueNumbering[C] = nextValueNumber;
482 return nextValueNumber++;
483 }
484 }
485
486 uint32_t v = lookupOrAdd(cdep);
487 valueNumbering[C] = v;
488 return v;
489 } else {
490 valueNumbering[C] = nextValueNumber;
491 return nextValueNumber++;
492 }
493 }
494
495 /// Returns true if a value number exists for the specified value.
exists(Value * V) const496 bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; }
497
498 /// lookup_or_add - Returns the value number for the specified value, assigning
499 /// it a new number if it did not have one before.
lookupOrAdd(Value * V)500 uint32_t GVN::ValueTable::lookupOrAdd(Value *V) {
501 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
502 if (VI != valueNumbering.end())
503 return VI->second;
504
505 if (!isa<Instruction>(V)) {
506 valueNumbering[V] = nextValueNumber;
507 return nextValueNumber++;
508 }
509
510 Instruction* I = cast<Instruction>(V);
511 Expression exp;
512 switch (I->getOpcode()) {
513 case Instruction::Call:
514 return lookupOrAddCall(cast<CallInst>(I));
515 case Instruction::Add:
516 case Instruction::FAdd:
517 case Instruction::Sub:
518 case Instruction::FSub:
519 case Instruction::Mul:
520 case Instruction::FMul:
521 case Instruction::UDiv:
522 case Instruction::SDiv:
523 case Instruction::FDiv:
524 case Instruction::URem:
525 case Instruction::SRem:
526 case Instruction::FRem:
527 case Instruction::Shl:
528 case Instruction::LShr:
529 case Instruction::AShr:
530 case Instruction::And:
531 case Instruction::Or:
532 case Instruction::Xor:
533 case Instruction::ICmp:
534 case Instruction::FCmp:
535 case Instruction::Trunc:
536 case Instruction::ZExt:
537 case Instruction::SExt:
538 case Instruction::FPToUI:
539 case Instruction::FPToSI:
540 case Instruction::UIToFP:
541 case Instruction::SIToFP:
542 case Instruction::FPTrunc:
543 case Instruction::FPExt:
544 case Instruction::PtrToInt:
545 case Instruction::IntToPtr:
546 case Instruction::BitCast:
547 case Instruction::Select:
548 case Instruction::ExtractElement:
549 case Instruction::InsertElement:
550 case Instruction::ShuffleVector:
551 case Instruction::InsertValue:
552 case Instruction::GetElementPtr:
553 exp = createExpr(I);
554 break;
555 case Instruction::ExtractValue:
556 exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
557 break;
558 case Instruction::PHI:
559 valueNumbering[V] = nextValueNumber;
560 NumberingPhi[nextValueNumber] = cast<PHINode>(V);
561 return nextValueNumber++;
562 default:
563 valueNumbering[V] = nextValueNumber;
564 return nextValueNumber++;
565 }
566
567 uint32_t e = assignExpNewValueNum(exp).first;
568 valueNumbering[V] = e;
569 return e;
570 }
571
572 /// Returns the value number of the specified value. Fails if
573 /// the value has not yet been numbered.
lookup(Value * V,bool Verify) const574 uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const {
575 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
576 if (Verify) {
577 assert(VI != valueNumbering.end() && "Value not numbered?");
578 return VI->second;
579 }
580 return (VI != valueNumbering.end()) ? VI->second : 0;
581 }
582
583 /// Returns the value number of the given comparison,
584 /// assigning it a new number if it did not have one before. Useful when
585 /// we deduced the result of a comparison, but don't immediately have an
586 /// instruction realizing that comparison to hand.
lookupOrAddCmp(unsigned Opcode,CmpInst::Predicate Predicate,Value * LHS,Value * RHS)587 uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode,
588 CmpInst::Predicate Predicate,
589 Value *LHS, Value *RHS) {
590 Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
591 return assignExpNewValueNum(exp).first;
592 }
593
594 /// Remove all entries from the ValueTable.
clear()595 void GVN::ValueTable::clear() {
596 valueNumbering.clear();
597 expressionNumbering.clear();
598 NumberingPhi.clear();
599 PhiTranslateTable.clear();
600 nextValueNumber = 1;
601 Expressions.clear();
602 ExprIdx.clear();
603 nextExprNumber = 0;
604 }
605
606 /// Remove a value from the value numbering.
erase(Value * V)607 void GVN::ValueTable::erase(Value *V) {
608 uint32_t Num = valueNumbering.lookup(V);
609 valueNumbering.erase(V);
610 // If V is PHINode, V <--> value number is an one-to-one mapping.
611 if (isa<PHINode>(V))
612 NumberingPhi.erase(Num);
613 }
614
615 /// verifyRemoved - Verify that the value is removed from all internal data
616 /// structures.
verifyRemoved(const Value * V) const617 void GVN::ValueTable::verifyRemoved(const Value *V) const {
618 for (DenseMap<Value*, uint32_t>::const_iterator
619 I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
620 assert(I->first != V && "Inst still occurs in value numbering map!");
621 }
622 }
623
624 //===----------------------------------------------------------------------===//
625 // GVN Pass
626 //===----------------------------------------------------------------------===//
627
run(Function & F,FunctionAnalysisManager & AM)628 PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) {
629 // FIXME: The order of evaluation of these 'getResult' calls is very
630 // significant! Re-ordering these variables will cause GVN when run alone to
631 // be less effective! We should fix memdep and basic-aa to not exhibit this
632 // behavior, but until then don't change the order here.
633 auto &AC = AM.getResult<AssumptionAnalysis>(F);
634 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
635 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
636 auto &AA = AM.getResult<AAManager>(F);
637 auto &MemDep = AM.getResult<MemoryDependenceAnalysis>(F);
638 auto *LI = AM.getCachedResult<LoopAnalysis>(F);
639 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
640 bool Changed = runImpl(F, AC, DT, TLI, AA, &MemDep, LI, &ORE);
641 if (!Changed)
642 return PreservedAnalyses::all();
643 PreservedAnalyses PA;
644 PA.preserve<DominatorTreeAnalysis>();
645 PA.preserve<GlobalsAA>();
646 PA.preserve<TargetLibraryAnalysis>();
647 return PA;
648 }
649
650 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump(DenseMap<uint32_t,Value * > & d) const651 LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const {
652 errs() << "{\n";
653 for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
654 E = d.end(); I != E; ++I) {
655 errs() << I->first << "\n";
656 I->second->dump();
657 }
658 errs() << "}\n";
659 }
660 #endif
661
662 /// Return true if we can prove that the value
663 /// we're analyzing is fully available in the specified block. As we go, keep
664 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This
665 /// map is actually a tri-state map with the following values:
666 /// 0) we know the block *is not* fully available.
667 /// 1) we know the block *is* fully available.
668 /// 2) we do not know whether the block is fully available or not, but we are
669 /// currently speculating that it will be.
670 /// 3) we are speculating for this block and have used that to speculate for
671 /// other blocks.
IsValueFullyAvailableInBlock(BasicBlock * BB,DenseMap<BasicBlock *,char> & FullyAvailableBlocks,uint32_t RecurseDepth)672 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
673 DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
674 uint32_t RecurseDepth) {
675 if (RecurseDepth > MaxRecurseDepth)
676 return false;
677
678 // Optimistically assume that the block is fully available and check to see
679 // if we already know about this block in one lookup.
680 std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
681 FullyAvailableBlocks.insert(std::make_pair(BB, 2));
682
683 // If the entry already existed for this block, return the precomputed value.
684 if (!IV.second) {
685 // If this is a speculative "available" value, mark it as being used for
686 // speculation of other blocks.
687 if (IV.first->second == 2)
688 IV.first->second = 3;
689 return IV.first->second != 0;
690 }
691
692 // Otherwise, see if it is fully available in all predecessors.
693 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
694
695 // If this block has no predecessors, it isn't live-in here.
696 if (PI == PE)
697 goto SpeculationFailure;
698
699 for (; PI != PE; ++PI)
700 // If the value isn't fully available in one of our predecessors, then it
701 // isn't fully available in this block either. Undo our previous
702 // optimistic assumption and bail out.
703 if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
704 goto SpeculationFailure;
705
706 return true;
707
708 // If we get here, we found out that this is not, after
709 // all, a fully-available block. We have a problem if we speculated on this and
710 // used the speculation to mark other blocks as available.
711 SpeculationFailure:
712 char &BBVal = FullyAvailableBlocks[BB];
713
714 // If we didn't speculate on this, just return with it set to false.
715 if (BBVal == 2) {
716 BBVal = 0;
717 return false;
718 }
719
720 // If we did speculate on this value, we could have blocks set to 1 that are
721 // incorrect. Walk the (transitive) successors of this block and mark them as
722 // 0 if set to one.
723 SmallVector<BasicBlock*, 32> BBWorklist;
724 BBWorklist.push_back(BB);
725
726 do {
727 BasicBlock *Entry = BBWorklist.pop_back_val();
728 // Note that this sets blocks to 0 (unavailable) if they happen to not
729 // already be in FullyAvailableBlocks. This is safe.
730 char &EntryVal = FullyAvailableBlocks[Entry];
731 if (EntryVal == 0) continue; // Already unavailable.
732
733 // Mark as unavailable.
734 EntryVal = 0;
735
736 BBWorklist.append(succ_begin(Entry), succ_end(Entry));
737 } while (!BBWorklist.empty());
738
739 return false;
740 }
741
742 /// Given a set of loads specified by ValuesPerBlock,
743 /// construct SSA form, allowing us to eliminate LI. This returns the value
744 /// that should be used at LI's definition site.
ConstructSSAForLoadSet(LoadInst * LI,SmallVectorImpl<AvailableValueInBlock> & ValuesPerBlock,GVN & gvn)745 static Value *ConstructSSAForLoadSet(LoadInst *LI,
746 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
747 GVN &gvn) {
748 // Check for the fully redundant, dominating load case. In this case, we can
749 // just use the dominating value directly.
750 if (ValuesPerBlock.size() == 1 &&
751 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
752 LI->getParent())) {
753 assert(!ValuesPerBlock[0].AV.isUndefValue() &&
754 "Dead BB dominate this block");
755 return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn);
756 }
757
758 // Otherwise, we have to construct SSA form.
759 SmallVector<PHINode*, 8> NewPHIs;
760 SSAUpdater SSAUpdate(&NewPHIs);
761 SSAUpdate.Initialize(LI->getType(), LI->getName());
762
763 for (const AvailableValueInBlock &AV : ValuesPerBlock) {
764 BasicBlock *BB = AV.BB;
765
766 if (SSAUpdate.HasValueForBlock(BB))
767 continue;
768
769 // If the value is the load that we will be eliminating, and the block it's
770 // available in is the block that the load is in, then don't add it as
771 // SSAUpdater will resolve the value to the relevant phi which may let it
772 // avoid phi construction entirely if there's actually only one value.
773 if (BB == LI->getParent() &&
774 ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == LI) ||
775 (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == LI)))
776 continue;
777
778 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn));
779 }
780
781 // Perform PHI construction.
782 return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
783 }
784
MaterializeAdjustedValue(LoadInst * LI,Instruction * InsertPt,GVN & gvn) const785 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI,
786 Instruction *InsertPt,
787 GVN &gvn) const {
788 Value *Res;
789 Type *LoadTy = LI->getType();
790 const DataLayout &DL = LI->getModule()->getDataLayout();
791 if (isSimpleValue()) {
792 Res = getSimpleValue();
793 if (Res->getType() != LoadTy) {
794 Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
795
796 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset
797 << " " << *getSimpleValue() << '\n'
798 << *Res << '\n'
799 << "\n\n\n");
800 }
801 } else if (isCoercedLoadValue()) {
802 LoadInst *Load = getCoercedLoadValue();
803 if (Load->getType() == LoadTy && Offset == 0) {
804 Res = Load;
805 } else {
806 Res = getLoadValueForLoad(Load, Offset, LoadTy, InsertPt, DL);
807 // We would like to use gvn.markInstructionForDeletion here, but we can't
808 // because the load is already memoized into the leader map table that GVN
809 // tracks. It is potentially possible to remove the load from the table,
810 // but then there all of the operations based on it would need to be
811 // rehashed. Just leave the dead load around.
812 gvn.getMemDep().removeInstruction(Load);
813 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset
814 << " " << *getCoercedLoadValue() << '\n'
815 << *Res << '\n'
816 << "\n\n\n");
817 }
818 } else if (isMemIntrinValue()) {
819 Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
820 InsertPt, DL);
821 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
822 << " " << *getMemIntrinValue() << '\n'
823 << *Res << '\n'
824 << "\n\n\n");
825 } else {
826 assert(isUndefValue() && "Should be UndefVal");
827 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
828 return UndefValue::get(LoadTy);
829 }
830 assert(Res && "failed to materialize?");
831 return Res;
832 }
833
isLifetimeStart(const Instruction * Inst)834 static bool isLifetimeStart(const Instruction *Inst) {
835 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
836 return II->getIntrinsicID() == Intrinsic::lifetime_start;
837 return false;
838 }
839
840 /// Try to locate the three instruction involved in a missed
841 /// load-elimination case that is due to an intervening store.
reportMayClobberedLoad(LoadInst * LI,MemDepResult DepInfo,DominatorTree * DT,OptimizationRemarkEmitter * ORE)842 static void reportMayClobberedLoad(LoadInst *LI, MemDepResult DepInfo,
843 DominatorTree *DT,
844 OptimizationRemarkEmitter *ORE) {
845 using namespace ore;
846
847 User *OtherAccess = nullptr;
848
849 OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", LI);
850 R << "load of type " << NV("Type", LI->getType()) << " not eliminated"
851 << setExtraArgs();
852
853 for (auto *U : LI->getPointerOperand()->users())
854 if (U != LI && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
855 DT->dominates(cast<Instruction>(U), LI)) {
856 // FIXME: for now give up if there are multiple memory accesses that
857 // dominate the load. We need further analysis to decide which one is
858 // that we're forwarding from.
859 if (OtherAccess)
860 OtherAccess = nullptr;
861 else
862 OtherAccess = U;
863 }
864
865 if (OtherAccess)
866 R << " in favor of " << NV("OtherAccess", OtherAccess);
867
868 R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst());
869
870 ORE->emit(R);
871 }
872
AnalyzeLoadAvailability(LoadInst * LI,MemDepResult DepInfo,Value * Address,AvailableValue & Res)873 bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo,
874 Value *Address, AvailableValue &Res) {
875 assert((DepInfo.isDef() || DepInfo.isClobber()) &&
876 "expected a local dependence");
877 assert(LI->isUnordered() && "rules below are incorrect for ordered access");
878
879 const DataLayout &DL = LI->getModule()->getDataLayout();
880
881 if (DepInfo.isClobber()) {
882 // If the dependence is to a store that writes to a superset of the bits
883 // read by the load, we can extract the bits we need for the load from the
884 // stored value.
885 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
886 // Can't forward from non-atomic to atomic without violating memory model.
887 if (Address && LI->isAtomic() <= DepSI->isAtomic()) {
888 int Offset =
889 analyzeLoadFromClobberingStore(LI->getType(), Address, DepSI, DL);
890 if (Offset != -1) {
891 Res = AvailableValue::get(DepSI->getValueOperand(), Offset);
892 return true;
893 }
894 }
895 }
896
897 // Check to see if we have something like this:
898 // load i32* P
899 // load i8* (P+1)
900 // if we have this, replace the later with an extraction from the former.
901 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
902 // If this is a clobber and L is the first instruction in its block, then
903 // we have the first instruction in the entry block.
904 // Can't forward from non-atomic to atomic without violating memory model.
905 if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) {
906 int Offset =
907 analyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);
908
909 if (Offset != -1) {
910 Res = AvailableValue::getLoad(DepLI, Offset);
911 return true;
912 }
913 }
914 }
915
916 // If the clobbering value is a memset/memcpy/memmove, see if we can
917 // forward a value on from it.
918 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
919 if (Address && !LI->isAtomic()) {
920 int Offset = analyzeLoadFromClobberingMemInst(LI->getType(), Address,
921 DepMI, DL);
922 if (Offset != -1) {
923 Res = AvailableValue::getMI(DepMI, Offset);
924 return true;
925 }
926 }
927 }
928 // Nothing known about this clobber, have to be conservative
929 LLVM_DEBUG(
930 // fast print dep, using operator<< on instruction is too slow.
931 dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
932 Instruction *I = DepInfo.getInst();
933 dbgs() << " is clobbered by " << *I << '\n';);
934 if (ORE->allowExtraAnalysis(DEBUG_TYPE))
935 reportMayClobberedLoad(LI, DepInfo, DT, ORE);
936
937 return false;
938 }
939 assert(DepInfo.isDef() && "follows from above");
940
941 Instruction *DepInst = DepInfo.getInst();
942
943 // Loading the allocation -> undef.
944 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
945 // Loading immediately after lifetime begin -> undef.
946 isLifetimeStart(DepInst)) {
947 Res = AvailableValue::get(UndefValue::get(LI->getType()));
948 return true;
949 }
950
951 // Loading from calloc (which zero initializes memory) -> zero
952 if (isCallocLikeFn(DepInst, TLI)) {
953 Res = AvailableValue::get(Constant::getNullValue(LI->getType()));
954 return true;
955 }
956
957 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
958 // Reject loads and stores that are to the same address but are of
959 // different types if we have to. If the stored value is larger or equal to
960 // the loaded value, we can reuse it.
961 if (S->getValueOperand()->getType() != LI->getType() &&
962 !canCoerceMustAliasedValueToLoad(S->getValueOperand(),
963 LI->getType(), DL))
964 return false;
965
966 // Can't forward from non-atomic to atomic without violating memory model.
967 if (S->isAtomic() < LI->isAtomic())
968 return false;
969
970 Res = AvailableValue::get(S->getValueOperand());
971 return true;
972 }
973
974 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
975 // If the types mismatch and we can't handle it, reject reuse of the load.
976 // If the stored value is larger or equal to the loaded value, we can reuse
977 // it.
978 if (LD->getType() != LI->getType() &&
979 !canCoerceMustAliasedValueToLoad(LD, LI->getType(), DL))
980 return false;
981
982 // Can't forward from non-atomic to atomic without violating memory model.
983 if (LD->isAtomic() < LI->isAtomic())
984 return false;
985
986 Res = AvailableValue::getLoad(LD);
987 return true;
988 }
989
990 // Unknown def - must be conservative
991 LLVM_DEBUG(
992 // fast print dep, using operator<< on instruction is too slow.
993 dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
994 dbgs() << " has unknown def " << *DepInst << '\n';);
995 return false;
996 }
997
AnalyzeLoadAvailability(LoadInst * LI,LoadDepVect & Deps,AvailValInBlkVect & ValuesPerBlock,UnavailBlkVect & UnavailableBlocks)998 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
999 AvailValInBlkVect &ValuesPerBlock,
1000 UnavailBlkVect &UnavailableBlocks) {
1001 // Filter out useless results (non-locals, etc). Keep track of the blocks
1002 // where we have a value available in repl, also keep track of whether we see
1003 // dependencies that produce an unknown value for the load (such as a call
1004 // that could potentially clobber the load).
1005 unsigned NumDeps = Deps.size();
1006 for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1007 BasicBlock *DepBB = Deps[i].getBB();
1008 MemDepResult DepInfo = Deps[i].getResult();
1009
1010 if (DeadBlocks.count(DepBB)) {
1011 // Dead dependent mem-op disguise as a load evaluating the same value
1012 // as the load in question.
1013 ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
1014 continue;
1015 }
1016
1017 if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1018 UnavailableBlocks.push_back(DepBB);
1019 continue;
1020 }
1021
1022 // The address being loaded in this non-local block may not be the same as
1023 // the pointer operand of the load if PHI translation occurs. Make sure
1024 // to consider the right address.
1025 Value *Address = Deps[i].getAddress();
1026
1027 AvailableValue AV;
1028 if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) {
1029 // subtlety: because we know this was a non-local dependency, we know
1030 // it's safe to materialize anywhere between the instruction within
1031 // DepInfo and the end of it's block.
1032 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1033 std::move(AV)));
1034 } else {
1035 UnavailableBlocks.push_back(DepBB);
1036 }
1037 }
1038
1039 assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() &&
1040 "post condition violation");
1041 }
1042
PerformLoadPRE(LoadInst * LI,AvailValInBlkVect & ValuesPerBlock,UnavailBlkVect & UnavailableBlocks)1043 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
1044 UnavailBlkVect &UnavailableBlocks) {
1045 // Okay, we have *some* definitions of the value. This means that the value
1046 // is available in some of our (transitive) predecessors. Lets think about
1047 // doing PRE of this load. This will involve inserting a new load into the
1048 // predecessor when it's not available. We could do this in general, but
1049 // prefer to not increase code size. As such, we only do this when we know
1050 // that we only have to insert *one* load (which means we're basically moving
1051 // the load, not inserting a new one).
1052
1053 SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
1054 UnavailableBlocks.end());
1055
1056 // Let's find the first basic block with more than one predecessor. Walk
1057 // backwards through predecessors if needed.
1058 BasicBlock *LoadBB = LI->getParent();
1059 BasicBlock *TmpBB = LoadBB;
1060 bool IsSafeToSpeculativelyExecute = isSafeToSpeculativelyExecute(LI);
1061
1062 // Check that there is no implicit control flow instructions above our load in
1063 // its block. If there is an instruction that doesn't always pass the
1064 // execution to the following instruction, then moving through it may become
1065 // invalid. For example:
1066 //
1067 // int arr[LEN];
1068 // int index = ???;
1069 // ...
1070 // guard(0 <= index && index < LEN);
1071 // use(arr[index]);
1072 //
1073 // It is illegal to move the array access to any point above the guard,
1074 // because if the index is out of bounds we should deoptimize rather than
1075 // access the array.
1076 // Check that there is no guard in this block above our instruction.
1077 if (!IsSafeToSpeculativelyExecute) {
1078 auto It = FirstImplicitControlFlowInsts.find(TmpBB);
1079 if (It != FirstImplicitControlFlowInsts.end()) {
1080 assert(It->second->getParent() == TmpBB &&
1081 "Implicit control flow map broken?");
1082 if (OI->dominates(It->second, LI))
1083 return false;
1084 }
1085 }
1086 while (TmpBB->getSinglePredecessor()) {
1087 TmpBB = TmpBB->getSinglePredecessor();
1088 if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1089 return false;
1090 if (Blockers.count(TmpBB))
1091 return false;
1092
1093 // If any of these blocks has more than one successor (i.e. if the edge we
1094 // just traversed was critical), then there are other paths through this
1095 // block along which the load may not be anticipated. Hoisting the load
1096 // above this block would be adding the load to execution paths along
1097 // which it was not previously executed.
1098 if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1099 return false;
1100
1101 // Check that there is no implicit control flow in a block above.
1102 if (!IsSafeToSpeculativelyExecute &&
1103 FirstImplicitControlFlowInsts.count(TmpBB))
1104 return false;
1105 }
1106
1107 assert(TmpBB);
1108 LoadBB = TmpBB;
1109
1110 // Check to see how many predecessors have the loaded value fully
1111 // available.
1112 MapVector<BasicBlock *, Value *> PredLoads;
1113 DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1114 for (const AvailableValueInBlock &AV : ValuesPerBlock)
1115 FullyAvailableBlocks[AV.BB] = true;
1116 for (BasicBlock *UnavailableBB : UnavailableBlocks)
1117 FullyAvailableBlocks[UnavailableBB] = false;
1118
1119 SmallVector<BasicBlock *, 4> CriticalEdgePred;
1120 for (BasicBlock *Pred : predecessors(LoadBB)) {
1121 // If any predecessor block is an EH pad that does not allow non-PHI
1122 // instructions before the terminator, we can't PRE the load.
1123 if (Pred->getTerminator()->isEHPad()) {
1124 LLVM_DEBUG(
1125 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
1126 << Pred->getName() << "': " << *LI << '\n');
1127 return false;
1128 }
1129
1130 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
1131 continue;
1132 }
1133
1134 if (Pred->getTerminator()->getNumSuccessors() != 1) {
1135 if (isa<IndirectBrInst>(Pred->getTerminator())) {
1136 LLVM_DEBUG(
1137 dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1138 << Pred->getName() << "': " << *LI << '\n');
1139 return false;
1140 }
1141
1142 if (LoadBB->isEHPad()) {
1143 LLVM_DEBUG(
1144 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
1145 << Pred->getName() << "': " << *LI << '\n');
1146 return false;
1147 }
1148
1149 CriticalEdgePred.push_back(Pred);
1150 } else {
1151 // Only add the predecessors that will not be split for now.
1152 PredLoads[Pred] = nullptr;
1153 }
1154 }
1155
1156 // Decide whether PRE is profitable for this load.
1157 unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
1158 assert(NumUnavailablePreds != 0 &&
1159 "Fully available value should already be eliminated!");
1160
1161 // If this load is unavailable in multiple predecessors, reject it.
1162 // FIXME: If we could restructure the CFG, we could make a common pred with
1163 // all the preds that don't have an available LI and insert a new load into
1164 // that one block.
1165 if (NumUnavailablePreds != 1)
1166 return false;
1167
1168 // Split critical edges, and update the unavailable predecessors accordingly.
1169 for (BasicBlock *OrigPred : CriticalEdgePred) {
1170 BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1171 assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
1172 PredLoads[NewPred] = nullptr;
1173 LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1174 << LoadBB->getName() << '\n');
1175 }
1176
1177 // Check if the load can safely be moved to all the unavailable predecessors.
1178 bool CanDoPRE = true;
1179 const DataLayout &DL = LI->getModule()->getDataLayout();
1180 SmallVector<Instruction*, 8> NewInsts;
1181 for (auto &PredLoad : PredLoads) {
1182 BasicBlock *UnavailablePred = PredLoad.first;
1183
1184 // Do PHI translation to get its value in the predecessor if necessary. The
1185 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1186
1187 // If all preds have a single successor, then we know it is safe to insert
1188 // the load on the pred (?!?), so we can insert code to materialize the
1189 // pointer if it is not available.
1190 PHITransAddr Address(LI->getPointerOperand(), DL, AC);
1191 Value *LoadPtr = nullptr;
1192 LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1193 *DT, NewInsts);
1194
1195 // If we couldn't find or insert a computation of this phi translated value,
1196 // we fail PRE.
1197 if (!LoadPtr) {
1198 LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1199 << *LI->getPointerOperand() << "\n");
1200 CanDoPRE = false;
1201 break;
1202 }
1203
1204 PredLoad.second = LoadPtr;
1205 }
1206
1207 if (!CanDoPRE) {
1208 while (!NewInsts.empty()) {
1209 Instruction *I = NewInsts.pop_back_val();
1210 markInstructionForDeletion(I);
1211 }
1212 // HINT: Don't revert the edge-splitting as following transformation may
1213 // also need to split these critical edges.
1214 return !CriticalEdgePred.empty();
1215 }
1216
1217 // Okay, we can eliminate this load by inserting a reload in the predecessor
1218 // and using PHI construction to get the value in the other predecessors, do
1219 // it.
1220 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1221 LLVM_DEBUG(if (!NewInsts.empty()) dbgs()
1222 << "INSERTED " << NewInsts.size() << " INSTS: " << *NewInsts.back()
1223 << '\n');
1224
1225 // Assign value numbers to the new instructions.
1226 for (Instruction *I : NewInsts) {
1227 // Instructions that have been inserted in predecessor(s) to materialize
1228 // the load address do not retain their original debug locations. Doing
1229 // so could lead to confusing (but correct) source attributions.
1230 // FIXME: How do we retain source locations without causing poor debugging
1231 // behavior?
1232 I->setDebugLoc(DebugLoc());
1233
1234 // FIXME: We really _ought_ to insert these value numbers into their
1235 // parent's availability map. However, in doing so, we risk getting into
1236 // ordering issues. If a block hasn't been processed yet, we would be
1237 // marking a value as AVAIL-IN, which isn't what we intend.
1238 VN.lookupOrAdd(I);
1239 }
1240
1241 for (const auto &PredLoad : PredLoads) {
1242 BasicBlock *UnavailablePred = PredLoad.first;
1243 Value *LoadPtr = PredLoad.second;
1244
1245 auto *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre",
1246 LI->isVolatile(), LI->getAlignment(),
1247 LI->getOrdering(), LI->getSyncScopeID(),
1248 UnavailablePred->getTerminator());
1249 NewLoad->setDebugLoc(LI->getDebugLoc());
1250
1251 // Transfer the old load's AA tags to the new load.
1252 AAMDNodes Tags;
1253 LI->getAAMetadata(Tags);
1254 if (Tags)
1255 NewLoad->setAAMetadata(Tags);
1256
1257 if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load))
1258 NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
1259 if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group))
1260 NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
1261 if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range))
1262 NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
1263
1264 // We do not propagate the old load's debug location, because the new
1265 // load now lives in a different BB, and we want to avoid a jumpy line
1266 // table.
1267 // FIXME: How do we retain source locations without causing poor debugging
1268 // behavior?
1269
1270 // Add the newly created load.
1271 ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1272 NewLoad));
1273 MD->invalidateCachedPointerInfo(LoadPtr);
1274 LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1275 }
1276
1277 // Perform PHI construction.
1278 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1279 LI->replaceAllUsesWith(V);
1280 if (isa<PHINode>(V))
1281 V->takeName(LI);
1282 if (Instruction *I = dyn_cast<Instruction>(V))
1283 I->setDebugLoc(LI->getDebugLoc());
1284 if (V->getType()->isPtrOrPtrVectorTy())
1285 MD->invalidateCachedPointerInfo(V);
1286 markInstructionForDeletion(LI);
1287 ORE->emit([&]() {
1288 return OptimizationRemark(DEBUG_TYPE, "LoadPRE", LI)
1289 << "load eliminated by PRE";
1290 });
1291 ++NumPRELoad;
1292 return true;
1293 }
1294
reportLoadElim(LoadInst * LI,Value * AvailableValue,OptimizationRemarkEmitter * ORE)1295 static void reportLoadElim(LoadInst *LI, Value *AvailableValue,
1296 OptimizationRemarkEmitter *ORE) {
1297 using namespace ore;
1298
1299 ORE->emit([&]() {
1300 return OptimizationRemark(DEBUG_TYPE, "LoadElim", LI)
1301 << "load of type " << NV("Type", LI->getType()) << " eliminated"
1302 << setExtraArgs() << " in favor of "
1303 << NV("InfavorOfValue", AvailableValue);
1304 });
1305 }
1306
1307 /// Attempt to eliminate a load whose dependencies are
1308 /// non-local by performing PHI construction.
processNonLocalLoad(LoadInst * LI)1309 bool GVN::processNonLocalLoad(LoadInst *LI) {
1310 // non-local speculations are not allowed under asan.
1311 if (LI->getParent()->getParent()->hasFnAttribute(
1312 Attribute::SanitizeAddress) ||
1313 LI->getParent()->getParent()->hasFnAttribute(
1314 Attribute::SanitizeHWAddress))
1315 return false;
1316
1317 // Step 1: Find the non-local dependencies of the load.
1318 LoadDepVect Deps;
1319 MD->getNonLocalPointerDependency(LI, Deps);
1320
1321 // If we had to process more than one hundred blocks to find the
1322 // dependencies, this load isn't worth worrying about. Optimizing
1323 // it will be too expensive.
1324 unsigned NumDeps = Deps.size();
1325 if (NumDeps > 100)
1326 return false;
1327
1328 // If we had a phi translation failure, we'll have a single entry which is a
1329 // clobber in the current block. Reject this early.
1330 if (NumDeps == 1 &&
1331 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1332 LLVM_DEBUG(dbgs() << "GVN: non-local load "; LI->printAsOperand(dbgs());
1333 dbgs() << " has unknown dependencies\n";);
1334 return false;
1335 }
1336
1337 // If this load follows a GEP, see if we can PRE the indices before analyzing.
1338 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) {
1339 for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
1340 OE = GEP->idx_end();
1341 OI != OE; ++OI)
1342 if (Instruction *I = dyn_cast<Instruction>(OI->get()))
1343 performScalarPRE(I);
1344 }
1345
1346 // Step 2: Analyze the availability of the load
1347 AvailValInBlkVect ValuesPerBlock;
1348 UnavailBlkVect UnavailableBlocks;
1349 AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
1350
1351 // If we have no predecessors that produce a known value for this load, exit
1352 // early.
1353 if (ValuesPerBlock.empty())
1354 return false;
1355
1356 // Step 3: Eliminate fully redundancy.
1357 //
1358 // If all of the instructions we depend on produce a known value for this
1359 // load, then it is fully redundant and we can use PHI insertion to compute
1360 // its value. Insert PHIs and remove the fully redundant value now.
1361 if (UnavailableBlocks.empty()) {
1362 LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1363
1364 // Perform PHI construction.
1365 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1366 LI->replaceAllUsesWith(V);
1367
1368 if (isa<PHINode>(V))
1369 V->takeName(LI);
1370 if (Instruction *I = dyn_cast<Instruction>(V))
1371 // If instruction I has debug info, then we should not update it.
1372 // Also, if I has a null DebugLoc, then it is still potentially incorrect
1373 // to propagate LI's DebugLoc because LI may not post-dominate I.
1374 if (LI->getDebugLoc() && LI->getParent() == I->getParent())
1375 I->setDebugLoc(LI->getDebugLoc());
1376 if (V->getType()->isPtrOrPtrVectorTy())
1377 MD->invalidateCachedPointerInfo(V);
1378 markInstructionForDeletion(LI);
1379 ++NumGVNLoad;
1380 reportLoadElim(LI, V, ORE);
1381 return true;
1382 }
1383
1384 // Step 4: Eliminate partial redundancy.
1385 if (!EnablePRE || !EnableLoadPRE)
1386 return false;
1387
1388 return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
1389 }
1390
processAssumeIntrinsic(IntrinsicInst * IntrinsicI)1391 bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) {
1392 assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume &&
1393 "This function can only be called with llvm.assume intrinsic");
1394 Value *V = IntrinsicI->getArgOperand(0);
1395
1396 if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
1397 if (Cond->isZero()) {
1398 Type *Int8Ty = Type::getInt8Ty(V->getContext());
1399 // Insert a new store to null instruction before the load to indicate that
1400 // this code is not reachable. FIXME: We could insert unreachable
1401 // instruction directly because we can modify the CFG.
1402 new StoreInst(UndefValue::get(Int8Ty),
1403 Constant::getNullValue(Int8Ty->getPointerTo()),
1404 IntrinsicI);
1405 }
1406 markInstructionForDeletion(IntrinsicI);
1407 return false;
1408 } else if (isa<Constant>(V)) {
1409 // If it's not false, and constant, it must evaluate to true. This means our
1410 // assume is assume(true), and thus, pointless, and we don't want to do
1411 // anything more here.
1412 return false;
1413 }
1414
1415 Constant *True = ConstantInt::getTrue(V->getContext());
1416 bool Changed = false;
1417
1418 for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
1419 BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
1420
1421 // This property is only true in dominated successors, propagateEquality
1422 // will check dominance for us.
1423 Changed |= propagateEquality(V, True, Edge, false);
1424 }
1425
1426 // We can replace assume value with true, which covers cases like this:
1427 // call void @llvm.assume(i1 %cmp)
1428 // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
1429 ReplaceWithConstMap[V] = True;
1430
1431 // If one of *cmp *eq operand is const, adding it to map will cover this:
1432 // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
1433 // call void @llvm.assume(i1 %cmp)
1434 // ret float %0 ; will change it to ret float 3.000000e+00
1435 if (auto *CmpI = dyn_cast<CmpInst>(V)) {
1436 if (CmpI->getPredicate() == CmpInst::Predicate::ICMP_EQ ||
1437 CmpI->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
1438 (CmpI->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
1439 CmpI->getFastMathFlags().noNaNs())) {
1440 Value *CmpLHS = CmpI->getOperand(0);
1441 Value *CmpRHS = CmpI->getOperand(1);
1442 if (isa<Constant>(CmpLHS))
1443 std::swap(CmpLHS, CmpRHS);
1444 auto *RHSConst = dyn_cast<Constant>(CmpRHS);
1445
1446 // If only one operand is constant.
1447 if (RHSConst != nullptr && !isa<Constant>(CmpLHS))
1448 ReplaceWithConstMap[CmpLHS] = RHSConst;
1449 }
1450 }
1451 return Changed;
1452 }
1453
patchReplacementInstruction(Instruction * I,Value * Repl)1454 static void patchReplacementInstruction(Instruction *I, Value *Repl) {
1455 auto *ReplInst = dyn_cast<Instruction>(Repl);
1456 if (!ReplInst)
1457 return;
1458
1459 // Patch the replacement so that it is not more restrictive than the value
1460 // being replaced.
1461 // Note that if 'I' is a load being replaced by some operation,
1462 // for example, by an arithmetic operation, then andIRFlags()
1463 // would just erase all math flags from the original arithmetic
1464 // operation, which is clearly not wanted and not needed.
1465 if (!isa<LoadInst>(I))
1466 ReplInst->andIRFlags(I);
1467
1468 // FIXME: If both the original and replacement value are part of the
1469 // same control-flow region (meaning that the execution of one
1470 // guarantees the execution of the other), then we can combine the
1471 // noalias scopes here and do better than the general conservative
1472 // answer used in combineMetadata().
1473
1474 // In general, GVN unifies expressions over different control-flow
1475 // regions, and so we need a conservative combination of the noalias
1476 // scopes.
1477 static const unsigned KnownIDs[] = {
1478 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
1479 LLVMContext::MD_noalias, LLVMContext::MD_range,
1480 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
1481 LLVMContext::MD_invariant_group};
1482 combineMetadata(ReplInst, I, KnownIDs);
1483 }
1484
patchAndReplaceAllUsesWith(Instruction * I,Value * Repl)1485 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
1486 patchReplacementInstruction(I, Repl);
1487 I->replaceAllUsesWith(Repl);
1488 }
1489
1490 /// Attempt to eliminate a load, first by eliminating it
1491 /// locally, and then attempting non-local elimination if that fails.
processLoad(LoadInst * L)1492 bool GVN::processLoad(LoadInst *L) {
1493 if (!MD)
1494 return false;
1495
1496 // This code hasn't been audited for ordered or volatile memory access
1497 if (!L->isUnordered())
1498 return false;
1499
1500 if (L->use_empty()) {
1501 markInstructionForDeletion(L);
1502 return true;
1503 }
1504
1505 // ... to a pointer that has been loaded from before...
1506 MemDepResult Dep = MD->getDependency(L);
1507
1508 // If it is defined in another block, try harder.
1509 if (Dep.isNonLocal())
1510 return processNonLocalLoad(L);
1511
1512 // Only handle the local case below
1513 if (!Dep.isDef() && !Dep.isClobber()) {
1514 // This might be a NonFuncLocal or an Unknown
1515 LLVM_DEBUG(
1516 // fast print dep, using operator<< on instruction is too slow.
1517 dbgs() << "GVN: load "; L->printAsOperand(dbgs());
1518 dbgs() << " has unknown dependence\n";);
1519 return false;
1520 }
1521
1522 AvailableValue AV;
1523 if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) {
1524 Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this);
1525
1526 // Replace the load!
1527 patchAndReplaceAllUsesWith(L, AvailableValue);
1528 markInstructionForDeletion(L);
1529 ++NumGVNLoad;
1530 reportLoadElim(L, AvailableValue, ORE);
1531 // Tell MDA to rexamine the reused pointer since we might have more
1532 // information after forwarding it.
1533 if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy())
1534 MD->invalidateCachedPointerInfo(AvailableValue);
1535 return true;
1536 }
1537
1538 return false;
1539 }
1540
1541 /// Return a pair the first field showing the value number of \p Exp and the
1542 /// second field showing whether it is a value number newly created.
1543 std::pair<uint32_t, bool>
assignExpNewValueNum(Expression & Exp)1544 GVN::ValueTable::assignExpNewValueNum(Expression &Exp) {
1545 uint32_t &e = expressionNumbering[Exp];
1546 bool CreateNewValNum = !e;
1547 if (CreateNewValNum) {
1548 Expressions.push_back(Exp);
1549 if (ExprIdx.size() < nextValueNumber + 1)
1550 ExprIdx.resize(nextValueNumber * 2);
1551 e = nextValueNumber;
1552 ExprIdx[nextValueNumber++] = nextExprNumber++;
1553 }
1554 return {e, CreateNewValNum};
1555 }
1556
1557 /// Return whether all the values related with the same \p num are
1558 /// defined in \p BB.
areAllValsInBB(uint32_t Num,const BasicBlock * BB,GVN & Gvn)1559 bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB,
1560 GVN &Gvn) {
1561 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
1562 while (Vals && Vals->BB == BB)
1563 Vals = Vals->Next;
1564 return !Vals;
1565 }
1566
1567 /// Wrap phiTranslateImpl to provide caching functionality.
phiTranslate(const BasicBlock * Pred,const BasicBlock * PhiBlock,uint32_t Num,GVN & Gvn)1568 uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred,
1569 const BasicBlock *PhiBlock, uint32_t Num,
1570 GVN &Gvn) {
1571 auto FindRes = PhiTranslateTable.find({Num, Pred});
1572 if (FindRes != PhiTranslateTable.end())
1573 return FindRes->second;
1574 uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
1575 PhiTranslateTable.insert({{Num, Pred}, NewNum});
1576 return NewNum;
1577 }
1578
1579 /// Translate value number \p Num using phis, so that it has the values of
1580 /// the phis in BB.
phiTranslateImpl(const BasicBlock * Pred,const BasicBlock * PhiBlock,uint32_t Num,GVN & Gvn)1581 uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred,
1582 const BasicBlock *PhiBlock,
1583 uint32_t Num, GVN &Gvn) {
1584 if (PHINode *PN = NumberingPhi[Num]) {
1585 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
1586 if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
1587 if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false))
1588 return TransVal;
1589 }
1590 return Num;
1591 }
1592
1593 // If there is any value related with Num is defined in a BB other than
1594 // PhiBlock, it cannot depend on a phi in PhiBlock without going through
1595 // a backedge. We can do an early exit in that case to save compile time.
1596 if (!areAllValsInBB(Num, PhiBlock, Gvn))
1597 return Num;
1598
1599 if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
1600 return Num;
1601 Expression Exp = Expressions[ExprIdx[Num]];
1602
1603 for (unsigned i = 0; i < Exp.varargs.size(); i++) {
1604 // For InsertValue and ExtractValue, some varargs are index numbers
1605 // instead of value numbers. Those index numbers should not be
1606 // translated.
1607 if ((i > 1 && Exp.opcode == Instruction::InsertValue) ||
1608 (i > 0 && Exp.opcode == Instruction::ExtractValue))
1609 continue;
1610 Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn);
1611 }
1612
1613 if (Exp.commutative) {
1614 assert(Exp.varargs.size() == 2 && "Unsupported commutative expression!");
1615 if (Exp.varargs[0] > Exp.varargs[1]) {
1616 std::swap(Exp.varargs[0], Exp.varargs[1]);
1617 uint32_t Opcode = Exp.opcode >> 8;
1618 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)
1619 Exp.opcode = (Opcode << 8) |
1620 CmpInst::getSwappedPredicate(
1621 static_cast<CmpInst::Predicate>(Exp.opcode & 255));
1622 }
1623 }
1624
1625 if (uint32_t NewNum = expressionNumbering[Exp])
1626 return NewNum;
1627 return Num;
1628 }
1629
1630 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed
1631 /// again.
eraseTranslateCacheEntry(uint32_t Num,const BasicBlock & CurrBlock)1632 void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num,
1633 const BasicBlock &CurrBlock) {
1634 for (const BasicBlock *Pred : predecessors(&CurrBlock)) {
1635 auto FindRes = PhiTranslateTable.find({Num, Pred});
1636 if (FindRes != PhiTranslateTable.end())
1637 PhiTranslateTable.erase(FindRes);
1638 }
1639 }
1640
1641 // In order to find a leader for a given value number at a
1642 // specific basic block, we first obtain the list of all Values for that number,
1643 // and then scan the list to find one whose block dominates the block in
1644 // question. This is fast because dominator tree queries consist of only
1645 // a few comparisons of DFS numbers.
findLeader(const BasicBlock * BB,uint32_t num)1646 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
1647 LeaderTableEntry Vals = LeaderTable[num];
1648 if (!Vals.Val) return nullptr;
1649
1650 Value *Val = nullptr;
1651 if (DT->dominates(Vals.BB, BB)) {
1652 Val = Vals.Val;
1653 if (isa<Constant>(Val)) return Val;
1654 }
1655
1656 LeaderTableEntry* Next = Vals.Next;
1657 while (Next) {
1658 if (DT->dominates(Next->BB, BB)) {
1659 if (isa<Constant>(Next->Val)) return Next->Val;
1660 if (!Val) Val = Next->Val;
1661 }
1662
1663 Next = Next->Next;
1664 }
1665
1666 return Val;
1667 }
1668
1669 /// There is an edge from 'Src' to 'Dst'. Return
1670 /// true if every path from the entry block to 'Dst' passes via this edge. In
1671 /// particular 'Dst' must not be reachable via another edge from 'Src'.
isOnlyReachableViaThisEdge(const BasicBlockEdge & E,DominatorTree * DT)1672 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
1673 DominatorTree *DT) {
1674 // While in theory it is interesting to consider the case in which Dst has
1675 // more than one predecessor, because Dst might be part of a loop which is
1676 // only reachable from Src, in practice it is pointless since at the time
1677 // GVN runs all such loops have preheaders, which means that Dst will have
1678 // been changed to have only one predecessor, namely Src.
1679 const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
1680 assert((!Pred || Pred == E.getStart()) &&
1681 "No edge between these basic blocks!");
1682 return Pred != nullptr;
1683 }
1684
assignBlockRPONumber(Function & F)1685 void GVN::assignBlockRPONumber(Function &F) {
1686 uint32_t NextBlockNumber = 1;
1687 ReversePostOrderTraversal<Function *> RPOT(&F);
1688 for (BasicBlock *BB : RPOT)
1689 BlockRPONumber[BB] = NextBlockNumber++;
1690 }
1691
1692 // Tries to replace instruction with const, using information from
1693 // ReplaceWithConstMap.
replaceOperandsWithConsts(Instruction * Instr) const1694 bool GVN::replaceOperandsWithConsts(Instruction *Instr) const {
1695 bool Changed = false;
1696 for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
1697 Value *Operand = Instr->getOperand(OpNum);
1698 auto it = ReplaceWithConstMap.find(Operand);
1699 if (it != ReplaceWithConstMap.end()) {
1700 assert(!isa<Constant>(Operand) &&
1701 "Replacing constants with constants is invalid");
1702 LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with "
1703 << *it->second << " in instruction " << *Instr << '\n');
1704 Instr->setOperand(OpNum, it->second);
1705 Changed = true;
1706 }
1707 }
1708 return Changed;
1709 }
1710
1711 /// The given values are known to be equal in every block
1712 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with
1713 /// 'RHS' everywhere in the scope. Returns whether a change was made.
1714 /// If DominatesByEdge is false, then it means that we will propagate the RHS
1715 /// value starting from the end of Root.Start.
propagateEquality(Value * LHS,Value * RHS,const BasicBlockEdge & Root,bool DominatesByEdge)1716 bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
1717 bool DominatesByEdge) {
1718 SmallVector<std::pair<Value*, Value*>, 4> Worklist;
1719 Worklist.push_back(std::make_pair(LHS, RHS));
1720 bool Changed = false;
1721 // For speed, compute a conservative fast approximation to
1722 // DT->dominates(Root, Root.getEnd());
1723 const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
1724
1725 while (!Worklist.empty()) {
1726 std::pair<Value*, Value*> Item = Worklist.pop_back_val();
1727 LHS = Item.first; RHS = Item.second;
1728
1729 if (LHS == RHS)
1730 continue;
1731 assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
1732
1733 // Don't try to propagate equalities between constants.
1734 if (isa<Constant>(LHS) && isa<Constant>(RHS))
1735 continue;
1736
1737 // Prefer a constant on the right-hand side, or an Argument if no constants.
1738 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
1739 std::swap(LHS, RHS);
1740 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
1741
1742 // If there is no obvious reason to prefer the left-hand side over the
1743 // right-hand side, ensure the longest lived term is on the right-hand side,
1744 // so the shortest lived term will be replaced by the longest lived.
1745 // This tends to expose more simplifications.
1746 uint32_t LVN = VN.lookupOrAdd(LHS);
1747 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
1748 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
1749 // Move the 'oldest' value to the right-hand side, using the value number
1750 // as a proxy for age.
1751 uint32_t RVN = VN.lookupOrAdd(RHS);
1752 if (LVN < RVN) {
1753 std::swap(LHS, RHS);
1754 LVN = RVN;
1755 }
1756 }
1757
1758 // If value numbering later sees that an instruction in the scope is equal
1759 // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve
1760 // the invariant that instructions only occur in the leader table for their
1761 // own value number (this is used by removeFromLeaderTable), do not do this
1762 // if RHS is an instruction (if an instruction in the scope is morphed into
1763 // LHS then it will be turned into RHS by the next GVN iteration anyway, so
1764 // using the leader table is about compiling faster, not optimizing better).
1765 // The leader table only tracks basic blocks, not edges. Only add to if we
1766 // have the simple case where the edge dominates the end.
1767 if (RootDominatesEnd && !isa<Instruction>(RHS))
1768 addToLeaderTable(LVN, RHS, Root.getEnd());
1769
1770 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As
1771 // LHS always has at least one use that is not dominated by Root, this will
1772 // never do anything if LHS has only one use.
1773 if (!LHS->hasOneUse()) {
1774 unsigned NumReplacements =
1775 DominatesByEdge
1776 ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
1777 : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());
1778
1779 Changed |= NumReplacements > 0;
1780 NumGVNEqProp += NumReplacements;
1781 }
1782
1783 // Now try to deduce additional equalities from this one. For example, if
1784 // the known equality was "(A != B)" == "false" then it follows that A and B
1785 // are equal in the scope. Only boolean equalities with an explicit true or
1786 // false RHS are currently supported.
1787 if (!RHS->getType()->isIntegerTy(1))
1788 // Not a boolean equality - bail out.
1789 continue;
1790 ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
1791 if (!CI)
1792 // RHS neither 'true' nor 'false' - bail out.
1793 continue;
1794 // Whether RHS equals 'true'. Otherwise it equals 'false'.
1795 bool isKnownTrue = CI->isMinusOne();
1796 bool isKnownFalse = !isKnownTrue;
1797
1798 // If "A && B" is known true then both A and B are known true. If "A || B"
1799 // is known false then both A and B are known false.
1800 Value *A, *B;
1801 if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
1802 (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
1803 Worklist.push_back(std::make_pair(A, RHS));
1804 Worklist.push_back(std::make_pair(B, RHS));
1805 continue;
1806 }
1807
1808 // If we are propagating an equality like "(A == B)" == "true" then also
1809 // propagate the equality A == B. When propagating a comparison such as
1810 // "(A >= B)" == "true", replace all instances of "A < B" with "false".
1811 if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
1812 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
1813
1814 // If "A == B" is known true, or "A != B" is known false, then replace
1815 // A with B everywhere in the scope.
1816 if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
1817 (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
1818 Worklist.push_back(std::make_pair(Op0, Op1));
1819
1820 // Handle the floating point versions of equality comparisons too.
1821 if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) ||
1822 (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) {
1823
1824 // Floating point -0.0 and 0.0 compare equal, so we can only
1825 // propagate values if we know that we have a constant and that
1826 // its value is non-zero.
1827
1828 // FIXME: We should do this optimization if 'no signed zeros' is
1829 // applicable via an instruction-level fast-math-flag or some other
1830 // indicator that relaxed FP semantics are being used.
1831
1832 if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero())
1833 Worklist.push_back(std::make_pair(Op0, Op1));
1834 }
1835
1836 // If "A >= B" is known true, replace "A < B" with false everywhere.
1837 CmpInst::Predicate NotPred = Cmp->getInversePredicate();
1838 Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
1839 // Since we don't have the instruction "A < B" immediately to hand, work
1840 // out the value number that it would have and use that to find an
1841 // appropriate instruction (if any).
1842 uint32_t NextNum = VN.getNextUnusedValueNumber();
1843 uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
1844 // If the number we were assigned was brand new then there is no point in
1845 // looking for an instruction realizing it: there cannot be one!
1846 if (Num < NextNum) {
1847 Value *NotCmp = findLeader(Root.getEnd(), Num);
1848 if (NotCmp && isa<Instruction>(NotCmp)) {
1849 unsigned NumReplacements =
1850 DominatesByEdge
1851 ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
1852 : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
1853 Root.getStart());
1854 Changed |= NumReplacements > 0;
1855 NumGVNEqProp += NumReplacements;
1856 }
1857 }
1858 // Ensure that any instruction in scope that gets the "A < B" value number
1859 // is replaced with false.
1860 // The leader table only tracks basic blocks, not edges. Only add to if we
1861 // have the simple case where the edge dominates the end.
1862 if (RootDominatesEnd)
1863 addToLeaderTable(Num, NotVal, Root.getEnd());
1864
1865 continue;
1866 }
1867 }
1868
1869 return Changed;
1870 }
1871
1872 /// When calculating availability, handle an instruction
1873 /// by inserting it into the appropriate sets
processInstruction(Instruction * I)1874 bool GVN::processInstruction(Instruction *I) {
1875 // Ignore dbg info intrinsics.
1876 if (isa<DbgInfoIntrinsic>(I))
1877 return false;
1878
1879 // If the instruction can be easily simplified then do so now in preference
1880 // to value numbering it. Value numbering often exposes redundancies, for
1881 // example if it determines that %y is equal to %x then the instruction
1882 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
1883 const DataLayout &DL = I->getModule()->getDataLayout();
1884 if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) {
1885 bool Changed = false;
1886 if (!I->use_empty()) {
1887 I->replaceAllUsesWith(V);
1888 Changed = true;
1889 }
1890 if (isInstructionTriviallyDead(I, TLI)) {
1891 markInstructionForDeletion(I);
1892 Changed = true;
1893 }
1894 if (Changed) {
1895 if (MD && V->getType()->isPtrOrPtrVectorTy())
1896 MD->invalidateCachedPointerInfo(V);
1897 ++NumGVNSimpl;
1898 return true;
1899 }
1900 }
1901
1902 if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I))
1903 if (IntrinsicI->getIntrinsicID() == Intrinsic::assume)
1904 return processAssumeIntrinsic(IntrinsicI);
1905
1906 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1907 if (processLoad(LI))
1908 return true;
1909
1910 unsigned Num = VN.lookupOrAdd(LI);
1911 addToLeaderTable(Num, LI, LI->getParent());
1912 return false;
1913 }
1914
1915 // For conditional branches, we can perform simple conditional propagation on
1916 // the condition value itself.
1917 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1918 if (!BI->isConditional())
1919 return false;
1920
1921 if (isa<Constant>(BI->getCondition()))
1922 return processFoldableCondBr(BI);
1923
1924 Value *BranchCond = BI->getCondition();
1925 BasicBlock *TrueSucc = BI->getSuccessor(0);
1926 BasicBlock *FalseSucc = BI->getSuccessor(1);
1927 // Avoid multiple edges early.
1928 if (TrueSucc == FalseSucc)
1929 return false;
1930
1931 BasicBlock *Parent = BI->getParent();
1932 bool Changed = false;
1933
1934 Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
1935 BasicBlockEdge TrueE(Parent, TrueSucc);
1936 Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
1937
1938 Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
1939 BasicBlockEdge FalseE(Parent, FalseSucc);
1940 Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
1941
1942 return Changed;
1943 }
1944
1945 // For switches, propagate the case values into the case destinations.
1946 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1947 Value *SwitchCond = SI->getCondition();
1948 BasicBlock *Parent = SI->getParent();
1949 bool Changed = false;
1950
1951 // Remember how many outgoing edges there are to every successor.
1952 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
1953 for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
1954 ++SwitchEdges[SI->getSuccessor(i)];
1955
1956 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
1957 i != e; ++i) {
1958 BasicBlock *Dst = i->getCaseSuccessor();
1959 // If there is only a single edge, propagate the case value into it.
1960 if (SwitchEdges.lookup(Dst) == 1) {
1961 BasicBlockEdge E(Parent, Dst);
1962 Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true);
1963 }
1964 }
1965 return Changed;
1966 }
1967
1968 // Instructions with void type don't return a value, so there's
1969 // no point in trying to find redundancies in them.
1970 if (I->getType()->isVoidTy())
1971 return false;
1972
1973 uint32_t NextNum = VN.getNextUnusedValueNumber();
1974 unsigned Num = VN.lookupOrAdd(I);
1975
1976 // Allocations are always uniquely numbered, so we can save time and memory
1977 // by fast failing them.
1978 if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
1979 addToLeaderTable(Num, I, I->getParent());
1980 return false;
1981 }
1982
1983 // If the number we were assigned was a brand new VN, then we don't
1984 // need to do a lookup to see if the number already exists
1985 // somewhere in the domtree: it can't!
1986 if (Num >= NextNum) {
1987 addToLeaderTable(Num, I, I->getParent());
1988 return false;
1989 }
1990
1991 // Perform fast-path value-number based elimination of values inherited from
1992 // dominators.
1993 Value *Repl = findLeader(I->getParent(), Num);
1994 if (!Repl) {
1995 // Failure, just remember this instance for future use.
1996 addToLeaderTable(Num, I, I->getParent());
1997 return false;
1998 } else if (Repl == I) {
1999 // If I was the result of a shortcut PRE, it might already be in the table
2000 // and the best replacement for itself. Nothing to do.
2001 return false;
2002 }
2003
2004 // Remove it!
2005 patchAndReplaceAllUsesWith(I, Repl);
2006 if (MD && Repl->getType()->isPtrOrPtrVectorTy())
2007 MD->invalidateCachedPointerInfo(Repl);
2008 markInstructionForDeletion(I);
2009 return true;
2010 }
2011
2012 /// runOnFunction - This is the main transformation entry point for a function.
runImpl(Function & F,AssumptionCache & RunAC,DominatorTree & RunDT,const TargetLibraryInfo & RunTLI,AAResults & RunAA,MemoryDependenceResults * RunMD,LoopInfo * LI,OptimizationRemarkEmitter * RunORE)2013 bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
2014 const TargetLibraryInfo &RunTLI, AAResults &RunAA,
2015 MemoryDependenceResults *RunMD, LoopInfo *LI,
2016 OptimizationRemarkEmitter *RunORE) {
2017 AC = &RunAC;
2018 DT = &RunDT;
2019 VN.setDomTree(DT);
2020 TLI = &RunTLI;
2021 VN.setAliasAnalysis(&RunAA);
2022 MD = RunMD;
2023 OrderedInstructions OrderedInstrs(DT);
2024 OI = &OrderedInstrs;
2025 VN.setMemDep(MD);
2026 ORE = RunORE;
2027
2028 bool Changed = false;
2029 bool ShouldContinue = true;
2030
2031 // Merge unconditional branches, allowing PRE to catch more
2032 // optimization opportunities.
2033 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2034 BasicBlock *BB = &*FI++;
2035
2036 bool removedBlock = MergeBlockIntoPredecessor(BB, DT, LI, MD);
2037 if (removedBlock)
2038 ++NumGVNBlocks;
2039
2040 Changed |= removedBlock;
2041 }
2042
2043 unsigned Iteration = 0;
2044 while (ShouldContinue) {
2045 LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2046 ShouldContinue = iterateOnFunction(F);
2047 Changed |= ShouldContinue;
2048 ++Iteration;
2049 }
2050
2051 if (EnablePRE) {
2052 // Fabricate val-num for dead-code in order to suppress assertion in
2053 // performPRE().
2054 assignValNumForDeadCode();
2055 assignBlockRPONumber(F);
2056 bool PREChanged = true;
2057 while (PREChanged) {
2058 PREChanged = performPRE(F);
2059 Changed |= PREChanged;
2060 }
2061 }
2062
2063 // FIXME: Should perform GVN again after PRE does something. PRE can move
2064 // computations into blocks where they become fully redundant. Note that
2065 // we can't do this until PRE's critical edge splitting updates memdep.
2066 // Actually, when this happens, we should just fully integrate PRE into GVN.
2067
2068 cleanupGlobalSets();
2069 // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2070 // iteration.
2071 DeadBlocks.clear();
2072
2073 return Changed;
2074 }
2075
processBlock(BasicBlock * BB)2076 bool GVN::processBlock(BasicBlock *BB) {
2077 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2078 // (and incrementing BI before processing an instruction).
2079 assert(InstrsToErase.empty() &&
2080 "We expect InstrsToErase to be empty across iterations");
2081 if (DeadBlocks.count(BB))
2082 return false;
2083
2084 // Clearing map before every BB because it can be used only for single BB.
2085 ReplaceWithConstMap.clear();
2086 bool ChangedFunction = false;
2087
2088 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2089 BI != BE;) {
2090 if (!ReplaceWithConstMap.empty())
2091 ChangedFunction |= replaceOperandsWithConsts(&*BI);
2092 ChangedFunction |= processInstruction(&*BI);
2093
2094 if (InstrsToErase.empty()) {
2095 ++BI;
2096 continue;
2097 }
2098
2099 // If we need some instructions deleted, do it now.
2100 NumGVNInstr += InstrsToErase.size();
2101
2102 // Avoid iterator invalidation.
2103 bool AtStart = BI == BB->begin();
2104 if (!AtStart)
2105 --BI;
2106
2107 bool InvalidateImplicitCF = false;
2108 const Instruction *MaybeFirstICF = FirstImplicitControlFlowInsts.lookup(BB);
2109 for (auto *I : InstrsToErase) {
2110 assert(I->getParent() == BB && "Removing instruction from wrong block?");
2111 LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n');
2112 salvageDebugInfo(*I);
2113 if (MD) MD->removeInstruction(I);
2114 LLVM_DEBUG(verifyRemoved(I));
2115 if (MaybeFirstICF == I) {
2116 // We have erased the first ICF in block. The map needs to be updated.
2117 InvalidateImplicitCF = true;
2118 // Do not keep dangling pointer on the erased instruction.
2119 MaybeFirstICF = nullptr;
2120 }
2121 I->eraseFromParent();
2122 }
2123
2124 OI->invalidateBlock(BB);
2125 InstrsToErase.clear();
2126 if (InvalidateImplicitCF)
2127 fillImplicitControlFlowInfo(BB);
2128
2129 if (AtStart)
2130 BI = BB->begin();
2131 else
2132 ++BI;
2133 }
2134
2135 return ChangedFunction;
2136 }
2137
2138 // Instantiate an expression in a predecessor that lacked it.
performScalarPREInsertion(Instruction * Instr,BasicBlock * Pred,BasicBlock * Curr,unsigned int ValNo)2139 bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
2140 BasicBlock *Curr, unsigned int ValNo) {
2141 // Because we are going top-down through the block, all value numbers
2142 // will be available in the predecessor by the time we need them. Any
2143 // that weren't originally present will have been instantiated earlier
2144 // in this loop.
2145 bool success = true;
2146 for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
2147 Value *Op = Instr->getOperand(i);
2148 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2149 continue;
2150 // This could be a newly inserted instruction, in which case, we won't
2151 // find a value number, and should give up before we hurt ourselves.
2152 // FIXME: Rewrite the infrastructure to let it easier to value number
2153 // and process newly inserted instructions.
2154 if (!VN.exists(Op)) {
2155 success = false;
2156 break;
2157 }
2158 uint32_t TValNo =
2159 VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this);
2160 if (Value *V = findLeader(Pred, TValNo)) {
2161 Instr->setOperand(i, V);
2162 } else {
2163 success = false;
2164 break;
2165 }
2166 }
2167
2168 // Fail out if we encounter an operand that is not available in
2169 // the PRE predecessor. This is typically because of loads which
2170 // are not value numbered precisely.
2171 if (!success)
2172 return false;
2173
2174 Instr->insertBefore(Pred->getTerminator());
2175 Instr->setName(Instr->getName() + ".pre");
2176 Instr->setDebugLoc(Instr->getDebugLoc());
2177
2178 unsigned Num = VN.lookupOrAdd(Instr);
2179 VN.add(Instr, Num);
2180
2181 // Update the availability map to include the new instruction.
2182 addToLeaderTable(Num, Instr, Pred);
2183 return true;
2184 }
2185
performScalarPRE(Instruction * CurInst)2186 bool GVN::performScalarPRE(Instruction *CurInst) {
2187 if (isa<AllocaInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
2188 isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
2189 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2190 isa<DbgInfoIntrinsic>(CurInst))
2191 return false;
2192
2193 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2194 // sinking the compare again, and it would force the code generator to
2195 // move the i1 from processor flags or predicate registers into a general
2196 // purpose register.
2197 if (isa<CmpInst>(CurInst))
2198 return false;
2199
2200 // We don't currently value number ANY inline asm calls.
2201 if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2202 if (CallI->isInlineAsm())
2203 return false;
2204
2205 uint32_t ValNo = VN.lookup(CurInst);
2206
2207 // Look for the predecessors for PRE opportunities. We're
2208 // only trying to solve the basic diamond case, where
2209 // a value is computed in the successor and one predecessor,
2210 // but not the other. We also explicitly disallow cases
2211 // where the successor is its own predecessor, because they're
2212 // more complicated to get right.
2213 unsigned NumWith = 0;
2214 unsigned NumWithout = 0;
2215 BasicBlock *PREPred = nullptr;
2216 BasicBlock *CurrentBlock = CurInst->getParent();
2217
2218 SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
2219 for (BasicBlock *P : predecessors(CurrentBlock)) {
2220 // We're not interested in PRE where blocks with predecessors that are
2221 // not reachable.
2222 if (!DT->isReachableFromEntry(P)) {
2223 NumWithout = 2;
2224 break;
2225 }
2226 // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and
2227 // when CurInst has operand defined in CurrentBlock (so it may be defined
2228 // by phi in the loop header).
2229 if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] &&
2230 llvm::any_of(CurInst->operands(), [&](const Use &U) {
2231 if (auto *Inst = dyn_cast<Instruction>(U.get()))
2232 return Inst->getParent() == CurrentBlock;
2233 return false;
2234 })) {
2235 NumWithout = 2;
2236 break;
2237 }
2238
2239 uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this);
2240 Value *predV = findLeader(P, TValNo);
2241 if (!predV) {
2242 predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
2243 PREPred = P;
2244 ++NumWithout;
2245 } else if (predV == CurInst) {
2246 /* CurInst dominates this predecessor. */
2247 NumWithout = 2;
2248 break;
2249 } else {
2250 predMap.push_back(std::make_pair(predV, P));
2251 ++NumWith;
2252 }
2253 }
2254
2255 // Don't do PRE when it might increase code size, i.e. when
2256 // we would need to insert instructions in more than one pred.
2257 if (NumWithout > 1 || NumWith == 0)
2258 return false;
2259
2260 // We may have a case where all predecessors have the instruction,
2261 // and we just need to insert a phi node. Otherwise, perform
2262 // insertion.
2263 Instruction *PREInstr = nullptr;
2264
2265 if (NumWithout != 0) {
2266 if (!isSafeToSpeculativelyExecute(CurInst)) {
2267 // It is only valid to insert a new instruction if the current instruction
2268 // is always executed. An instruction with implicit control flow could
2269 // prevent us from doing it. If we cannot speculate the execution, then
2270 // PRE should be prohibited.
2271 auto It = FirstImplicitControlFlowInsts.find(CurrentBlock);
2272 if (It != FirstImplicitControlFlowInsts.end()) {
2273 assert(It->second->getParent() == CurrentBlock &&
2274 "Implicit control flow map broken?");
2275 if (OI->dominates(It->second, CurInst))
2276 return false;
2277 }
2278 }
2279
2280 // Don't do PRE across indirect branch.
2281 if (isa<IndirectBrInst>(PREPred->getTerminator()))
2282 return false;
2283
2284 // We can't do PRE safely on a critical edge, so instead we schedule
2285 // the edge to be split and perform the PRE the next time we iterate
2286 // on the function.
2287 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2288 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2289 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2290 return false;
2291 }
2292 // We need to insert somewhere, so let's give it a shot
2293 PREInstr = CurInst->clone();
2294 if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
2295 // If we failed insertion, make sure we remove the instruction.
2296 LLVM_DEBUG(verifyRemoved(PREInstr));
2297 PREInstr->deleteValue();
2298 return false;
2299 }
2300 }
2301
2302 // Either we should have filled in the PRE instruction, or we should
2303 // not have needed insertions.
2304 assert(PREInstr != nullptr || NumWithout == 0);
2305
2306 ++NumGVNPRE;
2307
2308 // Create a PHI to make the value available in this block.
2309 PHINode *Phi =
2310 PHINode::Create(CurInst->getType(), predMap.size(),
2311 CurInst->getName() + ".pre-phi", &CurrentBlock->front());
2312 for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2313 if (Value *V = predMap[i].first) {
2314 // If we use an existing value in this phi, we have to patch the original
2315 // value because the phi will be used to replace a later value.
2316 patchReplacementInstruction(CurInst, V);
2317 Phi->addIncoming(V, predMap[i].second);
2318 } else
2319 Phi->addIncoming(PREInstr, PREPred);
2320 }
2321
2322 VN.add(Phi, ValNo);
2323 // After creating a new PHI for ValNo, the phi translate result for ValNo will
2324 // be changed, so erase the related stale entries in phi translate cache.
2325 VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock);
2326 addToLeaderTable(ValNo, Phi, CurrentBlock);
2327 Phi->setDebugLoc(CurInst->getDebugLoc());
2328 CurInst->replaceAllUsesWith(Phi);
2329 if (MD && Phi->getType()->isPtrOrPtrVectorTy())
2330 MD->invalidateCachedPointerInfo(Phi);
2331 VN.erase(CurInst);
2332 removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2333
2334 LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2335 if (MD)
2336 MD->removeInstruction(CurInst);
2337 LLVM_DEBUG(verifyRemoved(CurInst));
2338 bool InvalidateImplicitCF =
2339 FirstImplicitControlFlowInsts.lookup(CurInst->getParent()) == CurInst;
2340 // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes
2341 // some assertion failures.
2342 OI->invalidateBlock(CurrentBlock);
2343 CurInst->eraseFromParent();
2344 if (InvalidateImplicitCF)
2345 fillImplicitControlFlowInfo(CurrentBlock);
2346 ++NumGVNInstr;
2347
2348 return true;
2349 }
2350
2351 /// Perform a purely local form of PRE that looks for diamond
2352 /// control flow patterns and attempts to perform simple PRE at the join point.
performPRE(Function & F)2353 bool GVN::performPRE(Function &F) {
2354 bool Changed = false;
2355 for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
2356 // Nothing to PRE in the entry block.
2357 if (CurrentBlock == &F.getEntryBlock())
2358 continue;
2359
2360 // Don't perform PRE on an EH pad.
2361 if (CurrentBlock->isEHPad())
2362 continue;
2363
2364 for (BasicBlock::iterator BI = CurrentBlock->begin(),
2365 BE = CurrentBlock->end();
2366 BI != BE;) {
2367 Instruction *CurInst = &*BI++;
2368 Changed |= performScalarPRE(CurInst);
2369 }
2370 }
2371
2372 if (splitCriticalEdges())
2373 Changed = true;
2374
2375 return Changed;
2376 }
2377
2378 /// Split the critical edge connecting the given two blocks, and return
2379 /// the block inserted to the critical edge.
splitCriticalEdges(BasicBlock * Pred,BasicBlock * Succ)2380 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
2381 BasicBlock *BB =
2382 SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT));
2383 if (MD)
2384 MD->invalidateCachedPredecessors();
2385 return BB;
2386 }
2387
2388 /// Split critical edges found during the previous
2389 /// iteration that may enable further optimization.
splitCriticalEdges()2390 bool GVN::splitCriticalEdges() {
2391 if (toSplit.empty())
2392 return false;
2393 do {
2394 std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2395 SplitCriticalEdge(Edge.first, Edge.second,
2396 CriticalEdgeSplittingOptions(DT));
2397 } while (!toSplit.empty());
2398 if (MD) MD->invalidateCachedPredecessors();
2399 return true;
2400 }
2401
2402 /// Executes one iteration of GVN
iterateOnFunction(Function & F)2403 bool GVN::iterateOnFunction(Function &F) {
2404 cleanupGlobalSets();
2405
2406 // Top-down walk of the dominator tree
2407 bool Changed = false;
2408 // Needed for value numbering with phi construction to work.
2409 // RPOT walks the graph in its constructor and will not be invalidated during
2410 // processBlock.
2411 ReversePostOrderTraversal<Function *> RPOT(&F);
2412
2413 for (BasicBlock *BB : RPOT)
2414 fillImplicitControlFlowInfo(BB);
2415 for (BasicBlock *BB : RPOT)
2416 Changed |= processBlock(BB);
2417
2418 return Changed;
2419 }
2420
cleanupGlobalSets()2421 void GVN::cleanupGlobalSets() {
2422 VN.clear();
2423 LeaderTable.clear();
2424 BlockRPONumber.clear();
2425 TableAllocator.Reset();
2426 FirstImplicitControlFlowInsts.clear();
2427 }
2428
2429 void
fillImplicitControlFlowInfo(BasicBlock * BB)2430 GVN::fillImplicitControlFlowInfo(BasicBlock *BB) {
2431 // Make sure that all marked instructions are actually deleted by this point,
2432 // so that we don't need to care about omitting them.
2433 assert(InstrsToErase.empty() && "Filling before removed all marked insns?");
2434 auto MayNotTransferExecutionToSuccessor = [&](const Instruction *I) {
2435 // If a block's instruction doesn't always pass the control to its successor
2436 // instruction, mark the block as having implicit control flow. We use them
2437 // to avoid wrong assumptions of sort "if A is executed and B post-dominates
2438 // A, then B is also executed". This is not true is there is an implicit
2439 // control flow instruction (e.g. a guard) between them.
2440 //
2441 // TODO: Currently, isGuaranteedToTransferExecutionToSuccessor returns false
2442 // for volatile stores and loads because they can trap. The discussion on
2443 // whether or not it is correct is still ongoing. We might want to get rid
2444 // of this logic in the future. Anyways, trapping instructions shouldn't
2445 // introduce implicit control flow, so we explicitly allow them here. This
2446 // must be removed once isGuaranteedToTransferExecutionToSuccessor is fixed.
2447 if (isGuaranteedToTransferExecutionToSuccessor(I))
2448 return false;
2449 if (isa<LoadInst>(I)) {
2450 assert(cast<LoadInst>(I)->isVolatile() &&
2451 "Non-volatile load should transfer execution to successor!");
2452 return false;
2453 }
2454 if (isa<StoreInst>(I)) {
2455 assert(cast<StoreInst>(I)->isVolatile() &&
2456 "Non-volatile store should transfer execution to successor!");
2457 return false;
2458 }
2459 return true;
2460 };
2461 FirstImplicitControlFlowInsts.erase(BB);
2462
2463 for (auto &I : *BB)
2464 if (MayNotTransferExecutionToSuccessor(&I)) {
2465 FirstImplicitControlFlowInsts[BB] = &I;
2466 break;
2467 }
2468 }
2469
2470 /// Verify that the specified instruction does not occur in our
2471 /// internal data structures.
verifyRemoved(const Instruction * Inst) const2472 void GVN::verifyRemoved(const Instruction *Inst) const {
2473 VN.verifyRemoved(Inst);
2474
2475 // Walk through the value number scope to make sure the instruction isn't
2476 // ferreted away in it.
2477 for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2478 I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2479 const LeaderTableEntry *Node = &I->second;
2480 assert(Node->Val != Inst && "Inst still in value numbering scope!");
2481
2482 while (Node->Next) {
2483 Node = Node->Next;
2484 assert(Node->Val != Inst && "Inst still in value numbering scope!");
2485 }
2486 }
2487 }
2488
2489 /// BB is declared dead, which implied other blocks become dead as well. This
2490 /// function is to add all these blocks to "DeadBlocks". For the dead blocks'
2491 /// live successors, update their phi nodes by replacing the operands
2492 /// corresponding to dead blocks with UndefVal.
addDeadBlock(BasicBlock * BB)2493 void GVN::addDeadBlock(BasicBlock *BB) {
2494 SmallVector<BasicBlock *, 4> NewDead;
2495 SmallSetVector<BasicBlock *, 4> DF;
2496
2497 NewDead.push_back(BB);
2498 while (!NewDead.empty()) {
2499 BasicBlock *D = NewDead.pop_back_val();
2500 if (DeadBlocks.count(D))
2501 continue;
2502
2503 // All blocks dominated by D are dead.
2504 SmallVector<BasicBlock *, 8> Dom;
2505 DT->getDescendants(D, Dom);
2506 DeadBlocks.insert(Dom.begin(), Dom.end());
2507
2508 // Figure out the dominance-frontier(D).
2509 for (BasicBlock *B : Dom) {
2510 for (BasicBlock *S : successors(B)) {
2511 if (DeadBlocks.count(S))
2512 continue;
2513
2514 bool AllPredDead = true;
2515 for (BasicBlock *P : predecessors(S))
2516 if (!DeadBlocks.count(P)) {
2517 AllPredDead = false;
2518 break;
2519 }
2520
2521 if (!AllPredDead) {
2522 // S could be proved dead later on. That is why we don't update phi
2523 // operands at this moment.
2524 DF.insert(S);
2525 } else {
2526 // While S is not dominated by D, it is dead by now. This could take
2527 // place if S already have a dead predecessor before D is declared
2528 // dead.
2529 NewDead.push_back(S);
2530 }
2531 }
2532 }
2533 }
2534
2535 // For the dead blocks' live successors, update their phi nodes by replacing
2536 // the operands corresponding to dead blocks with UndefVal.
2537 for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
2538 I != E; I++) {
2539 BasicBlock *B = *I;
2540 if (DeadBlocks.count(B))
2541 continue;
2542
2543 SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
2544 for (BasicBlock *P : Preds) {
2545 if (!DeadBlocks.count(P))
2546 continue;
2547
2548 if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) {
2549 if (BasicBlock *S = splitCriticalEdges(P, B))
2550 DeadBlocks.insert(P = S);
2551 }
2552
2553 for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) {
2554 PHINode &Phi = cast<PHINode>(*II);
2555 Phi.setIncomingValue(Phi.getBasicBlockIndex(P),
2556 UndefValue::get(Phi.getType()));
2557 }
2558 }
2559 }
2560 }
2561
2562 // If the given branch is recognized as a foldable branch (i.e. conditional
2563 // branch with constant condition), it will perform following analyses and
2564 // transformation.
2565 // 1) If the dead out-coming edge is a critical-edge, split it. Let
2566 // R be the target of the dead out-coming edge.
2567 // 1) Identify the set of dead blocks implied by the branch's dead outcoming
2568 // edge. The result of this step will be {X| X is dominated by R}
2569 // 2) Identify those blocks which haves at least one dead predecessor. The
2570 // result of this step will be dominance-frontier(R).
2571 // 3) Update the PHIs in DF(R) by replacing the operands corresponding to
2572 // dead blocks with "UndefVal" in an hope these PHIs will optimized away.
2573 //
2574 // Return true iff *NEW* dead code are found.
processFoldableCondBr(BranchInst * BI)2575 bool GVN::processFoldableCondBr(BranchInst *BI) {
2576 if (!BI || BI->isUnconditional())
2577 return false;
2578
2579 // If a branch has two identical successors, we cannot declare either dead.
2580 if (BI->getSuccessor(0) == BI->getSuccessor(1))
2581 return false;
2582
2583 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
2584 if (!Cond)
2585 return false;
2586
2587 BasicBlock *DeadRoot =
2588 Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
2589 if (DeadBlocks.count(DeadRoot))
2590 return false;
2591
2592 if (!DeadRoot->getSinglePredecessor())
2593 DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
2594
2595 addDeadBlock(DeadRoot);
2596 return true;
2597 }
2598
2599 // performPRE() will trigger assert if it comes across an instruction without
2600 // associated val-num. As it normally has far more live instructions than dead
2601 // instructions, it makes more sense just to "fabricate" a val-number for the
2602 // dead code than checking if instruction involved is dead or not.
assignValNumForDeadCode()2603 void GVN::assignValNumForDeadCode() {
2604 for (BasicBlock *BB : DeadBlocks) {
2605 for (Instruction &Inst : *BB) {
2606 unsigned ValNum = VN.lookupOrAdd(&Inst);
2607 addToLeaderTable(ValNum, &Inst, BB);
2608 }
2609 }
2610 }
2611
2612 class llvm::gvn::GVNLegacyPass : public FunctionPass {
2613 public:
2614 static char ID; // Pass identification, replacement for typeid
2615
GVNLegacyPass(bool NoLoads=false)2616 explicit GVNLegacyPass(bool NoLoads = false)
2617 : FunctionPass(ID), NoLoads(NoLoads) {
2618 initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
2619 }
2620
runOnFunction(Function & F)2621 bool runOnFunction(Function &F) override {
2622 if (skipFunction(F))
2623 return false;
2624
2625 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
2626
2627 return Impl.runImpl(
2628 F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
2629 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
2630 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
2631 getAnalysis<AAResultsWrapperPass>().getAAResults(),
2632 NoLoads ? nullptr
2633 : &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(),
2634 LIWP ? &LIWP->getLoopInfo() : nullptr,
2635 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE());
2636 }
2637
getAnalysisUsage(AnalysisUsage & AU) const2638 void getAnalysisUsage(AnalysisUsage &AU) const override {
2639 AU.addRequired<AssumptionCacheTracker>();
2640 AU.addRequired<DominatorTreeWrapperPass>();
2641 AU.addRequired<TargetLibraryInfoWrapperPass>();
2642 if (!NoLoads)
2643 AU.addRequired<MemoryDependenceWrapperPass>();
2644 AU.addRequired<AAResultsWrapperPass>();
2645
2646 AU.addPreserved<DominatorTreeWrapperPass>();
2647 AU.addPreserved<GlobalsAAWrapperPass>();
2648 AU.addPreserved<TargetLibraryInfoWrapperPass>();
2649 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2650 }
2651
2652 private:
2653 bool NoLoads;
2654 GVN Impl;
2655 };
2656
2657 char GVNLegacyPass::ID = 0;
2658
2659 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)2660 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2661 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
2662 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2663 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2664 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2665 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
2666 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
2667 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
2668
2669 // The public interface to this file...
2670 FunctionPass *llvm::createGVNPass(bool NoLoads) {
2671 return new GVNLegacyPass(NoLoads);
2672 }
2673