1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This Pass handles loop interchange transform.
11 // This pass interchanges loops to provide a more cache-friendly memory access
12 // patterns.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/DependenceAnalysis.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DiagnosticInfo.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Scalar.h"
44 #include "llvm/Transforms/Utils.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/LoopUtils.h"
47 #include <cassert>
48 #include <utility>
49 #include <vector>
50
51 using namespace llvm;
52
53 #define DEBUG_TYPE "loop-interchange"
54
55 STATISTIC(LoopsInterchanged, "Number of loops interchanged");
56
57 static cl::opt<int> LoopInterchangeCostThreshold(
58 "loop-interchange-threshold", cl::init(0), cl::Hidden,
59 cl::desc("Interchange if you gain more than this number"));
60
61 namespace {
62
63 using LoopVector = SmallVector<Loop *, 8>;
64
65 // TODO: Check if we can use a sparse matrix here.
66 using CharMatrix = std::vector<std::vector<char>>;
67
68 } // end anonymous namespace
69
70 // Maximum number of dependencies that can be handled in the dependency matrix.
71 static const unsigned MaxMemInstrCount = 100;
72
73 // Maximum loop depth supported.
74 static const unsigned MaxLoopNestDepth = 10;
75
76 #ifdef DUMP_DEP_MATRICIES
printDepMatrix(CharMatrix & DepMatrix)77 static void printDepMatrix(CharMatrix &DepMatrix) {
78 for (auto &Row : DepMatrix) {
79 for (auto D : Row)
80 LLVM_DEBUG(dbgs() << D << " ");
81 LLVM_DEBUG(dbgs() << "\n");
82 }
83 }
84 #endif
85
populateDependencyMatrix(CharMatrix & DepMatrix,unsigned Level,Loop * L,DependenceInfo * DI)86 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
87 Loop *L, DependenceInfo *DI) {
88 using ValueVector = SmallVector<Value *, 16>;
89
90 ValueVector MemInstr;
91
92 // For each block.
93 for (BasicBlock *BB : L->blocks()) {
94 // Scan the BB and collect legal loads and stores.
95 for (Instruction &I : *BB) {
96 if (!isa<Instruction>(I))
97 return false;
98 if (auto *Ld = dyn_cast<LoadInst>(&I)) {
99 if (!Ld->isSimple())
100 return false;
101 MemInstr.push_back(&I);
102 } else if (auto *St = dyn_cast<StoreInst>(&I)) {
103 if (!St->isSimple())
104 return false;
105 MemInstr.push_back(&I);
106 }
107 }
108 }
109
110 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
111 << " Loads and Stores to analyze\n");
112
113 ValueVector::iterator I, IE, J, JE;
114
115 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
116 for (J = I, JE = MemInstr.end(); J != JE; ++J) {
117 std::vector<char> Dep;
118 Instruction *Src = cast<Instruction>(*I);
119 Instruction *Dst = cast<Instruction>(*J);
120 if (Src == Dst)
121 continue;
122 // Ignore Input dependencies.
123 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
124 continue;
125 // Track Output, Flow, and Anti dependencies.
126 if (auto D = DI->depends(Src, Dst, true)) {
127 assert(D->isOrdered() && "Expected an output, flow or anti dep.");
128 LLVM_DEBUG(StringRef DepType =
129 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
130 dbgs() << "Found " << DepType
131 << " dependency between Src and Dst\n"
132 << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
133 unsigned Levels = D->getLevels();
134 char Direction;
135 for (unsigned II = 1; II <= Levels; ++II) {
136 const SCEV *Distance = D->getDistance(II);
137 const SCEVConstant *SCEVConst =
138 dyn_cast_or_null<SCEVConstant>(Distance);
139 if (SCEVConst) {
140 const ConstantInt *CI = SCEVConst->getValue();
141 if (CI->isNegative())
142 Direction = '<';
143 else if (CI->isZero())
144 Direction = '=';
145 else
146 Direction = '>';
147 Dep.push_back(Direction);
148 } else if (D->isScalar(II)) {
149 Direction = 'S';
150 Dep.push_back(Direction);
151 } else {
152 unsigned Dir = D->getDirection(II);
153 if (Dir == Dependence::DVEntry::LT ||
154 Dir == Dependence::DVEntry::LE)
155 Direction = '<';
156 else if (Dir == Dependence::DVEntry::GT ||
157 Dir == Dependence::DVEntry::GE)
158 Direction = '>';
159 else if (Dir == Dependence::DVEntry::EQ)
160 Direction = '=';
161 else
162 Direction = '*';
163 Dep.push_back(Direction);
164 }
165 }
166 while (Dep.size() != Level) {
167 Dep.push_back('I');
168 }
169
170 DepMatrix.push_back(Dep);
171 if (DepMatrix.size() > MaxMemInstrCount) {
172 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
173 << " dependencies inside loop\n");
174 return false;
175 }
176 }
177 }
178 }
179
180 return true;
181 }
182
183 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
184 // matrix by exchanging the two columns.
interChangeDependencies(CharMatrix & DepMatrix,unsigned FromIndx,unsigned ToIndx)185 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
186 unsigned ToIndx) {
187 unsigned numRows = DepMatrix.size();
188 for (unsigned i = 0; i < numRows; ++i) {
189 char TmpVal = DepMatrix[i][ToIndx];
190 DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
191 DepMatrix[i][FromIndx] = TmpVal;
192 }
193 }
194
195 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
196 // '>'
isOuterMostDepPositive(CharMatrix & DepMatrix,unsigned Row,unsigned Column)197 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
198 unsigned Column) {
199 for (unsigned i = 0; i <= Column; ++i) {
200 if (DepMatrix[Row][i] == '<')
201 return false;
202 if (DepMatrix[Row][i] == '>')
203 return true;
204 }
205 // All dependencies were '=','S' or 'I'
206 return false;
207 }
208
209 // Checks if no dependence exist in the dependency matrix in Row before Column.
containsNoDependence(CharMatrix & DepMatrix,unsigned Row,unsigned Column)210 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
211 unsigned Column) {
212 for (unsigned i = 0; i < Column; ++i) {
213 if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
214 DepMatrix[Row][i] != 'I')
215 return false;
216 }
217 return true;
218 }
219
validDepInterchange(CharMatrix & DepMatrix,unsigned Row,unsigned OuterLoopId,char InnerDep,char OuterDep)220 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
221 unsigned OuterLoopId, char InnerDep,
222 char OuterDep) {
223 if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
224 return false;
225
226 if (InnerDep == OuterDep)
227 return true;
228
229 // It is legal to interchange if and only if after interchange no row has a
230 // '>' direction as the leftmost non-'='.
231
232 if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
233 return true;
234
235 if (InnerDep == '<')
236 return true;
237
238 if (InnerDep == '>') {
239 // If OuterLoopId represents outermost loop then interchanging will make the
240 // 1st dependency as '>'
241 if (OuterLoopId == 0)
242 return false;
243
244 // If all dependencies before OuterloopId are '=','S'or 'I'. Then
245 // interchanging will result in this row having an outermost non '='
246 // dependency of '>'
247 if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
248 return true;
249 }
250
251 return false;
252 }
253
254 // Checks if it is legal to interchange 2 loops.
255 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
256 // if the direction matrix, after the same permutation is applied to its
257 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
isLegalToInterChangeLoops(CharMatrix & DepMatrix,unsigned InnerLoopId,unsigned OuterLoopId)258 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
259 unsigned InnerLoopId,
260 unsigned OuterLoopId) {
261 unsigned NumRows = DepMatrix.size();
262 // For each row check if it is valid to interchange.
263 for (unsigned Row = 0; Row < NumRows; ++Row) {
264 char InnerDep = DepMatrix[Row][InnerLoopId];
265 char OuterDep = DepMatrix[Row][OuterLoopId];
266 if (InnerDep == '*' || OuterDep == '*')
267 return false;
268 if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
269 return false;
270 }
271 return true;
272 }
273
populateWorklist(Loop & L,SmallVector<LoopVector,8> & V)274 static void populateWorklist(Loop &L, SmallVector<LoopVector, 8> &V) {
275 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
276 << L.getHeader()->getParent()->getName() << " Loop: %"
277 << L.getHeader()->getName() << '\n');
278 LoopVector LoopList;
279 Loop *CurrentLoop = &L;
280 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
281 while (!Vec->empty()) {
282 // The current loop has multiple subloops in it hence it is not tightly
283 // nested.
284 // Discard all loops above it added into Worklist.
285 if (Vec->size() != 1) {
286 LoopList.clear();
287 return;
288 }
289 LoopList.push_back(CurrentLoop);
290 CurrentLoop = Vec->front();
291 Vec = &CurrentLoop->getSubLoops();
292 }
293 LoopList.push_back(CurrentLoop);
294 V.push_back(std::move(LoopList));
295 }
296
getInductionVariable(Loop * L,ScalarEvolution * SE)297 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
298 PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
299 if (InnerIndexVar)
300 return InnerIndexVar;
301 if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
302 return nullptr;
303 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
304 PHINode *PhiVar = cast<PHINode>(I);
305 Type *PhiTy = PhiVar->getType();
306 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
307 !PhiTy->isPointerTy())
308 return nullptr;
309 const SCEVAddRecExpr *AddRec =
310 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
311 if (!AddRec || !AddRec->isAffine())
312 continue;
313 const SCEV *Step = AddRec->getStepRecurrence(*SE);
314 if (!isa<SCEVConstant>(Step))
315 continue;
316 // Found the induction variable.
317 // FIXME: Handle loops with more than one induction variable. Note that,
318 // currently, legality makes sure we have only one induction variable.
319 return PhiVar;
320 }
321 return nullptr;
322 }
323
324 namespace {
325
326 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
327 class LoopInterchangeLegality {
328 public:
LoopInterchangeLegality(Loop * Outer,Loop * Inner,ScalarEvolution * SE,LoopInfo * LI,DominatorTree * DT,bool PreserveLCSSA,OptimizationRemarkEmitter * ORE)329 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
330 LoopInfo *LI, DominatorTree *DT, bool PreserveLCSSA,
331 OptimizationRemarkEmitter *ORE)
332 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
333 PreserveLCSSA(PreserveLCSSA), ORE(ORE) {}
334
335 /// Check if the loops can be interchanged.
336 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
337 CharMatrix &DepMatrix);
338
339 /// Check if the loop structure is understood. We do not handle triangular
340 /// loops for now.
341 bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
342
343 bool currentLimitations();
344
hasInnerLoopReduction()345 bool hasInnerLoopReduction() { return InnerLoopHasReduction; }
346
347 private:
348 bool tightlyNested(Loop *Outer, Loop *Inner);
349 bool containsUnsafeInstructionsInHeader(BasicBlock *BB);
350 bool areAllUsesReductions(Instruction *Ins, Loop *L);
351 bool containsUnsafeInstructionsInLatch(BasicBlock *BB);
352 bool findInductionAndReductions(Loop *L,
353 SmallVector<PHINode *, 8> &Inductions,
354 SmallVector<PHINode *, 8> &Reductions);
355
356 Loop *OuterLoop;
357 Loop *InnerLoop;
358
359 ScalarEvolution *SE;
360 LoopInfo *LI;
361 DominatorTree *DT;
362 bool PreserveLCSSA;
363
364 /// Interface to emit optimization remarks.
365 OptimizationRemarkEmitter *ORE;
366
367 bool InnerLoopHasReduction = false;
368 };
369
370 /// LoopInterchangeProfitability checks if it is profitable to interchange the
371 /// loop.
372 class LoopInterchangeProfitability {
373 public:
LoopInterchangeProfitability(Loop * Outer,Loop * Inner,ScalarEvolution * SE,OptimizationRemarkEmitter * ORE)374 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
375 OptimizationRemarkEmitter *ORE)
376 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
377
378 /// Check if the loop interchange is profitable.
379 bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
380 CharMatrix &DepMatrix);
381
382 private:
383 int getInstrOrderCost();
384
385 Loop *OuterLoop;
386 Loop *InnerLoop;
387
388 /// Scev analysis.
389 ScalarEvolution *SE;
390
391 /// Interface to emit optimization remarks.
392 OptimizationRemarkEmitter *ORE;
393 };
394
395 /// LoopInterchangeTransform interchanges the loop.
396 class LoopInterchangeTransform {
397 public:
LoopInterchangeTransform(Loop * Outer,Loop * Inner,ScalarEvolution * SE,LoopInfo * LI,DominatorTree * DT,BasicBlock * LoopNestExit,bool InnerLoopContainsReductions)398 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
399 LoopInfo *LI, DominatorTree *DT,
400 BasicBlock *LoopNestExit,
401 bool InnerLoopContainsReductions)
402 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
403 LoopExit(LoopNestExit),
404 InnerLoopHasReduction(InnerLoopContainsReductions) {}
405
406 /// Interchange OuterLoop and InnerLoop.
407 bool transform();
408 void restructureLoops(Loop *NewInner, Loop *NewOuter,
409 BasicBlock *OrigInnerPreHeader,
410 BasicBlock *OrigOuterPreHeader);
411 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
412
413 private:
414 void splitInnerLoopLatch(Instruction *);
415 void splitInnerLoopHeader();
416 bool adjustLoopLinks();
417 void adjustLoopPreheaders();
418 bool adjustLoopBranches();
419 void updateIncomingBlock(BasicBlock *CurrBlock, BasicBlock *OldPred,
420 BasicBlock *NewPred);
421
422 Loop *OuterLoop;
423 Loop *InnerLoop;
424
425 /// Scev analysis.
426 ScalarEvolution *SE;
427
428 LoopInfo *LI;
429 DominatorTree *DT;
430 BasicBlock *LoopExit;
431 bool InnerLoopHasReduction;
432 };
433
434 // Main LoopInterchange Pass.
435 struct LoopInterchange : public FunctionPass {
436 static char ID;
437 ScalarEvolution *SE = nullptr;
438 LoopInfo *LI = nullptr;
439 DependenceInfo *DI = nullptr;
440 DominatorTree *DT = nullptr;
441 bool PreserveLCSSA;
442
443 /// Interface to emit optimization remarks.
444 OptimizationRemarkEmitter *ORE;
445
LoopInterchange__anon8deb94cf0211::LoopInterchange446 LoopInterchange() : FunctionPass(ID) {
447 initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
448 }
449
getAnalysisUsage__anon8deb94cf0211::LoopInterchange450 void getAnalysisUsage(AnalysisUsage &AU) const override {
451 AU.addRequired<ScalarEvolutionWrapperPass>();
452 AU.addRequired<AAResultsWrapperPass>();
453 AU.addRequired<DominatorTreeWrapperPass>();
454 AU.addRequired<LoopInfoWrapperPass>();
455 AU.addRequired<DependenceAnalysisWrapperPass>();
456 AU.addRequiredID(LoopSimplifyID);
457 AU.addRequiredID(LCSSAID);
458 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
459
460 AU.addPreserved<DominatorTreeWrapperPass>();
461 AU.addPreserved<LoopInfoWrapperPass>();
462 }
463
runOnFunction__anon8deb94cf0211::LoopInterchange464 bool runOnFunction(Function &F) override {
465 if (skipFunction(F))
466 return false;
467
468 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
469 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
470 DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
471 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
472 ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
473 PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
474
475 // Build up a worklist of loop pairs to analyze.
476 SmallVector<LoopVector, 8> Worklist;
477
478 for (Loop *L : *LI)
479 populateWorklist(*L, Worklist);
480
481 LLVM_DEBUG(dbgs() << "Worklist size = " << Worklist.size() << "\n");
482 bool Changed = true;
483 while (!Worklist.empty()) {
484 LoopVector LoopList = Worklist.pop_back_val();
485 Changed = processLoopList(LoopList, F);
486 }
487 return Changed;
488 }
489
isComputableLoopNest__anon8deb94cf0211::LoopInterchange490 bool isComputableLoopNest(LoopVector LoopList) {
491 for (Loop *L : LoopList) {
492 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
493 if (ExitCountOuter == SE->getCouldNotCompute()) {
494 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
495 return false;
496 }
497 if (L->getNumBackEdges() != 1) {
498 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
499 return false;
500 }
501 if (!L->getExitingBlock()) {
502 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
503 return false;
504 }
505 }
506 return true;
507 }
508
selectLoopForInterchange__anon8deb94cf0211::LoopInterchange509 unsigned selectLoopForInterchange(const LoopVector &LoopList) {
510 // TODO: Add a better heuristic to select the loop to be interchanged based
511 // on the dependence matrix. Currently we select the innermost loop.
512 return LoopList.size() - 1;
513 }
514
processLoopList__anon8deb94cf0211::LoopInterchange515 bool processLoopList(LoopVector LoopList, Function &F) {
516 bool Changed = false;
517 unsigned LoopNestDepth = LoopList.size();
518 if (LoopNestDepth < 2) {
519 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
520 return false;
521 }
522 if (LoopNestDepth > MaxLoopNestDepth) {
523 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
524 << MaxLoopNestDepth << "\n");
525 return false;
526 }
527 if (!isComputableLoopNest(LoopList)) {
528 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
529 return false;
530 }
531
532 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
533 << "\n");
534
535 CharMatrix DependencyMatrix;
536 Loop *OuterMostLoop = *(LoopList.begin());
537 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
538 OuterMostLoop, DI)) {
539 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
540 return false;
541 }
542 #ifdef DUMP_DEP_MATRICIES
543 LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
544 printDepMatrix(DependencyMatrix);
545 #endif
546
547 // Get the Outermost loop exit.
548 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
549 if (!LoopNestExit) {
550 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
551 return false;
552 }
553
554 unsigned SelecLoopId = selectLoopForInterchange(LoopList);
555 // Move the selected loop outwards to the best possible position.
556 for (unsigned i = SelecLoopId; i > 0; i--) {
557 bool Interchanged =
558 processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
559 if (!Interchanged)
560 return Changed;
561 // Loops interchanged reflect the same in LoopList
562 std::swap(LoopList[i - 1], LoopList[i]);
563
564 // Update the DependencyMatrix
565 interChangeDependencies(DependencyMatrix, i, i - 1);
566 #ifdef DUMP_DEP_MATRICIES
567 LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
568 printDepMatrix(DependencyMatrix);
569 #endif
570 Changed |= Interchanged;
571 }
572 return Changed;
573 }
574
processLoop__anon8deb94cf0211::LoopInterchange575 bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
576 unsigned OuterLoopId, BasicBlock *LoopNestExit,
577 std::vector<std::vector<char>> &DependencyMatrix) {
578 LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId
579 << " and OuterLoopId = " << OuterLoopId << "\n");
580 Loop *InnerLoop = LoopList[InnerLoopId];
581 Loop *OuterLoop = LoopList[OuterLoopId];
582
583 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, LI, DT,
584 PreserveLCSSA, ORE);
585 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
586 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
587 return false;
588 }
589 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
590 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
591 if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
592 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
593 return false;
594 }
595
596 ORE->emit([&]() {
597 return OptimizationRemark(DEBUG_TYPE, "Interchanged",
598 InnerLoop->getStartLoc(),
599 InnerLoop->getHeader())
600 << "Loop interchanged with enclosing loop.";
601 });
602
603 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT,
604 LoopNestExit, LIL.hasInnerLoopReduction());
605 LIT.transform();
606 LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
607 LoopsInterchanged++;
608 return true;
609 }
610 };
611
612 } // end anonymous namespace
613
areAllUsesReductions(Instruction * Ins,Loop * L)614 bool LoopInterchangeLegality::areAllUsesReductions(Instruction *Ins, Loop *L) {
615 return llvm::none_of(Ins->users(), [=](User *U) -> bool {
616 auto *UserIns = dyn_cast<PHINode>(U);
617 RecurrenceDescriptor RD;
618 return !UserIns || !RecurrenceDescriptor::isReductionPHI(UserIns, L, RD);
619 });
620 }
621
containsUnsafeInstructionsInHeader(BasicBlock * BB)622 bool LoopInterchangeLegality::containsUnsafeInstructionsInHeader(
623 BasicBlock *BB) {
624 for (Instruction &I : *BB) {
625 // Load corresponding to reduction PHI's are safe while concluding if
626 // tightly nested.
627 if (LoadInst *L = dyn_cast<LoadInst>(&I)) {
628 if (!areAllUsesReductions(L, InnerLoop))
629 return true;
630 } else if (I.mayHaveSideEffects() || I.mayReadFromMemory())
631 return true;
632 }
633 return false;
634 }
635
containsUnsafeInstructionsInLatch(BasicBlock * BB)636 bool LoopInterchangeLegality::containsUnsafeInstructionsInLatch(
637 BasicBlock *BB) {
638 for (Instruction &I : *BB) {
639 // Stores corresponding to reductions are safe while concluding if tightly
640 // nested.
641 if (StoreInst *L = dyn_cast<StoreInst>(&I)) {
642 if (!isa<PHINode>(L->getOperand(0)))
643 return true;
644 } else if (I.mayHaveSideEffects() || I.mayReadFromMemory())
645 return true;
646 }
647 return false;
648 }
649
tightlyNested(Loop * OuterLoop,Loop * InnerLoop)650 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
651 BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
652 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
653 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
654
655 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
656
657 // A perfectly nested loop will not have any branch in between the outer and
658 // inner block i.e. outer header will branch to either inner preheader and
659 // outerloop latch.
660 BranchInst *OuterLoopHeaderBI =
661 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
662 if (!OuterLoopHeaderBI)
663 return false;
664
665 for (BasicBlock *Succ : OuterLoopHeaderBI->successors())
666 if (Succ != InnerLoopPreHeader && Succ != OuterLoopLatch)
667 return false;
668
669 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
670 // We do not have any basic block in between now make sure the outer header
671 // and outer loop latch doesn't contain any unsafe instructions.
672 if (containsUnsafeInstructionsInHeader(OuterLoopHeader) ||
673 containsUnsafeInstructionsInLatch(OuterLoopLatch))
674 return false;
675
676 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
677 // We have a perfect loop nest.
678 return true;
679 }
680
isLoopStructureUnderstood(PHINode * InnerInduction)681 bool LoopInterchangeLegality::isLoopStructureUnderstood(
682 PHINode *InnerInduction) {
683 unsigned Num = InnerInduction->getNumOperands();
684 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
685 for (unsigned i = 0; i < Num; ++i) {
686 Value *Val = InnerInduction->getOperand(i);
687 if (isa<Constant>(Val))
688 continue;
689 Instruction *I = dyn_cast<Instruction>(Val);
690 if (!I)
691 return false;
692 // TODO: Handle triangular loops.
693 // e.g. for(int i=0;i<N;i++)
694 // for(int j=i;j<N;j++)
695 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
696 if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
697 InnerLoopPreheader &&
698 !OuterLoop->isLoopInvariant(I)) {
699 return false;
700 }
701 }
702 return true;
703 }
704
findInductionAndReductions(Loop * L,SmallVector<PHINode *,8> & Inductions,SmallVector<PHINode *,8> & Reductions)705 bool LoopInterchangeLegality::findInductionAndReductions(
706 Loop *L, SmallVector<PHINode *, 8> &Inductions,
707 SmallVector<PHINode *, 8> &Reductions) {
708 if (!L->getLoopLatch() || !L->getLoopPredecessor())
709 return false;
710 for (PHINode &PHI : L->getHeader()->phis()) {
711 RecurrenceDescriptor RD;
712 InductionDescriptor ID;
713 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
714 Inductions.push_back(&PHI);
715 else if (RecurrenceDescriptor::isReductionPHI(&PHI, L, RD))
716 Reductions.push_back(&PHI);
717 else {
718 LLVM_DEBUG(
719 dbgs() << "Failed to recognize PHI as an induction or reduction.\n");
720 return false;
721 }
722 }
723 return true;
724 }
725
containsSafePHI(BasicBlock * Block,bool isOuterLoopExitBlock)726 static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) {
727 for (PHINode &PHI : Block->phis()) {
728 // Reduction lcssa phi will have only 1 incoming block that from loop latch.
729 if (PHI.getNumIncomingValues() > 1)
730 return false;
731 Instruction *Ins = dyn_cast<Instruction>(PHI.getIncomingValue(0));
732 if (!Ins)
733 return false;
734 // Incoming value for lcssa phi's in outer loop exit can only be inner loop
735 // exits lcssa phi else it would not be tightly nested.
736 if (!isa<PHINode>(Ins) && isOuterLoopExitBlock)
737 return false;
738 }
739 return true;
740 }
741
742 // This function indicates the current limitations in the transform as a result
743 // of which we do not proceed.
currentLimitations()744 bool LoopInterchangeLegality::currentLimitations() {
745 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
746 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
747
748 // transform currently expects the loop latches to also be the exiting
749 // blocks.
750 if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
751 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
752 !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
753 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
754 LLVM_DEBUG(
755 dbgs() << "Loops where the latch is not the exiting block are not"
756 << " supported currently.\n");
757 ORE->emit([&]() {
758 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
759 OuterLoop->getStartLoc(),
760 OuterLoop->getHeader())
761 << "Loops where the latch is not the exiting block cannot be"
762 " interchange currently.";
763 });
764 return true;
765 }
766
767 PHINode *InnerInductionVar;
768 SmallVector<PHINode *, 8> Inductions;
769 SmallVector<PHINode *, 8> Reductions;
770 if (!findInductionAndReductions(InnerLoop, Inductions, Reductions)) {
771 LLVM_DEBUG(
772 dbgs() << "Only inner loops with induction or reduction PHI nodes "
773 << "are supported currently.\n");
774 ORE->emit([&]() {
775 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
776 InnerLoop->getStartLoc(),
777 InnerLoop->getHeader())
778 << "Only inner loops with induction or reduction PHI nodes can be"
779 " interchange currently.";
780 });
781 return true;
782 }
783
784 // TODO: Currently we handle only loops with 1 induction variable.
785 if (Inductions.size() != 1) {
786 LLVM_DEBUG(
787 dbgs() << "We currently only support loops with 1 induction variable."
788 << "Failed to interchange due to current limitation\n");
789 ORE->emit([&]() {
790 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
791 InnerLoop->getStartLoc(),
792 InnerLoop->getHeader())
793 << "Only inner loops with 1 induction variable can be "
794 "interchanged currently.";
795 });
796 return true;
797 }
798 if (Reductions.size() > 0)
799 InnerLoopHasReduction = true;
800
801 InnerInductionVar = Inductions.pop_back_val();
802 Reductions.clear();
803 if (!findInductionAndReductions(OuterLoop, Inductions, Reductions)) {
804 LLVM_DEBUG(
805 dbgs() << "Only outer loops with induction or reduction PHI nodes "
806 << "are supported currently.\n");
807 ORE->emit([&]() {
808 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
809 OuterLoop->getStartLoc(),
810 OuterLoop->getHeader())
811 << "Only outer loops with induction or reduction PHI nodes can be"
812 " interchanged currently.";
813 });
814 return true;
815 }
816
817 // Outer loop cannot have reduction because then loops will not be tightly
818 // nested.
819 if (!Reductions.empty()) {
820 LLVM_DEBUG(dbgs() << "Outer loops with reductions are not supported "
821 << "currently.\n");
822 ORE->emit([&]() {
823 return OptimizationRemarkMissed(DEBUG_TYPE, "ReductionsOuter",
824 OuterLoop->getStartLoc(),
825 OuterLoop->getHeader())
826 << "Outer loops with reductions cannot be interchangeed "
827 "currently.";
828 });
829 return true;
830 }
831 // TODO: Currently we handle only loops with 1 induction variable.
832 if (Inductions.size() != 1) {
833 LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
834 << "supported currently.\n");
835 ORE->emit([&]() {
836 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
837 OuterLoop->getStartLoc(),
838 OuterLoop->getHeader())
839 << "Only outer loops with 1 induction variable can be "
840 "interchanged currently.";
841 });
842 return true;
843 }
844
845 // TODO: Triangular loops are not handled for now.
846 if (!isLoopStructureUnderstood(InnerInductionVar)) {
847 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
848 ORE->emit([&]() {
849 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
850 InnerLoop->getStartLoc(),
851 InnerLoop->getHeader())
852 << "Inner loop structure not understood currently.";
853 });
854 return true;
855 }
856
857 // TODO: We only handle LCSSA PHI's corresponding to reduction for now.
858 BasicBlock *InnerExit = InnerLoop->getExitBlock();
859 if (!containsSafePHI(InnerExit, false)) {
860 LLVM_DEBUG(
861 dbgs() << "Can only handle LCSSA PHIs in inner loops currently.\n");
862 ORE->emit([&]() {
863 return OptimizationRemarkMissed(DEBUG_TYPE, "NoLCSSAPHIOuterInner",
864 InnerLoop->getStartLoc(),
865 InnerLoop->getHeader())
866 << "Only inner loops with LCSSA PHIs can be interchange "
867 "currently.";
868 });
869 return true;
870 }
871
872 // TODO: Current limitation: Since we split the inner loop latch at the point
873 // were induction variable is incremented (induction.next); We cannot have
874 // more than 1 user of induction.next since it would result in broken code
875 // after split.
876 // e.g.
877 // for(i=0;i<N;i++) {
878 // for(j = 0;j<M;j++) {
879 // A[j+1][i+2] = A[j][i]+k;
880 // }
881 // }
882 Instruction *InnerIndexVarInc = nullptr;
883 if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
884 InnerIndexVarInc =
885 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
886 else
887 InnerIndexVarInc =
888 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
889
890 if (!InnerIndexVarInc) {
891 LLVM_DEBUG(
892 dbgs() << "Did not find an instruction to increment the induction "
893 << "variable.\n");
894 ORE->emit([&]() {
895 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner",
896 InnerLoop->getStartLoc(),
897 InnerLoop->getHeader())
898 << "The inner loop does not increment the induction variable.";
899 });
900 return true;
901 }
902
903 // Since we split the inner loop latch on this induction variable. Make sure
904 // we do not have any instruction between the induction variable and branch
905 // instruction.
906
907 bool FoundInduction = false;
908 for (const Instruction &I :
909 llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) {
910 if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
911 isa<ZExtInst>(I))
912 continue;
913
914 // We found an instruction. If this is not induction variable then it is not
915 // safe to split this loop latch.
916 if (!I.isIdenticalTo(InnerIndexVarInc)) {
917 LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction "
918 << "variable increment and branch.\n");
919 ORE->emit([&]() {
920 return OptimizationRemarkMissed(
921 DEBUG_TYPE, "UnsupportedInsBetweenInduction",
922 InnerLoop->getStartLoc(), InnerLoop->getHeader())
923 << "Found unsupported instruction between induction variable "
924 "increment and branch.";
925 });
926 return true;
927 }
928
929 FoundInduction = true;
930 break;
931 }
932 // The loop latch ended and we didn't find the induction variable return as
933 // current limitation.
934 if (!FoundInduction) {
935 LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n");
936 ORE->emit([&]() {
937 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable",
938 InnerLoop->getStartLoc(),
939 InnerLoop->getHeader())
940 << "Did not find the induction variable.";
941 });
942 return true;
943 }
944 return false;
945 }
946
947 // We currently support LCSSA PHI nodes in the outer loop exit, if their
948 // incoming values do not come from the outer loop latch or if the
949 // outer loop latch has a single predecessor. In that case, the value will
950 // be available if both the inner and outer loop conditions are true, which
951 // will still be true after interchanging. If we have multiple predecessor,
952 // that may not be the case, e.g. because the outer loop latch may be executed
953 // if the inner loop is not executed.
areLoopExitPHIsSupported(Loop * OuterLoop,Loop * InnerLoop)954 static bool areLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
955 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
956 for (PHINode &PHI : LoopNestExit->phis()) {
957 // FIXME: We currently are not able to detect floating point reductions
958 // and have to use floating point PHIs as a proxy to prevent
959 // interchanging in the presence of floating point reductions.
960 if (PHI.getType()->isFloatingPointTy())
961 return false;
962 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
963 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
964 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
965 continue;
966
967 // The incoming value is defined in the outer loop latch. Currently we
968 // only support that in case the outer loop latch has a single predecessor.
969 // This guarantees that the outer loop latch is executed if and only if
970 // the inner loop is executed (because tightlyNested() guarantees that the
971 // outer loop header only branches to the inner loop or the outer loop
972 // latch).
973 // FIXME: We could weaken this logic and allow multiple predecessors,
974 // if the values are produced outside the loop latch. We would need
975 // additional logic to update the PHI nodes in the exit block as
976 // well.
977 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
978 return false;
979 }
980 }
981 return true;
982 }
983
canInterchangeLoops(unsigned InnerLoopId,unsigned OuterLoopId,CharMatrix & DepMatrix)984 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
985 unsigned OuterLoopId,
986 CharMatrix &DepMatrix) {
987 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
988 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
989 << " and OuterLoopId = " << OuterLoopId
990 << " due to dependence\n");
991 ORE->emit([&]() {
992 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
993 InnerLoop->getStartLoc(),
994 InnerLoop->getHeader())
995 << "Cannot interchange loops due to dependences.";
996 });
997 return false;
998 }
999 // Check if outer and inner loop contain legal instructions only.
1000 for (auto *BB : OuterLoop->blocks())
1001 for (Instruction &I : BB->instructionsWithoutDebug())
1002 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1003 // readnone functions do not prevent interchanging.
1004 if (CI->doesNotReadMemory())
1005 continue;
1006 LLVM_DEBUG(
1007 dbgs() << "Loops with call instructions cannot be interchanged "
1008 << "safely.");
1009 ORE->emit([&]() {
1010 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
1011 CI->getDebugLoc(),
1012 CI->getParent())
1013 << "Cannot interchange loops due to call instruction.";
1014 });
1015
1016 return false;
1017 }
1018
1019 // Create unique Preheaders if we already do not have one.
1020 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1021 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1022
1023 // Create a unique outer preheader -
1024 // 1) If OuterLoop preheader is not present.
1025 // 2) If OuterLoop Preheader is same as OuterLoop Header
1026 // 3) If OuterLoop Preheader is same as Header of the previous loop.
1027 // 4) If OuterLoop Preheader is Entry node.
1028 if (!OuterLoopPreHeader || OuterLoopPreHeader == OuterLoop->getHeader() ||
1029 isa<PHINode>(OuterLoopPreHeader->begin()) ||
1030 !OuterLoopPreHeader->getUniquePredecessor()) {
1031 OuterLoopPreHeader =
1032 InsertPreheaderForLoop(OuterLoop, DT, LI, PreserveLCSSA);
1033 }
1034
1035 if (!InnerLoopPreHeader || InnerLoopPreHeader == InnerLoop->getHeader() ||
1036 InnerLoopPreHeader == OuterLoop->getHeader()) {
1037 InnerLoopPreHeader =
1038 InsertPreheaderForLoop(InnerLoop, DT, LI, PreserveLCSSA);
1039 }
1040
1041 // TODO: The loops could not be interchanged due to current limitations in the
1042 // transform module.
1043 if (currentLimitations()) {
1044 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
1045 return false;
1046 }
1047
1048 // Check if the loops are tightly nested.
1049 if (!tightlyNested(OuterLoop, InnerLoop)) {
1050 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
1051 ORE->emit([&]() {
1052 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1053 InnerLoop->getStartLoc(),
1054 InnerLoop->getHeader())
1055 << "Cannot interchange loops because they are not tightly "
1056 "nested.";
1057 });
1058 return false;
1059 }
1060
1061 if (!areLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
1062 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1063 ORE->emit([&]() {
1064 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1065 OuterLoop->getStartLoc(),
1066 OuterLoop->getHeader())
1067 << "Found unsupported PHI node in loop exit.";
1068 });
1069 return false;
1070 }
1071
1072 return true;
1073 }
1074
getInstrOrderCost()1075 int LoopInterchangeProfitability::getInstrOrderCost() {
1076 unsigned GoodOrder, BadOrder;
1077 BadOrder = GoodOrder = 0;
1078 for (BasicBlock *BB : InnerLoop->blocks()) {
1079 for (Instruction &Ins : *BB) {
1080 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1081 unsigned NumOp = GEP->getNumOperands();
1082 bool FoundInnerInduction = false;
1083 bool FoundOuterInduction = false;
1084 for (unsigned i = 0; i < NumOp; ++i) {
1085 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1086 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1087 if (!AR)
1088 continue;
1089
1090 // If we find the inner induction after an outer induction e.g.
1091 // for(int i=0;i<N;i++)
1092 // for(int j=0;j<N;j++)
1093 // A[i][j] = A[i-1][j-1]+k;
1094 // then it is a good order.
1095 if (AR->getLoop() == InnerLoop) {
1096 // We found an InnerLoop induction after OuterLoop induction. It is
1097 // a good order.
1098 FoundInnerInduction = true;
1099 if (FoundOuterInduction) {
1100 GoodOrder++;
1101 break;
1102 }
1103 }
1104 // If we find the outer induction after an inner induction e.g.
1105 // for(int i=0;i<N;i++)
1106 // for(int j=0;j<N;j++)
1107 // A[j][i] = A[j-1][i-1]+k;
1108 // then it is a bad order.
1109 if (AR->getLoop() == OuterLoop) {
1110 // We found an OuterLoop induction after InnerLoop induction. It is
1111 // a bad order.
1112 FoundOuterInduction = true;
1113 if (FoundInnerInduction) {
1114 BadOrder++;
1115 break;
1116 }
1117 }
1118 }
1119 }
1120 }
1121 }
1122 return GoodOrder - BadOrder;
1123 }
1124
isProfitableForVectorization(unsigned InnerLoopId,unsigned OuterLoopId,CharMatrix & DepMatrix)1125 static bool isProfitableForVectorization(unsigned InnerLoopId,
1126 unsigned OuterLoopId,
1127 CharMatrix &DepMatrix) {
1128 // TODO: Improve this heuristic to catch more cases.
1129 // If the inner loop is loop independent or doesn't carry any dependency it is
1130 // profitable to move this to outer position.
1131 for (auto &Row : DepMatrix) {
1132 if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
1133 return false;
1134 // TODO: We need to improve this heuristic.
1135 if (Row[OuterLoopId] != '=')
1136 return false;
1137 }
1138 // If outer loop has dependence and inner loop is loop independent then it is
1139 // profitable to interchange to enable parallelism.
1140 // If there are no dependences, interchanging will not improve anything.
1141 return !DepMatrix.empty();
1142 }
1143
isProfitable(unsigned InnerLoopId,unsigned OuterLoopId,CharMatrix & DepMatrix)1144 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
1145 unsigned OuterLoopId,
1146 CharMatrix &DepMatrix) {
1147 // TODO: Add better profitability checks.
1148 // e.g
1149 // 1) Construct dependency matrix and move the one with no loop carried dep
1150 // inside to enable vectorization.
1151
1152 // This is rough cost estimation algorithm. It counts the good and bad order
1153 // of induction variables in the instruction and allows reordering if number
1154 // of bad orders is more than good.
1155 int Cost = getInstrOrderCost();
1156 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
1157 if (Cost < -LoopInterchangeCostThreshold)
1158 return true;
1159
1160 // It is not profitable as per current cache profitability model. But check if
1161 // we can move this loop outside to improve parallelism.
1162 if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
1163 return true;
1164
1165 ORE->emit([&]() {
1166 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1167 InnerLoop->getStartLoc(),
1168 InnerLoop->getHeader())
1169 << "Interchanging loops is too costly (cost="
1170 << ore::NV("Cost", Cost) << ", threshold="
1171 << ore::NV("Threshold", LoopInterchangeCostThreshold)
1172 << ") and it does not improve parallelism.";
1173 });
1174 return false;
1175 }
1176
removeChildLoop(Loop * OuterLoop,Loop * InnerLoop)1177 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1178 Loop *InnerLoop) {
1179 for (Loop *L : *OuterLoop)
1180 if (L == InnerLoop) {
1181 OuterLoop->removeChildLoop(L);
1182 return;
1183 }
1184 llvm_unreachable("Couldn't find loop");
1185 }
1186
1187 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1188 /// new inner and outer loop after interchanging: NewInner is the original
1189 /// outer loop and NewOuter is the original inner loop.
1190 ///
1191 /// Before interchanging, we have the following structure
1192 /// Outer preheader
1193 // Outer header
1194 // Inner preheader
1195 // Inner header
1196 // Inner body
1197 // Inner latch
1198 // outer bbs
1199 // Outer latch
1200 //
1201 // After interchanging:
1202 // Inner preheader
1203 // Inner header
1204 // Outer preheader
1205 // Outer header
1206 // Inner body
1207 // outer bbs
1208 // Outer latch
1209 // Inner latch
restructureLoops(Loop * NewInner,Loop * NewOuter,BasicBlock * OrigInnerPreHeader,BasicBlock * OrigOuterPreHeader)1210 void LoopInterchangeTransform::restructureLoops(
1211 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1212 BasicBlock *OrigOuterPreHeader) {
1213 Loop *OuterLoopParent = OuterLoop->getParentLoop();
1214 // The original inner loop preheader moves from the new inner loop to
1215 // the parent loop, if there is one.
1216 NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1217 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1218
1219 // Switch the loop levels.
1220 if (OuterLoopParent) {
1221 // Remove the loop from its parent loop.
1222 removeChildLoop(OuterLoopParent, NewInner);
1223 removeChildLoop(NewInner, NewOuter);
1224 OuterLoopParent->addChildLoop(NewOuter);
1225 } else {
1226 removeChildLoop(NewInner, NewOuter);
1227 LI->changeTopLevelLoop(NewInner, NewOuter);
1228 }
1229 while (!NewOuter->empty())
1230 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1231 NewOuter->addChildLoop(NewInner);
1232
1233 // BBs from the original inner loop.
1234 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1235
1236 // Add BBs from the original outer loop to the original inner loop (excluding
1237 // BBs already in inner loop)
1238 for (BasicBlock *BB : NewInner->blocks())
1239 if (LI->getLoopFor(BB) == NewInner)
1240 NewOuter->addBlockEntry(BB);
1241
1242 // Now remove inner loop header and latch from the new inner loop and move
1243 // other BBs (the loop body) to the new inner loop.
1244 BasicBlock *OuterHeader = NewOuter->getHeader();
1245 BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1246 for (BasicBlock *BB : OrigInnerBBs) {
1247 // Nothing will change for BBs in child loops.
1248 if (LI->getLoopFor(BB) != NewOuter)
1249 continue;
1250 // Remove the new outer loop header and latch from the new inner loop.
1251 if (BB == OuterHeader || BB == OuterLatch)
1252 NewInner->removeBlockFromLoop(BB);
1253 else
1254 LI->changeLoopFor(BB, NewInner);
1255 }
1256
1257 // The preheader of the original outer loop becomes part of the new
1258 // outer loop.
1259 NewOuter->addBlockEntry(OrigOuterPreHeader);
1260 LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1261 }
1262
transform()1263 bool LoopInterchangeTransform::transform() {
1264 bool Transformed = false;
1265 Instruction *InnerIndexVar;
1266
1267 if (InnerLoop->getSubLoops().empty()) {
1268 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1269 LLVM_DEBUG(dbgs() << "Calling Split Inner Loop\n");
1270 PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
1271 if (!InductionPHI) {
1272 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1273 return false;
1274 }
1275
1276 if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1277 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
1278 else
1279 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
1280
1281 // Ensure that InductionPHI is the first Phi node.
1282 if (&InductionPHI->getParent()->front() != InductionPHI)
1283 InductionPHI->moveBefore(&InductionPHI->getParent()->front());
1284
1285 // Split at the place were the induction variable is
1286 // incremented/decremented.
1287 // TODO: This splitting logic may not work always. Fix this.
1288 splitInnerLoopLatch(InnerIndexVar);
1289 LLVM_DEBUG(dbgs() << "splitInnerLoopLatch done\n");
1290
1291 // Splits the inner loops phi nodes out into a separate basic block.
1292 BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1293 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1294 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1295 }
1296
1297 Transformed |= adjustLoopLinks();
1298 if (!Transformed) {
1299 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1300 return false;
1301 }
1302
1303 return true;
1304 }
1305
splitInnerLoopLatch(Instruction * Inc)1306 void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) {
1307 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1308 BasicBlock *InnerLoopLatchPred = InnerLoopLatch;
1309 InnerLoopLatch = SplitBlock(InnerLoopLatchPred, Inc, DT, LI);
1310 }
1311
1312 /// \brief Move all instructions except the terminator from FromBB right before
1313 /// InsertBefore
moveBBContents(BasicBlock * FromBB,Instruction * InsertBefore)1314 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1315 auto &ToList = InsertBefore->getParent()->getInstList();
1316 auto &FromList = FromBB->getInstList();
1317
1318 ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1319 FromBB->getTerminator()->getIterator());
1320 }
1321
updateIncomingBlock(BasicBlock * CurrBlock,BasicBlock * OldPred,BasicBlock * NewPred)1322 void LoopInterchangeTransform::updateIncomingBlock(BasicBlock *CurrBlock,
1323 BasicBlock *OldPred,
1324 BasicBlock *NewPred) {
1325 for (PHINode &PHI : CurrBlock->phis()) {
1326 unsigned Num = PHI.getNumIncomingValues();
1327 for (unsigned i = 0; i < Num; ++i) {
1328 if (PHI.getIncomingBlock(i) == OldPred)
1329 PHI.setIncomingBlock(i, NewPred);
1330 }
1331 }
1332 }
1333
1334 /// Update BI to jump to NewBB instead of OldBB. Records updates to
1335 /// the dominator tree in DTUpdates, if DT should be preserved.
updateSuccessor(BranchInst * BI,BasicBlock * OldBB,BasicBlock * NewBB,std::vector<DominatorTree::UpdateType> & DTUpdates)1336 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1337 BasicBlock *NewBB,
1338 std::vector<DominatorTree::UpdateType> &DTUpdates) {
1339 assert(llvm::count_if(BI->successors(),
1340 [OldBB](BasicBlock *BB) { return BB == OldBB; }) < 2 &&
1341 "BI must jump to OldBB at most once.");
1342 for (unsigned i = 0, e = BI->getNumSuccessors(); i < e; ++i) {
1343 if (BI->getSuccessor(i) == OldBB) {
1344 BI->setSuccessor(i, NewBB);
1345
1346 DTUpdates.push_back(
1347 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1348 DTUpdates.push_back(
1349 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1350 break;
1351 }
1352 }
1353 }
1354
adjustLoopBranches()1355 bool LoopInterchangeTransform::adjustLoopBranches() {
1356 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1357 std::vector<DominatorTree::UpdateType> DTUpdates;
1358
1359 // Adjust the loop preheader
1360 BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1361 BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1362 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1363 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1364 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1365 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1366 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1367 BasicBlock *InnerLoopLatchPredecessor =
1368 InnerLoopLatch->getUniquePredecessor();
1369 BasicBlock *InnerLoopLatchSuccessor;
1370 BasicBlock *OuterLoopLatchSuccessor;
1371
1372 BranchInst *OuterLoopLatchBI =
1373 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1374 BranchInst *InnerLoopLatchBI =
1375 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1376 BranchInst *OuterLoopHeaderBI =
1377 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1378 BranchInst *InnerLoopHeaderBI =
1379 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1380
1381 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1382 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1383 !InnerLoopHeaderBI)
1384 return false;
1385
1386 BranchInst *InnerLoopLatchPredecessorBI =
1387 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1388 BranchInst *OuterLoopPredecessorBI =
1389 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1390
1391 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1392 return false;
1393 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1394 if (!InnerLoopHeaderSuccessor)
1395 return false;
1396
1397 // Adjust Loop Preheader and headers
1398 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1399 InnerLoopPreHeader, DTUpdates);
1400 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates);
1401 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1402 InnerLoopHeaderSuccessor, DTUpdates);
1403
1404 // Adjust reduction PHI's now that the incoming block has changed.
1405 updateIncomingBlock(InnerLoopHeaderSuccessor, InnerLoopHeader,
1406 OuterLoopHeader);
1407
1408 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1409 OuterLoopPreHeader, DTUpdates);
1410
1411 // -------------Adjust loop latches-----------
1412 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1413 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1414 else
1415 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1416
1417 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1418 InnerLoopLatchSuccessor, DTUpdates);
1419
1420 // Adjust PHI nodes in InnerLoopLatchSuccessor. Update all uses of PHI with
1421 // the value and remove this PHI node from inner loop.
1422 SmallVector<PHINode *, 8> LcssaVec;
1423 for (PHINode &P : InnerLoopLatchSuccessor->phis())
1424 LcssaVec.push_back(&P);
1425
1426 for (PHINode *P : LcssaVec) {
1427 Value *Incoming = P->getIncomingValueForBlock(InnerLoopLatch);
1428 P->replaceAllUsesWith(Incoming);
1429 P->eraseFromParent();
1430 }
1431
1432 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1433 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1434 else
1435 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1436
1437 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1438 OuterLoopLatchSuccessor, DTUpdates);
1439 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1440 DTUpdates);
1441
1442 updateIncomingBlock(OuterLoopLatchSuccessor, OuterLoopLatch, InnerLoopLatch);
1443
1444 DT->applyUpdates(DTUpdates);
1445 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1446 OuterLoopPreHeader);
1447
1448 // Now update the reduction PHIs in the inner and outer loop headers.
1449 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
1450 for (PHINode &PHI : drop_begin(InnerLoopHeader->phis(), 1))
1451 InnerLoopPHIs.push_back(cast<PHINode>(&PHI));
1452 for (PHINode &PHI : drop_begin(OuterLoopHeader->phis(), 1))
1453 OuterLoopPHIs.push_back(cast<PHINode>(&PHI));
1454
1455 for (PHINode *PHI : OuterLoopPHIs)
1456 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
1457
1458 // Move the PHI nodes from the inner loop header to the outer loop header.
1459 // We have to deal with one kind of PHI nodes:
1460 // 1) PHI nodes that are part of inner loop-only reductions.
1461 // We only have to move the PHI node and update the incoming blocks.
1462 for (PHINode *PHI : InnerLoopPHIs) {
1463 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
1464 for (BasicBlock *InBB : PHI->blocks()) {
1465 if (InnerLoop->contains(InBB))
1466 continue;
1467
1468 assert(!isa<PHINode>(PHI->getIncomingValueForBlock(InBB)) &&
1469 "Unexpected incoming PHI node, reductions in outer loop are not "
1470 "supported yet");
1471 PHI->replaceAllUsesWith(PHI->getIncomingValueForBlock(InBB));
1472 PHI->eraseFromParent();
1473 break;
1474 }
1475 }
1476
1477 // Update the incoming blocks for moved PHI nodes.
1478 updateIncomingBlock(OuterLoopHeader, InnerLoopPreHeader, OuterLoopPreHeader);
1479 updateIncomingBlock(OuterLoopHeader, InnerLoopLatch, OuterLoopLatch);
1480 updateIncomingBlock(InnerLoopHeader, OuterLoopPreHeader, InnerLoopPreHeader);
1481 updateIncomingBlock(InnerLoopHeader, OuterLoopLatch, InnerLoopLatch);
1482
1483 return true;
1484 }
1485
adjustLoopPreheaders()1486 void LoopInterchangeTransform::adjustLoopPreheaders() {
1487 // We have interchanged the preheaders so we need to interchange the data in
1488 // the preheader as well.
1489 // This is because the content of inner preheader was previously executed
1490 // inside the outer loop.
1491 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1492 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1493 BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1494 BranchInst *InnerTermBI =
1495 cast<BranchInst>(InnerLoopPreHeader->getTerminator());
1496
1497 // These instructions should now be executed inside the loop.
1498 // Move instruction into a new block after outer header.
1499 moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator());
1500 // These instructions were not executed previously in the loop so move them to
1501 // the older inner loop preheader.
1502 moveBBContents(OuterLoopPreHeader, InnerTermBI);
1503 }
1504
adjustLoopLinks()1505 bool LoopInterchangeTransform::adjustLoopLinks() {
1506 // Adjust all branches in the inner and outer loop.
1507 bool Changed = adjustLoopBranches();
1508 if (Changed)
1509 adjustLoopPreheaders();
1510 return Changed;
1511 }
1512
1513 char LoopInterchange::ID = 0;
1514
1515 INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
1516 "Interchanges loops for cache reuse", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)1517 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1518 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1519 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1520 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1521 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
1522 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
1523 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1524 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1525
1526 INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
1527 "Interchanges loops for cache reuse", false, false)
1528
1529 Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }
1530