1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implement a loop-aware load elimination pass.
11 //
12 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
13 // distance of one between stores and loads.  These form the candidates for the
14 // transformation.  The source value of each store then propagated to the user
15 // of the corresponding load.  This makes the load dead.
16 //
17 // The pass can also version the loop and add memchecks in order to prove that
18 // may-aliasing stores can't change the value in memory before it's read by the
19 // load.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/AssumptionCache.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/LoopAccessAnalysis.h"
35 #include "llvm/Analysis/LoopAnalysisManager.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/ScalarEvolution.h"
38 #include "llvm/Analysis/ScalarEvolutionExpander.h"
39 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Transforms/Utils.h"
56 #include "llvm/Transforms/Utils/LoopVersioning.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <forward_list>
60 #include <set>
61 #include <tuple>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 #define LLE_OPTION "loop-load-elim"
67 #define DEBUG_TYPE LLE_OPTION
68 
69 static cl::opt<unsigned> CheckPerElim(
70     "runtime-check-per-loop-load-elim", cl::Hidden,
71     cl::desc("Max number of memchecks allowed per eliminated load on average"),
72     cl::init(1));
73 
74 static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
75     "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
76     cl::desc("The maximum number of SCEV checks allowed for Loop "
77              "Load Elimination"));
78 
79 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
80 
81 namespace {
82 
83 /// Represent a store-to-forwarding candidate.
84 struct StoreToLoadForwardingCandidate {
85   LoadInst *Load;
86   StoreInst *Store;
87 
StoreToLoadForwardingCandidate__anon2ffed2800111::StoreToLoadForwardingCandidate88   StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
89       : Load(Load), Store(Store) {}
90 
91   /// Return true if the dependence from the store to the load has a
92   /// distance of one.  E.g. A[i+1] = A[i]
isDependenceDistanceOfOne__anon2ffed2800111::StoreToLoadForwardingCandidate93   bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
94                                  Loop *L) const {
95     Value *LoadPtr = Load->getPointerOperand();
96     Value *StorePtr = Store->getPointerOperand();
97     Type *LoadPtrType = LoadPtr->getType();
98     Type *LoadType = LoadPtrType->getPointerElementType();
99 
100     assert(LoadPtrType->getPointerAddressSpace() ==
101                StorePtr->getType()->getPointerAddressSpace() &&
102            LoadType == StorePtr->getType()->getPointerElementType() &&
103            "Should be a known dependence");
104 
105     // Currently we only support accesses with unit stride.  FIXME: we should be
106     // able to handle non unit stirde as well as long as the stride is equal to
107     // the dependence distance.
108     if (getPtrStride(PSE, LoadPtr, L) != 1 ||
109         getPtrStride(PSE, StorePtr, L) != 1)
110       return false;
111 
112     auto &DL = Load->getParent()->getModule()->getDataLayout();
113     unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
114 
115     auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
116     auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
117 
118     // We don't need to check non-wrapping here because forward/backward
119     // dependence wouldn't be valid if these weren't monotonic accesses.
120     auto *Dist = cast<SCEVConstant>(
121         PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
122     const APInt &Val = Dist->getAPInt();
123     return Val == TypeByteSize;
124   }
125 
getLoadPtr__anon2ffed2800111::StoreToLoadForwardingCandidate126   Value *getLoadPtr() const { return Load->getPointerOperand(); }
127 
128 #ifndef NDEBUG
operator <<(raw_ostream & OS,const StoreToLoadForwardingCandidate & Cand)129   friend raw_ostream &operator<<(raw_ostream &OS,
130                                  const StoreToLoadForwardingCandidate &Cand) {
131     OS << *Cand.Store << " -->\n";
132     OS.indent(2) << *Cand.Load << "\n";
133     return OS;
134   }
135 #endif
136 };
137 
138 } // end anonymous namespace
139 
140 /// Check if the store dominates all latches, so as long as there is no
141 /// intervening store this value will be loaded in the next iteration.
doesStoreDominatesAllLatches(BasicBlock * StoreBlock,Loop * L,DominatorTree * DT)142 static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
143                                          DominatorTree *DT) {
144   SmallVector<BasicBlock *, 8> Latches;
145   L->getLoopLatches(Latches);
146   return llvm::all_of(Latches, [&](const BasicBlock *Latch) {
147     return DT->dominates(StoreBlock, Latch);
148   });
149 }
150 
151 /// Return true if the load is not executed on all paths in the loop.
isLoadConditional(LoadInst * Load,Loop * L)152 static bool isLoadConditional(LoadInst *Load, Loop *L) {
153   return Load->getParent() != L->getHeader();
154 }
155 
156 namespace {
157 
158 /// The per-loop class that does most of the work.
159 class LoadEliminationForLoop {
160 public:
LoadEliminationForLoop(Loop * L,LoopInfo * LI,const LoopAccessInfo & LAI,DominatorTree * DT)161   LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
162                          DominatorTree *DT)
163       : L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.getPSE()) {}
164 
165   /// Look through the loop-carried and loop-independent dependences in
166   /// this loop and find store->load dependences.
167   ///
168   /// Note that no candidate is returned if LAA has failed to analyze the loop
169   /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
170   std::forward_list<StoreToLoadForwardingCandidate>
findStoreToLoadDependences(const LoopAccessInfo & LAI)171   findStoreToLoadDependences(const LoopAccessInfo &LAI) {
172     std::forward_list<StoreToLoadForwardingCandidate> Candidates;
173 
174     const auto *Deps = LAI.getDepChecker().getDependences();
175     if (!Deps)
176       return Candidates;
177 
178     // Find store->load dependences (consequently true dep).  Both lexically
179     // forward and backward dependences qualify.  Disqualify loads that have
180     // other unknown dependences.
181 
182     SmallPtrSet<Instruction *, 4> LoadsWithUnknownDepedence;
183 
184     for (const auto &Dep : *Deps) {
185       Instruction *Source = Dep.getSource(LAI);
186       Instruction *Destination = Dep.getDestination(LAI);
187 
188       if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
189         if (isa<LoadInst>(Source))
190           LoadsWithUnknownDepedence.insert(Source);
191         if (isa<LoadInst>(Destination))
192           LoadsWithUnknownDepedence.insert(Destination);
193         continue;
194       }
195 
196       if (Dep.isBackward())
197         // Note that the designations source and destination follow the program
198         // order, i.e. source is always first.  (The direction is given by the
199         // DepType.)
200         std::swap(Source, Destination);
201       else
202         assert(Dep.isForward() && "Needs to be a forward dependence");
203 
204       auto *Store = dyn_cast<StoreInst>(Source);
205       if (!Store)
206         continue;
207       auto *Load = dyn_cast<LoadInst>(Destination);
208       if (!Load)
209         continue;
210 
211       // Only progagate the value if they are of the same type.
212       if (Store->getPointerOperandType() != Load->getPointerOperandType())
213         continue;
214 
215       Candidates.emplace_front(Load, Store);
216     }
217 
218     if (!LoadsWithUnknownDepedence.empty())
219       Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
220         return LoadsWithUnknownDepedence.count(C.Load);
221       });
222 
223     return Candidates;
224   }
225 
226   /// Return the index of the instruction according to program order.
getInstrIndex(Instruction * Inst)227   unsigned getInstrIndex(Instruction *Inst) {
228     auto I = InstOrder.find(Inst);
229     assert(I != InstOrder.end() && "No index for instruction");
230     return I->second;
231   }
232 
233   /// If a load has multiple candidates associated (i.e. different
234   /// stores), it means that it could be forwarding from multiple stores
235   /// depending on control flow.  Remove these candidates.
236   ///
237   /// Here, we rely on LAA to include the relevant loop-independent dependences.
238   /// LAA is known to omit these in the very simple case when the read and the
239   /// write within an alias set always takes place using the *same* pointer.
240   ///
241   /// However, we know that this is not the case here, i.e. we can rely on LAA
242   /// to provide us with loop-independent dependences for the cases we're
243   /// interested.  Consider the case for example where a loop-independent
244   /// dependece S1->S2 invalidates the forwarding S3->S2.
245   ///
246   ///         A[i]   = ...   (S1)
247   ///         ...    = A[i]  (S2)
248   ///         A[i+1] = ...   (S3)
249   ///
250   /// LAA will perform dependence analysis here because there are two
251   /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
removeDependencesFromMultipleStores(std::forward_list<StoreToLoadForwardingCandidate> & Candidates)252   void removeDependencesFromMultipleStores(
253       std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
254     // If Store is nullptr it means that we have multiple stores forwarding to
255     // this store.
256     using LoadToSingleCandT =
257         DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>;
258     LoadToSingleCandT LoadToSingleCand;
259 
260     for (const auto &Cand : Candidates) {
261       bool NewElt;
262       LoadToSingleCandT::iterator Iter;
263 
264       std::tie(Iter, NewElt) =
265           LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
266       if (!NewElt) {
267         const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
268         // Already multiple stores forward to this load.
269         if (OtherCand == nullptr)
270           continue;
271 
272         // Handle the very basic case when the two stores are in the same block
273         // so deciding which one forwards is easy.  The later one forwards as
274         // long as they both have a dependence distance of one to the load.
275         if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
276             Cand.isDependenceDistanceOfOne(PSE, L) &&
277             OtherCand->isDependenceDistanceOfOne(PSE, L)) {
278           // They are in the same block, the later one will forward to the load.
279           if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
280             OtherCand = &Cand;
281         } else
282           OtherCand = nullptr;
283       }
284     }
285 
286     Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
287       if (LoadToSingleCand[Cand.Load] != &Cand) {
288         LLVM_DEBUG(
289             dbgs() << "Removing from candidates: \n"
290                    << Cand
291                    << "  The load may have multiple stores forwarding to "
292                    << "it\n");
293         return true;
294       }
295       return false;
296     });
297   }
298 
299   /// Given two pointers operations by their RuntimePointerChecking
300   /// indices, return true if they require an alias check.
301   ///
302   /// We need a check if one is a pointer for a candidate load and the other is
303   /// a pointer for a possibly intervening store.
needsChecking(unsigned PtrIdx1,unsigned PtrIdx2,const SmallPtrSet<Value *,4> & PtrsWrittenOnFwdingPath,const std::set<Value * > & CandLoadPtrs)304   bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
305                      const SmallPtrSet<Value *, 4> &PtrsWrittenOnFwdingPath,
306                      const std::set<Value *> &CandLoadPtrs) {
307     Value *Ptr1 =
308         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
309     Value *Ptr2 =
310         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
311     return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
312             (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
313   }
314 
315   /// Return pointers that are possibly written to on the path from a
316   /// forwarding store to a load.
317   ///
318   /// These pointers need to be alias-checked against the forwarding candidates.
findPointersWrittenOnForwardingPath(const SmallVectorImpl<StoreToLoadForwardingCandidate> & Candidates)319   SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath(
320       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
321     // From FirstStore to LastLoad neither of the elimination candidate loads
322     // should overlap with any of the stores.
323     //
324     // E.g.:
325     //
326     // st1 C[i]
327     // ld1 B[i] <-------,
328     // ld0 A[i] <----,  |              * LastLoad
329     // ...           |  |
330     // st2 E[i]      |  |
331     // st3 B[i+1] -- | -'              * FirstStore
332     // st0 A[i+1] ---'
333     // st4 D[i]
334     //
335     // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
336     // ld0.
337 
338     LoadInst *LastLoad =
339         std::max_element(Candidates.begin(), Candidates.end(),
340                          [&](const StoreToLoadForwardingCandidate &A,
341                              const StoreToLoadForwardingCandidate &B) {
342                            return getInstrIndex(A.Load) < getInstrIndex(B.Load);
343                          })
344             ->Load;
345     StoreInst *FirstStore =
346         std::min_element(Candidates.begin(), Candidates.end(),
347                          [&](const StoreToLoadForwardingCandidate &A,
348                              const StoreToLoadForwardingCandidate &B) {
349                            return getInstrIndex(A.Store) <
350                                   getInstrIndex(B.Store);
351                          })
352             ->Store;
353 
354     // We're looking for stores after the first forwarding store until the end
355     // of the loop, then from the beginning of the loop until the last
356     // forwarded-to load.  Collect the pointer for the stores.
357     SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath;
358 
359     auto InsertStorePtr = [&](Instruction *I) {
360       if (auto *S = dyn_cast<StoreInst>(I))
361         PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
362     };
363     const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
364     std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
365                   MemInstrs.end(), InsertStorePtr);
366     std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
367                   InsertStorePtr);
368 
369     return PtrsWrittenOnFwdingPath;
370   }
371 
372   /// Determine the pointer alias checks to prove that there are no
373   /// intervening stores.
collectMemchecks(const SmallVectorImpl<StoreToLoadForwardingCandidate> & Candidates)374   SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks(
375       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
376 
377     SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath =
378         findPointersWrittenOnForwardingPath(Candidates);
379 
380     // Collect the pointers of the candidate loads.
381     // FIXME: SmallPtrSet does not work with std::inserter.
382     std::set<Value *> CandLoadPtrs;
383     transform(Candidates,
384                    std::inserter(CandLoadPtrs, CandLoadPtrs.begin()),
385                    std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr));
386 
387     const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
388     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
389 
390     copy_if(AllChecks, std::back_inserter(Checks),
391             [&](const RuntimePointerChecking::PointerCheck &Check) {
392               for (auto PtrIdx1 : Check.first->Members)
393                 for (auto PtrIdx2 : Check.second->Members)
394                   if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath,
395                                     CandLoadPtrs))
396                     return true;
397               return false;
398             });
399 
400     LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size()
401                       << "):\n");
402     LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
403 
404     return Checks;
405   }
406 
407   /// Perform the transformation for a candidate.
408   void
propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate & Cand,SCEVExpander & SEE)409   propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
410                                   SCEVExpander &SEE) {
411     // loop:
412     //      %x = load %gep_i
413     //         = ... %x
414     //      store %y, %gep_i_plus_1
415     //
416     // =>
417     //
418     // ph:
419     //      %x.initial = load %gep_0
420     // loop:
421     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
422     //      %x = load %gep_i            <---- now dead
423     //         = ... %x.storeforward
424     //      store %y, %gep_i_plus_1
425 
426     Value *Ptr = Cand.Load->getPointerOperand();
427     auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
428     auto *PH = L->getLoopPreheader();
429     Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
430                                           PH->getTerminator());
431     Value *Initial =
432         new LoadInst(InitialPtr, "load_initial", /* isVolatile */ false,
433                      Cand.Load->getAlignment(), PH->getTerminator());
434 
435     PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
436                                    &L->getHeader()->front());
437     PHI->addIncoming(Initial, PH);
438     PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
439 
440     Cand.Load->replaceAllUsesWith(PHI);
441   }
442 
443   /// Top-level driver for each loop: find store->load forwarding
444   /// candidates, add run-time checks and perform transformation.
processLoop()445   bool processLoop() {
446     LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
447                       << "\" checking " << *L << "\n");
448 
449     // Look for store-to-load forwarding cases across the
450     // backedge. E.g.:
451     //
452     // loop:
453     //      %x = load %gep_i
454     //         = ... %x
455     //      store %y, %gep_i_plus_1
456     //
457     // =>
458     //
459     // ph:
460     //      %x.initial = load %gep_0
461     // loop:
462     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
463     //      %x = load %gep_i            <---- now dead
464     //         = ... %x.storeforward
465     //      store %y, %gep_i_plus_1
466 
467     // First start with store->load dependences.
468     auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
469     if (StoreToLoadDependences.empty())
470       return false;
471 
472     // Generate an index for each load and store according to the original
473     // program order.  This will be used later.
474     InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
475 
476     // To keep things simple for now, remove those where the load is potentially
477     // fed by multiple stores.
478     removeDependencesFromMultipleStores(StoreToLoadDependences);
479     if (StoreToLoadDependences.empty())
480       return false;
481 
482     // Filter the candidates further.
483     SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
484     unsigned NumForwarding = 0;
485     for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) {
486       LLVM_DEBUG(dbgs() << "Candidate " << Cand);
487 
488       // Make sure that the stored values is available everywhere in the loop in
489       // the next iteration.
490       if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
491         continue;
492 
493       // If the load is conditional we can't hoist its 0-iteration instance to
494       // the preheader because that would make it unconditional.  Thus we would
495       // access a memory location that the original loop did not access.
496       if (isLoadConditional(Cand.Load, L))
497         continue;
498 
499       // Check whether the SCEV difference is the same as the induction step,
500       // thus we load the value in the next iteration.
501       if (!Cand.isDependenceDistanceOfOne(PSE, L))
502         continue;
503 
504       ++NumForwarding;
505       LLVM_DEBUG(
506           dbgs()
507           << NumForwarding
508           << ". Valid store-to-load forwarding across the loop backedge\n");
509       Candidates.push_back(Cand);
510     }
511     if (Candidates.empty())
512       return false;
513 
514     // Check intervening may-alias stores.  These need runtime checks for alias
515     // disambiguation.
516     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks =
517         collectMemchecks(Candidates);
518 
519     // Too many checks are likely to outweigh the benefits of forwarding.
520     if (Checks.size() > Candidates.size() * CheckPerElim) {
521       LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n");
522       return false;
523     }
524 
525     if (LAI.getPSE().getUnionPredicate().getComplexity() >
526         LoadElimSCEVCheckThreshold) {
527       LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
528       return false;
529     }
530 
531     if (!Checks.empty() || !LAI.getPSE().getUnionPredicate().isAlwaysTrue()) {
532       if (L->getHeader()->getParent()->optForSize()) {
533         LLVM_DEBUG(
534             dbgs() << "Versioning is needed but not allowed when optimizing "
535                       "for size.\n");
536         return false;
537       }
538 
539       if (!L->isLoopSimplifyForm()) {
540         LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form");
541         return false;
542       }
543 
544       // Point of no-return, start the transformation.  First, version the loop
545       // if necessary.
546 
547       LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false);
548       LV.setAliasChecks(std::move(Checks));
549       LV.setSCEVChecks(LAI.getPSE().getUnionPredicate());
550       LV.versionLoop();
551     }
552 
553     // Next, propagate the value stored by the store to the users of the load.
554     // Also for the first iteration, generate the initial value of the load.
555     SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
556                      "storeforward");
557     for (const auto &Cand : Candidates)
558       propagateStoredValueToLoadUsers(Cand, SEE);
559     NumLoopLoadEliminted += NumForwarding;
560 
561     return true;
562   }
563 
564 private:
565   Loop *L;
566 
567   /// Maps the load/store instructions to their index according to
568   /// program order.
569   DenseMap<Instruction *, unsigned> InstOrder;
570 
571   // Analyses used.
572   LoopInfo *LI;
573   const LoopAccessInfo &LAI;
574   DominatorTree *DT;
575   PredicatedScalarEvolution PSE;
576 };
577 
578 } // end anonymous namespace
579 
580 static bool
eliminateLoadsAcrossLoops(Function & F,LoopInfo & LI,DominatorTree & DT,function_ref<const LoopAccessInfo & (Loop &)> GetLAI)581 eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI, DominatorTree &DT,
582                           function_ref<const LoopAccessInfo &(Loop &)> GetLAI) {
583   // Build up a worklist of inner-loops to transform to avoid iterator
584   // invalidation.
585   // FIXME: This logic comes from other passes that actually change the loop
586   // nest structure. It isn't clear this is necessary (or useful) for a pass
587   // which merely optimizes the use of loads in a loop.
588   SmallVector<Loop *, 8> Worklist;
589 
590   for (Loop *TopLevelLoop : LI)
591     for (Loop *L : depth_first(TopLevelLoop))
592       // We only handle inner-most loops.
593       if (L->empty())
594         Worklist.push_back(L);
595 
596   // Now walk the identified inner loops.
597   bool Changed = false;
598   for (Loop *L : Worklist) {
599     // The actual work is performed by LoadEliminationForLoop.
600     LoadEliminationForLoop LEL(L, &LI, GetLAI(*L), &DT);
601     Changed |= LEL.processLoop();
602   }
603   return Changed;
604 }
605 
606 namespace {
607 
608 /// The pass.  Most of the work is delegated to the per-loop
609 /// LoadEliminationForLoop class.
610 class LoopLoadElimination : public FunctionPass {
611 public:
612   static char ID;
613 
LoopLoadElimination()614   LoopLoadElimination() : FunctionPass(ID) {
615     initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
616   }
617 
runOnFunction(Function & F)618   bool runOnFunction(Function &F) override {
619     if (skipFunction(F))
620       return false;
621 
622     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
623     auto &LAA = getAnalysis<LoopAccessLegacyAnalysis>();
624     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
625 
626     // Process each loop nest in the function.
627     return eliminateLoadsAcrossLoops(
628         F, LI, DT,
629         [&LAA](Loop &L) -> const LoopAccessInfo & { return LAA.getInfo(&L); });
630   }
631 
getAnalysisUsage(AnalysisUsage & AU) const632   void getAnalysisUsage(AnalysisUsage &AU) const override {
633     AU.addRequiredID(LoopSimplifyID);
634     AU.addRequired<LoopInfoWrapperPass>();
635     AU.addPreserved<LoopInfoWrapperPass>();
636     AU.addRequired<LoopAccessLegacyAnalysis>();
637     AU.addRequired<ScalarEvolutionWrapperPass>();
638     AU.addRequired<DominatorTreeWrapperPass>();
639     AU.addPreserved<DominatorTreeWrapperPass>();
640     AU.addPreserved<GlobalsAAWrapperPass>();
641   }
642 };
643 
644 } // end anonymous namespace
645 
646 char LoopLoadElimination::ID;
647 
648 static const char LLE_name[] = "Loop Load Elimination";
649 
INITIALIZE_PASS_BEGIN(LoopLoadElimination,LLE_OPTION,LLE_name,false,false)650 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
651 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
652 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
653 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
654 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
655 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
656 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
657 
658 FunctionPass *llvm::createLoopLoadEliminationPass() {
659   return new LoopLoadElimination();
660 }
661 
run(Function & F,FunctionAnalysisManager & AM)662 PreservedAnalyses LoopLoadEliminationPass::run(Function &F,
663                                                FunctionAnalysisManager &AM) {
664   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
665   auto &LI = AM.getResult<LoopAnalysis>(F);
666   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
667   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
668   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
669   auto &AA = AM.getResult<AAManager>(F);
670   auto &AC = AM.getResult<AssumptionAnalysis>(F);
671 
672   auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
673   bool Changed = eliminateLoadsAcrossLoops(
674       F, LI, DT, [&](Loop &L) -> const LoopAccessInfo & {
675         LoopStandardAnalysisResults AR = {AA, AC,  DT,  LI,
676                                           SE, TLI, TTI, nullptr};
677         return LAM.getResult<LoopAccessAnalysis>(L, AR);
678       });
679 
680   if (!Changed)
681     return PreservedAnalyses::all();
682 
683   PreservedAnalyses PA;
684   return PA;
685 }
686