1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This transformation implements the well known scalar replacement of
11 /// aggregates transformation. It tries to identify promotable elements of an
12 /// aggregate alloca, and promote them to registers. It will also try to
13 /// convert uses of an element (or set of elements) of an alloca into a vector
14 /// or bitfield-style integer scalar if appropriate.
15 ///
16 /// It works to do this with minimal slicing of the alloca so that regions
17 /// which are merely transferred in and out of external memory remain unchanged
18 /// and are not decomposed to scalar code.
19 ///
20 /// Because this also performs alloca promotion, it can be thought of as also
21 /// serving the purpose of SSA formation. The algorithm iterates on the
22 /// function until all opportunities for promotion have been realized.
23 ///
24 //===----------------------------------------------------------------------===//
25
26 #include "llvm/Transforms/Scalar/SROA.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/PointerIntPair.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SetVector.h"
33 #include "llvm/ADT/SmallBitVector.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/Twine.h"
39 #include "llvm/ADT/iterator.h"
40 #include "llvm/ADT/iterator_range.h"
41 #include "llvm/Analysis/AssumptionCache.h"
42 #include "llvm/Analysis/GlobalsModRef.h"
43 #include "llvm/Analysis/Loads.h"
44 #include "llvm/Analysis/PtrUseVisitor.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include "llvm/Config/llvm-config.h"
47 #include "llvm/IR/BasicBlock.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/ConstantFolder.h"
50 #include "llvm/IR/Constants.h"
51 #include "llvm/IR/DIBuilder.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DebugInfoMetadata.h"
54 #include "llvm/IR/DerivedTypes.h"
55 #include "llvm/IR/Dominators.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/GetElementPtrTypeIterator.h"
58 #include "llvm/IR/GlobalAlias.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstVisitor.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/Intrinsics.h"
66 #include "llvm/IR/LLVMContext.h"
67 #include "llvm/IR/Metadata.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/Operator.h"
70 #include "llvm/IR/PassManager.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/User.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/ErrorHandling.h"
81 #include "llvm/Support/MathExtras.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include "llvm/Transforms/Scalar.h"
84 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
85 #include <algorithm>
86 #include <cassert>
87 #include <chrono>
88 #include <cstddef>
89 #include <cstdint>
90 #include <cstring>
91 #include <iterator>
92 #include <string>
93 #include <tuple>
94 #include <utility>
95 #include <vector>
96
97 #ifndef NDEBUG
98 // We only use this for a debug check.
99 #include <random>
100 #endif
101
102 using namespace llvm;
103 using namespace llvm::sroa;
104
105 #define DEBUG_TYPE "sroa"
106
107 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
108 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
109 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
110 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
111 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
112 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
113 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
114 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
115 STATISTIC(NumDeleted, "Number of instructions deleted");
116 STATISTIC(NumVectorized, "Number of vectorized aggregates");
117
118 /// Hidden option to enable randomly shuffling the slices to help uncover
119 /// instability in their order.
120 static cl::opt<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices",
121 cl::init(false), cl::Hidden);
122
123 /// Hidden option to experiment with completely strict handling of inbounds
124 /// GEPs.
125 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
126 cl::Hidden);
127
128 namespace {
129
130 /// A custom IRBuilder inserter which prefixes all names, but only in
131 /// Assert builds.
132 class IRBuilderPrefixedInserter : public IRBuilderDefaultInserter {
133 std::string Prefix;
134
getNameWithPrefix(const Twine & Name) const135 const Twine getNameWithPrefix(const Twine &Name) const {
136 return Name.isTriviallyEmpty() ? Name : Prefix + Name;
137 }
138
139 public:
SetNamePrefix(const Twine & P)140 void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
141
142 protected:
InsertHelper(Instruction * I,const Twine & Name,BasicBlock * BB,BasicBlock::iterator InsertPt) const143 void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
144 BasicBlock::iterator InsertPt) const {
145 IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB,
146 InsertPt);
147 }
148 };
149
150 /// Provide a type for IRBuilder that drops names in release builds.
151 using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>;
152
153 /// A used slice of an alloca.
154 ///
155 /// This structure represents a slice of an alloca used by some instruction. It
156 /// stores both the begin and end offsets of this use, a pointer to the use
157 /// itself, and a flag indicating whether we can classify the use as splittable
158 /// or not when forming partitions of the alloca.
159 class Slice {
160 /// The beginning offset of the range.
161 uint64_t BeginOffset = 0;
162
163 /// The ending offset, not included in the range.
164 uint64_t EndOffset = 0;
165
166 /// Storage for both the use of this slice and whether it can be
167 /// split.
168 PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
169
170 public:
171 Slice() = default;
172
Slice(uint64_t BeginOffset,uint64_t EndOffset,Use * U,bool IsSplittable)173 Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
174 : BeginOffset(BeginOffset), EndOffset(EndOffset),
175 UseAndIsSplittable(U, IsSplittable) {}
176
beginOffset() const177 uint64_t beginOffset() const { return BeginOffset; }
endOffset() const178 uint64_t endOffset() const { return EndOffset; }
179
isSplittable() const180 bool isSplittable() const { return UseAndIsSplittable.getInt(); }
makeUnsplittable()181 void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
182
getUse() const183 Use *getUse() const { return UseAndIsSplittable.getPointer(); }
184
isDead() const185 bool isDead() const { return getUse() == nullptr; }
kill()186 void kill() { UseAndIsSplittable.setPointer(nullptr); }
187
188 /// Support for ordering ranges.
189 ///
190 /// This provides an ordering over ranges such that start offsets are
191 /// always increasing, and within equal start offsets, the end offsets are
192 /// decreasing. Thus the spanning range comes first in a cluster with the
193 /// same start position.
operator <(const Slice & RHS) const194 bool operator<(const Slice &RHS) const {
195 if (beginOffset() < RHS.beginOffset())
196 return true;
197 if (beginOffset() > RHS.beginOffset())
198 return false;
199 if (isSplittable() != RHS.isSplittable())
200 return !isSplittable();
201 if (endOffset() > RHS.endOffset())
202 return true;
203 return false;
204 }
205
206 /// Support comparison with a single offset to allow binary searches.
operator <(const Slice & LHS,uint64_t RHSOffset)207 friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
208 uint64_t RHSOffset) {
209 return LHS.beginOffset() < RHSOffset;
210 }
operator <(uint64_t LHSOffset,const Slice & RHS)211 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
212 const Slice &RHS) {
213 return LHSOffset < RHS.beginOffset();
214 }
215
operator ==(const Slice & RHS) const216 bool operator==(const Slice &RHS) const {
217 return isSplittable() == RHS.isSplittable() &&
218 beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
219 }
operator !=(const Slice & RHS) const220 bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
221 };
222
223 } // end anonymous namespace
224
225 namespace llvm {
226
227 template <typename T> struct isPodLike;
228 template <> struct isPodLike<Slice> { static const bool value = true; };
229
230 } // end namespace llvm
231
232 /// Representation of the alloca slices.
233 ///
234 /// This class represents the slices of an alloca which are formed by its
235 /// various uses. If a pointer escapes, we can't fully build a representation
236 /// for the slices used and we reflect that in this structure. The uses are
237 /// stored, sorted by increasing beginning offset and with unsplittable slices
238 /// starting at a particular offset before splittable slices.
239 class llvm::sroa::AllocaSlices {
240 public:
241 /// Construct the slices of a particular alloca.
242 AllocaSlices(const DataLayout &DL, AllocaInst &AI);
243
244 /// Test whether a pointer to the allocation escapes our analysis.
245 ///
246 /// If this is true, the slices are never fully built and should be
247 /// ignored.
isEscaped() const248 bool isEscaped() const { return PointerEscapingInstr; }
249
250 /// Support for iterating over the slices.
251 /// @{
252 using iterator = SmallVectorImpl<Slice>::iterator;
253 using range = iterator_range<iterator>;
254
begin()255 iterator begin() { return Slices.begin(); }
end()256 iterator end() { return Slices.end(); }
257
258 using const_iterator = SmallVectorImpl<Slice>::const_iterator;
259 using const_range = iterator_range<const_iterator>;
260
begin() const261 const_iterator begin() const { return Slices.begin(); }
end() const262 const_iterator end() const { return Slices.end(); }
263 /// @}
264
265 /// Erase a range of slices.
erase(iterator Start,iterator Stop)266 void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
267
268 /// Insert new slices for this alloca.
269 ///
270 /// This moves the slices into the alloca's slices collection, and re-sorts
271 /// everything so that the usual ordering properties of the alloca's slices
272 /// hold.
insert(ArrayRef<Slice> NewSlices)273 void insert(ArrayRef<Slice> NewSlices) {
274 int OldSize = Slices.size();
275 Slices.append(NewSlices.begin(), NewSlices.end());
276 auto SliceI = Slices.begin() + OldSize;
277 llvm::sort(SliceI, Slices.end());
278 std::inplace_merge(Slices.begin(), SliceI, Slices.end());
279 }
280
281 // Forward declare the iterator and range accessor for walking the
282 // partitions.
283 class partition_iterator;
284 iterator_range<partition_iterator> partitions();
285
286 /// Access the dead users for this alloca.
getDeadUsers() const287 ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
288
289 /// Access the dead operands referring to this alloca.
290 ///
291 /// These are operands which have cannot actually be used to refer to the
292 /// alloca as they are outside its range and the user doesn't correct for
293 /// that. These mostly consist of PHI node inputs and the like which we just
294 /// need to replace with undef.
getDeadOperands() const295 ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
296
297 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
298 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const;
299 void printSlice(raw_ostream &OS, const_iterator I,
300 StringRef Indent = " ") const;
301 void printUse(raw_ostream &OS, const_iterator I,
302 StringRef Indent = " ") const;
303 void print(raw_ostream &OS) const;
304 void dump(const_iterator I) const;
305 void dump() const;
306 #endif
307
308 private:
309 template <typename DerivedT, typename RetT = void> class BuilderBase;
310 class SliceBuilder;
311
312 friend class AllocaSlices::SliceBuilder;
313
314 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
315 /// Handle to alloca instruction to simplify method interfaces.
316 AllocaInst &AI;
317 #endif
318
319 /// The instruction responsible for this alloca not having a known set
320 /// of slices.
321 ///
322 /// When an instruction (potentially) escapes the pointer to the alloca, we
323 /// store a pointer to that here and abort trying to form slices of the
324 /// alloca. This will be null if the alloca slices are analyzed successfully.
325 Instruction *PointerEscapingInstr;
326
327 /// The slices of the alloca.
328 ///
329 /// We store a vector of the slices formed by uses of the alloca here. This
330 /// vector is sorted by increasing begin offset, and then the unsplittable
331 /// slices before the splittable ones. See the Slice inner class for more
332 /// details.
333 SmallVector<Slice, 8> Slices;
334
335 /// Instructions which will become dead if we rewrite the alloca.
336 ///
337 /// Note that these are not separated by slice. This is because we expect an
338 /// alloca to be completely rewritten or not rewritten at all. If rewritten,
339 /// all these instructions can simply be removed and replaced with undef as
340 /// they come from outside of the allocated space.
341 SmallVector<Instruction *, 8> DeadUsers;
342
343 /// Operands which will become dead if we rewrite the alloca.
344 ///
345 /// These are operands that in their particular use can be replaced with
346 /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
347 /// to PHI nodes and the like. They aren't entirely dead (there might be
348 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
349 /// want to swap this particular input for undef to simplify the use lists of
350 /// the alloca.
351 SmallVector<Use *, 8> DeadOperands;
352 };
353
354 /// A partition of the slices.
355 ///
356 /// An ephemeral representation for a range of slices which can be viewed as
357 /// a partition of the alloca. This range represents a span of the alloca's
358 /// memory which cannot be split, and provides access to all of the slices
359 /// overlapping some part of the partition.
360 ///
361 /// Objects of this type are produced by traversing the alloca's slices, but
362 /// are only ephemeral and not persistent.
363 class llvm::sroa::Partition {
364 private:
365 friend class AllocaSlices;
366 friend class AllocaSlices::partition_iterator;
367
368 using iterator = AllocaSlices::iterator;
369
370 /// The beginning and ending offsets of the alloca for this
371 /// partition.
372 uint64_t BeginOffset, EndOffset;
373
374 /// The start and end iterators of this partition.
375 iterator SI, SJ;
376
377 /// A collection of split slice tails overlapping the partition.
378 SmallVector<Slice *, 4> SplitTails;
379
380 /// Raw constructor builds an empty partition starting and ending at
381 /// the given iterator.
Partition(iterator SI)382 Partition(iterator SI) : SI(SI), SJ(SI) {}
383
384 public:
385 /// The start offset of this partition.
386 ///
387 /// All of the contained slices start at or after this offset.
beginOffset() const388 uint64_t beginOffset() const { return BeginOffset; }
389
390 /// The end offset of this partition.
391 ///
392 /// All of the contained slices end at or before this offset.
endOffset() const393 uint64_t endOffset() const { return EndOffset; }
394
395 /// The size of the partition.
396 ///
397 /// Note that this can never be zero.
size() const398 uint64_t size() const {
399 assert(BeginOffset < EndOffset && "Partitions must span some bytes!");
400 return EndOffset - BeginOffset;
401 }
402
403 /// Test whether this partition contains no slices, and merely spans
404 /// a region occupied by split slices.
empty() const405 bool empty() const { return SI == SJ; }
406
407 /// \name Iterate slices that start within the partition.
408 /// These may be splittable or unsplittable. They have a begin offset >= the
409 /// partition begin offset.
410 /// @{
411 // FIXME: We should probably define a "concat_iterator" helper and use that
412 // to stitch together pointee_iterators over the split tails and the
413 // contiguous iterators of the partition. That would give a much nicer
414 // interface here. We could then additionally expose filtered iterators for
415 // split, unsplit, and unsplittable splices based on the usage patterns.
begin() const416 iterator begin() const { return SI; }
end() const417 iterator end() const { return SJ; }
418 /// @}
419
420 /// Get the sequence of split slice tails.
421 ///
422 /// These tails are of slices which start before this partition but are
423 /// split and overlap into the partition. We accumulate these while forming
424 /// partitions.
splitSliceTails() const425 ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
426 };
427
428 /// An iterator over partitions of the alloca's slices.
429 ///
430 /// This iterator implements the core algorithm for partitioning the alloca's
431 /// slices. It is a forward iterator as we don't support backtracking for
432 /// efficiency reasons, and re-use a single storage area to maintain the
433 /// current set of split slices.
434 ///
435 /// It is templated on the slice iterator type to use so that it can operate
436 /// with either const or non-const slice iterators.
437 class AllocaSlices::partition_iterator
438 : public iterator_facade_base<partition_iterator, std::forward_iterator_tag,
439 Partition> {
440 friend class AllocaSlices;
441
442 /// Most of the state for walking the partitions is held in a class
443 /// with a nice interface for examining them.
444 Partition P;
445
446 /// We need to keep the end of the slices to know when to stop.
447 AllocaSlices::iterator SE;
448
449 /// We also need to keep track of the maximum split end offset seen.
450 /// FIXME: Do we really?
451 uint64_t MaxSplitSliceEndOffset = 0;
452
453 /// Sets the partition to be empty at given iterator, and sets the
454 /// end iterator.
partition_iterator(AllocaSlices::iterator SI,AllocaSlices::iterator SE)455 partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
456 : P(SI), SE(SE) {
457 // If not already at the end, advance our state to form the initial
458 // partition.
459 if (SI != SE)
460 advance();
461 }
462
463 /// Advance the iterator to the next partition.
464 ///
465 /// Requires that the iterator not be at the end of the slices.
advance()466 void advance() {
467 assert((P.SI != SE || !P.SplitTails.empty()) &&
468 "Cannot advance past the end of the slices!");
469
470 // Clear out any split uses which have ended.
471 if (!P.SplitTails.empty()) {
472 if (P.EndOffset >= MaxSplitSliceEndOffset) {
473 // If we've finished all splits, this is easy.
474 P.SplitTails.clear();
475 MaxSplitSliceEndOffset = 0;
476 } else {
477 // Remove the uses which have ended in the prior partition. This
478 // cannot change the max split slice end because we just checked that
479 // the prior partition ended prior to that max.
480 P.SplitTails.erase(llvm::remove_if(P.SplitTails,
481 [&](Slice *S) {
482 return S->endOffset() <=
483 P.EndOffset;
484 }),
485 P.SplitTails.end());
486 assert(llvm::any_of(P.SplitTails,
487 [&](Slice *S) {
488 return S->endOffset() == MaxSplitSliceEndOffset;
489 }) &&
490 "Could not find the current max split slice offset!");
491 assert(llvm::all_of(P.SplitTails,
492 [&](Slice *S) {
493 return S->endOffset() <= MaxSplitSliceEndOffset;
494 }) &&
495 "Max split slice end offset is not actually the max!");
496 }
497 }
498
499 // If P.SI is already at the end, then we've cleared the split tail and
500 // now have an end iterator.
501 if (P.SI == SE) {
502 assert(P.SplitTails.empty() && "Failed to clear the split slices!");
503 return;
504 }
505
506 // If we had a non-empty partition previously, set up the state for
507 // subsequent partitions.
508 if (P.SI != P.SJ) {
509 // Accumulate all the splittable slices which started in the old
510 // partition into the split list.
511 for (Slice &S : P)
512 if (S.isSplittable() && S.endOffset() > P.EndOffset) {
513 P.SplitTails.push_back(&S);
514 MaxSplitSliceEndOffset =
515 std::max(S.endOffset(), MaxSplitSliceEndOffset);
516 }
517
518 // Start from the end of the previous partition.
519 P.SI = P.SJ;
520
521 // If P.SI is now at the end, we at most have a tail of split slices.
522 if (P.SI == SE) {
523 P.BeginOffset = P.EndOffset;
524 P.EndOffset = MaxSplitSliceEndOffset;
525 return;
526 }
527
528 // If the we have split slices and the next slice is after a gap and is
529 // not splittable immediately form an empty partition for the split
530 // slices up until the next slice begins.
531 if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
532 !P.SI->isSplittable()) {
533 P.BeginOffset = P.EndOffset;
534 P.EndOffset = P.SI->beginOffset();
535 return;
536 }
537 }
538
539 // OK, we need to consume new slices. Set the end offset based on the
540 // current slice, and step SJ past it. The beginning offset of the
541 // partition is the beginning offset of the next slice unless we have
542 // pre-existing split slices that are continuing, in which case we begin
543 // at the prior end offset.
544 P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
545 P.EndOffset = P.SI->endOffset();
546 ++P.SJ;
547
548 // There are two strategies to form a partition based on whether the
549 // partition starts with an unsplittable slice or a splittable slice.
550 if (!P.SI->isSplittable()) {
551 // When we're forming an unsplittable region, it must always start at
552 // the first slice and will extend through its end.
553 assert(P.BeginOffset == P.SI->beginOffset());
554
555 // Form a partition including all of the overlapping slices with this
556 // unsplittable slice.
557 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
558 if (!P.SJ->isSplittable())
559 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
560 ++P.SJ;
561 }
562
563 // We have a partition across a set of overlapping unsplittable
564 // partitions.
565 return;
566 }
567
568 // If we're starting with a splittable slice, then we need to form
569 // a synthetic partition spanning it and any other overlapping splittable
570 // splices.
571 assert(P.SI->isSplittable() && "Forming a splittable partition!");
572
573 // Collect all of the overlapping splittable slices.
574 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
575 P.SJ->isSplittable()) {
576 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
577 ++P.SJ;
578 }
579
580 // Back upiP.EndOffset if we ended the span early when encountering an
581 // unsplittable slice. This synthesizes the early end offset of
582 // a partition spanning only splittable slices.
583 if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
584 assert(!P.SJ->isSplittable());
585 P.EndOffset = P.SJ->beginOffset();
586 }
587 }
588
589 public:
operator ==(const partition_iterator & RHS) const590 bool operator==(const partition_iterator &RHS) const {
591 assert(SE == RHS.SE &&
592 "End iterators don't match between compared partition iterators!");
593
594 // The observed positions of partitions is marked by the P.SI iterator and
595 // the emptiness of the split slices. The latter is only relevant when
596 // P.SI == SE, as the end iterator will additionally have an empty split
597 // slices list, but the prior may have the same P.SI and a tail of split
598 // slices.
599 if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
600 assert(P.SJ == RHS.P.SJ &&
601 "Same set of slices formed two different sized partitions!");
602 assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
603 "Same slice position with differently sized non-empty split "
604 "slice tails!");
605 return true;
606 }
607 return false;
608 }
609
operator ++()610 partition_iterator &operator++() {
611 advance();
612 return *this;
613 }
614
operator *()615 Partition &operator*() { return P; }
616 };
617
618 /// A forward range over the partitions of the alloca's slices.
619 ///
620 /// This accesses an iterator range over the partitions of the alloca's
621 /// slices. It computes these partitions on the fly based on the overlapping
622 /// offsets of the slices and the ability to split them. It will visit "empty"
623 /// partitions to cover regions of the alloca only accessed via split
624 /// slices.
partitions()625 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() {
626 return make_range(partition_iterator(begin(), end()),
627 partition_iterator(end(), end()));
628 }
629
foldSelectInst(SelectInst & SI)630 static Value *foldSelectInst(SelectInst &SI) {
631 // If the condition being selected on is a constant or the same value is
632 // being selected between, fold the select. Yes this does (rarely) happen
633 // early on.
634 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
635 return SI.getOperand(1 + CI->isZero());
636 if (SI.getOperand(1) == SI.getOperand(2))
637 return SI.getOperand(1);
638
639 return nullptr;
640 }
641
642 /// A helper that folds a PHI node or a select.
foldPHINodeOrSelectInst(Instruction & I)643 static Value *foldPHINodeOrSelectInst(Instruction &I) {
644 if (PHINode *PN = dyn_cast<PHINode>(&I)) {
645 // If PN merges together the same value, return that value.
646 return PN->hasConstantValue();
647 }
648 return foldSelectInst(cast<SelectInst>(I));
649 }
650
651 /// Builder for the alloca slices.
652 ///
653 /// This class builds a set of alloca slices by recursively visiting the uses
654 /// of an alloca and making a slice for each load and store at each offset.
655 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
656 friend class PtrUseVisitor<SliceBuilder>;
657 friend class InstVisitor<SliceBuilder>;
658
659 using Base = PtrUseVisitor<SliceBuilder>;
660
661 const uint64_t AllocSize;
662 AllocaSlices &AS;
663
664 SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
665 SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
666
667 /// Set to de-duplicate dead instructions found in the use walk.
668 SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
669
670 public:
SliceBuilder(const DataLayout & DL,AllocaInst & AI,AllocaSlices & AS)671 SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS)
672 : PtrUseVisitor<SliceBuilder>(DL),
673 AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), AS(AS) {}
674
675 private:
markAsDead(Instruction & I)676 void markAsDead(Instruction &I) {
677 if (VisitedDeadInsts.insert(&I).second)
678 AS.DeadUsers.push_back(&I);
679 }
680
insertUse(Instruction & I,const APInt & Offset,uint64_t Size,bool IsSplittable=false)681 void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
682 bool IsSplittable = false) {
683 // Completely skip uses which have a zero size or start either before or
684 // past the end of the allocation.
685 if (Size == 0 || Offset.uge(AllocSize)) {
686 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @"
687 << Offset
688 << " which has zero size or starts outside of the "
689 << AllocSize << " byte alloca:\n"
690 << " alloca: " << AS.AI << "\n"
691 << " use: " << I << "\n");
692 return markAsDead(I);
693 }
694
695 uint64_t BeginOffset = Offset.getZExtValue();
696 uint64_t EndOffset = BeginOffset + Size;
697
698 // Clamp the end offset to the end of the allocation. Note that this is
699 // formulated to handle even the case where "BeginOffset + Size" overflows.
700 // This may appear superficially to be something we could ignore entirely,
701 // but that is not so! There may be widened loads or PHI-node uses where
702 // some instructions are dead but not others. We can't completely ignore
703 // them, and so have to record at least the information here.
704 assert(AllocSize >= BeginOffset); // Established above.
705 if (Size > AllocSize - BeginOffset) {
706 LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @"
707 << Offset << " to remain within the " << AllocSize
708 << " byte alloca:\n"
709 << " alloca: " << AS.AI << "\n"
710 << " use: " << I << "\n");
711 EndOffset = AllocSize;
712 }
713
714 AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
715 }
716
visitBitCastInst(BitCastInst & BC)717 void visitBitCastInst(BitCastInst &BC) {
718 if (BC.use_empty())
719 return markAsDead(BC);
720
721 return Base::visitBitCastInst(BC);
722 }
723
visitGetElementPtrInst(GetElementPtrInst & GEPI)724 void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
725 if (GEPI.use_empty())
726 return markAsDead(GEPI);
727
728 if (SROAStrictInbounds && GEPI.isInBounds()) {
729 // FIXME: This is a manually un-factored variant of the basic code inside
730 // of GEPs with checking of the inbounds invariant specified in the
731 // langref in a very strict sense. If we ever want to enable
732 // SROAStrictInbounds, this code should be factored cleanly into
733 // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
734 // by writing out the code here where we have the underlying allocation
735 // size readily available.
736 APInt GEPOffset = Offset;
737 const DataLayout &DL = GEPI.getModule()->getDataLayout();
738 for (gep_type_iterator GTI = gep_type_begin(GEPI),
739 GTE = gep_type_end(GEPI);
740 GTI != GTE; ++GTI) {
741 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
742 if (!OpC)
743 break;
744
745 // Handle a struct index, which adds its field offset to the pointer.
746 if (StructType *STy = GTI.getStructTypeOrNull()) {
747 unsigned ElementIdx = OpC->getZExtValue();
748 const StructLayout *SL = DL.getStructLayout(STy);
749 GEPOffset +=
750 APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
751 } else {
752 // For array or vector indices, scale the index by the size of the
753 // type.
754 APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
755 GEPOffset += Index * APInt(Offset.getBitWidth(),
756 DL.getTypeAllocSize(GTI.getIndexedType()));
757 }
758
759 // If this index has computed an intermediate pointer which is not
760 // inbounds, then the result of the GEP is a poison value and we can
761 // delete it and all uses.
762 if (GEPOffset.ugt(AllocSize))
763 return markAsDead(GEPI);
764 }
765 }
766
767 return Base::visitGetElementPtrInst(GEPI);
768 }
769
handleLoadOrStore(Type * Ty,Instruction & I,const APInt & Offset,uint64_t Size,bool IsVolatile)770 void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
771 uint64_t Size, bool IsVolatile) {
772 // We allow splitting of non-volatile loads and stores where the type is an
773 // integer type. These may be used to implement 'memcpy' or other "transfer
774 // of bits" patterns.
775 bool IsSplittable = Ty->isIntegerTy() && !IsVolatile;
776
777 insertUse(I, Offset, Size, IsSplittable);
778 }
779
visitLoadInst(LoadInst & LI)780 void visitLoadInst(LoadInst &LI) {
781 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
782 "All simple FCA loads should have been pre-split");
783
784 if (!IsOffsetKnown)
785 return PI.setAborted(&LI);
786
787 const DataLayout &DL = LI.getModule()->getDataLayout();
788 uint64_t Size = DL.getTypeStoreSize(LI.getType());
789 return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
790 }
791
visitStoreInst(StoreInst & SI)792 void visitStoreInst(StoreInst &SI) {
793 Value *ValOp = SI.getValueOperand();
794 if (ValOp == *U)
795 return PI.setEscapedAndAborted(&SI);
796 if (!IsOffsetKnown)
797 return PI.setAborted(&SI);
798
799 const DataLayout &DL = SI.getModule()->getDataLayout();
800 uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
801
802 // If this memory access can be shown to *statically* extend outside the
803 // bounds of the allocation, it's behavior is undefined, so simply
804 // ignore it. Note that this is more strict than the generic clamping
805 // behavior of insertUse. We also try to handle cases which might run the
806 // risk of overflow.
807 // FIXME: We should instead consider the pointer to have escaped if this
808 // function is being instrumented for addressing bugs or race conditions.
809 if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
810 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @"
811 << Offset << " which extends past the end of the "
812 << AllocSize << " byte alloca:\n"
813 << " alloca: " << AS.AI << "\n"
814 << " use: " << SI << "\n");
815 return markAsDead(SI);
816 }
817
818 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
819 "All simple FCA stores should have been pre-split");
820 handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
821 }
822
visitMemSetInst(MemSetInst & II)823 void visitMemSetInst(MemSetInst &II) {
824 assert(II.getRawDest() == *U && "Pointer use is not the destination?");
825 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
826 if ((Length && Length->getValue() == 0) ||
827 (IsOffsetKnown && Offset.uge(AllocSize)))
828 // Zero-length mem transfer intrinsics can be ignored entirely.
829 return markAsDead(II);
830
831 if (!IsOffsetKnown)
832 return PI.setAborted(&II);
833
834 insertUse(II, Offset, Length ? Length->getLimitedValue()
835 : AllocSize - Offset.getLimitedValue(),
836 (bool)Length);
837 }
838
visitMemTransferInst(MemTransferInst & II)839 void visitMemTransferInst(MemTransferInst &II) {
840 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
841 if (Length && Length->getValue() == 0)
842 // Zero-length mem transfer intrinsics can be ignored entirely.
843 return markAsDead(II);
844
845 // Because we can visit these intrinsics twice, also check to see if the
846 // first time marked this instruction as dead. If so, skip it.
847 if (VisitedDeadInsts.count(&II))
848 return;
849
850 if (!IsOffsetKnown)
851 return PI.setAborted(&II);
852
853 // This side of the transfer is completely out-of-bounds, and so we can
854 // nuke the entire transfer. However, we also need to nuke the other side
855 // if already added to our partitions.
856 // FIXME: Yet another place we really should bypass this when
857 // instrumenting for ASan.
858 if (Offset.uge(AllocSize)) {
859 SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
860 MemTransferSliceMap.find(&II);
861 if (MTPI != MemTransferSliceMap.end())
862 AS.Slices[MTPI->second].kill();
863 return markAsDead(II);
864 }
865
866 uint64_t RawOffset = Offset.getLimitedValue();
867 uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
868
869 // Check for the special case where the same exact value is used for both
870 // source and dest.
871 if (*U == II.getRawDest() && *U == II.getRawSource()) {
872 // For non-volatile transfers this is a no-op.
873 if (!II.isVolatile())
874 return markAsDead(II);
875
876 return insertUse(II, Offset, Size, /*IsSplittable=*/false);
877 }
878
879 // If we have seen both source and destination for a mem transfer, then
880 // they both point to the same alloca.
881 bool Inserted;
882 SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
883 std::tie(MTPI, Inserted) =
884 MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
885 unsigned PrevIdx = MTPI->second;
886 if (!Inserted) {
887 Slice &PrevP = AS.Slices[PrevIdx];
888
889 // Check if the begin offsets match and this is a non-volatile transfer.
890 // In that case, we can completely elide the transfer.
891 if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
892 PrevP.kill();
893 return markAsDead(II);
894 }
895
896 // Otherwise we have an offset transfer within the same alloca. We can't
897 // split those.
898 PrevP.makeUnsplittable();
899 }
900
901 // Insert the use now that we've fixed up the splittable nature.
902 insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
903
904 // Check that we ended up with a valid index in the map.
905 assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&
906 "Map index doesn't point back to a slice with this user.");
907 }
908
909 // Disable SRoA for any intrinsics except for lifetime invariants.
910 // FIXME: What about debug intrinsics? This matches old behavior, but
911 // doesn't make sense.
visitIntrinsicInst(IntrinsicInst & II)912 void visitIntrinsicInst(IntrinsicInst &II) {
913 if (!IsOffsetKnown)
914 return PI.setAborted(&II);
915
916 if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
917 II.getIntrinsicID() == Intrinsic::lifetime_end) {
918 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
919 uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
920 Length->getLimitedValue());
921 insertUse(II, Offset, Size, true);
922 return;
923 }
924
925 Base::visitIntrinsicInst(II);
926 }
927
hasUnsafePHIOrSelectUse(Instruction * Root,uint64_t & Size)928 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
929 // We consider any PHI or select that results in a direct load or store of
930 // the same offset to be a viable use for slicing purposes. These uses
931 // are considered unsplittable and the size is the maximum loaded or stored
932 // size.
933 SmallPtrSet<Instruction *, 4> Visited;
934 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
935 Visited.insert(Root);
936 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
937 const DataLayout &DL = Root->getModule()->getDataLayout();
938 // If there are no loads or stores, the access is dead. We mark that as
939 // a size zero access.
940 Size = 0;
941 do {
942 Instruction *I, *UsedI;
943 std::tie(UsedI, I) = Uses.pop_back_val();
944
945 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
946 Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
947 continue;
948 }
949 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
950 Value *Op = SI->getOperand(0);
951 if (Op == UsedI)
952 return SI;
953 Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
954 continue;
955 }
956
957 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
958 if (!GEP->hasAllZeroIndices())
959 return GEP;
960 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
961 !isa<SelectInst>(I)) {
962 return I;
963 }
964
965 for (User *U : I->users())
966 if (Visited.insert(cast<Instruction>(U)).second)
967 Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
968 } while (!Uses.empty());
969
970 return nullptr;
971 }
972
visitPHINodeOrSelectInst(Instruction & I)973 void visitPHINodeOrSelectInst(Instruction &I) {
974 assert(isa<PHINode>(I) || isa<SelectInst>(I));
975 if (I.use_empty())
976 return markAsDead(I);
977
978 // TODO: We could use SimplifyInstruction here to fold PHINodes and
979 // SelectInsts. However, doing so requires to change the current
980 // dead-operand-tracking mechanism. For instance, suppose neither loading
981 // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
982 // trap either. However, if we simply replace %U with undef using the
983 // current dead-operand-tracking mechanism, "load (select undef, undef,
984 // %other)" may trap because the select may return the first operand
985 // "undef".
986 if (Value *Result = foldPHINodeOrSelectInst(I)) {
987 if (Result == *U)
988 // If the result of the constant fold will be the pointer, recurse
989 // through the PHI/select as if we had RAUW'ed it.
990 enqueueUsers(I);
991 else
992 // Otherwise the operand to the PHI/select is dead, and we can replace
993 // it with undef.
994 AS.DeadOperands.push_back(U);
995
996 return;
997 }
998
999 if (!IsOffsetKnown)
1000 return PI.setAborted(&I);
1001
1002 // See if we already have computed info on this node.
1003 uint64_t &Size = PHIOrSelectSizes[&I];
1004 if (!Size) {
1005 // This is a new PHI/Select, check for an unsafe use of it.
1006 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
1007 return PI.setAborted(UnsafeI);
1008 }
1009
1010 // For PHI and select operands outside the alloca, we can't nuke the entire
1011 // phi or select -- the other side might still be relevant, so we special
1012 // case them here and use a separate structure to track the operands
1013 // themselves which should be replaced with undef.
1014 // FIXME: This should instead be escaped in the event we're instrumenting
1015 // for address sanitization.
1016 if (Offset.uge(AllocSize)) {
1017 AS.DeadOperands.push_back(U);
1018 return;
1019 }
1020
1021 insertUse(I, Offset, Size);
1022 }
1023
visitPHINode(PHINode & PN)1024 void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
1025
visitSelectInst(SelectInst & SI)1026 void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
1027
1028 /// Disable SROA entirely if there are unhandled users of the alloca.
visitInstruction(Instruction & I)1029 void visitInstruction(Instruction &I) { PI.setAborted(&I); }
1030 };
1031
AllocaSlices(const DataLayout & DL,AllocaInst & AI)1032 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
1033 :
1034 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1035 AI(AI),
1036 #endif
1037 PointerEscapingInstr(nullptr) {
1038 SliceBuilder PB(DL, AI, *this);
1039 SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
1040 if (PtrI.isEscaped() || PtrI.isAborted()) {
1041 // FIXME: We should sink the escape vs. abort info into the caller nicely,
1042 // possibly by just storing the PtrInfo in the AllocaSlices.
1043 PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
1044 : PtrI.getAbortingInst();
1045 assert(PointerEscapingInstr && "Did not track a bad instruction");
1046 return;
1047 }
1048
1049 Slices.erase(
1050 llvm::remove_if(Slices, [](const Slice &S) { return S.isDead(); }),
1051 Slices.end());
1052
1053 #ifndef NDEBUG
1054 if (SROARandomShuffleSlices) {
1055 std::mt19937 MT(static_cast<unsigned>(
1056 std::chrono::system_clock::now().time_since_epoch().count()));
1057 std::shuffle(Slices.begin(), Slices.end(), MT);
1058 }
1059 #endif
1060
1061 // Sort the uses. This arranges for the offsets to be in ascending order,
1062 // and the sizes to be in descending order.
1063 llvm::sort(Slices.begin(), Slices.end());
1064 }
1065
1066 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1067
print(raw_ostream & OS,const_iterator I,StringRef Indent) const1068 void AllocaSlices::print(raw_ostream &OS, const_iterator I,
1069 StringRef Indent) const {
1070 printSlice(OS, I, Indent);
1071 OS << "\n";
1072 printUse(OS, I, Indent);
1073 }
1074
printSlice(raw_ostream & OS,const_iterator I,StringRef Indent) const1075 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
1076 StringRef Indent) const {
1077 OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
1078 << " slice #" << (I - begin())
1079 << (I->isSplittable() ? " (splittable)" : "");
1080 }
1081
printUse(raw_ostream & OS,const_iterator I,StringRef Indent) const1082 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
1083 StringRef Indent) const {
1084 OS << Indent << " used by: " << *I->getUse()->getUser() << "\n";
1085 }
1086
print(raw_ostream & OS) const1087 void AllocaSlices::print(raw_ostream &OS) const {
1088 if (PointerEscapingInstr) {
1089 OS << "Can't analyze slices for alloca: " << AI << "\n"
1090 << " A pointer to this alloca escaped by:\n"
1091 << " " << *PointerEscapingInstr << "\n";
1092 return;
1093 }
1094
1095 OS << "Slices of alloca: " << AI << "\n";
1096 for (const_iterator I = begin(), E = end(); I != E; ++I)
1097 print(OS, I);
1098 }
1099
dump(const_iterator I) const1100 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
1101 print(dbgs(), I);
1102 }
dump() const1103 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
1104
1105 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1106
1107 /// Walk the range of a partitioning looking for a common type to cover this
1108 /// sequence of slices.
findCommonType(AllocaSlices::const_iterator B,AllocaSlices::const_iterator E,uint64_t EndOffset)1109 static Type *findCommonType(AllocaSlices::const_iterator B,
1110 AllocaSlices::const_iterator E,
1111 uint64_t EndOffset) {
1112 Type *Ty = nullptr;
1113 bool TyIsCommon = true;
1114 IntegerType *ITy = nullptr;
1115
1116 // Note that we need to look at *every* alloca slice's Use to ensure we
1117 // always get consistent results regardless of the order of slices.
1118 for (AllocaSlices::const_iterator I = B; I != E; ++I) {
1119 Use *U = I->getUse();
1120 if (isa<IntrinsicInst>(*U->getUser()))
1121 continue;
1122 if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
1123 continue;
1124
1125 Type *UserTy = nullptr;
1126 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1127 UserTy = LI->getType();
1128 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1129 UserTy = SI->getValueOperand()->getType();
1130 }
1131
1132 if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
1133 // If the type is larger than the partition, skip it. We only encounter
1134 // this for split integer operations where we want to use the type of the
1135 // entity causing the split. Also skip if the type is not a byte width
1136 // multiple.
1137 if (UserITy->getBitWidth() % 8 != 0 ||
1138 UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
1139 continue;
1140
1141 // Track the largest bitwidth integer type used in this way in case there
1142 // is no common type.
1143 if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
1144 ITy = UserITy;
1145 }
1146
1147 // To avoid depending on the order of slices, Ty and TyIsCommon must not
1148 // depend on types skipped above.
1149 if (!UserTy || (Ty && Ty != UserTy))
1150 TyIsCommon = false; // Give up on anything but an iN type.
1151 else
1152 Ty = UserTy;
1153 }
1154
1155 return TyIsCommon ? Ty : ITy;
1156 }
1157
1158 /// PHI instructions that use an alloca and are subsequently loaded can be
1159 /// rewritten to load both input pointers in the pred blocks and then PHI the
1160 /// results, allowing the load of the alloca to be promoted.
1161 /// From this:
1162 /// %P2 = phi [i32* %Alloca, i32* %Other]
1163 /// %V = load i32* %P2
1164 /// to:
1165 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1166 /// ...
1167 /// %V2 = load i32* %Other
1168 /// ...
1169 /// %V = phi [i32 %V1, i32 %V2]
1170 ///
1171 /// We can do this to a select if its only uses are loads and if the operands
1172 /// to the select can be loaded unconditionally.
1173 ///
1174 /// FIXME: This should be hoisted into a generic utility, likely in
1175 /// Transforms/Util/Local.h
isSafePHIToSpeculate(PHINode & PN)1176 static bool isSafePHIToSpeculate(PHINode &PN) {
1177 // For now, we can only do this promotion if the load is in the same block
1178 // as the PHI, and if there are no stores between the phi and load.
1179 // TODO: Allow recursive phi users.
1180 // TODO: Allow stores.
1181 BasicBlock *BB = PN.getParent();
1182 unsigned MaxAlign = 0;
1183 bool HaveLoad = false;
1184 for (User *U : PN.users()) {
1185 LoadInst *LI = dyn_cast<LoadInst>(U);
1186 if (!LI || !LI->isSimple())
1187 return false;
1188
1189 // For now we only allow loads in the same block as the PHI. This is
1190 // a common case that happens when instcombine merges two loads through
1191 // a PHI.
1192 if (LI->getParent() != BB)
1193 return false;
1194
1195 // Ensure that there are no instructions between the PHI and the load that
1196 // could store.
1197 for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
1198 if (BBI->mayWriteToMemory())
1199 return false;
1200
1201 MaxAlign = std::max(MaxAlign, LI->getAlignment());
1202 HaveLoad = true;
1203 }
1204
1205 if (!HaveLoad)
1206 return false;
1207
1208 const DataLayout &DL = PN.getModule()->getDataLayout();
1209
1210 // We can only transform this if it is safe to push the loads into the
1211 // predecessor blocks. The only thing to watch out for is that we can't put
1212 // a possibly trapping load in the predecessor if it is a critical edge.
1213 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1214 TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
1215 Value *InVal = PN.getIncomingValue(Idx);
1216
1217 // If the value is produced by the terminator of the predecessor (an
1218 // invoke) or it has side-effects, there is no valid place to put a load
1219 // in the predecessor.
1220 if (TI == InVal || TI->mayHaveSideEffects())
1221 return false;
1222
1223 // If the predecessor has a single successor, then the edge isn't
1224 // critical.
1225 if (TI->getNumSuccessors() == 1)
1226 continue;
1227
1228 // If this pointer is always safe to load, or if we can prove that there
1229 // is already a load in the block, then we can move the load to the pred
1230 // block.
1231 if (isSafeToLoadUnconditionally(InVal, MaxAlign, DL, TI))
1232 continue;
1233
1234 return false;
1235 }
1236
1237 return true;
1238 }
1239
speculatePHINodeLoads(PHINode & PN)1240 static void speculatePHINodeLoads(PHINode &PN) {
1241 LLVM_DEBUG(dbgs() << " original: " << PN << "\n");
1242
1243 Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
1244 IRBuilderTy PHIBuilder(&PN);
1245 PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1246 PN.getName() + ".sroa.speculated");
1247
1248 // Get the AA tags and alignment to use from one of the loads. It doesn't
1249 // matter which one we get and if any differ.
1250 LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
1251
1252 AAMDNodes AATags;
1253 SomeLoad->getAAMetadata(AATags);
1254 unsigned Align = SomeLoad->getAlignment();
1255
1256 // Rewrite all loads of the PN to use the new PHI.
1257 while (!PN.use_empty()) {
1258 LoadInst *LI = cast<LoadInst>(PN.user_back());
1259 LI->replaceAllUsesWith(NewPN);
1260 LI->eraseFromParent();
1261 }
1262
1263 // Inject loads into all of the pred blocks.
1264 DenseMap<BasicBlock*, Value*> InjectedLoads;
1265 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1266 BasicBlock *Pred = PN.getIncomingBlock(Idx);
1267 Value *InVal = PN.getIncomingValue(Idx);
1268
1269 // A PHI node is allowed to have multiple (duplicated) entries for the same
1270 // basic block, as long as the value is the same. So if we already injected
1271 // a load in the predecessor, then we should reuse the same load for all
1272 // duplicated entries.
1273 if (Value* V = InjectedLoads.lookup(Pred)) {
1274 NewPN->addIncoming(V, Pred);
1275 continue;
1276 }
1277
1278 TerminatorInst *TI = Pred->getTerminator();
1279 IRBuilderTy PredBuilder(TI);
1280
1281 LoadInst *Load = PredBuilder.CreateLoad(
1282 InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1283 ++NumLoadsSpeculated;
1284 Load->setAlignment(Align);
1285 if (AATags)
1286 Load->setAAMetadata(AATags);
1287 NewPN->addIncoming(Load, Pred);
1288 InjectedLoads[Pred] = Load;
1289 }
1290
1291 LLVM_DEBUG(dbgs() << " speculated to: " << *NewPN << "\n");
1292 PN.eraseFromParent();
1293 }
1294
1295 /// Select instructions that use an alloca and are subsequently loaded can be
1296 /// rewritten to load both input pointers and then select between the result,
1297 /// allowing the load of the alloca to be promoted.
1298 /// From this:
1299 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1300 /// %V = load i32* %P2
1301 /// to:
1302 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1303 /// %V2 = load i32* %Other
1304 /// %V = select i1 %cond, i32 %V1, i32 %V2
1305 ///
1306 /// We can do this to a select if its only uses are loads and if the operand
1307 /// to the select can be loaded unconditionally.
isSafeSelectToSpeculate(SelectInst & SI)1308 static bool isSafeSelectToSpeculate(SelectInst &SI) {
1309 Value *TValue = SI.getTrueValue();
1310 Value *FValue = SI.getFalseValue();
1311 const DataLayout &DL = SI.getModule()->getDataLayout();
1312
1313 for (User *U : SI.users()) {
1314 LoadInst *LI = dyn_cast<LoadInst>(U);
1315 if (!LI || !LI->isSimple())
1316 return false;
1317
1318 // Both operands to the select need to be dereferenceable, either
1319 // absolutely (e.g. allocas) or at this point because we can see other
1320 // accesses to it.
1321 if (!isSafeToLoadUnconditionally(TValue, LI->getAlignment(), DL, LI))
1322 return false;
1323 if (!isSafeToLoadUnconditionally(FValue, LI->getAlignment(), DL, LI))
1324 return false;
1325 }
1326
1327 return true;
1328 }
1329
speculateSelectInstLoads(SelectInst & SI)1330 static void speculateSelectInstLoads(SelectInst &SI) {
1331 LLVM_DEBUG(dbgs() << " original: " << SI << "\n");
1332
1333 IRBuilderTy IRB(&SI);
1334 Value *TV = SI.getTrueValue();
1335 Value *FV = SI.getFalseValue();
1336 // Replace the loads of the select with a select of two loads.
1337 while (!SI.use_empty()) {
1338 LoadInst *LI = cast<LoadInst>(SI.user_back());
1339 assert(LI->isSimple() && "We only speculate simple loads");
1340
1341 IRB.SetInsertPoint(LI);
1342 LoadInst *TL =
1343 IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
1344 LoadInst *FL =
1345 IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
1346 NumLoadsSpeculated += 2;
1347
1348 // Transfer alignment and AA info if present.
1349 TL->setAlignment(LI->getAlignment());
1350 FL->setAlignment(LI->getAlignment());
1351
1352 AAMDNodes Tags;
1353 LI->getAAMetadata(Tags);
1354 if (Tags) {
1355 TL->setAAMetadata(Tags);
1356 FL->setAAMetadata(Tags);
1357 }
1358
1359 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1360 LI->getName() + ".sroa.speculated");
1361
1362 LLVM_DEBUG(dbgs() << " speculated to: " << *V << "\n");
1363 LI->replaceAllUsesWith(V);
1364 LI->eraseFromParent();
1365 }
1366 SI.eraseFromParent();
1367 }
1368
1369 /// Build a GEP out of a base pointer and indices.
1370 ///
1371 /// This will return the BasePtr if that is valid, or build a new GEP
1372 /// instruction using the IRBuilder if GEP-ing is needed.
buildGEP(IRBuilderTy & IRB,Value * BasePtr,SmallVectorImpl<Value * > & Indices,Twine NamePrefix)1373 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
1374 SmallVectorImpl<Value *> &Indices, Twine NamePrefix) {
1375 if (Indices.empty())
1376 return BasePtr;
1377
1378 // A single zero index is a no-op, so check for this and avoid building a GEP
1379 // in that case.
1380 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1381 return BasePtr;
1382
1383 return IRB.CreateInBoundsGEP(nullptr, BasePtr, Indices,
1384 NamePrefix + "sroa_idx");
1385 }
1386
1387 /// Get a natural GEP off of the BasePtr walking through Ty toward
1388 /// TargetTy without changing the offset of the pointer.
1389 ///
1390 /// This routine assumes we've already established a properly offset GEP with
1391 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1392 /// zero-indices down through type layers until we find one the same as
1393 /// TargetTy. If we can't find one with the same type, we at least try to use
1394 /// one with the same size. If none of that works, we just produce the GEP as
1395 /// indicated by Indices to have the correct offset.
getNaturalGEPWithType(IRBuilderTy & IRB,const DataLayout & DL,Value * BasePtr,Type * Ty,Type * TargetTy,SmallVectorImpl<Value * > & Indices,Twine NamePrefix)1396 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
1397 Value *BasePtr, Type *Ty, Type *TargetTy,
1398 SmallVectorImpl<Value *> &Indices,
1399 Twine NamePrefix) {
1400 if (Ty == TargetTy)
1401 return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1402
1403 // Pointer size to use for the indices.
1404 unsigned PtrSize = DL.getPointerTypeSizeInBits(BasePtr->getType());
1405
1406 // See if we can descend into a struct and locate a field with the correct
1407 // type.
1408 unsigned NumLayers = 0;
1409 Type *ElementTy = Ty;
1410 do {
1411 if (ElementTy->isPointerTy())
1412 break;
1413
1414 if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
1415 ElementTy = ArrayTy->getElementType();
1416 Indices.push_back(IRB.getIntN(PtrSize, 0));
1417 } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
1418 ElementTy = VectorTy->getElementType();
1419 Indices.push_back(IRB.getInt32(0));
1420 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1421 if (STy->element_begin() == STy->element_end())
1422 break; // Nothing left to descend into.
1423 ElementTy = *STy->element_begin();
1424 Indices.push_back(IRB.getInt32(0));
1425 } else {
1426 break;
1427 }
1428 ++NumLayers;
1429 } while (ElementTy != TargetTy);
1430 if (ElementTy != TargetTy)
1431 Indices.erase(Indices.end() - NumLayers, Indices.end());
1432
1433 return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1434 }
1435
1436 /// Recursively compute indices for a natural GEP.
1437 ///
1438 /// This is the recursive step for getNaturalGEPWithOffset that walks down the
1439 /// element types adding appropriate indices for the GEP.
getNaturalGEPRecursively(IRBuilderTy & IRB,const DataLayout & DL,Value * Ptr,Type * Ty,APInt & Offset,Type * TargetTy,SmallVectorImpl<Value * > & Indices,Twine NamePrefix)1440 static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
1441 Value *Ptr, Type *Ty, APInt &Offset,
1442 Type *TargetTy,
1443 SmallVectorImpl<Value *> &Indices,
1444 Twine NamePrefix) {
1445 if (Offset == 0)
1446 return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices,
1447 NamePrefix);
1448
1449 // We can't recurse through pointer types.
1450 if (Ty->isPointerTy())
1451 return nullptr;
1452
1453 // We try to analyze GEPs over vectors here, but note that these GEPs are
1454 // extremely poorly defined currently. The long-term goal is to remove GEPing
1455 // over a vector from the IR completely.
1456 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1457 unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType());
1458 if (ElementSizeInBits % 8 != 0) {
1459 // GEPs over non-multiple of 8 size vector elements are invalid.
1460 return nullptr;
1461 }
1462 APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1463 APInt NumSkippedElements = Offset.sdiv(ElementSize);
1464 if (NumSkippedElements.ugt(VecTy->getNumElements()))
1465 return nullptr;
1466 Offset -= NumSkippedElements * ElementSize;
1467 Indices.push_back(IRB.getInt(NumSkippedElements));
1468 return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
1469 Offset, TargetTy, Indices, NamePrefix);
1470 }
1471
1472 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1473 Type *ElementTy = ArrTy->getElementType();
1474 APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1475 APInt NumSkippedElements = Offset.sdiv(ElementSize);
1476 if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1477 return nullptr;
1478
1479 Offset -= NumSkippedElements * ElementSize;
1480 Indices.push_back(IRB.getInt(NumSkippedElements));
1481 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1482 Indices, NamePrefix);
1483 }
1484
1485 StructType *STy = dyn_cast<StructType>(Ty);
1486 if (!STy)
1487 return nullptr;
1488
1489 const StructLayout *SL = DL.getStructLayout(STy);
1490 uint64_t StructOffset = Offset.getZExtValue();
1491 if (StructOffset >= SL->getSizeInBytes())
1492 return nullptr;
1493 unsigned Index = SL->getElementContainingOffset(StructOffset);
1494 Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1495 Type *ElementTy = STy->getElementType(Index);
1496 if (Offset.uge(DL.getTypeAllocSize(ElementTy)))
1497 return nullptr; // The offset points into alignment padding.
1498
1499 Indices.push_back(IRB.getInt32(Index));
1500 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1501 Indices, NamePrefix);
1502 }
1503
1504 /// Get a natural GEP from a base pointer to a particular offset and
1505 /// resulting in a particular type.
1506 ///
1507 /// The goal is to produce a "natural" looking GEP that works with the existing
1508 /// composite types to arrive at the appropriate offset and element type for
1509 /// a pointer. TargetTy is the element type the returned GEP should point-to if
1510 /// possible. We recurse by decreasing Offset, adding the appropriate index to
1511 /// Indices, and setting Ty to the result subtype.
1512 ///
1513 /// If no natural GEP can be constructed, this function returns null.
getNaturalGEPWithOffset(IRBuilderTy & IRB,const DataLayout & DL,Value * Ptr,APInt Offset,Type * TargetTy,SmallVectorImpl<Value * > & Indices,Twine NamePrefix)1514 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
1515 Value *Ptr, APInt Offset, Type *TargetTy,
1516 SmallVectorImpl<Value *> &Indices,
1517 Twine NamePrefix) {
1518 PointerType *Ty = cast<PointerType>(Ptr->getType());
1519
1520 // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1521 // an i8.
1522 if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
1523 return nullptr;
1524
1525 Type *ElementTy = Ty->getElementType();
1526 if (!ElementTy->isSized())
1527 return nullptr; // We can't GEP through an unsized element.
1528 APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1529 if (ElementSize == 0)
1530 return nullptr; // Zero-length arrays can't help us build a natural GEP.
1531 APInt NumSkippedElements = Offset.sdiv(ElementSize);
1532
1533 Offset -= NumSkippedElements * ElementSize;
1534 Indices.push_back(IRB.getInt(NumSkippedElements));
1535 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1536 Indices, NamePrefix);
1537 }
1538
1539 /// Compute an adjusted pointer from Ptr by Offset bytes where the
1540 /// resulting pointer has PointerTy.
1541 ///
1542 /// This tries very hard to compute a "natural" GEP which arrives at the offset
1543 /// and produces the pointer type desired. Where it cannot, it will try to use
1544 /// the natural GEP to arrive at the offset and bitcast to the type. Where that
1545 /// fails, it will try to use an existing i8* and GEP to the byte offset and
1546 /// bitcast to the type.
1547 ///
1548 /// The strategy for finding the more natural GEPs is to peel off layers of the
1549 /// pointer, walking back through bit casts and GEPs, searching for a base
1550 /// pointer from which we can compute a natural GEP with the desired
1551 /// properties. The algorithm tries to fold as many constant indices into
1552 /// a single GEP as possible, thus making each GEP more independent of the
1553 /// surrounding code.
getAdjustedPtr(IRBuilderTy & IRB,const DataLayout & DL,Value * Ptr,APInt Offset,Type * PointerTy,Twine NamePrefix)1554 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
1555 APInt Offset, Type *PointerTy, Twine NamePrefix) {
1556 // Even though we don't look through PHI nodes, we could be called on an
1557 // instruction in an unreachable block, which may be on a cycle.
1558 SmallPtrSet<Value *, 4> Visited;
1559 Visited.insert(Ptr);
1560 SmallVector<Value *, 4> Indices;
1561
1562 // We may end up computing an offset pointer that has the wrong type. If we
1563 // never are able to compute one directly that has the correct type, we'll
1564 // fall back to it, so keep it and the base it was computed from around here.
1565 Value *OffsetPtr = nullptr;
1566 Value *OffsetBasePtr;
1567
1568 // Remember any i8 pointer we come across to re-use if we need to do a raw
1569 // byte offset.
1570 Value *Int8Ptr = nullptr;
1571 APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1572
1573 Type *TargetTy = PointerTy->getPointerElementType();
1574
1575 do {
1576 // First fold any existing GEPs into the offset.
1577 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1578 APInt GEPOffset(Offset.getBitWidth(), 0);
1579 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
1580 break;
1581 Offset += GEPOffset;
1582 Ptr = GEP->getPointerOperand();
1583 if (!Visited.insert(Ptr).second)
1584 break;
1585 }
1586
1587 // See if we can perform a natural GEP here.
1588 Indices.clear();
1589 if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
1590 Indices, NamePrefix)) {
1591 // If we have a new natural pointer at the offset, clear out any old
1592 // offset pointer we computed. Unless it is the base pointer or
1593 // a non-instruction, we built a GEP we don't need. Zap it.
1594 if (OffsetPtr && OffsetPtr != OffsetBasePtr)
1595 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) {
1596 assert(I->use_empty() && "Built a GEP with uses some how!");
1597 I->eraseFromParent();
1598 }
1599 OffsetPtr = P;
1600 OffsetBasePtr = Ptr;
1601 // If we also found a pointer of the right type, we're done.
1602 if (P->getType() == PointerTy)
1603 return P;
1604 }
1605
1606 // Stash this pointer if we've found an i8*.
1607 if (Ptr->getType()->isIntegerTy(8)) {
1608 Int8Ptr = Ptr;
1609 Int8PtrOffset = Offset;
1610 }
1611
1612 // Peel off a layer of the pointer and update the offset appropriately.
1613 if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1614 Ptr = cast<Operator>(Ptr)->getOperand(0);
1615 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1616 if (GA->isInterposable())
1617 break;
1618 Ptr = GA->getAliasee();
1619 } else {
1620 break;
1621 }
1622 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1623 } while (Visited.insert(Ptr).second);
1624
1625 if (!OffsetPtr) {
1626 if (!Int8Ptr) {
1627 Int8Ptr = IRB.CreateBitCast(
1628 Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
1629 NamePrefix + "sroa_raw_cast");
1630 Int8PtrOffset = Offset;
1631 }
1632
1633 OffsetPtr = Int8PtrOffset == 0
1634 ? Int8Ptr
1635 : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr,
1636 IRB.getInt(Int8PtrOffset),
1637 NamePrefix + "sroa_raw_idx");
1638 }
1639 Ptr = OffsetPtr;
1640
1641 // On the off chance we were targeting i8*, guard the bitcast here.
1642 if (Ptr->getType() != PointerTy)
1643 Ptr = IRB.CreateBitCast(Ptr, PointerTy, NamePrefix + "sroa_cast");
1644
1645 return Ptr;
1646 }
1647
1648 /// Compute the adjusted alignment for a load or store from an offset.
getAdjustedAlignment(Instruction * I,uint64_t Offset,const DataLayout & DL)1649 static unsigned getAdjustedAlignment(Instruction *I, uint64_t Offset,
1650 const DataLayout &DL) {
1651 unsigned Alignment;
1652 Type *Ty;
1653 if (auto *LI = dyn_cast<LoadInst>(I)) {
1654 Alignment = LI->getAlignment();
1655 Ty = LI->getType();
1656 } else if (auto *SI = dyn_cast<StoreInst>(I)) {
1657 Alignment = SI->getAlignment();
1658 Ty = SI->getValueOperand()->getType();
1659 } else {
1660 llvm_unreachable("Only loads and stores are allowed!");
1661 }
1662
1663 if (!Alignment)
1664 Alignment = DL.getABITypeAlignment(Ty);
1665
1666 return MinAlign(Alignment, Offset);
1667 }
1668
1669 /// Test whether we can convert a value from the old to the new type.
1670 ///
1671 /// This predicate should be used to guard calls to convertValue in order to
1672 /// ensure that we only try to convert viable values. The strategy is that we
1673 /// will peel off single element struct and array wrappings to get to an
1674 /// underlying value, and convert that value.
canConvertValue(const DataLayout & DL,Type * OldTy,Type * NewTy)1675 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1676 if (OldTy == NewTy)
1677 return true;
1678
1679 // For integer types, we can't handle any bit-width differences. This would
1680 // break both vector conversions with extension and introduce endianness
1681 // issues when in conjunction with loads and stores.
1682 if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) {
1683 assert(cast<IntegerType>(OldTy)->getBitWidth() !=
1684 cast<IntegerType>(NewTy)->getBitWidth() &&
1685 "We can't have the same bitwidth for different int types");
1686 return false;
1687 }
1688
1689 if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
1690 return false;
1691 if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1692 return false;
1693
1694 // We can convert pointers to integers and vice-versa. Same for vectors
1695 // of pointers and integers.
1696 OldTy = OldTy->getScalarType();
1697 NewTy = NewTy->getScalarType();
1698 if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1699 if (NewTy->isPointerTy() && OldTy->isPointerTy()) {
1700 return cast<PointerType>(NewTy)->getPointerAddressSpace() ==
1701 cast<PointerType>(OldTy)->getPointerAddressSpace();
1702 }
1703
1704 // We can convert integers to integral pointers, but not to non-integral
1705 // pointers.
1706 if (OldTy->isIntegerTy())
1707 return !DL.isNonIntegralPointerType(NewTy);
1708
1709 // We can convert integral pointers to integers, but non-integral pointers
1710 // need to remain pointers.
1711 if (!DL.isNonIntegralPointerType(OldTy))
1712 return NewTy->isIntegerTy();
1713
1714 return false;
1715 }
1716
1717 return true;
1718 }
1719
1720 /// Generic routine to convert an SSA value to a value of a different
1721 /// type.
1722 ///
1723 /// This will try various different casting techniques, such as bitcasts,
1724 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1725 /// two types for viability with this routine.
convertValue(const DataLayout & DL,IRBuilderTy & IRB,Value * V,Type * NewTy)1726 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1727 Type *NewTy) {
1728 Type *OldTy = V->getType();
1729 assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
1730
1731 if (OldTy == NewTy)
1732 return V;
1733
1734 assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) &&
1735 "Integer types must be the exact same to convert.");
1736
1737 // See if we need inttoptr for this type pair. A cast involving both scalars
1738 // and vectors requires and additional bitcast.
1739 if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1740 // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1741 if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1742 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1743 NewTy);
1744
1745 // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1746 if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1747 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1748 NewTy);
1749
1750 return IRB.CreateIntToPtr(V, NewTy);
1751 }
1752
1753 // See if we need ptrtoint for this type pair. A cast involving both scalars
1754 // and vectors requires and additional bitcast.
1755 if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) {
1756 // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1757 if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1758 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1759 NewTy);
1760
1761 // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1762 if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1763 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1764 NewTy);
1765
1766 return IRB.CreatePtrToInt(V, NewTy);
1767 }
1768
1769 return IRB.CreateBitCast(V, NewTy);
1770 }
1771
1772 /// Test whether the given slice use can be promoted to a vector.
1773 ///
1774 /// This function is called to test each entry in a partition which is slated
1775 /// for a single slice.
isVectorPromotionViableForSlice(Partition & P,const Slice & S,VectorType * Ty,uint64_t ElementSize,const DataLayout & DL)1776 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S,
1777 VectorType *Ty,
1778 uint64_t ElementSize,
1779 const DataLayout &DL) {
1780 // First validate the slice offsets.
1781 uint64_t BeginOffset =
1782 std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
1783 uint64_t BeginIndex = BeginOffset / ElementSize;
1784 if (BeginIndex * ElementSize != BeginOffset ||
1785 BeginIndex >= Ty->getNumElements())
1786 return false;
1787 uint64_t EndOffset =
1788 std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
1789 uint64_t EndIndex = EndOffset / ElementSize;
1790 if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
1791 return false;
1792
1793 assert(EndIndex > BeginIndex && "Empty vector!");
1794 uint64_t NumElements = EndIndex - BeginIndex;
1795 Type *SliceTy = (NumElements == 1)
1796 ? Ty->getElementType()
1797 : VectorType::get(Ty->getElementType(), NumElements);
1798
1799 Type *SplitIntTy =
1800 Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
1801
1802 Use *U = S.getUse();
1803
1804 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1805 if (MI->isVolatile())
1806 return false;
1807 if (!S.isSplittable())
1808 return false; // Skip any unsplittable intrinsics.
1809 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1810 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1811 II->getIntrinsicID() != Intrinsic::lifetime_end)
1812 return false;
1813 } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
1814 // Disable vector promotion when there are loads or stores of an FCA.
1815 return false;
1816 } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1817 if (LI->isVolatile())
1818 return false;
1819 Type *LTy = LI->getType();
1820 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1821 assert(LTy->isIntegerTy());
1822 LTy = SplitIntTy;
1823 }
1824 if (!canConvertValue(DL, SliceTy, LTy))
1825 return false;
1826 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1827 if (SI->isVolatile())
1828 return false;
1829 Type *STy = SI->getValueOperand()->getType();
1830 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1831 assert(STy->isIntegerTy());
1832 STy = SplitIntTy;
1833 }
1834 if (!canConvertValue(DL, STy, SliceTy))
1835 return false;
1836 } else {
1837 return false;
1838 }
1839
1840 return true;
1841 }
1842
1843 /// Test whether the given alloca partitioning and range of slices can be
1844 /// promoted to a vector.
1845 ///
1846 /// This is a quick test to check whether we can rewrite a particular alloca
1847 /// partition (and its newly formed alloca) into a vector alloca with only
1848 /// whole-vector loads and stores such that it could be promoted to a vector
1849 /// SSA value. We only can ensure this for a limited set of operations, and we
1850 /// don't want to do the rewrites unless we are confident that the result will
1851 /// be promotable, so we have an early test here.
isVectorPromotionViable(Partition & P,const DataLayout & DL)1852 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) {
1853 // Collect the candidate types for vector-based promotion. Also track whether
1854 // we have different element types.
1855 SmallVector<VectorType *, 4> CandidateTys;
1856 Type *CommonEltTy = nullptr;
1857 bool HaveCommonEltTy = true;
1858 auto CheckCandidateType = [&](Type *Ty) {
1859 if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1860 CandidateTys.push_back(VTy);
1861 if (!CommonEltTy)
1862 CommonEltTy = VTy->getElementType();
1863 else if (CommonEltTy != VTy->getElementType())
1864 HaveCommonEltTy = false;
1865 }
1866 };
1867 // Consider any loads or stores that are the exact size of the slice.
1868 for (const Slice &S : P)
1869 if (S.beginOffset() == P.beginOffset() &&
1870 S.endOffset() == P.endOffset()) {
1871 if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
1872 CheckCandidateType(LI->getType());
1873 else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
1874 CheckCandidateType(SI->getValueOperand()->getType());
1875 }
1876
1877 // If we didn't find a vector type, nothing to do here.
1878 if (CandidateTys.empty())
1879 return nullptr;
1880
1881 // Remove non-integer vector types if we had multiple common element types.
1882 // FIXME: It'd be nice to replace them with integer vector types, but we can't
1883 // do that until all the backends are known to produce good code for all
1884 // integer vector types.
1885 if (!HaveCommonEltTy) {
1886 CandidateTys.erase(
1887 llvm::remove_if(CandidateTys,
1888 [](VectorType *VTy) {
1889 return !VTy->getElementType()->isIntegerTy();
1890 }),
1891 CandidateTys.end());
1892
1893 // If there were no integer vector types, give up.
1894 if (CandidateTys.empty())
1895 return nullptr;
1896
1897 // Rank the remaining candidate vector types. This is easy because we know
1898 // they're all integer vectors. We sort by ascending number of elements.
1899 auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
1900 (void)DL;
1901 assert(DL.getTypeSizeInBits(RHSTy) == DL.getTypeSizeInBits(LHSTy) &&
1902 "Cannot have vector types of different sizes!");
1903 assert(RHSTy->getElementType()->isIntegerTy() &&
1904 "All non-integer types eliminated!");
1905 assert(LHSTy->getElementType()->isIntegerTy() &&
1906 "All non-integer types eliminated!");
1907 return RHSTy->getNumElements() < LHSTy->getNumElements();
1908 };
1909 llvm::sort(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes);
1910 CandidateTys.erase(
1911 std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes),
1912 CandidateTys.end());
1913 } else {
1914 // The only way to have the same element type in every vector type is to
1915 // have the same vector type. Check that and remove all but one.
1916 #ifndef NDEBUG
1917 for (VectorType *VTy : CandidateTys) {
1918 assert(VTy->getElementType() == CommonEltTy &&
1919 "Unaccounted for element type!");
1920 assert(VTy == CandidateTys[0] &&
1921 "Different vector types with the same element type!");
1922 }
1923 #endif
1924 CandidateTys.resize(1);
1925 }
1926
1927 // Try each vector type, and return the one which works.
1928 auto CheckVectorTypeForPromotion = [&](VectorType *VTy) {
1929 uint64_t ElementSize = DL.getTypeSizeInBits(VTy->getElementType());
1930
1931 // While the definition of LLVM vectors is bitpacked, we don't support sizes
1932 // that aren't byte sized.
1933 if (ElementSize % 8)
1934 return false;
1935 assert((DL.getTypeSizeInBits(VTy) % 8) == 0 &&
1936 "vector size not a multiple of element size?");
1937 ElementSize /= 8;
1938
1939 for (const Slice &S : P)
1940 if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
1941 return false;
1942
1943 for (const Slice *S : P.splitSliceTails())
1944 if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
1945 return false;
1946
1947 return true;
1948 };
1949 for (VectorType *VTy : CandidateTys)
1950 if (CheckVectorTypeForPromotion(VTy))
1951 return VTy;
1952
1953 return nullptr;
1954 }
1955
1956 /// Test whether a slice of an alloca is valid for integer widening.
1957 ///
1958 /// This implements the necessary checking for the \c isIntegerWideningViable
1959 /// test below on a single slice of the alloca.
isIntegerWideningViableForSlice(const Slice & S,uint64_t AllocBeginOffset,Type * AllocaTy,const DataLayout & DL,bool & WholeAllocaOp)1960 static bool isIntegerWideningViableForSlice(const Slice &S,
1961 uint64_t AllocBeginOffset,
1962 Type *AllocaTy,
1963 const DataLayout &DL,
1964 bool &WholeAllocaOp) {
1965 uint64_t Size = DL.getTypeStoreSize(AllocaTy);
1966
1967 uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
1968 uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
1969
1970 // We can't reasonably handle cases where the load or store extends past
1971 // the end of the alloca's type and into its padding.
1972 if (RelEnd > Size)
1973 return false;
1974
1975 Use *U = S.getUse();
1976
1977 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1978 if (LI->isVolatile())
1979 return false;
1980 // We can't handle loads that extend past the allocated memory.
1981 if (DL.getTypeStoreSize(LI->getType()) > Size)
1982 return false;
1983 // So far, AllocaSliceRewriter does not support widening split slice tails
1984 // in rewriteIntegerLoad.
1985 if (S.beginOffset() < AllocBeginOffset)
1986 return false;
1987 // Note that we don't count vector loads or stores as whole-alloca
1988 // operations which enable integer widening because we would prefer to use
1989 // vector widening instead.
1990 if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
1991 WholeAllocaOp = true;
1992 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
1993 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
1994 return false;
1995 } else if (RelBegin != 0 || RelEnd != Size ||
1996 !canConvertValue(DL, AllocaTy, LI->getType())) {
1997 // Non-integer loads need to be convertible from the alloca type so that
1998 // they are promotable.
1999 return false;
2000 }
2001 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
2002 Type *ValueTy = SI->getValueOperand()->getType();
2003 if (SI->isVolatile())
2004 return false;
2005 // We can't handle stores that extend past the allocated memory.
2006 if (DL.getTypeStoreSize(ValueTy) > Size)
2007 return false;
2008 // So far, AllocaSliceRewriter does not support widening split slice tails
2009 // in rewriteIntegerStore.
2010 if (S.beginOffset() < AllocBeginOffset)
2011 return false;
2012 // Note that we don't count vector loads or stores as whole-alloca
2013 // operations which enable integer widening because we would prefer to use
2014 // vector widening instead.
2015 if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
2016 WholeAllocaOp = true;
2017 if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
2018 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
2019 return false;
2020 } else if (RelBegin != 0 || RelEnd != Size ||
2021 !canConvertValue(DL, ValueTy, AllocaTy)) {
2022 // Non-integer stores need to be convertible to the alloca type so that
2023 // they are promotable.
2024 return false;
2025 }
2026 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
2027 if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
2028 return false;
2029 if (!S.isSplittable())
2030 return false; // Skip any unsplittable intrinsics.
2031 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
2032 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
2033 II->getIntrinsicID() != Intrinsic::lifetime_end)
2034 return false;
2035 } else {
2036 return false;
2037 }
2038
2039 return true;
2040 }
2041
2042 /// Test whether the given alloca partition's integer operations can be
2043 /// widened to promotable ones.
2044 ///
2045 /// This is a quick test to check whether we can rewrite the integer loads and
2046 /// stores to a particular alloca into wider loads and stores and be able to
2047 /// promote the resulting alloca.
isIntegerWideningViable(Partition & P,Type * AllocaTy,const DataLayout & DL)2048 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy,
2049 const DataLayout &DL) {
2050 uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy);
2051 // Don't create integer types larger than the maximum bitwidth.
2052 if (SizeInBits > IntegerType::MAX_INT_BITS)
2053 return false;
2054
2055 // Don't try to handle allocas with bit-padding.
2056 if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy))
2057 return false;
2058
2059 // We need to ensure that an integer type with the appropriate bitwidth can
2060 // be converted to the alloca type, whatever that is. We don't want to force
2061 // the alloca itself to have an integer type if there is a more suitable one.
2062 Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2063 if (!canConvertValue(DL, AllocaTy, IntTy) ||
2064 !canConvertValue(DL, IntTy, AllocaTy))
2065 return false;
2066
2067 // While examining uses, we ensure that the alloca has a covering load or
2068 // store. We don't want to widen the integer operations only to fail to
2069 // promote due to some other unsplittable entry (which we may make splittable
2070 // later). However, if there are only splittable uses, go ahead and assume
2071 // that we cover the alloca.
2072 // FIXME: We shouldn't consider split slices that happen to start in the
2073 // partition here...
2074 bool WholeAllocaOp =
2075 P.begin() != P.end() ? false : DL.isLegalInteger(SizeInBits);
2076
2077 for (const Slice &S : P)
2078 if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
2079 WholeAllocaOp))
2080 return false;
2081
2082 for (const Slice *S : P.splitSliceTails())
2083 if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
2084 WholeAllocaOp))
2085 return false;
2086
2087 return WholeAllocaOp;
2088 }
2089
extractInteger(const DataLayout & DL,IRBuilderTy & IRB,Value * V,IntegerType * Ty,uint64_t Offset,const Twine & Name)2090 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
2091 IntegerType *Ty, uint64_t Offset,
2092 const Twine &Name) {
2093 LLVM_DEBUG(dbgs() << " start: " << *V << "\n");
2094 IntegerType *IntTy = cast<IntegerType>(V->getType());
2095 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2096 "Element extends past full value");
2097 uint64_t ShAmt = 8 * Offset;
2098 if (DL.isBigEndian())
2099 ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2100 if (ShAmt) {
2101 V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2102 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n");
2103 }
2104 assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2105 "Cannot extract to a larger integer!");
2106 if (Ty != IntTy) {
2107 V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2108 LLVM_DEBUG(dbgs() << " trunced: " << *V << "\n");
2109 }
2110 return V;
2111 }
2112
insertInteger(const DataLayout & DL,IRBuilderTy & IRB,Value * Old,Value * V,uint64_t Offset,const Twine & Name)2113 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
2114 Value *V, uint64_t Offset, const Twine &Name) {
2115 IntegerType *IntTy = cast<IntegerType>(Old->getType());
2116 IntegerType *Ty = cast<IntegerType>(V->getType());
2117 assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2118 "Cannot insert a larger integer!");
2119 LLVM_DEBUG(dbgs() << " start: " << *V << "\n");
2120 if (Ty != IntTy) {
2121 V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2122 LLVM_DEBUG(dbgs() << " extended: " << *V << "\n");
2123 }
2124 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2125 "Element store outside of alloca store");
2126 uint64_t ShAmt = 8 * Offset;
2127 if (DL.isBigEndian())
2128 ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2129 if (ShAmt) {
2130 V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2131 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n");
2132 }
2133
2134 if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2135 APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2136 Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2137 LLVM_DEBUG(dbgs() << " masked: " << *Old << "\n");
2138 V = IRB.CreateOr(Old, V, Name + ".insert");
2139 LLVM_DEBUG(dbgs() << " inserted: " << *V << "\n");
2140 }
2141 return V;
2142 }
2143
extractVector(IRBuilderTy & IRB,Value * V,unsigned BeginIndex,unsigned EndIndex,const Twine & Name)2144 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
2145 unsigned EndIndex, const Twine &Name) {
2146 VectorType *VecTy = cast<VectorType>(V->getType());
2147 unsigned NumElements = EndIndex - BeginIndex;
2148 assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2149
2150 if (NumElements == VecTy->getNumElements())
2151 return V;
2152
2153 if (NumElements == 1) {
2154 V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
2155 Name + ".extract");
2156 LLVM_DEBUG(dbgs() << " extract: " << *V << "\n");
2157 return V;
2158 }
2159
2160 SmallVector<Constant *, 8> Mask;
2161 Mask.reserve(NumElements);
2162 for (unsigned i = BeginIndex; i != EndIndex; ++i)
2163 Mask.push_back(IRB.getInt32(i));
2164 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2165 ConstantVector::get(Mask), Name + ".extract");
2166 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n");
2167 return V;
2168 }
2169
insertVector(IRBuilderTy & IRB,Value * Old,Value * V,unsigned BeginIndex,const Twine & Name)2170 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
2171 unsigned BeginIndex, const Twine &Name) {
2172 VectorType *VecTy = cast<VectorType>(Old->getType());
2173 assert(VecTy && "Can only insert a vector into a vector");
2174
2175 VectorType *Ty = dyn_cast<VectorType>(V->getType());
2176 if (!Ty) {
2177 // Single element to insert.
2178 V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
2179 Name + ".insert");
2180 LLVM_DEBUG(dbgs() << " insert: " << *V << "\n");
2181 return V;
2182 }
2183
2184 assert(Ty->getNumElements() <= VecTy->getNumElements() &&
2185 "Too many elements!");
2186 if (Ty->getNumElements() == VecTy->getNumElements()) {
2187 assert(V->getType() == VecTy && "Vector type mismatch");
2188 return V;
2189 }
2190 unsigned EndIndex = BeginIndex + Ty->getNumElements();
2191
2192 // When inserting a smaller vector into the larger to store, we first
2193 // use a shuffle vector to widen it with undef elements, and then
2194 // a second shuffle vector to select between the loaded vector and the
2195 // incoming vector.
2196 SmallVector<Constant *, 8> Mask;
2197 Mask.reserve(VecTy->getNumElements());
2198 for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2199 if (i >= BeginIndex && i < EndIndex)
2200 Mask.push_back(IRB.getInt32(i - BeginIndex));
2201 else
2202 Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
2203 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2204 ConstantVector::get(Mask), Name + ".expand");
2205 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n");
2206
2207 Mask.clear();
2208 for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2209 Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
2210
2211 V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend");
2212
2213 LLVM_DEBUG(dbgs() << " blend: " << *V << "\n");
2214 return V;
2215 }
2216
2217 /// Visitor to rewrite instructions using p particular slice of an alloca
2218 /// to use a new alloca.
2219 ///
2220 /// Also implements the rewriting to vector-based accesses when the partition
2221 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2222 /// lives here.
2223 class llvm::sroa::AllocaSliceRewriter
2224 : public InstVisitor<AllocaSliceRewriter, bool> {
2225 // Befriend the base class so it can delegate to private visit methods.
2226 friend class InstVisitor<AllocaSliceRewriter, bool>;
2227
2228 using Base = InstVisitor<AllocaSliceRewriter, bool>;
2229
2230 const DataLayout &DL;
2231 AllocaSlices &AS;
2232 SROA &Pass;
2233 AllocaInst &OldAI, &NewAI;
2234 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2235 Type *NewAllocaTy;
2236
2237 // This is a convenience and flag variable that will be null unless the new
2238 // alloca's integer operations should be widened to this integer type due to
2239 // passing isIntegerWideningViable above. If it is non-null, the desired
2240 // integer type will be stored here for easy access during rewriting.
2241 IntegerType *IntTy;
2242
2243 // If we are rewriting an alloca partition which can be written as pure
2244 // vector operations, we stash extra information here. When VecTy is
2245 // non-null, we have some strict guarantees about the rewritten alloca:
2246 // - The new alloca is exactly the size of the vector type here.
2247 // - The accesses all either map to the entire vector or to a single
2248 // element.
2249 // - The set of accessing instructions is only one of those handled above
2250 // in isVectorPromotionViable. Generally these are the same access kinds
2251 // which are promotable via mem2reg.
2252 VectorType *VecTy;
2253 Type *ElementTy;
2254 uint64_t ElementSize;
2255
2256 // The original offset of the slice currently being rewritten relative to
2257 // the original alloca.
2258 uint64_t BeginOffset = 0;
2259 uint64_t EndOffset = 0;
2260
2261 // The new offsets of the slice currently being rewritten relative to the
2262 // original alloca.
2263 uint64_t NewBeginOffset, NewEndOffset;
2264
2265 uint64_t SliceSize;
2266 bool IsSplittable = false;
2267 bool IsSplit = false;
2268 Use *OldUse = nullptr;
2269 Instruction *OldPtr = nullptr;
2270
2271 // Track post-rewrite users which are PHI nodes and Selects.
2272 SmallSetVector<PHINode *, 8> &PHIUsers;
2273 SmallSetVector<SelectInst *, 8> &SelectUsers;
2274
2275 // Utility IR builder, whose name prefix is setup for each visited use, and
2276 // the insertion point is set to point to the user.
2277 IRBuilderTy IRB;
2278
2279 public:
AllocaSliceRewriter(const DataLayout & DL,AllocaSlices & AS,SROA & Pass,AllocaInst & OldAI,AllocaInst & NewAI,uint64_t NewAllocaBeginOffset,uint64_t NewAllocaEndOffset,bool IsIntegerPromotable,VectorType * PromotableVecTy,SmallSetVector<PHINode *,8> & PHIUsers,SmallSetVector<SelectInst *,8> & SelectUsers)2280 AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass,
2281 AllocaInst &OldAI, AllocaInst &NewAI,
2282 uint64_t NewAllocaBeginOffset,
2283 uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
2284 VectorType *PromotableVecTy,
2285 SmallSetVector<PHINode *, 8> &PHIUsers,
2286 SmallSetVector<SelectInst *, 8> &SelectUsers)
2287 : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
2288 NewAllocaBeginOffset(NewAllocaBeginOffset),
2289 NewAllocaEndOffset(NewAllocaEndOffset),
2290 NewAllocaTy(NewAI.getAllocatedType()),
2291 IntTy(IsIntegerPromotable
2292 ? Type::getIntNTy(
2293 NewAI.getContext(),
2294 DL.getTypeSizeInBits(NewAI.getAllocatedType()))
2295 : nullptr),
2296 VecTy(PromotableVecTy),
2297 ElementTy(VecTy ? VecTy->getElementType() : nullptr),
2298 ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0),
2299 PHIUsers(PHIUsers), SelectUsers(SelectUsers),
2300 IRB(NewAI.getContext(), ConstantFolder()) {
2301 if (VecTy) {
2302 assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 &&
2303 "Only multiple-of-8 sized vector elements are viable");
2304 ++NumVectorized;
2305 }
2306 assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy));
2307 }
2308
visit(AllocaSlices::const_iterator I)2309 bool visit(AllocaSlices::const_iterator I) {
2310 bool CanSROA = true;
2311 BeginOffset = I->beginOffset();
2312 EndOffset = I->endOffset();
2313 IsSplittable = I->isSplittable();
2314 IsSplit =
2315 BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
2316 LLVM_DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : ""));
2317 LLVM_DEBUG(AS.printSlice(dbgs(), I, ""));
2318 LLVM_DEBUG(dbgs() << "\n");
2319
2320 // Compute the intersecting offset range.
2321 assert(BeginOffset < NewAllocaEndOffset);
2322 assert(EndOffset > NewAllocaBeginOffset);
2323 NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2324 NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2325
2326 SliceSize = NewEndOffset - NewBeginOffset;
2327
2328 OldUse = I->getUse();
2329 OldPtr = cast<Instruction>(OldUse->get());
2330
2331 Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
2332 IRB.SetInsertPoint(OldUserI);
2333 IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
2334 IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
2335
2336 CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
2337 if (VecTy || IntTy)
2338 assert(CanSROA);
2339 return CanSROA;
2340 }
2341
2342 private:
2343 // Make sure the other visit overloads are visible.
2344 using Base::visit;
2345
2346 // Every instruction which can end up as a user must have a rewrite rule.
visitInstruction(Instruction & I)2347 bool visitInstruction(Instruction &I) {
2348 LLVM_DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n");
2349 llvm_unreachable("No rewrite rule for this instruction!");
2350 }
2351
getNewAllocaSlicePtr(IRBuilderTy & IRB,Type * PointerTy)2352 Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
2353 // Note that the offset computation can use BeginOffset or NewBeginOffset
2354 // interchangeably for unsplit slices.
2355 assert(IsSplit || BeginOffset == NewBeginOffset);
2356 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2357
2358 #ifndef NDEBUG
2359 StringRef OldName = OldPtr->getName();
2360 // Skip through the last '.sroa.' component of the name.
2361 size_t LastSROAPrefix = OldName.rfind(".sroa.");
2362 if (LastSROAPrefix != StringRef::npos) {
2363 OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
2364 // Look for an SROA slice index.
2365 size_t IndexEnd = OldName.find_first_not_of("0123456789");
2366 if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
2367 // Strip the index and look for the offset.
2368 OldName = OldName.substr(IndexEnd + 1);
2369 size_t OffsetEnd = OldName.find_first_not_of("0123456789");
2370 if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
2371 // Strip the offset.
2372 OldName = OldName.substr(OffsetEnd + 1);
2373 }
2374 }
2375 // Strip any SROA suffixes as well.
2376 OldName = OldName.substr(0, OldName.find(".sroa_"));
2377 #endif
2378
2379 return getAdjustedPtr(IRB, DL, &NewAI,
2380 APInt(DL.getPointerTypeSizeInBits(PointerTy), Offset),
2381 PointerTy,
2382 #ifndef NDEBUG
2383 Twine(OldName) + "."
2384 #else
2385 Twine()
2386 #endif
2387 );
2388 }
2389
2390 /// Compute suitable alignment to access this slice of the *new*
2391 /// alloca.
2392 ///
2393 /// You can optionally pass a type to this routine and if that type's ABI
2394 /// alignment is itself suitable, this will return zero.
getSliceAlign(Type * Ty=nullptr)2395 unsigned getSliceAlign(Type *Ty = nullptr) {
2396 unsigned NewAIAlign = NewAI.getAlignment();
2397 if (!NewAIAlign)
2398 NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType());
2399 unsigned Align =
2400 MinAlign(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset);
2401 return (Ty && Align == DL.getABITypeAlignment(Ty)) ? 0 : Align;
2402 }
2403
getIndex(uint64_t Offset)2404 unsigned getIndex(uint64_t Offset) {
2405 assert(VecTy && "Can only call getIndex when rewriting a vector");
2406 uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2407 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2408 uint32_t Index = RelOffset / ElementSize;
2409 assert(Index * ElementSize == RelOffset);
2410 return Index;
2411 }
2412
deleteIfTriviallyDead(Value * V)2413 void deleteIfTriviallyDead(Value *V) {
2414 Instruction *I = cast<Instruction>(V);
2415 if (isInstructionTriviallyDead(I))
2416 Pass.DeadInsts.insert(I);
2417 }
2418
rewriteVectorizedLoadInst()2419 Value *rewriteVectorizedLoadInst() {
2420 unsigned BeginIndex = getIndex(NewBeginOffset);
2421 unsigned EndIndex = getIndex(NewEndOffset);
2422 assert(EndIndex > BeginIndex && "Empty vector!");
2423
2424 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
2425 return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
2426 }
2427
rewriteIntegerLoad(LoadInst & LI)2428 Value *rewriteIntegerLoad(LoadInst &LI) {
2429 assert(IntTy && "We cannot insert an integer to the alloca");
2430 assert(!LI.isVolatile());
2431 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
2432 V = convertValue(DL, IRB, V, IntTy);
2433 assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2434 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2435 if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) {
2436 IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8);
2437 V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract");
2438 }
2439 // It is possible that the extracted type is not the load type. This
2440 // happens if there is a load past the end of the alloca, and as
2441 // a consequence the slice is narrower but still a candidate for integer
2442 // lowering. To handle this case, we just zero extend the extracted
2443 // integer.
2444 assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 &&
2445 "Can only handle an extract for an overly wide load");
2446 if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8)
2447 V = IRB.CreateZExt(V, LI.getType());
2448 return V;
2449 }
2450
visitLoadInst(LoadInst & LI)2451 bool visitLoadInst(LoadInst &LI) {
2452 LLVM_DEBUG(dbgs() << " original: " << LI << "\n");
2453 Value *OldOp = LI.getOperand(0);
2454 assert(OldOp == OldPtr);
2455
2456 AAMDNodes AATags;
2457 LI.getAAMetadata(AATags);
2458
2459 unsigned AS = LI.getPointerAddressSpace();
2460
2461 Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
2462 : LI.getType();
2463 const bool IsLoadPastEnd = DL.getTypeStoreSize(TargetTy) > SliceSize;
2464 bool IsPtrAdjusted = false;
2465 Value *V;
2466 if (VecTy) {
2467 V = rewriteVectorizedLoadInst();
2468 } else if (IntTy && LI.getType()->isIntegerTy()) {
2469 V = rewriteIntegerLoad(LI);
2470 } else if (NewBeginOffset == NewAllocaBeginOffset &&
2471 NewEndOffset == NewAllocaEndOffset &&
2472 (canConvertValue(DL, NewAllocaTy, TargetTy) ||
2473 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() &&
2474 TargetTy->isIntegerTy()))) {
2475 LoadInst *NewLI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2476 LI.isVolatile(), LI.getName());
2477 if (AATags)
2478 NewLI->setAAMetadata(AATags);
2479 if (LI.isVolatile())
2480 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2481
2482 // Any !nonnull metadata or !range metadata on the old load is also valid
2483 // on the new load. This is even true in some cases even when the loads
2484 // are different types, for example by mapping !nonnull metadata to
2485 // !range metadata by modeling the null pointer constant converted to the
2486 // integer type.
2487 // FIXME: Add support for range metadata here. Currently the utilities
2488 // for this don't propagate range metadata in trivial cases from one
2489 // integer load to another, don't handle non-addrspace-0 null pointers
2490 // correctly, and don't have any support for mapping ranges as the
2491 // integer type becomes winder or narrower.
2492 if (MDNode *N = LI.getMetadata(LLVMContext::MD_nonnull))
2493 copyNonnullMetadata(LI, N, *NewLI);
2494
2495 // Try to preserve nonnull metadata
2496 V = NewLI;
2497
2498 // If this is an integer load past the end of the slice (which means the
2499 // bytes outside the slice are undef or this load is dead) just forcibly
2500 // fix the integer size with correct handling of endianness.
2501 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2502 if (auto *TITy = dyn_cast<IntegerType>(TargetTy))
2503 if (AITy->getBitWidth() < TITy->getBitWidth()) {
2504 V = IRB.CreateZExt(V, TITy, "load.ext");
2505 if (DL.isBigEndian())
2506 V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(),
2507 "endian_shift");
2508 }
2509 } else {
2510 Type *LTy = TargetTy->getPointerTo(AS);
2511 LoadInst *NewLI = IRB.CreateAlignedLoad(getNewAllocaSlicePtr(IRB, LTy),
2512 getSliceAlign(TargetTy),
2513 LI.isVolatile(), LI.getName());
2514 if (AATags)
2515 NewLI->setAAMetadata(AATags);
2516 if (LI.isVolatile())
2517 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2518
2519 V = NewLI;
2520 IsPtrAdjusted = true;
2521 }
2522 V = convertValue(DL, IRB, V, TargetTy);
2523
2524 if (IsSplit) {
2525 assert(!LI.isVolatile());
2526 assert(LI.getType()->isIntegerTy() &&
2527 "Only integer type loads and stores are split");
2528 assert(SliceSize < DL.getTypeStoreSize(LI.getType()) &&
2529 "Split load isn't smaller than original load");
2530 assert(LI.getType()->getIntegerBitWidth() ==
2531 DL.getTypeStoreSizeInBits(LI.getType()) &&
2532 "Non-byte-multiple bit width");
2533 // Move the insertion point just past the load so that we can refer to it.
2534 IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI)));
2535 // Create a placeholder value with the same type as LI to use as the
2536 // basis for the new value. This allows us to replace the uses of LI with
2537 // the computed value, and then replace the placeholder with LI, leaving
2538 // LI only used for this computation.
2539 Value *Placeholder =
2540 new LoadInst(UndefValue::get(LI.getType()->getPointerTo(AS)));
2541 V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
2542 "insert");
2543 LI.replaceAllUsesWith(V);
2544 Placeholder->replaceAllUsesWith(&LI);
2545 Placeholder->deleteValue();
2546 } else {
2547 LI.replaceAllUsesWith(V);
2548 }
2549
2550 Pass.DeadInsts.insert(&LI);
2551 deleteIfTriviallyDead(OldOp);
2552 LLVM_DEBUG(dbgs() << " to: " << *V << "\n");
2553 return !LI.isVolatile() && !IsPtrAdjusted;
2554 }
2555
rewriteVectorizedStoreInst(Value * V,StoreInst & SI,Value * OldOp,AAMDNodes AATags)2556 bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
2557 AAMDNodes AATags) {
2558 if (V->getType() != VecTy) {
2559 unsigned BeginIndex = getIndex(NewBeginOffset);
2560 unsigned EndIndex = getIndex(NewEndOffset);
2561 assert(EndIndex > BeginIndex && "Empty vector!");
2562 unsigned NumElements = EndIndex - BeginIndex;
2563 assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2564 Type *SliceTy = (NumElements == 1)
2565 ? ElementTy
2566 : VectorType::get(ElementTy, NumElements);
2567 if (V->getType() != SliceTy)
2568 V = convertValue(DL, IRB, V, SliceTy);
2569
2570 // Mix in the existing elements.
2571 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
2572 V = insertVector(IRB, Old, V, BeginIndex, "vec");
2573 }
2574 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2575 if (AATags)
2576 Store->setAAMetadata(AATags);
2577 Pass.DeadInsts.insert(&SI);
2578
2579 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n");
2580 return true;
2581 }
2582
rewriteIntegerStore(Value * V,StoreInst & SI,AAMDNodes AATags)2583 bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) {
2584 assert(IntTy && "We cannot extract an integer from the alloca");
2585 assert(!SI.isVolatile());
2586 if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
2587 Value *Old =
2588 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
2589 Old = convertValue(DL, IRB, Old, IntTy);
2590 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2591 uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2592 V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
2593 }
2594 V = convertValue(DL, IRB, V, NewAllocaTy);
2595 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2596 Store->copyMetadata(SI, LLVMContext::MD_mem_parallel_loop_access);
2597 if (AATags)
2598 Store->setAAMetadata(AATags);
2599 Pass.DeadInsts.insert(&SI);
2600 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n");
2601 return true;
2602 }
2603
visitStoreInst(StoreInst & SI)2604 bool visitStoreInst(StoreInst &SI) {
2605 LLVM_DEBUG(dbgs() << " original: " << SI << "\n");
2606 Value *OldOp = SI.getOperand(1);
2607 assert(OldOp == OldPtr);
2608
2609 AAMDNodes AATags;
2610 SI.getAAMetadata(AATags);
2611
2612 Value *V = SI.getValueOperand();
2613
2614 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2615 // alloca that should be re-examined after promoting this alloca.
2616 if (V->getType()->isPointerTy())
2617 if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2618 Pass.PostPromotionWorklist.insert(AI);
2619
2620 if (SliceSize < DL.getTypeStoreSize(V->getType())) {
2621 assert(!SI.isVolatile());
2622 assert(V->getType()->isIntegerTy() &&
2623 "Only integer type loads and stores are split");
2624 assert(V->getType()->getIntegerBitWidth() ==
2625 DL.getTypeStoreSizeInBits(V->getType()) &&
2626 "Non-byte-multiple bit width");
2627 IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
2628 V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
2629 "extract");
2630 }
2631
2632 if (VecTy)
2633 return rewriteVectorizedStoreInst(V, SI, OldOp, AATags);
2634 if (IntTy && V->getType()->isIntegerTy())
2635 return rewriteIntegerStore(V, SI, AATags);
2636
2637 const bool IsStorePastEnd = DL.getTypeStoreSize(V->getType()) > SliceSize;
2638 StoreInst *NewSI;
2639 if (NewBeginOffset == NewAllocaBeginOffset &&
2640 NewEndOffset == NewAllocaEndOffset &&
2641 (canConvertValue(DL, V->getType(), NewAllocaTy) ||
2642 (IsStorePastEnd && NewAllocaTy->isIntegerTy() &&
2643 V->getType()->isIntegerTy()))) {
2644 // If this is an integer store past the end of slice (and thus the bytes
2645 // past that point are irrelevant or this is unreachable), truncate the
2646 // value prior to storing.
2647 if (auto *VITy = dyn_cast<IntegerType>(V->getType()))
2648 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2649 if (VITy->getBitWidth() > AITy->getBitWidth()) {
2650 if (DL.isBigEndian())
2651 V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(),
2652 "endian_shift");
2653 V = IRB.CreateTrunc(V, AITy, "load.trunc");
2654 }
2655
2656 V = convertValue(DL, IRB, V, NewAllocaTy);
2657 NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2658 SI.isVolatile());
2659 } else {
2660 unsigned AS = SI.getPointerAddressSpace();
2661 Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS));
2662 NewSI = IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(V->getType()),
2663 SI.isVolatile());
2664 }
2665 NewSI->copyMetadata(SI, LLVMContext::MD_mem_parallel_loop_access);
2666 if (AATags)
2667 NewSI->setAAMetadata(AATags);
2668 if (SI.isVolatile())
2669 NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
2670 Pass.DeadInsts.insert(&SI);
2671 deleteIfTriviallyDead(OldOp);
2672
2673 LLVM_DEBUG(dbgs() << " to: " << *NewSI << "\n");
2674 return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
2675 }
2676
2677 /// Compute an integer value from splatting an i8 across the given
2678 /// number of bytes.
2679 ///
2680 /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2681 /// call this routine.
2682 /// FIXME: Heed the advice above.
2683 ///
2684 /// \param V The i8 value to splat.
2685 /// \param Size The number of bytes in the output (assuming i8 is one byte)
getIntegerSplat(Value * V,unsigned Size)2686 Value *getIntegerSplat(Value *V, unsigned Size) {
2687 assert(Size > 0 && "Expected a positive number of bytes.");
2688 IntegerType *VTy = cast<IntegerType>(V->getType());
2689 assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2690 if (Size == 1)
2691 return V;
2692
2693 Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
2694 V = IRB.CreateMul(
2695 IRB.CreateZExt(V, SplatIntTy, "zext"),
2696 ConstantExpr::getUDiv(
2697 Constant::getAllOnesValue(SplatIntTy),
2698 ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()),
2699 SplatIntTy)),
2700 "isplat");
2701 return V;
2702 }
2703
2704 /// Compute a vector splat for a given element value.
getVectorSplat(Value * V,unsigned NumElements)2705 Value *getVectorSplat(Value *V, unsigned NumElements) {
2706 V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
2707 LLVM_DEBUG(dbgs() << " splat: " << *V << "\n");
2708 return V;
2709 }
2710
visitMemSetInst(MemSetInst & II)2711 bool visitMemSetInst(MemSetInst &II) {
2712 LLVM_DEBUG(dbgs() << " original: " << II << "\n");
2713 assert(II.getRawDest() == OldPtr);
2714
2715 AAMDNodes AATags;
2716 II.getAAMetadata(AATags);
2717
2718 // If the memset has a variable size, it cannot be split, just adjust the
2719 // pointer to the new alloca.
2720 if (!isa<Constant>(II.getLength())) {
2721 assert(!IsSplit);
2722 assert(NewBeginOffset == BeginOffset);
2723 II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
2724 II.setDestAlignment(getSliceAlign());
2725
2726 deleteIfTriviallyDead(OldPtr);
2727 return false;
2728 }
2729
2730 // Record this instruction for deletion.
2731 Pass.DeadInsts.insert(&II);
2732
2733 Type *AllocaTy = NewAI.getAllocatedType();
2734 Type *ScalarTy = AllocaTy->getScalarType();
2735
2736 // If this doesn't map cleanly onto the alloca type, and that type isn't
2737 // a single value type, just emit a memset.
2738 if (!VecTy && !IntTy &&
2739 (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
2740 SliceSize != DL.getTypeStoreSize(AllocaTy) ||
2741 !AllocaTy->isSingleValueType() ||
2742 !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) ||
2743 DL.getTypeSizeInBits(ScalarTy) % 8 != 0)) {
2744 Type *SizeTy = II.getLength()->getType();
2745 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2746 CallInst *New = IRB.CreateMemSet(
2747 getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
2748 getSliceAlign(), II.isVolatile());
2749 if (AATags)
2750 New->setAAMetadata(AATags);
2751 LLVM_DEBUG(dbgs() << " to: " << *New << "\n");
2752 return false;
2753 }
2754
2755 // If we can represent this as a simple value, we have to build the actual
2756 // value to store, which requires expanding the byte present in memset to
2757 // a sensible representation for the alloca type. This is essentially
2758 // splatting the byte to a sufficiently wide integer, splatting it across
2759 // any desired vector width, and bitcasting to the final type.
2760 Value *V;
2761
2762 if (VecTy) {
2763 // If this is a memset of a vectorized alloca, insert it.
2764 assert(ElementTy == ScalarTy);
2765
2766 unsigned BeginIndex = getIndex(NewBeginOffset);
2767 unsigned EndIndex = getIndex(NewEndOffset);
2768 assert(EndIndex > BeginIndex && "Empty vector!");
2769 unsigned NumElements = EndIndex - BeginIndex;
2770 assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2771
2772 Value *Splat =
2773 getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8);
2774 Splat = convertValue(DL, IRB, Splat, ElementTy);
2775 if (NumElements > 1)
2776 Splat = getVectorSplat(Splat, NumElements);
2777
2778 Value *Old =
2779 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
2780 V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
2781 } else if (IntTy) {
2782 // If this is a memset on an alloca where we can widen stores, insert the
2783 // set integer.
2784 assert(!II.isVolatile());
2785
2786 uint64_t Size = NewEndOffset - NewBeginOffset;
2787 V = getIntegerSplat(II.getValue(), Size);
2788
2789 if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2790 EndOffset != NewAllocaBeginOffset)) {
2791 Value *Old =
2792 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
2793 Old = convertValue(DL, IRB, Old, IntTy);
2794 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2795 V = insertInteger(DL, IRB, Old, V, Offset, "insert");
2796 } else {
2797 assert(V->getType() == IntTy &&
2798 "Wrong type for an alloca wide integer!");
2799 }
2800 V = convertValue(DL, IRB, V, AllocaTy);
2801 } else {
2802 // Established these invariants above.
2803 assert(NewBeginOffset == NewAllocaBeginOffset);
2804 assert(NewEndOffset == NewAllocaEndOffset);
2805
2806 V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8);
2807 if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
2808 V = getVectorSplat(V, AllocaVecTy->getNumElements());
2809
2810 V = convertValue(DL, IRB, V, AllocaTy);
2811 }
2812
2813 StoreInst *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2814 II.isVolatile());
2815 if (AATags)
2816 New->setAAMetadata(AATags);
2817 LLVM_DEBUG(dbgs() << " to: " << *New << "\n");
2818 return !II.isVolatile();
2819 }
2820
visitMemTransferInst(MemTransferInst & II)2821 bool visitMemTransferInst(MemTransferInst &II) {
2822 // Rewriting of memory transfer instructions can be a bit tricky. We break
2823 // them into two categories: split intrinsics and unsplit intrinsics.
2824
2825 LLVM_DEBUG(dbgs() << " original: " << II << "\n");
2826
2827 AAMDNodes AATags;
2828 II.getAAMetadata(AATags);
2829
2830 bool IsDest = &II.getRawDestUse() == OldUse;
2831 assert((IsDest && II.getRawDest() == OldPtr) ||
2832 (!IsDest && II.getRawSource() == OldPtr));
2833
2834 unsigned SliceAlign = getSliceAlign();
2835
2836 // For unsplit intrinsics, we simply modify the source and destination
2837 // pointers in place. This isn't just an optimization, it is a matter of
2838 // correctness. With unsplit intrinsics we may be dealing with transfers
2839 // within a single alloca before SROA ran, or with transfers that have
2840 // a variable length. We may also be dealing with memmove instead of
2841 // memcpy, and so simply updating the pointers is the necessary for us to
2842 // update both source and dest of a single call.
2843 if (!IsSplittable) {
2844 Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2845 if (IsDest) {
2846 II.setDest(AdjustedPtr);
2847 II.setDestAlignment(SliceAlign);
2848 }
2849 else {
2850 II.setSource(AdjustedPtr);
2851 II.setSourceAlignment(SliceAlign);
2852 }
2853
2854 LLVM_DEBUG(dbgs() << " to: " << II << "\n");
2855 deleteIfTriviallyDead(OldPtr);
2856 return false;
2857 }
2858 // For split transfer intrinsics we have an incredibly useful assurance:
2859 // the source and destination do not reside within the same alloca, and at
2860 // least one of them does not escape. This means that we can replace
2861 // memmove with memcpy, and we don't need to worry about all manner of
2862 // downsides to splitting and transforming the operations.
2863
2864 // If this doesn't map cleanly onto the alloca type, and that type isn't
2865 // a single value type, just emit a memcpy.
2866 bool EmitMemCpy =
2867 !VecTy && !IntTy &&
2868 (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
2869 SliceSize != DL.getTypeStoreSize(NewAI.getAllocatedType()) ||
2870 !NewAI.getAllocatedType()->isSingleValueType());
2871
2872 // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2873 // size hasn't been shrunk based on analysis of the viable range, this is
2874 // a no-op.
2875 if (EmitMemCpy && &OldAI == &NewAI) {
2876 // Ensure the start lines up.
2877 assert(NewBeginOffset == BeginOffset);
2878
2879 // Rewrite the size as needed.
2880 if (NewEndOffset != EndOffset)
2881 II.setLength(ConstantInt::get(II.getLength()->getType(),
2882 NewEndOffset - NewBeginOffset));
2883 return false;
2884 }
2885 // Record this instruction for deletion.
2886 Pass.DeadInsts.insert(&II);
2887
2888 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2889 // alloca that should be re-examined after rewriting this instruction.
2890 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2891 if (AllocaInst *AI =
2892 dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
2893 assert(AI != &OldAI && AI != &NewAI &&
2894 "Splittable transfers cannot reach the same alloca on both ends.");
2895 Pass.Worklist.insert(AI);
2896 }
2897
2898 Type *OtherPtrTy = OtherPtr->getType();
2899 unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
2900
2901 // Compute the relative offset for the other pointer within the transfer.
2902 unsigned IntPtrWidth = DL.getPointerSizeInBits(OtherAS);
2903 APInt OtherOffset(IntPtrWidth, NewBeginOffset - BeginOffset);
2904 unsigned OtherAlign =
2905 IsDest ? II.getSourceAlignment() : II.getDestAlignment();
2906 OtherAlign = MinAlign(OtherAlign ? OtherAlign : 1,
2907 OtherOffset.zextOrTrunc(64).getZExtValue());
2908
2909 if (EmitMemCpy) {
2910 // Compute the other pointer, folding as much as possible to produce
2911 // a single, simple GEP in most cases.
2912 OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
2913 OtherPtr->getName() + ".");
2914
2915 Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2916 Type *SizeTy = II.getLength()->getType();
2917 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2918
2919 Value *DestPtr, *SrcPtr;
2920 unsigned DestAlign, SrcAlign;
2921 // Note: IsDest is true iff we're copying into the new alloca slice
2922 if (IsDest) {
2923 DestPtr = OurPtr;
2924 DestAlign = SliceAlign;
2925 SrcPtr = OtherPtr;
2926 SrcAlign = OtherAlign;
2927 } else {
2928 DestPtr = OtherPtr;
2929 DestAlign = OtherAlign;
2930 SrcPtr = OurPtr;
2931 SrcAlign = SliceAlign;
2932 }
2933 CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign,
2934 Size, II.isVolatile());
2935 if (AATags)
2936 New->setAAMetadata(AATags);
2937 LLVM_DEBUG(dbgs() << " to: " << *New << "\n");
2938 return false;
2939 }
2940
2941 bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
2942 NewEndOffset == NewAllocaEndOffset;
2943 uint64_t Size = NewEndOffset - NewBeginOffset;
2944 unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
2945 unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
2946 unsigned NumElements = EndIndex - BeginIndex;
2947 IntegerType *SubIntTy =
2948 IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
2949
2950 // Reset the other pointer type to match the register type we're going to
2951 // use, but using the address space of the original other pointer.
2952 if (VecTy && !IsWholeAlloca) {
2953 if (NumElements == 1)
2954 OtherPtrTy = VecTy->getElementType();
2955 else
2956 OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
2957
2958 OtherPtrTy = OtherPtrTy->getPointerTo(OtherAS);
2959 } else if (IntTy && !IsWholeAlloca) {
2960 OtherPtrTy = SubIntTy->getPointerTo(OtherAS);
2961 } else {
2962 OtherPtrTy = NewAllocaTy->getPointerTo(OtherAS);
2963 }
2964
2965 Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
2966 OtherPtr->getName() + ".");
2967 unsigned SrcAlign = OtherAlign;
2968 Value *DstPtr = &NewAI;
2969 unsigned DstAlign = SliceAlign;
2970 if (!IsDest) {
2971 std::swap(SrcPtr, DstPtr);
2972 std::swap(SrcAlign, DstAlign);
2973 }
2974
2975 Value *Src;
2976 if (VecTy && !IsWholeAlloca && !IsDest) {
2977 Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
2978 Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
2979 } else if (IntTy && !IsWholeAlloca && !IsDest) {
2980 Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
2981 Src = convertValue(DL, IRB, Src, IntTy);
2982 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2983 Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
2984 } else {
2985 LoadInst *Load = IRB.CreateAlignedLoad(SrcPtr, SrcAlign, II.isVolatile(),
2986 "copyload");
2987 if (AATags)
2988 Load->setAAMetadata(AATags);
2989 Src = Load;
2990 }
2991
2992 if (VecTy && !IsWholeAlloca && IsDest) {
2993 Value *Old =
2994 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
2995 Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
2996 } else if (IntTy && !IsWholeAlloca && IsDest) {
2997 Value *Old =
2998 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
2999 Old = convertValue(DL, IRB, Old, IntTy);
3000 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3001 Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
3002 Src = convertValue(DL, IRB, Src, NewAllocaTy);
3003 }
3004
3005 StoreInst *Store = cast<StoreInst>(
3006 IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
3007 if (AATags)
3008 Store->setAAMetadata(AATags);
3009 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n");
3010 return !II.isVolatile();
3011 }
3012
visitIntrinsicInst(IntrinsicInst & II)3013 bool visitIntrinsicInst(IntrinsicInst &II) {
3014 assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
3015 II.getIntrinsicID() == Intrinsic::lifetime_end);
3016 LLVM_DEBUG(dbgs() << " original: " << II << "\n");
3017 assert(II.getArgOperand(1) == OldPtr);
3018
3019 // Record this instruction for deletion.
3020 Pass.DeadInsts.insert(&II);
3021
3022 // Lifetime intrinsics are only promotable if they cover the whole alloca.
3023 // Therefore, we drop lifetime intrinsics which don't cover the whole
3024 // alloca.
3025 // (In theory, intrinsics which partially cover an alloca could be
3026 // promoted, but PromoteMemToReg doesn't handle that case.)
3027 // FIXME: Check whether the alloca is promotable before dropping the
3028 // lifetime intrinsics?
3029 if (NewBeginOffset != NewAllocaBeginOffset ||
3030 NewEndOffset != NewAllocaEndOffset)
3031 return true;
3032
3033 ConstantInt *Size =
3034 ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
3035 NewEndOffset - NewBeginOffset);
3036 Value *Ptr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3037 Value *New;
3038 if (II.getIntrinsicID() == Intrinsic::lifetime_start)
3039 New = IRB.CreateLifetimeStart(Ptr, Size);
3040 else
3041 New = IRB.CreateLifetimeEnd(Ptr, Size);
3042
3043 (void)New;
3044 LLVM_DEBUG(dbgs() << " to: " << *New << "\n");
3045
3046 return true;
3047 }
3048
fixLoadStoreAlign(Instruction & Root)3049 void fixLoadStoreAlign(Instruction &Root) {
3050 // This algorithm implements the same visitor loop as
3051 // hasUnsafePHIOrSelectUse, and fixes the alignment of each load
3052 // or store found.
3053 SmallPtrSet<Instruction *, 4> Visited;
3054 SmallVector<Instruction *, 4> Uses;
3055 Visited.insert(&Root);
3056 Uses.push_back(&Root);
3057 do {
3058 Instruction *I = Uses.pop_back_val();
3059
3060 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
3061 unsigned LoadAlign = LI->getAlignment();
3062 if (!LoadAlign)
3063 LoadAlign = DL.getABITypeAlignment(LI->getType());
3064 LI->setAlignment(std::min(LoadAlign, getSliceAlign()));
3065 continue;
3066 }
3067 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
3068 unsigned StoreAlign = SI->getAlignment();
3069 if (!StoreAlign) {
3070 Value *Op = SI->getOperand(0);
3071 StoreAlign = DL.getABITypeAlignment(Op->getType());
3072 }
3073 SI->setAlignment(std::min(StoreAlign, getSliceAlign()));
3074 continue;
3075 }
3076
3077 assert(isa<BitCastInst>(I) || isa<PHINode>(I) ||
3078 isa<SelectInst>(I) || isa<GetElementPtrInst>(I));
3079 for (User *U : I->users())
3080 if (Visited.insert(cast<Instruction>(U)).second)
3081 Uses.push_back(cast<Instruction>(U));
3082 } while (!Uses.empty());
3083 }
3084
visitPHINode(PHINode & PN)3085 bool visitPHINode(PHINode &PN) {
3086 LLVM_DEBUG(dbgs() << " original: " << PN << "\n");
3087 assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
3088 assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
3089
3090 // We would like to compute a new pointer in only one place, but have it be
3091 // as local as possible to the PHI. To do that, we re-use the location of
3092 // the old pointer, which necessarily must be in the right position to
3093 // dominate the PHI.
3094 IRBuilderTy PtrBuilder(IRB);
3095 if (isa<PHINode>(OldPtr))
3096 PtrBuilder.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt());
3097 else
3098 PtrBuilder.SetInsertPoint(OldPtr);
3099 PtrBuilder.SetCurrentDebugLocation(OldPtr->getDebugLoc());
3100
3101 Value *NewPtr = getNewAllocaSlicePtr(PtrBuilder, OldPtr->getType());
3102 // Replace the operands which were using the old pointer.
3103 std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
3104
3105 LLVM_DEBUG(dbgs() << " to: " << PN << "\n");
3106 deleteIfTriviallyDead(OldPtr);
3107
3108 // Fix the alignment of any loads or stores using this PHI node.
3109 fixLoadStoreAlign(PN);
3110
3111 // PHIs can't be promoted on their own, but often can be speculated. We
3112 // check the speculation outside of the rewriter so that we see the
3113 // fully-rewritten alloca.
3114 PHIUsers.insert(&PN);
3115 return true;
3116 }
3117
visitSelectInst(SelectInst & SI)3118 bool visitSelectInst(SelectInst &SI) {
3119 LLVM_DEBUG(dbgs() << " original: " << SI << "\n");
3120 assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
3121 "Pointer isn't an operand!");
3122 assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
3123 assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
3124
3125 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3126 // Replace the operands which were using the old pointer.
3127 if (SI.getOperand(1) == OldPtr)
3128 SI.setOperand(1, NewPtr);
3129 if (SI.getOperand(2) == OldPtr)
3130 SI.setOperand(2, NewPtr);
3131
3132 LLVM_DEBUG(dbgs() << " to: " << SI << "\n");
3133 deleteIfTriviallyDead(OldPtr);
3134
3135 // Fix the alignment of any loads or stores using this select.
3136 fixLoadStoreAlign(SI);
3137
3138 // Selects can't be promoted on their own, but often can be speculated. We
3139 // check the speculation outside of the rewriter so that we see the
3140 // fully-rewritten alloca.
3141 SelectUsers.insert(&SI);
3142 return true;
3143 }
3144 };
3145
3146 namespace {
3147
3148 /// Visitor to rewrite aggregate loads and stores as scalar.
3149 ///
3150 /// This pass aggressively rewrites all aggregate loads and stores on
3151 /// a particular pointer (or any pointer derived from it which we can identify)
3152 /// with scalar loads and stores.
3153 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
3154 // Befriend the base class so it can delegate to private visit methods.
3155 friend class InstVisitor<AggLoadStoreRewriter, bool>;
3156
3157 /// Queue of pointer uses to analyze and potentially rewrite.
3158 SmallVector<Use *, 8> Queue;
3159
3160 /// Set to prevent us from cycling with phi nodes and loops.
3161 SmallPtrSet<User *, 8> Visited;
3162
3163 /// The current pointer use being rewritten. This is used to dig up the used
3164 /// value (as opposed to the user).
3165 Use *U;
3166
3167 public:
3168 /// Rewrite loads and stores through a pointer and all pointers derived from
3169 /// it.
rewrite(Instruction & I)3170 bool rewrite(Instruction &I) {
3171 LLVM_DEBUG(dbgs() << " Rewriting FCA loads and stores...\n");
3172 enqueueUsers(I);
3173 bool Changed = false;
3174 while (!Queue.empty()) {
3175 U = Queue.pop_back_val();
3176 Changed |= visit(cast<Instruction>(U->getUser()));
3177 }
3178 return Changed;
3179 }
3180
3181 private:
3182 /// Enqueue all the users of the given instruction for further processing.
3183 /// This uses a set to de-duplicate users.
enqueueUsers(Instruction & I)3184 void enqueueUsers(Instruction &I) {
3185 for (Use &U : I.uses())
3186 if (Visited.insert(U.getUser()).second)
3187 Queue.push_back(&U);
3188 }
3189
3190 // Conservative default is to not rewrite anything.
visitInstruction(Instruction & I)3191 bool visitInstruction(Instruction &I) { return false; }
3192
3193 /// Generic recursive split emission class.
3194 template <typename Derived> class OpSplitter {
3195 protected:
3196 /// The builder used to form new instructions.
3197 IRBuilderTy IRB;
3198
3199 /// The indices which to be used with insert- or extractvalue to select the
3200 /// appropriate value within the aggregate.
3201 SmallVector<unsigned, 4> Indices;
3202
3203 /// The indices to a GEP instruction which will move Ptr to the correct slot
3204 /// within the aggregate.
3205 SmallVector<Value *, 4> GEPIndices;
3206
3207 /// The base pointer of the original op, used as a base for GEPing the
3208 /// split operations.
3209 Value *Ptr;
3210
3211 /// Initialize the splitter with an insertion point, Ptr and start with a
3212 /// single zero GEP index.
OpSplitter(Instruction * InsertionPoint,Value * Ptr)3213 OpSplitter(Instruction *InsertionPoint, Value *Ptr)
3214 : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
3215
3216 public:
3217 /// Generic recursive split emission routine.
3218 ///
3219 /// This method recursively splits an aggregate op (load or store) into
3220 /// scalar or vector ops. It splits recursively until it hits a single value
3221 /// and emits that single value operation via the template argument.
3222 ///
3223 /// The logic of this routine relies on GEPs and insertvalue and
3224 /// extractvalue all operating with the same fundamental index list, merely
3225 /// formatted differently (GEPs need actual values).
3226 ///
3227 /// \param Ty The type being split recursively into smaller ops.
3228 /// \param Agg The aggregate value being built up or stored, depending on
3229 /// whether this is splitting a load or a store respectively.
emitSplitOps(Type * Ty,Value * & Agg,const Twine & Name)3230 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3231 if (Ty->isSingleValueType())
3232 return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
3233
3234 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3235 unsigned OldSize = Indices.size();
3236 (void)OldSize;
3237 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3238 ++Idx) {
3239 assert(Indices.size() == OldSize && "Did not return to the old size");
3240 Indices.push_back(Idx);
3241 GEPIndices.push_back(IRB.getInt32(Idx));
3242 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3243 GEPIndices.pop_back();
3244 Indices.pop_back();
3245 }
3246 return;
3247 }
3248
3249 if (StructType *STy = dyn_cast<StructType>(Ty)) {
3250 unsigned OldSize = Indices.size();
3251 (void)OldSize;
3252 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3253 ++Idx) {
3254 assert(Indices.size() == OldSize && "Did not return to the old size");
3255 Indices.push_back(Idx);
3256 GEPIndices.push_back(IRB.getInt32(Idx));
3257 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3258 GEPIndices.pop_back();
3259 Indices.pop_back();
3260 }
3261 return;
3262 }
3263
3264 llvm_unreachable("Only arrays and structs are aggregate loadable types");
3265 }
3266 };
3267
3268 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3269 AAMDNodes AATags;
3270
LoadOpSplitter__anon3a3523220a11::AggLoadStoreRewriter::LoadOpSplitter3271 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, AAMDNodes AATags)
3272 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr), AATags(AATags) {}
3273
3274 /// Emit a leaf load of a single value. This is called at the leaves of the
3275 /// recursive emission to actually load values.
emitFunc__anon3a3523220a11::AggLoadStoreRewriter::LoadOpSplitter3276 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
3277 assert(Ty->isSingleValueType());
3278 // Load the single value and insert it using the indices.
3279 Value *GEP =
3280 IRB.CreateInBoundsGEP(nullptr, Ptr, GEPIndices, Name + ".gep");
3281 LoadInst *Load = IRB.CreateLoad(GEP, Name + ".load");
3282 if (AATags)
3283 Load->setAAMetadata(AATags);
3284 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3285 LLVM_DEBUG(dbgs() << " to: " << *Load << "\n");
3286 }
3287 };
3288
visitLoadInst(LoadInst & LI)3289 bool visitLoadInst(LoadInst &LI) {
3290 assert(LI.getPointerOperand() == *U);
3291 if (!LI.isSimple() || LI.getType()->isSingleValueType())
3292 return false;
3293
3294 // We have an aggregate being loaded, split it apart.
3295 LLVM_DEBUG(dbgs() << " original: " << LI << "\n");
3296 AAMDNodes AATags;
3297 LI.getAAMetadata(AATags);
3298 LoadOpSplitter Splitter(&LI, *U, AATags);
3299 Value *V = UndefValue::get(LI.getType());
3300 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3301 LI.replaceAllUsesWith(V);
3302 LI.eraseFromParent();
3303 return true;
3304 }
3305
3306 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
StoreOpSplitter__anon3a3523220a11::AggLoadStoreRewriter::StoreOpSplitter3307 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, AAMDNodes AATags)
3308 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr), AATags(AATags) {}
3309 AAMDNodes AATags;
3310
3311 /// Emit a leaf store of a single value. This is called at the leaves of the
3312 /// recursive emission to actually produce stores.
emitFunc__anon3a3523220a11::AggLoadStoreRewriter::StoreOpSplitter3313 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
3314 assert(Ty->isSingleValueType());
3315 // Extract the single value and store it using the indices.
3316 //
3317 // The gep and extractvalue values are factored out of the CreateStore
3318 // call to make the output independent of the argument evaluation order.
3319 Value *ExtractValue =
3320 IRB.CreateExtractValue(Agg, Indices, Name + ".extract");
3321 Value *InBoundsGEP =
3322 IRB.CreateInBoundsGEP(nullptr, Ptr, GEPIndices, Name + ".gep");
3323 StoreInst *Store = IRB.CreateStore(ExtractValue, InBoundsGEP);
3324 if (AATags)
3325 Store->setAAMetadata(AATags);
3326 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n");
3327 }
3328 };
3329
visitStoreInst(StoreInst & SI)3330 bool visitStoreInst(StoreInst &SI) {
3331 if (!SI.isSimple() || SI.getPointerOperand() != *U)
3332 return false;
3333 Value *V = SI.getValueOperand();
3334 if (V->getType()->isSingleValueType())
3335 return false;
3336
3337 // We have an aggregate being stored, split it apart.
3338 LLVM_DEBUG(dbgs() << " original: " << SI << "\n");
3339 AAMDNodes AATags;
3340 SI.getAAMetadata(AATags);
3341 StoreOpSplitter Splitter(&SI, *U, AATags);
3342 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3343 SI.eraseFromParent();
3344 return true;
3345 }
3346
visitBitCastInst(BitCastInst & BC)3347 bool visitBitCastInst(BitCastInst &BC) {
3348 enqueueUsers(BC);
3349 return false;
3350 }
3351
visitGetElementPtrInst(GetElementPtrInst & GEPI)3352 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3353 enqueueUsers(GEPI);
3354 return false;
3355 }
3356
visitPHINode(PHINode & PN)3357 bool visitPHINode(PHINode &PN) {
3358 enqueueUsers(PN);
3359 return false;
3360 }
3361
visitSelectInst(SelectInst & SI)3362 bool visitSelectInst(SelectInst &SI) {
3363 enqueueUsers(SI);
3364 return false;
3365 }
3366 };
3367
3368 } // end anonymous namespace
3369
3370 /// Strip aggregate type wrapping.
3371 ///
3372 /// This removes no-op aggregate types wrapping an underlying type. It will
3373 /// strip as many layers of types as it can without changing either the type
3374 /// size or the allocated size.
stripAggregateTypeWrapping(const DataLayout & DL,Type * Ty)3375 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3376 if (Ty->isSingleValueType())
3377 return Ty;
3378
3379 uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3380 uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
3381
3382 Type *InnerTy;
3383 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3384 InnerTy = ArrTy->getElementType();
3385 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3386 const StructLayout *SL = DL.getStructLayout(STy);
3387 unsigned Index = SL->getElementContainingOffset(0);
3388 InnerTy = STy->getElementType(Index);
3389 } else {
3390 return Ty;
3391 }
3392
3393 if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
3394 TypeSize > DL.getTypeSizeInBits(InnerTy))
3395 return Ty;
3396
3397 return stripAggregateTypeWrapping(DL, InnerTy);
3398 }
3399
3400 /// Try to find a partition of the aggregate type passed in for a given
3401 /// offset and size.
3402 ///
3403 /// This recurses through the aggregate type and tries to compute a subtype
3404 /// based on the offset and size. When the offset and size span a sub-section
3405 /// of an array, it will even compute a new array type for that sub-section,
3406 /// and the same for structs.
3407 ///
3408 /// Note that this routine is very strict and tries to find a partition of the
3409 /// type which produces the *exact* right offset and size. It is not forgiving
3410 /// when the size or offset cause either end of type-based partition to be off.
3411 /// Also, this is a best-effort routine. It is reasonable to give up and not
3412 /// return a type if necessary.
getTypePartition(const DataLayout & DL,Type * Ty,uint64_t Offset,uint64_t Size)3413 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
3414 uint64_t Size) {
3415 if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size)
3416 return stripAggregateTypeWrapping(DL, Ty);
3417 if (Offset > DL.getTypeAllocSize(Ty) ||
3418 (DL.getTypeAllocSize(Ty) - Offset) < Size)
3419 return nullptr;
3420
3421 if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
3422 Type *ElementTy = SeqTy->getElementType();
3423 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
3424 uint64_t NumSkippedElements = Offset / ElementSize;
3425 if (NumSkippedElements >= SeqTy->getNumElements())
3426 return nullptr;
3427 Offset -= NumSkippedElements * ElementSize;
3428
3429 // First check if we need to recurse.
3430 if (Offset > 0 || Size < ElementSize) {
3431 // Bail if the partition ends in a different array element.
3432 if ((Offset + Size) > ElementSize)
3433 return nullptr;
3434 // Recurse through the element type trying to peel off offset bytes.
3435 return getTypePartition(DL, ElementTy, Offset, Size);
3436 }
3437 assert(Offset == 0);
3438
3439 if (Size == ElementSize)
3440 return stripAggregateTypeWrapping(DL, ElementTy);
3441 assert(Size > ElementSize);
3442 uint64_t NumElements = Size / ElementSize;
3443 if (NumElements * ElementSize != Size)
3444 return nullptr;
3445 return ArrayType::get(ElementTy, NumElements);
3446 }
3447
3448 StructType *STy = dyn_cast<StructType>(Ty);
3449 if (!STy)
3450 return nullptr;
3451
3452 const StructLayout *SL = DL.getStructLayout(STy);
3453 if (Offset >= SL->getSizeInBytes())
3454 return nullptr;
3455 uint64_t EndOffset = Offset + Size;
3456 if (EndOffset > SL->getSizeInBytes())
3457 return nullptr;
3458
3459 unsigned Index = SL->getElementContainingOffset(Offset);
3460 Offset -= SL->getElementOffset(Index);
3461
3462 Type *ElementTy = STy->getElementType(Index);
3463 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
3464 if (Offset >= ElementSize)
3465 return nullptr; // The offset points into alignment padding.
3466
3467 // See if any partition must be contained by the element.
3468 if (Offset > 0 || Size < ElementSize) {
3469 if ((Offset + Size) > ElementSize)
3470 return nullptr;
3471 return getTypePartition(DL, ElementTy, Offset, Size);
3472 }
3473 assert(Offset == 0);
3474
3475 if (Size == ElementSize)
3476 return stripAggregateTypeWrapping(DL, ElementTy);
3477
3478 StructType::element_iterator EI = STy->element_begin() + Index,
3479 EE = STy->element_end();
3480 if (EndOffset < SL->getSizeInBytes()) {
3481 unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3482 if (Index == EndIndex)
3483 return nullptr; // Within a single element and its padding.
3484
3485 // Don't try to form "natural" types if the elements don't line up with the
3486 // expected size.
3487 // FIXME: We could potentially recurse down through the last element in the
3488 // sub-struct to find a natural end point.
3489 if (SL->getElementOffset(EndIndex) != EndOffset)
3490 return nullptr;
3491
3492 assert(Index < EndIndex);
3493 EE = STy->element_begin() + EndIndex;
3494 }
3495
3496 // Try to build up a sub-structure.
3497 StructType *SubTy =
3498 StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked());
3499 const StructLayout *SubSL = DL.getStructLayout(SubTy);
3500 if (Size != SubSL->getSizeInBytes())
3501 return nullptr; // The sub-struct doesn't have quite the size needed.
3502
3503 return SubTy;
3504 }
3505
3506 /// Pre-split loads and stores to simplify rewriting.
3507 ///
3508 /// We want to break up the splittable load+store pairs as much as
3509 /// possible. This is important to do as a preprocessing step, as once we
3510 /// start rewriting the accesses to partitions of the alloca we lose the
3511 /// necessary information to correctly split apart paired loads and stores
3512 /// which both point into this alloca. The case to consider is something like
3513 /// the following:
3514 ///
3515 /// %a = alloca [12 x i8]
3516 /// %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0
3517 /// %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4
3518 /// %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8
3519 /// %iptr1 = bitcast i8* %gep1 to i64*
3520 /// %iptr2 = bitcast i8* %gep2 to i64*
3521 /// %fptr1 = bitcast i8* %gep1 to float*
3522 /// %fptr2 = bitcast i8* %gep2 to float*
3523 /// %fptr3 = bitcast i8* %gep3 to float*
3524 /// store float 0.0, float* %fptr1
3525 /// store float 1.0, float* %fptr2
3526 /// %v = load i64* %iptr1
3527 /// store i64 %v, i64* %iptr2
3528 /// %f1 = load float* %fptr2
3529 /// %f2 = load float* %fptr3
3530 ///
3531 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
3532 /// promote everything so we recover the 2 SSA values that should have been
3533 /// there all along.
3534 ///
3535 /// \returns true if any changes are made.
presplitLoadsAndStores(AllocaInst & AI,AllocaSlices & AS)3536 bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
3537 LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n");
3538
3539 // Track the loads and stores which are candidates for pre-splitting here, in
3540 // the order they first appear during the partition scan. These give stable
3541 // iteration order and a basis for tracking which loads and stores we
3542 // actually split.
3543 SmallVector<LoadInst *, 4> Loads;
3544 SmallVector<StoreInst *, 4> Stores;
3545
3546 // We need to accumulate the splits required of each load or store where we
3547 // can find them via a direct lookup. This is important to cross-check loads
3548 // and stores against each other. We also track the slice so that we can kill
3549 // all the slices that end up split.
3550 struct SplitOffsets {
3551 Slice *S;
3552 std::vector<uint64_t> Splits;
3553 };
3554 SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
3555
3556 // Track loads out of this alloca which cannot, for any reason, be pre-split.
3557 // This is important as we also cannot pre-split stores of those loads!
3558 // FIXME: This is all pretty gross. It means that we can be more aggressive
3559 // in pre-splitting when the load feeding the store happens to come from
3560 // a separate alloca. Put another way, the effectiveness of SROA would be
3561 // decreased by a frontend which just concatenated all of its local allocas
3562 // into one big flat alloca. But defeating such patterns is exactly the job
3563 // SROA is tasked with! Sadly, to not have this discrepancy we would have
3564 // change store pre-splitting to actually force pre-splitting of the load
3565 // that feeds it *and all stores*. That makes pre-splitting much harder, but
3566 // maybe it would make it more principled?
3567 SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
3568
3569 LLVM_DEBUG(dbgs() << " Searching for candidate loads and stores\n");
3570 for (auto &P : AS.partitions()) {
3571 for (Slice &S : P) {
3572 Instruction *I = cast<Instruction>(S.getUse()->getUser());
3573 if (!S.isSplittable() || S.endOffset() <= P.endOffset()) {
3574 // If this is a load we have to track that it can't participate in any
3575 // pre-splitting. If this is a store of a load we have to track that
3576 // that load also can't participate in any pre-splitting.
3577 if (auto *LI = dyn_cast<LoadInst>(I))
3578 UnsplittableLoads.insert(LI);
3579 else if (auto *SI = dyn_cast<StoreInst>(I))
3580 if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand()))
3581 UnsplittableLoads.insert(LI);
3582 continue;
3583 }
3584 assert(P.endOffset() > S.beginOffset() &&
3585 "Empty or backwards partition!");
3586
3587 // Determine if this is a pre-splittable slice.
3588 if (auto *LI = dyn_cast<LoadInst>(I)) {
3589 assert(!LI->isVolatile() && "Cannot split volatile loads!");
3590
3591 // The load must be used exclusively to store into other pointers for
3592 // us to be able to arbitrarily pre-split it. The stores must also be
3593 // simple to avoid changing semantics.
3594 auto IsLoadSimplyStored = [](LoadInst *LI) {
3595 for (User *LU : LI->users()) {
3596 auto *SI = dyn_cast<StoreInst>(LU);
3597 if (!SI || !SI->isSimple())
3598 return false;
3599 }
3600 return true;
3601 };
3602 if (!IsLoadSimplyStored(LI)) {
3603 UnsplittableLoads.insert(LI);
3604 continue;
3605 }
3606
3607 Loads.push_back(LI);
3608 } else if (auto *SI = dyn_cast<StoreInst>(I)) {
3609 if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
3610 // Skip stores *of* pointers. FIXME: This shouldn't even be possible!
3611 continue;
3612 auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
3613 if (!StoredLoad || !StoredLoad->isSimple())
3614 continue;
3615 assert(!SI->isVolatile() && "Cannot split volatile stores!");
3616
3617 Stores.push_back(SI);
3618 } else {
3619 // Other uses cannot be pre-split.
3620 continue;
3621 }
3622
3623 // Record the initial split.
3624 LLVM_DEBUG(dbgs() << " Candidate: " << *I << "\n");
3625 auto &Offsets = SplitOffsetsMap[I];
3626 assert(Offsets.Splits.empty() &&
3627 "Should not have splits the first time we see an instruction!");
3628 Offsets.S = &S;
3629 Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
3630 }
3631
3632 // Now scan the already split slices, and add a split for any of them which
3633 // we're going to pre-split.
3634 for (Slice *S : P.splitSliceTails()) {
3635 auto SplitOffsetsMapI =
3636 SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
3637 if (SplitOffsetsMapI == SplitOffsetsMap.end())
3638 continue;
3639 auto &Offsets = SplitOffsetsMapI->second;
3640
3641 assert(Offsets.S == S && "Found a mismatched slice!");
3642 assert(!Offsets.Splits.empty() &&
3643 "Cannot have an empty set of splits on the second partition!");
3644 assert(Offsets.Splits.back() ==
3645 P.beginOffset() - Offsets.S->beginOffset() &&
3646 "Previous split does not end where this one begins!");
3647
3648 // Record each split. The last partition's end isn't needed as the size
3649 // of the slice dictates that.
3650 if (S->endOffset() > P.endOffset())
3651 Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
3652 }
3653 }
3654
3655 // We may have split loads where some of their stores are split stores. For
3656 // such loads and stores, we can only pre-split them if their splits exactly
3657 // match relative to their starting offset. We have to verify this prior to
3658 // any rewriting.
3659 Stores.erase(
3660 llvm::remove_if(Stores,
3661 [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
3662 // Lookup the load we are storing in our map of split
3663 // offsets.
3664 auto *LI = cast<LoadInst>(SI->getValueOperand());
3665 // If it was completely unsplittable, then we're done,
3666 // and this store can't be pre-split.
3667 if (UnsplittableLoads.count(LI))
3668 return true;
3669
3670 auto LoadOffsetsI = SplitOffsetsMap.find(LI);
3671 if (LoadOffsetsI == SplitOffsetsMap.end())
3672 return false; // Unrelated loads are definitely safe.
3673 auto &LoadOffsets = LoadOffsetsI->second;
3674
3675 // Now lookup the store's offsets.
3676 auto &StoreOffsets = SplitOffsetsMap[SI];
3677
3678 // If the relative offsets of each split in the load and
3679 // store match exactly, then we can split them and we
3680 // don't need to remove them here.
3681 if (LoadOffsets.Splits == StoreOffsets.Splits)
3682 return false;
3683
3684 LLVM_DEBUG(
3685 dbgs()
3686 << " Mismatched splits for load and store:\n"
3687 << " " << *LI << "\n"
3688 << " " << *SI << "\n");
3689
3690 // We've found a store and load that we need to split
3691 // with mismatched relative splits. Just give up on them
3692 // and remove both instructions from our list of
3693 // candidates.
3694 UnsplittableLoads.insert(LI);
3695 return true;
3696 }),
3697 Stores.end());
3698 // Now we have to go *back* through all the stores, because a later store may
3699 // have caused an earlier store's load to become unsplittable and if it is
3700 // unsplittable for the later store, then we can't rely on it being split in
3701 // the earlier store either.
3702 Stores.erase(llvm::remove_if(Stores,
3703 [&UnsplittableLoads](StoreInst *SI) {
3704 auto *LI =
3705 cast<LoadInst>(SI->getValueOperand());
3706 return UnsplittableLoads.count(LI);
3707 }),
3708 Stores.end());
3709 // Once we've established all the loads that can't be split for some reason,
3710 // filter any that made it into our list out.
3711 Loads.erase(llvm::remove_if(Loads,
3712 [&UnsplittableLoads](LoadInst *LI) {
3713 return UnsplittableLoads.count(LI);
3714 }),
3715 Loads.end());
3716
3717 // If no loads or stores are left, there is no pre-splitting to be done for
3718 // this alloca.
3719 if (Loads.empty() && Stores.empty())
3720 return false;
3721
3722 // From here on, we can't fail and will be building new accesses, so rig up
3723 // an IR builder.
3724 IRBuilderTy IRB(&AI);
3725
3726 // Collect the new slices which we will merge into the alloca slices.
3727 SmallVector<Slice, 4> NewSlices;
3728
3729 // Track any allocas we end up splitting loads and stores for so we iterate
3730 // on them.
3731 SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
3732
3733 // At this point, we have collected all of the loads and stores we can
3734 // pre-split, and the specific splits needed for them. We actually do the
3735 // splitting in a specific order in order to handle when one of the loads in
3736 // the value operand to one of the stores.
3737 //
3738 // First, we rewrite all of the split loads, and just accumulate each split
3739 // load in a parallel structure. We also build the slices for them and append
3740 // them to the alloca slices.
3741 SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
3742 std::vector<LoadInst *> SplitLoads;
3743 const DataLayout &DL = AI.getModule()->getDataLayout();
3744 for (LoadInst *LI : Loads) {
3745 SplitLoads.clear();
3746
3747 IntegerType *Ty = cast<IntegerType>(LI->getType());
3748 uint64_t LoadSize = Ty->getBitWidth() / 8;
3749 assert(LoadSize > 0 && "Cannot have a zero-sized integer load!");
3750
3751 auto &Offsets = SplitOffsetsMap[LI];
3752 assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
3753 "Slice size should always match load size exactly!");
3754 uint64_t BaseOffset = Offsets.S->beginOffset();
3755 assert(BaseOffset + LoadSize > BaseOffset &&
3756 "Cannot represent alloca access size using 64-bit integers!");
3757
3758 Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
3759 IRB.SetInsertPoint(LI);
3760
3761 LLVM_DEBUG(dbgs() << " Splitting load: " << *LI << "\n");
3762
3763 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
3764 int Idx = 0, Size = Offsets.Splits.size();
3765 for (;;) {
3766 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
3767 auto AS = LI->getPointerAddressSpace();
3768 auto *PartPtrTy = PartTy->getPointerTo(AS);
3769 LoadInst *PLoad = IRB.CreateAlignedLoad(
3770 getAdjustedPtr(IRB, DL, BasePtr,
3771 APInt(DL.getIndexSizeInBits(AS), PartOffset),
3772 PartPtrTy, BasePtr->getName() + "."),
3773 getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false,
3774 LI->getName());
3775 PLoad->copyMetadata(*LI, LLVMContext::MD_mem_parallel_loop_access);
3776
3777 // Append this load onto the list of split loads so we can find it later
3778 // to rewrite the stores.
3779 SplitLoads.push_back(PLoad);
3780
3781 // Now build a new slice for the alloca.
3782 NewSlices.push_back(
3783 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
3784 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
3785 /*IsSplittable*/ false));
3786 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset()
3787 << ", " << NewSlices.back().endOffset()
3788 << "): " << *PLoad << "\n");
3789
3790 // See if we've handled all the splits.
3791 if (Idx >= Size)
3792 break;
3793
3794 // Setup the next partition.
3795 PartOffset = Offsets.Splits[Idx];
3796 ++Idx;
3797 PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset;
3798 }
3799
3800 // Now that we have the split loads, do the slow walk over all uses of the
3801 // load and rewrite them as split stores, or save the split loads to use
3802 // below if the store is going to be split there anyways.
3803 bool DeferredStores = false;
3804 for (User *LU : LI->users()) {
3805 StoreInst *SI = cast<StoreInst>(LU);
3806 if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
3807 DeferredStores = true;
3808 LLVM_DEBUG(dbgs() << " Deferred splitting of store: " << *SI
3809 << "\n");
3810 continue;
3811 }
3812
3813 Value *StoreBasePtr = SI->getPointerOperand();
3814 IRB.SetInsertPoint(SI);
3815
3816 LLVM_DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n");
3817
3818 for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
3819 LoadInst *PLoad = SplitLoads[Idx];
3820 uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
3821 auto *PartPtrTy =
3822 PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
3823
3824 auto AS = SI->getPointerAddressSpace();
3825 StoreInst *PStore = IRB.CreateAlignedStore(
3826 PLoad,
3827 getAdjustedPtr(IRB, DL, StoreBasePtr,
3828 APInt(DL.getIndexSizeInBits(AS), PartOffset),
3829 PartPtrTy, StoreBasePtr->getName() + "."),
3830 getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false);
3831 PStore->copyMetadata(*LI, LLVMContext::MD_mem_parallel_loop_access);
3832 LLVM_DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n");
3833 }
3834
3835 // We want to immediately iterate on any allocas impacted by splitting
3836 // this store, and we have to track any promotable alloca (indicated by
3837 // a direct store) as needing to be resplit because it is no longer
3838 // promotable.
3839 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
3840 ResplitPromotableAllocas.insert(OtherAI);
3841 Worklist.insert(OtherAI);
3842 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
3843 StoreBasePtr->stripInBoundsOffsets())) {
3844 Worklist.insert(OtherAI);
3845 }
3846
3847 // Mark the original store as dead.
3848 DeadInsts.insert(SI);
3849 }
3850
3851 // Save the split loads if there are deferred stores among the users.
3852 if (DeferredStores)
3853 SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
3854
3855 // Mark the original load as dead and kill the original slice.
3856 DeadInsts.insert(LI);
3857 Offsets.S->kill();
3858 }
3859
3860 // Second, we rewrite all of the split stores. At this point, we know that
3861 // all loads from this alloca have been split already. For stores of such
3862 // loads, we can simply look up the pre-existing split loads. For stores of
3863 // other loads, we split those loads first and then write split stores of
3864 // them.
3865 for (StoreInst *SI : Stores) {
3866 auto *LI = cast<LoadInst>(SI->getValueOperand());
3867 IntegerType *Ty = cast<IntegerType>(LI->getType());
3868 uint64_t StoreSize = Ty->getBitWidth() / 8;
3869 assert(StoreSize > 0 && "Cannot have a zero-sized integer store!");
3870
3871 auto &Offsets = SplitOffsetsMap[SI];
3872 assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
3873 "Slice size should always match load size exactly!");
3874 uint64_t BaseOffset = Offsets.S->beginOffset();
3875 assert(BaseOffset + StoreSize > BaseOffset &&
3876 "Cannot represent alloca access size using 64-bit integers!");
3877
3878 Value *LoadBasePtr = LI->getPointerOperand();
3879 Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
3880
3881 LLVM_DEBUG(dbgs() << " Splitting store: " << *SI << "\n");
3882
3883 // Check whether we have an already split load.
3884 auto SplitLoadsMapI = SplitLoadsMap.find(LI);
3885 std::vector<LoadInst *> *SplitLoads = nullptr;
3886 if (SplitLoadsMapI != SplitLoadsMap.end()) {
3887 SplitLoads = &SplitLoadsMapI->second;
3888 assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&
3889 "Too few split loads for the number of splits in the store!");
3890 } else {
3891 LLVM_DEBUG(dbgs() << " of load: " << *LI << "\n");
3892 }
3893
3894 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
3895 int Idx = 0, Size = Offsets.Splits.size();
3896 for (;;) {
3897 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
3898 auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
3899 auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace());
3900
3901 // Either lookup a split load or create one.
3902 LoadInst *PLoad;
3903 if (SplitLoads) {
3904 PLoad = (*SplitLoads)[Idx];
3905 } else {
3906 IRB.SetInsertPoint(LI);
3907 auto AS = LI->getPointerAddressSpace();
3908 PLoad = IRB.CreateAlignedLoad(
3909 getAdjustedPtr(IRB, DL, LoadBasePtr,
3910 APInt(DL.getIndexSizeInBits(AS), PartOffset),
3911 LoadPartPtrTy, LoadBasePtr->getName() + "."),
3912 getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false,
3913 LI->getName());
3914 }
3915
3916 // And store this partition.
3917 IRB.SetInsertPoint(SI);
3918 auto AS = SI->getPointerAddressSpace();
3919 StoreInst *PStore = IRB.CreateAlignedStore(
3920 PLoad,
3921 getAdjustedPtr(IRB, DL, StoreBasePtr,
3922 APInt(DL.getIndexSizeInBits(AS), PartOffset),
3923 StorePartPtrTy, StoreBasePtr->getName() + "."),
3924 getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false);
3925
3926 // Now build a new slice for the alloca.
3927 NewSlices.push_back(
3928 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
3929 &PStore->getOperandUse(PStore->getPointerOperandIndex()),
3930 /*IsSplittable*/ false));
3931 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset()
3932 << ", " << NewSlices.back().endOffset()
3933 << "): " << *PStore << "\n");
3934 if (!SplitLoads) {
3935 LLVM_DEBUG(dbgs() << " of split load: " << *PLoad << "\n");
3936 }
3937
3938 // See if we've finished all the splits.
3939 if (Idx >= Size)
3940 break;
3941
3942 // Setup the next partition.
3943 PartOffset = Offsets.Splits[Idx];
3944 ++Idx;
3945 PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
3946 }
3947
3948 // We want to immediately iterate on any allocas impacted by splitting
3949 // this load, which is only relevant if it isn't a load of this alloca and
3950 // thus we didn't already split the loads above. We also have to keep track
3951 // of any promotable allocas we split loads on as they can no longer be
3952 // promoted.
3953 if (!SplitLoads) {
3954 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
3955 assert(OtherAI != &AI && "We can't re-split our own alloca!");
3956 ResplitPromotableAllocas.insert(OtherAI);
3957 Worklist.insert(OtherAI);
3958 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
3959 LoadBasePtr->stripInBoundsOffsets())) {
3960 assert(OtherAI != &AI && "We can't re-split our own alloca!");
3961 Worklist.insert(OtherAI);
3962 }
3963 }
3964
3965 // Mark the original store as dead now that we've split it up and kill its
3966 // slice. Note that we leave the original load in place unless this store
3967 // was its only use. It may in turn be split up if it is an alloca load
3968 // for some other alloca, but it may be a normal load. This may introduce
3969 // redundant loads, but where those can be merged the rest of the optimizer
3970 // should handle the merging, and this uncovers SSA splits which is more
3971 // important. In practice, the original loads will almost always be fully
3972 // split and removed eventually, and the splits will be merged by any
3973 // trivial CSE, including instcombine.
3974 if (LI->hasOneUse()) {
3975 assert(*LI->user_begin() == SI && "Single use isn't this store!");
3976 DeadInsts.insert(LI);
3977 }
3978 DeadInsts.insert(SI);
3979 Offsets.S->kill();
3980 }
3981
3982 // Remove the killed slices that have ben pre-split.
3983 AS.erase(llvm::remove_if(AS, [](const Slice &S) { return S.isDead(); }),
3984 AS.end());
3985
3986 // Insert our new slices. This will sort and merge them into the sorted
3987 // sequence.
3988 AS.insert(NewSlices);
3989
3990 LLVM_DEBUG(dbgs() << " Pre-split slices:\n");
3991 #ifndef NDEBUG
3992 for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
3993 LLVM_DEBUG(AS.print(dbgs(), I, " "));
3994 #endif
3995
3996 // Finally, don't try to promote any allocas that new require re-splitting.
3997 // They have already been added to the worklist above.
3998 PromotableAllocas.erase(
3999 llvm::remove_if(
4000 PromotableAllocas,
4001 [&](AllocaInst *AI) { return ResplitPromotableAllocas.count(AI); }),
4002 PromotableAllocas.end());
4003
4004 return true;
4005 }
4006
4007 /// Rewrite an alloca partition's users.
4008 ///
4009 /// This routine drives both of the rewriting goals of the SROA pass. It tries
4010 /// to rewrite uses of an alloca partition to be conducive for SSA value
4011 /// promotion. If the partition needs a new, more refined alloca, this will
4012 /// build that new alloca, preserving as much type information as possible, and
4013 /// rewrite the uses of the old alloca to point at the new one and have the
4014 /// appropriate new offsets. It also evaluates how successful the rewrite was
4015 /// at enabling promotion and if it was successful queues the alloca to be
4016 /// promoted.
rewritePartition(AllocaInst & AI,AllocaSlices & AS,Partition & P)4017 AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
4018 Partition &P) {
4019 // Try to compute a friendly type for this partition of the alloca. This
4020 // won't always succeed, in which case we fall back to a legal integer type
4021 // or an i8 array of an appropriate size.
4022 Type *SliceTy = nullptr;
4023 const DataLayout &DL = AI.getModule()->getDataLayout();
4024 if (Type *CommonUseTy = findCommonType(P.begin(), P.end(), P.endOffset()))
4025 if (DL.getTypeAllocSize(CommonUseTy) >= P.size())
4026 SliceTy = CommonUseTy;
4027 if (!SliceTy)
4028 if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
4029 P.beginOffset(), P.size()))
4030 SliceTy = TypePartitionTy;
4031 if ((!SliceTy || (SliceTy->isArrayTy() &&
4032 SliceTy->getArrayElementType()->isIntegerTy())) &&
4033 DL.isLegalInteger(P.size() * 8))
4034 SliceTy = Type::getIntNTy(*C, P.size() * 8);
4035 if (!SliceTy)
4036 SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
4037 assert(DL.getTypeAllocSize(SliceTy) >= P.size());
4038
4039 bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
4040
4041 VectorType *VecTy =
4042 IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
4043 if (VecTy)
4044 SliceTy = VecTy;
4045
4046 // Check for the case where we're going to rewrite to a new alloca of the
4047 // exact same type as the original, and with the same access offsets. In that
4048 // case, re-use the existing alloca, but still run through the rewriter to
4049 // perform phi and select speculation.
4050 // P.beginOffset() can be non-zero even with the same type in a case with
4051 // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll).
4052 AllocaInst *NewAI;
4053 if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) {
4054 NewAI = &AI;
4055 // FIXME: We should be able to bail at this point with "nothing changed".
4056 // FIXME: We might want to defer PHI speculation until after here.
4057 // FIXME: return nullptr;
4058 } else {
4059 unsigned Alignment = AI.getAlignment();
4060 if (!Alignment) {
4061 // The minimum alignment which users can rely on when the explicit
4062 // alignment is omitted or zero is that required by the ABI for this
4063 // type.
4064 Alignment = DL.getABITypeAlignment(AI.getAllocatedType());
4065 }
4066 Alignment = MinAlign(Alignment, P.beginOffset());
4067 // If we will get at least this much alignment from the type alone, leave
4068 // the alloca's alignment unconstrained.
4069 if (Alignment <= DL.getABITypeAlignment(SliceTy))
4070 Alignment = 0;
4071 NewAI = new AllocaInst(
4072 SliceTy, AI.getType()->getAddressSpace(), nullptr, Alignment,
4073 AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI);
4074 // Copy the old AI debug location over to the new one.
4075 NewAI->setDebugLoc(AI.getDebugLoc());
4076 ++NumNewAllocas;
4077 }
4078
4079 LLVM_DEBUG(dbgs() << "Rewriting alloca partition "
4080 << "[" << P.beginOffset() << "," << P.endOffset()
4081 << ") to: " << *NewAI << "\n");
4082
4083 // Track the high watermark on the worklist as it is only relevant for
4084 // promoted allocas. We will reset it to this point if the alloca is not in
4085 // fact scheduled for promotion.
4086 unsigned PPWOldSize = PostPromotionWorklist.size();
4087 unsigned NumUses = 0;
4088 SmallSetVector<PHINode *, 8> PHIUsers;
4089 SmallSetVector<SelectInst *, 8> SelectUsers;
4090
4091 AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
4092 P.endOffset(), IsIntegerPromotable, VecTy,
4093 PHIUsers, SelectUsers);
4094 bool Promotable = true;
4095 for (Slice *S : P.splitSliceTails()) {
4096 Promotable &= Rewriter.visit(S);
4097 ++NumUses;
4098 }
4099 for (Slice &S : P) {
4100 Promotable &= Rewriter.visit(&S);
4101 ++NumUses;
4102 }
4103
4104 NumAllocaPartitionUses += NumUses;
4105 MaxUsesPerAllocaPartition.updateMax(NumUses);
4106
4107 // Now that we've processed all the slices in the new partition, check if any
4108 // PHIs or Selects would block promotion.
4109 for (PHINode *PHI : PHIUsers)
4110 if (!isSafePHIToSpeculate(*PHI)) {
4111 Promotable = false;
4112 PHIUsers.clear();
4113 SelectUsers.clear();
4114 break;
4115 }
4116
4117 for (SelectInst *Sel : SelectUsers)
4118 if (!isSafeSelectToSpeculate(*Sel)) {
4119 Promotable = false;
4120 PHIUsers.clear();
4121 SelectUsers.clear();
4122 break;
4123 }
4124
4125 if (Promotable) {
4126 if (PHIUsers.empty() && SelectUsers.empty()) {
4127 // Promote the alloca.
4128 PromotableAllocas.push_back(NewAI);
4129 } else {
4130 // If we have either PHIs or Selects to speculate, add them to those
4131 // worklists and re-queue the new alloca so that we promote in on the
4132 // next iteration.
4133 for (PHINode *PHIUser : PHIUsers)
4134 SpeculatablePHIs.insert(PHIUser);
4135 for (SelectInst *SelectUser : SelectUsers)
4136 SpeculatableSelects.insert(SelectUser);
4137 Worklist.insert(NewAI);
4138 }
4139 } else {
4140 // Drop any post-promotion work items if promotion didn't happen.
4141 while (PostPromotionWorklist.size() > PPWOldSize)
4142 PostPromotionWorklist.pop_back();
4143
4144 // We couldn't promote and we didn't create a new partition, nothing
4145 // happened.
4146 if (NewAI == &AI)
4147 return nullptr;
4148
4149 // If we can't promote the alloca, iterate on it to check for new
4150 // refinements exposed by splitting the current alloca. Don't iterate on an
4151 // alloca which didn't actually change and didn't get promoted.
4152 Worklist.insert(NewAI);
4153 }
4154
4155 return NewAI;
4156 }
4157
4158 /// Walks the slices of an alloca and form partitions based on them,
4159 /// rewriting each of their uses.
splitAlloca(AllocaInst & AI,AllocaSlices & AS)4160 bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
4161 if (AS.begin() == AS.end())
4162 return false;
4163
4164 unsigned NumPartitions = 0;
4165 bool Changed = false;
4166 const DataLayout &DL = AI.getModule()->getDataLayout();
4167
4168 // First try to pre-split loads and stores.
4169 Changed |= presplitLoadsAndStores(AI, AS);
4170
4171 // Now that we have identified any pre-splitting opportunities,
4172 // mark loads and stores unsplittable except for the following case.
4173 // We leave a slice splittable if all other slices are disjoint or fully
4174 // included in the slice, such as whole-alloca loads and stores.
4175 // If we fail to split these during pre-splitting, we want to force them
4176 // to be rewritten into a partition.
4177 bool IsSorted = true;
4178
4179 uint64_t AllocaSize = DL.getTypeAllocSize(AI.getAllocatedType());
4180 const uint64_t MaxBitVectorSize = 1024;
4181 if (AllocaSize <= MaxBitVectorSize) {
4182 // If a byte boundary is included in any load or store, a slice starting or
4183 // ending at the boundary is not splittable.
4184 SmallBitVector SplittableOffset(AllocaSize + 1, true);
4185 for (Slice &S : AS)
4186 for (unsigned O = S.beginOffset() + 1;
4187 O < S.endOffset() && O < AllocaSize; O++)
4188 SplittableOffset.reset(O);
4189
4190 for (Slice &S : AS) {
4191 if (!S.isSplittable())
4192 continue;
4193
4194 if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) &&
4195 (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()]))
4196 continue;
4197
4198 if (isa<LoadInst>(S.getUse()->getUser()) ||
4199 isa<StoreInst>(S.getUse()->getUser())) {
4200 S.makeUnsplittable();
4201 IsSorted = false;
4202 }
4203 }
4204 }
4205 else {
4206 // We only allow whole-alloca splittable loads and stores
4207 // for a large alloca to avoid creating too large BitVector.
4208 for (Slice &S : AS) {
4209 if (!S.isSplittable())
4210 continue;
4211
4212 if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize)
4213 continue;
4214
4215 if (isa<LoadInst>(S.getUse()->getUser()) ||
4216 isa<StoreInst>(S.getUse()->getUser())) {
4217 S.makeUnsplittable();
4218 IsSorted = false;
4219 }
4220 }
4221 }
4222
4223 if (!IsSorted)
4224 llvm::sort(AS.begin(), AS.end());
4225
4226 /// Describes the allocas introduced by rewritePartition in order to migrate
4227 /// the debug info.
4228 struct Fragment {
4229 AllocaInst *Alloca;
4230 uint64_t Offset;
4231 uint64_t Size;
4232 Fragment(AllocaInst *AI, uint64_t O, uint64_t S)
4233 : Alloca(AI), Offset(O), Size(S) {}
4234 };
4235 SmallVector<Fragment, 4> Fragments;
4236
4237 // Rewrite each partition.
4238 for (auto &P : AS.partitions()) {
4239 if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) {
4240 Changed = true;
4241 if (NewAI != &AI) {
4242 uint64_t SizeOfByte = 8;
4243 uint64_t AllocaSize = DL.getTypeSizeInBits(NewAI->getAllocatedType());
4244 // Don't include any padding.
4245 uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
4246 Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size));
4247 }
4248 }
4249 ++NumPartitions;
4250 }
4251
4252 NumAllocaPartitions += NumPartitions;
4253 MaxPartitionsPerAlloca.updateMax(NumPartitions);
4254
4255 // Migrate debug information from the old alloca to the new alloca(s)
4256 // and the individual partitions.
4257 TinyPtrVector<DbgInfoIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI);
4258 if (!DbgDeclares.empty()) {
4259 auto *Var = DbgDeclares.front()->getVariable();
4260 auto *Expr = DbgDeclares.front()->getExpression();
4261 auto VarSize = Var->getSizeInBits();
4262 DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false);
4263 uint64_t AllocaSize = DL.getTypeSizeInBits(AI.getAllocatedType());
4264 for (auto Fragment : Fragments) {
4265 // Create a fragment expression describing the new partition or reuse AI's
4266 // expression if there is only one partition.
4267 auto *FragmentExpr = Expr;
4268 if (Fragment.Size < AllocaSize || Expr->isFragment()) {
4269 // If this alloca is already a scalar replacement of a larger aggregate,
4270 // Fragment.Offset describes the offset inside the scalar.
4271 auto ExprFragment = Expr->getFragmentInfo();
4272 uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0;
4273 uint64_t Start = Offset + Fragment.Offset;
4274 uint64_t Size = Fragment.Size;
4275 if (ExprFragment) {
4276 uint64_t AbsEnd =
4277 ExprFragment->OffsetInBits + ExprFragment->SizeInBits;
4278 if (Start >= AbsEnd)
4279 // No need to describe a SROAed padding.
4280 continue;
4281 Size = std::min(Size, AbsEnd - Start);
4282 }
4283 // The new, smaller fragment is stenciled out from the old fragment.
4284 if (auto OrigFragment = FragmentExpr->getFragmentInfo()) {
4285 assert(Start >= OrigFragment->OffsetInBits &&
4286 "new fragment is outside of original fragment");
4287 Start -= OrigFragment->OffsetInBits;
4288 }
4289
4290 // The alloca may be larger than the variable.
4291 if (VarSize) {
4292 if (Size > *VarSize)
4293 Size = *VarSize;
4294 if (Size == 0 || Start + Size > *VarSize)
4295 continue;
4296 }
4297
4298 // Avoid creating a fragment expression that covers the entire variable.
4299 if (!VarSize || *VarSize != Size) {
4300 if (auto E =
4301 DIExpression::createFragmentExpression(Expr, Start, Size))
4302 FragmentExpr = *E;
4303 else
4304 continue;
4305 }
4306 }
4307
4308 // Remove any existing intrinsics describing the same alloca.
4309 for (DbgInfoIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca))
4310 OldDII->eraseFromParent();
4311
4312 DIB.insertDeclare(Fragment.Alloca, Var, FragmentExpr,
4313 DbgDeclares.front()->getDebugLoc(), &AI);
4314 }
4315 }
4316 return Changed;
4317 }
4318
4319 /// Clobber a use with undef, deleting the used value if it becomes dead.
clobberUse(Use & U)4320 void SROA::clobberUse(Use &U) {
4321 Value *OldV = U;
4322 // Replace the use with an undef value.
4323 U = UndefValue::get(OldV->getType());
4324
4325 // Check for this making an instruction dead. We have to garbage collect
4326 // all the dead instructions to ensure the uses of any alloca end up being
4327 // minimal.
4328 if (Instruction *OldI = dyn_cast<Instruction>(OldV))
4329 if (isInstructionTriviallyDead(OldI)) {
4330 DeadInsts.insert(OldI);
4331 }
4332 }
4333
4334 /// Analyze an alloca for SROA.
4335 ///
4336 /// This analyzes the alloca to ensure we can reason about it, builds
4337 /// the slices of the alloca, and then hands it off to be split and
4338 /// rewritten as needed.
runOnAlloca(AllocaInst & AI)4339 bool SROA::runOnAlloca(AllocaInst &AI) {
4340 LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
4341 ++NumAllocasAnalyzed;
4342
4343 // Special case dead allocas, as they're trivial.
4344 if (AI.use_empty()) {
4345 AI.eraseFromParent();
4346 return true;
4347 }
4348 const DataLayout &DL = AI.getModule()->getDataLayout();
4349
4350 // Skip alloca forms that this analysis can't handle.
4351 if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
4352 DL.getTypeAllocSize(AI.getAllocatedType()) == 0)
4353 return false;
4354
4355 bool Changed = false;
4356
4357 // First, split any FCA loads and stores touching this alloca to promote
4358 // better splitting and promotion opportunities.
4359 AggLoadStoreRewriter AggRewriter;
4360 Changed |= AggRewriter.rewrite(AI);
4361
4362 // Build the slices using a recursive instruction-visiting builder.
4363 AllocaSlices AS(DL, AI);
4364 LLVM_DEBUG(AS.print(dbgs()));
4365 if (AS.isEscaped())
4366 return Changed;
4367
4368 // Delete all the dead users of this alloca before splitting and rewriting it.
4369 for (Instruction *DeadUser : AS.getDeadUsers()) {
4370 // Free up everything used by this instruction.
4371 for (Use &DeadOp : DeadUser->operands())
4372 clobberUse(DeadOp);
4373
4374 // Now replace the uses of this instruction.
4375 DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType()));
4376
4377 // And mark it for deletion.
4378 DeadInsts.insert(DeadUser);
4379 Changed = true;
4380 }
4381 for (Use *DeadOp : AS.getDeadOperands()) {
4382 clobberUse(*DeadOp);
4383 Changed = true;
4384 }
4385
4386 // No slices to split. Leave the dead alloca for a later pass to clean up.
4387 if (AS.begin() == AS.end())
4388 return Changed;
4389
4390 Changed |= splitAlloca(AI, AS);
4391
4392 LLVM_DEBUG(dbgs() << " Speculating PHIs\n");
4393 while (!SpeculatablePHIs.empty())
4394 speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
4395
4396 LLVM_DEBUG(dbgs() << " Speculating Selects\n");
4397 while (!SpeculatableSelects.empty())
4398 speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
4399
4400 return Changed;
4401 }
4402
4403 /// Delete the dead instructions accumulated in this run.
4404 ///
4405 /// Recursively deletes the dead instructions we've accumulated. This is done
4406 /// at the very end to maximize locality of the recursive delete and to
4407 /// minimize the problems of invalidated instruction pointers as such pointers
4408 /// are used heavily in the intermediate stages of the algorithm.
4409 ///
4410 /// We also record the alloca instructions deleted here so that they aren't
4411 /// subsequently handed to mem2reg to promote.
deleteDeadInstructions(SmallPtrSetImpl<AllocaInst * > & DeletedAllocas)4412 bool SROA::deleteDeadInstructions(
4413 SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
4414 bool Changed = false;
4415 while (!DeadInsts.empty()) {
4416 Instruction *I = DeadInsts.pop_back_val();
4417 LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
4418
4419 // If the instruction is an alloca, find the possible dbg.declare connected
4420 // to it, and remove it too. We must do this before calling RAUW or we will
4421 // not be able to find it.
4422 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
4423 DeletedAllocas.insert(AI);
4424 for (DbgInfoIntrinsic *OldDII : FindDbgAddrUses(AI))
4425 OldDII->eraseFromParent();
4426 }
4427
4428 I->replaceAllUsesWith(UndefValue::get(I->getType()));
4429
4430 for (Use &Operand : I->operands())
4431 if (Instruction *U = dyn_cast<Instruction>(Operand)) {
4432 // Zero out the operand and see if it becomes trivially dead.
4433 Operand = nullptr;
4434 if (isInstructionTriviallyDead(U))
4435 DeadInsts.insert(U);
4436 }
4437
4438 ++NumDeleted;
4439 I->eraseFromParent();
4440 Changed = true;
4441 }
4442 return Changed;
4443 }
4444
4445 /// Promote the allocas, using the best available technique.
4446 ///
4447 /// This attempts to promote whatever allocas have been identified as viable in
4448 /// the PromotableAllocas list. If that list is empty, there is nothing to do.
4449 /// This function returns whether any promotion occurred.
promoteAllocas(Function & F)4450 bool SROA::promoteAllocas(Function &F) {
4451 if (PromotableAllocas.empty())
4452 return false;
4453
4454 NumPromoted += PromotableAllocas.size();
4455
4456 LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
4457 PromoteMemToReg(PromotableAllocas, *DT, AC);
4458 PromotableAllocas.clear();
4459 return true;
4460 }
4461
runImpl(Function & F,DominatorTree & RunDT,AssumptionCache & RunAC)4462 PreservedAnalyses SROA::runImpl(Function &F, DominatorTree &RunDT,
4463 AssumptionCache &RunAC) {
4464 LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
4465 C = &F.getContext();
4466 DT = &RunDT;
4467 AC = &RunAC;
4468
4469 BasicBlock &EntryBB = F.getEntryBlock();
4470 for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
4471 I != E; ++I) {
4472 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
4473 Worklist.insert(AI);
4474 }
4475
4476 bool Changed = false;
4477 // A set of deleted alloca instruction pointers which should be removed from
4478 // the list of promotable allocas.
4479 SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
4480
4481 do {
4482 while (!Worklist.empty()) {
4483 Changed |= runOnAlloca(*Worklist.pop_back_val());
4484 Changed |= deleteDeadInstructions(DeletedAllocas);
4485
4486 // Remove the deleted allocas from various lists so that we don't try to
4487 // continue processing them.
4488 if (!DeletedAllocas.empty()) {
4489 auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
4490 Worklist.remove_if(IsInSet);
4491 PostPromotionWorklist.remove_if(IsInSet);
4492 PromotableAllocas.erase(llvm::remove_if(PromotableAllocas, IsInSet),
4493 PromotableAllocas.end());
4494 DeletedAllocas.clear();
4495 }
4496 }
4497
4498 Changed |= promoteAllocas(F);
4499
4500 Worklist = PostPromotionWorklist;
4501 PostPromotionWorklist.clear();
4502 } while (!Worklist.empty());
4503
4504 if (!Changed)
4505 return PreservedAnalyses::all();
4506
4507 PreservedAnalyses PA;
4508 PA.preserveSet<CFGAnalyses>();
4509 PA.preserve<GlobalsAA>();
4510 return PA;
4511 }
4512
run(Function & F,FunctionAnalysisManager & AM)4513 PreservedAnalyses SROA::run(Function &F, FunctionAnalysisManager &AM) {
4514 return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F),
4515 AM.getResult<AssumptionAnalysis>(F));
4516 }
4517
4518 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
4519 ///
4520 /// This is in the llvm namespace purely to allow it to be a friend of the \c
4521 /// SROA pass.
4522 class llvm::sroa::SROALegacyPass : public FunctionPass {
4523 /// The SROA implementation.
4524 SROA Impl;
4525
4526 public:
4527 static char ID;
4528
SROALegacyPass()4529 SROALegacyPass() : FunctionPass(ID) {
4530 initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
4531 }
4532
runOnFunction(Function & F)4533 bool runOnFunction(Function &F) override {
4534 if (skipFunction(F))
4535 return false;
4536
4537 auto PA = Impl.runImpl(
4538 F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4539 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
4540 return !PA.areAllPreserved();
4541 }
4542
getAnalysisUsage(AnalysisUsage & AU) const4543 void getAnalysisUsage(AnalysisUsage &AU) const override {
4544 AU.addRequired<AssumptionCacheTracker>();
4545 AU.addRequired<DominatorTreeWrapperPass>();
4546 AU.addPreserved<GlobalsAAWrapperPass>();
4547 AU.setPreservesCFG();
4548 }
4549
getPassName() const4550 StringRef getPassName() const override { return "SROA"; }
4551 };
4552
4553 char SROALegacyPass::ID = 0;
4554
createSROAPass()4555 FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); }
4556
4557 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa",
4558 "Scalar Replacement Of Aggregates", false, false)
4559 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4560 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4561 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates",
4562 false, false)
4563