1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CloneFunctionInto interface, which is used as the
11 // low-level function cloner. This is used by the CloneFunction and function
12 // inliner to do the dirty work of copying the body of a function around.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Transforms/Utils/Local.h"
22 #include "llvm/IR/CFG.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DebugInfo.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/Cloning.h"
35 #include "llvm/Transforms/Utils/ValueMapper.h"
36 #include <map>
37 using namespace llvm;
38
39 /// See comments in Cloning.h.
CloneBasicBlock(const BasicBlock * BB,ValueToValueMapTy & VMap,const Twine & NameSuffix,Function * F,ClonedCodeInfo * CodeInfo,DebugInfoFinder * DIFinder)40 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
41 const Twine &NameSuffix, Function *F,
42 ClonedCodeInfo *CodeInfo,
43 DebugInfoFinder *DIFinder) {
44 DenseMap<const MDNode *, MDNode *> Cache;
45 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
46 if (BB->hasName())
47 NewBB->setName(BB->getName() + NameSuffix);
48
49 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
50 Module *TheModule = F ? F->getParent() : nullptr;
51
52 // Loop over all instructions, and copy them over.
53 for (const Instruction &I : *BB) {
54 if (DIFinder && TheModule)
55 DIFinder->processInstruction(*TheModule, I);
56
57 Instruction *NewInst = I.clone();
58 if (I.hasName())
59 NewInst->setName(I.getName() + NameSuffix);
60 NewBB->getInstList().push_back(NewInst);
61 VMap[&I] = NewInst; // Add instruction map to value.
62
63 hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I));
64 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
65 if (isa<ConstantInt>(AI->getArraySize()))
66 hasStaticAllocas = true;
67 else
68 hasDynamicAllocas = true;
69 }
70 }
71
72 if (CodeInfo) {
73 CodeInfo->ContainsCalls |= hasCalls;
74 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
75 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
76 BB != &BB->getParent()->getEntryBlock();
77 }
78 return NewBB;
79 }
80
81 // Clone OldFunc into NewFunc, transforming the old arguments into references to
82 // VMap values.
83 //
CloneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)84 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
85 ValueToValueMapTy &VMap,
86 bool ModuleLevelChanges,
87 SmallVectorImpl<ReturnInst*> &Returns,
88 const char *NameSuffix, ClonedCodeInfo *CodeInfo,
89 ValueMapTypeRemapper *TypeMapper,
90 ValueMaterializer *Materializer) {
91 assert(NameSuffix && "NameSuffix cannot be null!");
92
93 #ifndef NDEBUG
94 for (const Argument &I : OldFunc->args())
95 assert(VMap.count(&I) && "No mapping from source argument specified!");
96 #endif
97
98 // Copy all attributes other than those stored in the AttributeList. We need
99 // to remap the parameter indices of the AttributeList.
100 AttributeList NewAttrs = NewFunc->getAttributes();
101 NewFunc->copyAttributesFrom(OldFunc);
102 NewFunc->setAttributes(NewAttrs);
103
104 // Fix up the personality function that got copied over.
105 if (OldFunc->hasPersonalityFn())
106 NewFunc->setPersonalityFn(
107 MapValue(OldFunc->getPersonalityFn(), VMap,
108 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
109 TypeMapper, Materializer));
110
111 SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
112 AttributeList OldAttrs = OldFunc->getAttributes();
113
114 // Clone any argument attributes that are present in the VMap.
115 for (const Argument &OldArg : OldFunc->args()) {
116 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
117 NewArgAttrs[NewArg->getArgNo()] =
118 OldAttrs.getParamAttributes(OldArg.getArgNo());
119 }
120 }
121
122 NewFunc->setAttributes(
123 AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(),
124 OldAttrs.getRetAttributes(), NewArgAttrs));
125
126 bool MustCloneSP =
127 OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent();
128 DISubprogram *SP = OldFunc->getSubprogram();
129 if (SP) {
130 assert(!MustCloneSP || ModuleLevelChanges);
131 // Add mappings for some DebugInfo nodes that we don't want duplicated
132 // even if they're distinct.
133 auto &MD = VMap.MD();
134 MD[SP->getUnit()].reset(SP->getUnit());
135 MD[SP->getType()].reset(SP->getType());
136 MD[SP->getFile()].reset(SP->getFile());
137 // If we're not cloning into the same module, no need to clone the
138 // subprogram
139 if (!MustCloneSP)
140 MD[SP].reset(SP);
141 }
142
143 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
144 OldFunc->getAllMetadata(MDs);
145 for (auto MD : MDs) {
146 NewFunc->addMetadata(
147 MD.first,
148 *MapMetadata(MD.second, VMap,
149 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
150 TypeMapper, Materializer));
151 }
152
153 // When we remap instructions, we want to avoid duplicating inlined
154 // DISubprograms, so record all subprograms we find as we duplicate
155 // instructions and then freeze them in the MD map.
156 // We also record information about dbg.value and dbg.declare to avoid
157 // duplicating the types.
158 DebugInfoFinder DIFinder;
159
160 // Loop over all of the basic blocks in the function, cloning them as
161 // appropriate. Note that we save BE this way in order to handle cloning of
162 // recursive functions into themselves.
163 //
164 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
165 BI != BE; ++BI) {
166 const BasicBlock &BB = *BI;
167
168 // Create a new basic block and copy instructions into it!
169 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
170 ModuleLevelChanges ? &DIFinder : nullptr);
171
172 // Add basic block mapping.
173 VMap[&BB] = CBB;
174
175 // It is only legal to clone a function if a block address within that
176 // function is never referenced outside of the function. Given that, we
177 // want to map block addresses from the old function to block addresses in
178 // the clone. (This is different from the generic ValueMapper
179 // implementation, which generates an invalid blockaddress when
180 // cloning a function.)
181 if (BB.hasAddressTaken()) {
182 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
183 const_cast<BasicBlock*>(&BB));
184 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
185 }
186
187 // Note return instructions for the caller.
188 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
189 Returns.push_back(RI);
190 }
191
192 for (DISubprogram *ISP : DIFinder.subprograms())
193 if (ISP != SP)
194 VMap.MD()[ISP].reset(ISP);
195
196 for (DICompileUnit *CU : DIFinder.compile_units())
197 VMap.MD()[CU].reset(CU);
198
199 for (DIType *Type : DIFinder.types())
200 VMap.MD()[Type].reset(Type);
201
202 // Loop over all of the instructions in the function, fixing up operand
203 // references as we go. This uses VMap to do all the hard work.
204 for (Function::iterator BB =
205 cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
206 BE = NewFunc->end();
207 BB != BE; ++BB)
208 // Loop over all instructions, fixing each one as we find it...
209 for (Instruction &II : *BB)
210 RemapInstruction(&II, VMap,
211 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
212 TypeMapper, Materializer);
213 }
214
215 /// Return a copy of the specified function and add it to that function's
216 /// module. Also, any references specified in the VMap are changed to refer to
217 /// their mapped value instead of the original one. If any of the arguments to
218 /// the function are in the VMap, the arguments are deleted from the resultant
219 /// function. The VMap is updated to include mappings from all of the
220 /// instructions and basicblocks in the function from their old to new values.
221 ///
CloneFunction(Function * F,ValueToValueMapTy & VMap,ClonedCodeInfo * CodeInfo)222 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
223 ClonedCodeInfo *CodeInfo) {
224 std::vector<Type*> ArgTypes;
225
226 // The user might be deleting arguments to the function by specifying them in
227 // the VMap. If so, we need to not add the arguments to the arg ty vector
228 //
229 for (const Argument &I : F->args())
230 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
231 ArgTypes.push_back(I.getType());
232
233 // Create a new function type...
234 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
235 ArgTypes, F->getFunctionType()->isVarArg());
236
237 // Create the new function...
238 Function *NewF =
239 Function::Create(FTy, F->getLinkage(), F->getName(), F->getParent());
240
241 // Loop over the arguments, copying the names of the mapped arguments over...
242 Function::arg_iterator DestI = NewF->arg_begin();
243 for (const Argument & I : F->args())
244 if (VMap.count(&I) == 0) { // Is this argument preserved?
245 DestI->setName(I.getName()); // Copy the name over...
246 VMap[&I] = &*DestI++; // Add mapping to VMap
247 }
248
249 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned.
250 CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "",
251 CodeInfo);
252
253 return NewF;
254 }
255
256
257
258 namespace {
259 /// This is a private class used to implement CloneAndPruneFunctionInto.
260 struct PruningFunctionCloner {
261 Function *NewFunc;
262 const Function *OldFunc;
263 ValueToValueMapTy &VMap;
264 bool ModuleLevelChanges;
265 const char *NameSuffix;
266 ClonedCodeInfo *CodeInfo;
267
268 public:
PruningFunctionCloner__anon20a99bff0111::PruningFunctionCloner269 PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
270 ValueToValueMapTy &valueMap, bool moduleLevelChanges,
271 const char *nameSuffix, ClonedCodeInfo *codeInfo)
272 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
273 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
274 CodeInfo(codeInfo) {}
275
276 /// The specified block is found to be reachable, clone it and
277 /// anything that it can reach.
278 void CloneBlock(const BasicBlock *BB,
279 BasicBlock::const_iterator StartingInst,
280 std::vector<const BasicBlock*> &ToClone);
281 };
282 }
283
284 /// The specified block is found to be reachable, clone it and
285 /// anything that it can reach.
CloneBlock(const BasicBlock * BB,BasicBlock::const_iterator StartingInst,std::vector<const BasicBlock * > & ToClone)286 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
287 BasicBlock::const_iterator StartingInst,
288 std::vector<const BasicBlock*> &ToClone){
289 WeakTrackingVH &BBEntry = VMap[BB];
290
291 // Have we already cloned this block?
292 if (BBEntry) return;
293
294 // Nope, clone it now.
295 BasicBlock *NewBB;
296 BBEntry = NewBB = BasicBlock::Create(BB->getContext());
297 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
298
299 // It is only legal to clone a function if a block address within that
300 // function is never referenced outside of the function. Given that, we
301 // want to map block addresses from the old function to block addresses in
302 // the clone. (This is different from the generic ValueMapper
303 // implementation, which generates an invalid blockaddress when
304 // cloning a function.)
305 //
306 // Note that we don't need to fix the mapping for unreachable blocks;
307 // the default mapping there is safe.
308 if (BB->hasAddressTaken()) {
309 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
310 const_cast<BasicBlock*>(BB));
311 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
312 }
313
314 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
315
316 // Loop over all instructions, and copy them over, DCE'ing as we go. This
317 // loop doesn't include the terminator.
318 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
319 II != IE; ++II) {
320
321 Instruction *NewInst = II->clone();
322
323 // Eagerly remap operands to the newly cloned instruction, except for PHI
324 // nodes for which we defer processing until we update the CFG.
325 if (!isa<PHINode>(NewInst)) {
326 RemapInstruction(NewInst, VMap,
327 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
328
329 // If we can simplify this instruction to some other value, simply add
330 // a mapping to that value rather than inserting a new instruction into
331 // the basic block.
332 if (Value *V =
333 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
334 // On the off-chance that this simplifies to an instruction in the old
335 // function, map it back into the new function.
336 if (NewFunc != OldFunc)
337 if (Value *MappedV = VMap.lookup(V))
338 V = MappedV;
339
340 if (!NewInst->mayHaveSideEffects()) {
341 VMap[&*II] = V;
342 NewInst->deleteValue();
343 continue;
344 }
345 }
346 }
347
348 if (II->hasName())
349 NewInst->setName(II->getName()+NameSuffix);
350 VMap[&*II] = NewInst; // Add instruction map to value.
351 NewBB->getInstList().push_back(NewInst);
352 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
353
354 if (CodeInfo)
355 if (auto CS = ImmutableCallSite(&*II))
356 if (CS.hasOperandBundles())
357 CodeInfo->OperandBundleCallSites.push_back(NewInst);
358
359 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
360 if (isa<ConstantInt>(AI->getArraySize()))
361 hasStaticAllocas = true;
362 else
363 hasDynamicAllocas = true;
364 }
365 }
366
367 // Finally, clone over the terminator.
368 const TerminatorInst *OldTI = BB->getTerminator();
369 bool TerminatorDone = false;
370 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
371 if (BI->isConditional()) {
372 // If the condition was a known constant in the callee...
373 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
374 // Or is a known constant in the caller...
375 if (!Cond) {
376 Value *V = VMap.lookup(BI->getCondition());
377 Cond = dyn_cast_or_null<ConstantInt>(V);
378 }
379
380 // Constant fold to uncond branch!
381 if (Cond) {
382 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
383 VMap[OldTI] = BranchInst::Create(Dest, NewBB);
384 ToClone.push_back(Dest);
385 TerminatorDone = true;
386 }
387 }
388 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
389 // If switching on a value known constant in the caller.
390 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
391 if (!Cond) { // Or known constant after constant prop in the callee...
392 Value *V = VMap.lookup(SI->getCondition());
393 Cond = dyn_cast_or_null<ConstantInt>(V);
394 }
395 if (Cond) { // Constant fold to uncond branch!
396 SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
397 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
398 VMap[OldTI] = BranchInst::Create(Dest, NewBB);
399 ToClone.push_back(Dest);
400 TerminatorDone = true;
401 }
402 }
403
404 if (!TerminatorDone) {
405 Instruction *NewInst = OldTI->clone();
406 if (OldTI->hasName())
407 NewInst->setName(OldTI->getName()+NameSuffix);
408 NewBB->getInstList().push_back(NewInst);
409 VMap[OldTI] = NewInst; // Add instruction map to value.
410
411 if (CodeInfo)
412 if (auto CS = ImmutableCallSite(OldTI))
413 if (CS.hasOperandBundles())
414 CodeInfo->OperandBundleCallSites.push_back(NewInst);
415
416 // Recursively clone any reachable successor blocks.
417 const TerminatorInst *TI = BB->getTerminator();
418 for (const BasicBlock *Succ : TI->successors())
419 ToClone.push_back(Succ);
420 }
421
422 if (CodeInfo) {
423 CodeInfo->ContainsCalls |= hasCalls;
424 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
425 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
426 BB != &BB->getParent()->front();
427 }
428 }
429
430 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
431 /// entire function. Instead it starts at an instruction provided by the caller
432 /// and copies (and prunes) only the code reachable from that instruction.
CloneAndPruneIntoFromInst(Function * NewFunc,const Function * OldFunc,const Instruction * StartingInst,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo)433 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
434 const Instruction *StartingInst,
435 ValueToValueMapTy &VMap,
436 bool ModuleLevelChanges,
437 SmallVectorImpl<ReturnInst *> &Returns,
438 const char *NameSuffix,
439 ClonedCodeInfo *CodeInfo) {
440 assert(NameSuffix && "NameSuffix cannot be null!");
441
442 ValueMapTypeRemapper *TypeMapper = nullptr;
443 ValueMaterializer *Materializer = nullptr;
444
445 #ifndef NDEBUG
446 // If the cloning starts at the beginning of the function, verify that
447 // the function arguments are mapped.
448 if (!StartingInst)
449 for (const Argument &II : OldFunc->args())
450 assert(VMap.count(&II) && "No mapping from source argument specified!");
451 #endif
452
453 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
454 NameSuffix, CodeInfo);
455 const BasicBlock *StartingBB;
456 if (StartingInst)
457 StartingBB = StartingInst->getParent();
458 else {
459 StartingBB = &OldFunc->getEntryBlock();
460 StartingInst = &StartingBB->front();
461 }
462
463 // Clone the entry block, and anything recursively reachable from it.
464 std::vector<const BasicBlock*> CloneWorklist;
465 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
466 while (!CloneWorklist.empty()) {
467 const BasicBlock *BB = CloneWorklist.back();
468 CloneWorklist.pop_back();
469 PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
470 }
471
472 // Loop over all of the basic blocks in the old function. If the block was
473 // reachable, we have cloned it and the old block is now in the value map:
474 // insert it into the new function in the right order. If not, ignore it.
475 //
476 // Defer PHI resolution until rest of function is resolved.
477 SmallVector<const PHINode*, 16> PHIToResolve;
478 for (const BasicBlock &BI : *OldFunc) {
479 Value *V = VMap.lookup(&BI);
480 BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
481 if (!NewBB) continue; // Dead block.
482
483 // Add the new block to the new function.
484 NewFunc->getBasicBlockList().push_back(NewBB);
485
486 // Handle PHI nodes specially, as we have to remove references to dead
487 // blocks.
488 for (const PHINode &PN : BI.phis()) {
489 // PHI nodes may have been remapped to non-PHI nodes by the caller or
490 // during the cloning process.
491 if (isa<PHINode>(VMap[&PN]))
492 PHIToResolve.push_back(&PN);
493 else
494 break;
495 }
496
497 // Finally, remap the terminator instructions, as those can't be remapped
498 // until all BBs are mapped.
499 RemapInstruction(NewBB->getTerminator(), VMap,
500 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
501 TypeMapper, Materializer);
502 }
503
504 // Defer PHI resolution until rest of function is resolved, PHI resolution
505 // requires the CFG to be up-to-date.
506 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
507 const PHINode *OPN = PHIToResolve[phino];
508 unsigned NumPreds = OPN->getNumIncomingValues();
509 const BasicBlock *OldBB = OPN->getParent();
510 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
511
512 // Map operands for blocks that are live and remove operands for blocks
513 // that are dead.
514 for (; phino != PHIToResolve.size() &&
515 PHIToResolve[phino]->getParent() == OldBB; ++phino) {
516 OPN = PHIToResolve[phino];
517 PHINode *PN = cast<PHINode>(VMap[OPN]);
518 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
519 Value *V = VMap.lookup(PN->getIncomingBlock(pred));
520 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
521 Value *InVal = MapValue(PN->getIncomingValue(pred),
522 VMap,
523 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
524 assert(InVal && "Unknown input value?");
525 PN->setIncomingValue(pred, InVal);
526 PN->setIncomingBlock(pred, MappedBlock);
527 } else {
528 PN->removeIncomingValue(pred, false);
529 --pred; // Revisit the next entry.
530 --e;
531 }
532 }
533 }
534
535 // The loop above has removed PHI entries for those blocks that are dead
536 // and has updated others. However, if a block is live (i.e. copied over)
537 // but its terminator has been changed to not go to this block, then our
538 // phi nodes will have invalid entries. Update the PHI nodes in this
539 // case.
540 PHINode *PN = cast<PHINode>(NewBB->begin());
541 NumPreds = pred_size(NewBB);
542 if (NumPreds != PN->getNumIncomingValues()) {
543 assert(NumPreds < PN->getNumIncomingValues());
544 // Count how many times each predecessor comes to this block.
545 std::map<BasicBlock*, unsigned> PredCount;
546 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
547 PI != E; ++PI)
548 --PredCount[*PI];
549
550 // Figure out how many entries to remove from each PHI.
551 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
552 ++PredCount[PN->getIncomingBlock(i)];
553
554 // At this point, the excess predecessor entries are positive in the
555 // map. Loop over all of the PHIs and remove excess predecessor
556 // entries.
557 BasicBlock::iterator I = NewBB->begin();
558 for (; (PN = dyn_cast<PHINode>(I)); ++I) {
559 for (const auto &PCI : PredCount) {
560 BasicBlock *Pred = PCI.first;
561 for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
562 PN->removeIncomingValue(Pred, false);
563 }
564 }
565 }
566
567 // If the loops above have made these phi nodes have 0 or 1 operand,
568 // replace them with undef or the input value. We must do this for
569 // correctness, because 0-operand phis are not valid.
570 PN = cast<PHINode>(NewBB->begin());
571 if (PN->getNumIncomingValues() == 0) {
572 BasicBlock::iterator I = NewBB->begin();
573 BasicBlock::const_iterator OldI = OldBB->begin();
574 while ((PN = dyn_cast<PHINode>(I++))) {
575 Value *NV = UndefValue::get(PN->getType());
576 PN->replaceAllUsesWith(NV);
577 assert(VMap[&*OldI] == PN && "VMap mismatch");
578 VMap[&*OldI] = NV;
579 PN->eraseFromParent();
580 ++OldI;
581 }
582 }
583 }
584
585 // Make a second pass over the PHINodes now that all of them have been
586 // remapped into the new function, simplifying the PHINode and performing any
587 // recursive simplifications exposed. This will transparently update the
588 // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
589 // two PHINodes, the iteration over the old PHIs remains valid, and the
590 // mapping will just map us to the new node (which may not even be a PHI
591 // node).
592 const DataLayout &DL = NewFunc->getParent()->getDataLayout();
593 SmallSetVector<const Value *, 8> Worklist;
594 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
595 if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
596 Worklist.insert(PHIToResolve[Idx]);
597
598 // Note that we must test the size on each iteration, the worklist can grow.
599 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
600 const Value *OrigV = Worklist[Idx];
601 auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
602 if (!I)
603 continue;
604
605 // Skip over non-intrinsic callsites, we don't want to remove any nodes from
606 // the CGSCC.
607 CallSite CS = CallSite(I);
608 if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic())
609 continue;
610
611 // See if this instruction simplifies.
612 Value *SimpleV = SimplifyInstruction(I, DL);
613 if (!SimpleV)
614 continue;
615
616 // Stash away all the uses of the old instruction so we can check them for
617 // recursive simplifications after a RAUW. This is cheaper than checking all
618 // uses of To on the recursive step in most cases.
619 for (const User *U : OrigV->users())
620 Worklist.insert(cast<Instruction>(U));
621
622 // Replace the instruction with its simplified value.
623 I->replaceAllUsesWith(SimpleV);
624
625 // If the original instruction had no side effects, remove it.
626 if (isInstructionTriviallyDead(I))
627 I->eraseFromParent();
628 else
629 VMap[OrigV] = I;
630 }
631
632 // Now that the inlined function body has been fully constructed, go through
633 // and zap unconditional fall-through branches. This happens all the time when
634 // specializing code: code specialization turns conditional branches into
635 // uncond branches, and this code folds them.
636 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
637 Function::iterator I = Begin;
638 while (I != NewFunc->end()) {
639 // We need to simplify conditional branches and switches with a constant
640 // operand. We try to prune these out when cloning, but if the
641 // simplification required looking through PHI nodes, those are only
642 // available after forming the full basic block. That may leave some here,
643 // and we still want to prune the dead code as early as possible.
644 //
645 // Do the folding before we check if the block is dead since we want code
646 // like
647 // bb:
648 // br i1 undef, label %bb, label %bb
649 // to be simplified to
650 // bb:
651 // br label %bb
652 // before we call I->getSinglePredecessor().
653 ConstantFoldTerminator(&*I);
654
655 // Check if this block has become dead during inlining or other
656 // simplifications. Note that the first block will appear dead, as it has
657 // not yet been wired up properly.
658 if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
659 I->getSinglePredecessor() == &*I)) {
660 BasicBlock *DeadBB = &*I++;
661 DeleteDeadBlock(DeadBB);
662 continue;
663 }
664
665 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
666 if (!BI || BI->isConditional()) { ++I; continue; }
667
668 BasicBlock *Dest = BI->getSuccessor(0);
669 if (!Dest->getSinglePredecessor()) {
670 ++I; continue;
671 }
672
673 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
674 // above should have zapped all of them..
675 assert(!isa<PHINode>(Dest->begin()));
676
677 // We know all single-entry PHI nodes in the inlined function have been
678 // removed, so we just need to splice the blocks.
679 BI->eraseFromParent();
680
681 // Make all PHI nodes that referred to Dest now refer to I as their source.
682 Dest->replaceAllUsesWith(&*I);
683
684 // Move all the instructions in the succ to the pred.
685 I->getInstList().splice(I->end(), Dest->getInstList());
686
687 // Remove the dest block.
688 Dest->eraseFromParent();
689
690 // Do not increment I, iteratively merge all things this block branches to.
691 }
692
693 // Make a final pass over the basic blocks from the old function to gather
694 // any return instructions which survived folding. We have to do this here
695 // because we can iteratively remove and merge returns above.
696 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
697 E = NewFunc->end();
698 I != E; ++I)
699 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
700 Returns.push_back(RI);
701 }
702
703
704 /// This works exactly like CloneFunctionInto,
705 /// except that it does some simple constant prop and DCE on the fly. The
706 /// effect of this is to copy significantly less code in cases where (for
707 /// example) a function call with constant arguments is inlined, and those
708 /// constant arguments cause a significant amount of code in the callee to be
709 /// dead. Since this doesn't produce an exact copy of the input, it can't be
710 /// used for things like CloneFunction or CloneModule.
CloneAndPruneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,Instruction * TheCall)711 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
712 ValueToValueMapTy &VMap,
713 bool ModuleLevelChanges,
714 SmallVectorImpl<ReturnInst*> &Returns,
715 const char *NameSuffix,
716 ClonedCodeInfo *CodeInfo,
717 Instruction *TheCall) {
718 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
719 ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
720 }
721
722 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock * > & Blocks,ValueToValueMapTy & VMap)723 void llvm::remapInstructionsInBlocks(
724 const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
725 // Rewrite the code to refer to itself.
726 for (auto *BB : Blocks)
727 for (auto &Inst : *BB)
728 RemapInstruction(&Inst, VMap,
729 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
730 }
731
732 /// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p
733 /// Blocks.
734 ///
735 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
736 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before.
cloneLoopWithPreheader(BasicBlock * Before,BasicBlock * LoopDomBB,Loop * OrigLoop,ValueToValueMapTy & VMap,const Twine & NameSuffix,LoopInfo * LI,DominatorTree * DT,SmallVectorImpl<BasicBlock * > & Blocks)737 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
738 Loop *OrigLoop, ValueToValueMapTy &VMap,
739 const Twine &NameSuffix, LoopInfo *LI,
740 DominatorTree *DT,
741 SmallVectorImpl<BasicBlock *> &Blocks) {
742 assert(OrigLoop->getSubLoops().empty() &&
743 "Loop to be cloned cannot have inner loop");
744 Function *F = OrigLoop->getHeader()->getParent();
745 Loop *ParentLoop = OrigLoop->getParentLoop();
746
747 Loop *NewLoop = LI->AllocateLoop();
748 if (ParentLoop)
749 ParentLoop->addChildLoop(NewLoop);
750 else
751 LI->addTopLevelLoop(NewLoop);
752
753 BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
754 assert(OrigPH && "No preheader");
755 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
756 // To rename the loop PHIs.
757 VMap[OrigPH] = NewPH;
758 Blocks.push_back(NewPH);
759
760 // Update LoopInfo.
761 if (ParentLoop)
762 ParentLoop->addBasicBlockToLoop(NewPH, *LI);
763
764 // Update DominatorTree.
765 DT->addNewBlock(NewPH, LoopDomBB);
766
767 for (BasicBlock *BB : OrigLoop->getBlocks()) {
768 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
769 VMap[BB] = NewBB;
770
771 // Update LoopInfo.
772 NewLoop->addBasicBlockToLoop(NewBB, *LI);
773
774 // Add DominatorTree node. After seeing all blocks, update to correct IDom.
775 DT->addNewBlock(NewBB, NewPH);
776
777 Blocks.push_back(NewBB);
778 }
779
780 for (BasicBlock *BB : OrigLoop->getBlocks()) {
781 // Update DominatorTree.
782 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
783 DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
784 cast<BasicBlock>(VMap[IDomBB]));
785 }
786
787 // Move them physically from the end of the block list.
788 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
789 NewPH);
790 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
791 NewLoop->getHeader()->getIterator(), F->end());
792
793 return NewLoop;
794 }
795
796 /// Duplicate non-Phi instructions from the beginning of block up to
797 /// StopAt instruction into a split block between BB and its predecessor.
798 BasicBlock *
DuplicateInstructionsInSplitBetween(BasicBlock * BB,BasicBlock * PredBB,Instruction * StopAt,ValueToValueMapTy & ValueMapping,DominatorTree * DT)799 llvm::DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB,
800 Instruction *StopAt,
801 ValueToValueMapTy &ValueMapping,
802 DominatorTree *DT) {
803 // We are going to have to map operands from the original BB block to the new
804 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
805 // account for entry from PredBB.
806 BasicBlock::iterator BI = BB->begin();
807 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
808 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
809
810 BasicBlock *NewBB = SplitEdge(PredBB, BB, DT);
811 NewBB->setName(PredBB->getName() + ".split");
812 Instruction *NewTerm = NewBB->getTerminator();
813
814 // Clone the non-phi instructions of BB into NewBB, keeping track of the
815 // mapping and using it to remap operands in the cloned instructions.
816 // Stop once we see the terminator too. This covers the case where BB's
817 // terminator gets replaced and StopAt == BB's terminator.
818 for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
819 Instruction *New = BI->clone();
820 New->setName(BI->getName());
821 New->insertBefore(NewTerm);
822 ValueMapping[&*BI] = New;
823
824 // Remap operands to patch up intra-block references.
825 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
826 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
827 auto I = ValueMapping.find(Inst);
828 if (I != ValueMapping.end())
829 New->setOperand(i, I->second);
830 }
831 }
832
833 return NewBB;
834 }
835