1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs several transformations to transform natural loops into a
11 // simpler form, which makes subsequent analyses and transformations simpler and
12 // more effective.
13 //
14 // Loop pre-header insertion guarantees that there is a single, non-critical
15 // entry edge from outside of the loop to the loop header. This simplifies a
16 // number of analyses and transformations, such as LICM.
17 //
18 // Loop exit-block insertion guarantees that all exit blocks from the loop
19 // (blocks which are outside of the loop that have predecessors inside of the
20 // loop) only have predecessors from inside of the loop (and are thus dominated
21 // by the loop header). This simplifies transformations such as store-sinking
22 // that are built into LICM.
23 //
24 // This pass also guarantees that loops will have exactly one backedge.
25 //
26 // Indirectbr instructions introduce several complications. If the loop
27 // contains or is entered by an indirectbr instruction, it may not be possible
28 // to transform the loop and make these guarantees. Client code should check
29 // that these conditions are true before relying on them.
30 //
31 // Note that the simplifycfg pass will clean up blocks which are split out but
32 // end up being unnecessary, so usage of this pass should not pessimize
33 // generated code.
34 //
35 // This pass obviously modifies the CFG, but updates loop information and
36 // dominator information.
37 //
38 //===----------------------------------------------------------------------===//
39
40 #include "llvm/Transforms/Utils/LoopSimplify.h"
41 #include "llvm/ADT/DepthFirstIterator.h"
42 #include "llvm/ADT/SetOperations.h"
43 #include "llvm/ADT/SetVector.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/DependenceAnalysis.h"
50 #include "llvm/Analysis/GlobalsModRef.h"
51 #include "llvm/Analysis/InstructionSimplify.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/ScalarEvolution.h"
54 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
55 #include "llvm/Transforms/Utils/Local.h"
56 #include "llvm/IR/CFG.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/Dominators.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Type.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/LoopUtils.h"
71 using namespace llvm;
72
73 #define DEBUG_TYPE "loop-simplify"
74
75 STATISTIC(NumNested , "Number of nested loops split out");
76
77 // If the block isn't already, move the new block to right after some 'outside
78 // block' block. This prevents the preheader from being placed inside the loop
79 // body, e.g. when the loop hasn't been rotated.
placeSplitBlockCarefully(BasicBlock * NewBB,SmallVectorImpl<BasicBlock * > & SplitPreds,Loop * L)80 static void placeSplitBlockCarefully(BasicBlock *NewBB,
81 SmallVectorImpl<BasicBlock *> &SplitPreds,
82 Loop *L) {
83 // Check to see if NewBB is already well placed.
84 Function::iterator BBI = --NewBB->getIterator();
85 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
86 if (&*BBI == SplitPreds[i])
87 return;
88 }
89
90 // If it isn't already after an outside block, move it after one. This is
91 // always good as it makes the uncond branch from the outside block into a
92 // fall-through.
93
94 // Figure out *which* outside block to put this after. Prefer an outside
95 // block that neighbors a BB actually in the loop.
96 BasicBlock *FoundBB = nullptr;
97 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
98 Function::iterator BBI = SplitPreds[i]->getIterator();
99 if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
100 FoundBB = SplitPreds[i];
101 break;
102 }
103 }
104
105 // If our heuristic for a *good* bb to place this after doesn't find
106 // anything, just pick something. It's likely better than leaving it within
107 // the loop.
108 if (!FoundBB)
109 FoundBB = SplitPreds[0];
110 NewBB->moveAfter(FoundBB);
111 }
112
113 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
114 /// preheader, this method is called to insert one. This method has two phases:
115 /// preheader insertion and analysis updating.
116 ///
InsertPreheaderForLoop(Loop * L,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA)117 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
118 LoopInfo *LI, bool PreserveLCSSA) {
119 BasicBlock *Header = L->getHeader();
120
121 // Compute the set of predecessors of the loop that are not in the loop.
122 SmallVector<BasicBlock*, 8> OutsideBlocks;
123 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
124 PI != PE; ++PI) {
125 BasicBlock *P = *PI;
126 if (!L->contains(P)) { // Coming in from outside the loop?
127 // If the loop is branched to from an indirect branch, we won't
128 // be able to fully transform the loop, because it prohibits
129 // edge splitting.
130 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
131
132 // Keep track of it.
133 OutsideBlocks.push_back(P);
134 }
135 }
136
137 // Split out the loop pre-header.
138 BasicBlock *PreheaderBB;
139 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
140 LI, PreserveLCSSA);
141 if (!PreheaderBB)
142 return nullptr;
143
144 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
145 << PreheaderBB->getName() << "\n");
146
147 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
148 // code layout too horribly.
149 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
150
151 return PreheaderBB;
152 }
153
154 /// Add the specified block, and all of its predecessors, to the specified set,
155 /// if it's not already in there. Stop predecessor traversal when we reach
156 /// StopBlock.
addBlockAndPredsToSet(BasicBlock * InputBB,BasicBlock * StopBlock,std::set<BasicBlock * > & Blocks)157 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
158 std::set<BasicBlock*> &Blocks) {
159 SmallVector<BasicBlock *, 8> Worklist;
160 Worklist.push_back(InputBB);
161 do {
162 BasicBlock *BB = Worklist.pop_back_val();
163 if (Blocks.insert(BB).second && BB != StopBlock)
164 // If BB is not already processed and it is not a stop block then
165 // insert its predecessor in the work list
166 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
167 BasicBlock *WBB = *I;
168 Worklist.push_back(WBB);
169 }
170 } while (!Worklist.empty());
171 }
172
173 /// The first part of loop-nestification is to find a PHI node that tells
174 /// us how to partition the loops.
findPHIToPartitionLoops(Loop * L,DominatorTree * DT,AssumptionCache * AC)175 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
176 AssumptionCache *AC) {
177 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
178 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
179 PHINode *PN = cast<PHINode>(I);
180 ++I;
181 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
182 // This is a degenerate PHI already, don't modify it!
183 PN->replaceAllUsesWith(V);
184 PN->eraseFromParent();
185 continue;
186 }
187
188 // Scan this PHI node looking for a use of the PHI node by itself.
189 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
190 if (PN->getIncomingValue(i) == PN &&
191 L->contains(PN->getIncomingBlock(i)))
192 // We found something tasty to remove.
193 return PN;
194 }
195 return nullptr;
196 }
197
198 /// If this loop has multiple backedges, try to pull one of them out into
199 /// a nested loop.
200 ///
201 /// This is important for code that looks like
202 /// this:
203 ///
204 /// Loop:
205 /// ...
206 /// br cond, Loop, Next
207 /// ...
208 /// br cond2, Loop, Out
209 ///
210 /// To identify this common case, we look at the PHI nodes in the header of the
211 /// loop. PHI nodes with unchanging values on one backedge correspond to values
212 /// that change in the "outer" loop, but not in the "inner" loop.
213 ///
214 /// If we are able to separate out a loop, return the new outer loop that was
215 /// created.
216 ///
separateNestedLoop(Loop * L,BasicBlock * Preheader,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,bool PreserveLCSSA,AssumptionCache * AC)217 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
218 DominatorTree *DT, LoopInfo *LI,
219 ScalarEvolution *SE, bool PreserveLCSSA,
220 AssumptionCache *AC) {
221 // Don't try to separate loops without a preheader.
222 if (!Preheader)
223 return nullptr;
224
225 // The header is not a landing pad; preheader insertion should ensure this.
226 BasicBlock *Header = L->getHeader();
227 assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
228
229 PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
230 if (!PN) return nullptr; // No known way to partition.
231
232 // Pull out all predecessors that have varying values in the loop. This
233 // handles the case when a PHI node has multiple instances of itself as
234 // arguments.
235 SmallVector<BasicBlock*, 8> OuterLoopPreds;
236 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
237 if (PN->getIncomingValue(i) != PN ||
238 !L->contains(PN->getIncomingBlock(i))) {
239 // We can't split indirectbr edges.
240 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
241 return nullptr;
242 OuterLoopPreds.push_back(PN->getIncomingBlock(i));
243 }
244 }
245 LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
246
247 // If ScalarEvolution is around and knows anything about values in
248 // this loop, tell it to forget them, because we're about to
249 // substantially change it.
250 if (SE)
251 SE->forgetLoop(L);
252
253 BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
254 DT, LI, PreserveLCSSA);
255
256 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
257 // code layout too horribly.
258 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
259
260 // Create the new outer loop.
261 Loop *NewOuter = LI->AllocateLoop();
262
263 // Change the parent loop to use the outer loop as its child now.
264 if (Loop *Parent = L->getParentLoop())
265 Parent->replaceChildLoopWith(L, NewOuter);
266 else
267 LI->changeTopLevelLoop(L, NewOuter);
268
269 // L is now a subloop of our outer loop.
270 NewOuter->addChildLoop(L);
271
272 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
273 I != E; ++I)
274 NewOuter->addBlockEntry(*I);
275
276 // Now reset the header in L, which had been moved by
277 // SplitBlockPredecessors for the outer loop.
278 L->moveToHeader(Header);
279
280 // Determine which blocks should stay in L and which should be moved out to
281 // the Outer loop now.
282 std::set<BasicBlock*> BlocksInL;
283 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
284 BasicBlock *P = *PI;
285 if (DT->dominates(Header, P))
286 addBlockAndPredsToSet(P, Header, BlocksInL);
287 }
288
289 // Scan all of the loop children of L, moving them to OuterLoop if they are
290 // not part of the inner loop.
291 const std::vector<Loop*> &SubLoops = L->getSubLoops();
292 for (size_t I = 0; I != SubLoops.size(); )
293 if (BlocksInL.count(SubLoops[I]->getHeader()))
294 ++I; // Loop remains in L
295 else
296 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
297
298 SmallVector<BasicBlock *, 8> OuterLoopBlocks;
299 OuterLoopBlocks.push_back(NewBB);
300 // Now that we know which blocks are in L and which need to be moved to
301 // OuterLoop, move any blocks that need it.
302 for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
303 BasicBlock *BB = L->getBlocks()[i];
304 if (!BlocksInL.count(BB)) {
305 // Move this block to the parent, updating the exit blocks sets
306 L->removeBlockFromLoop(BB);
307 if ((*LI)[BB] == L) {
308 LI->changeLoopFor(BB, NewOuter);
309 OuterLoopBlocks.push_back(BB);
310 }
311 --i;
312 }
313 }
314
315 // Split edges to exit blocks from the inner loop, if they emerged in the
316 // process of separating the outer one.
317 formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA);
318
319 if (PreserveLCSSA) {
320 // Fix LCSSA form for L. Some values, which previously were only used inside
321 // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
322 // in corresponding exit blocks.
323 // We don't need to form LCSSA recursively, because there cannot be uses
324 // inside a newly created loop of defs from inner loops as those would
325 // already be a use of an LCSSA phi node.
326 formLCSSA(*L, *DT, LI, SE);
327
328 assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
329 "LCSSA is broken after separating nested loops!");
330 }
331
332 return NewOuter;
333 }
334
335 /// This method is called when the specified loop has more than one
336 /// backedge in it.
337 ///
338 /// If this occurs, revector all of these backedges to target a new basic block
339 /// and have that block branch to the loop header. This ensures that loops
340 /// have exactly one backedge.
insertUniqueBackedgeBlock(Loop * L,BasicBlock * Preheader,DominatorTree * DT,LoopInfo * LI)341 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
342 DominatorTree *DT, LoopInfo *LI) {
343 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
344
345 // Get information about the loop
346 BasicBlock *Header = L->getHeader();
347 Function *F = Header->getParent();
348
349 // Unique backedge insertion currently depends on having a preheader.
350 if (!Preheader)
351 return nullptr;
352
353 // The header is not an EH pad; preheader insertion should ensure this.
354 assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
355
356 // Figure out which basic blocks contain back-edges to the loop header.
357 std::vector<BasicBlock*> BackedgeBlocks;
358 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
359 BasicBlock *P = *I;
360
361 // Indirectbr edges cannot be split, so we must fail if we find one.
362 if (isa<IndirectBrInst>(P->getTerminator()))
363 return nullptr;
364
365 if (P != Preheader) BackedgeBlocks.push_back(P);
366 }
367
368 // Create and insert the new backedge block...
369 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
370 Header->getName() + ".backedge", F);
371 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
372 BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
373
374 LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
375 << BEBlock->getName() << "\n");
376
377 // Move the new backedge block to right after the last backedge block.
378 Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
379 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
380
381 // Now that the block has been inserted into the function, create PHI nodes in
382 // the backedge block which correspond to any PHI nodes in the header block.
383 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
384 PHINode *PN = cast<PHINode>(I);
385 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
386 PN->getName()+".be", BETerminator);
387
388 // Loop over the PHI node, moving all entries except the one for the
389 // preheader over to the new PHI node.
390 unsigned PreheaderIdx = ~0U;
391 bool HasUniqueIncomingValue = true;
392 Value *UniqueValue = nullptr;
393 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
394 BasicBlock *IBB = PN->getIncomingBlock(i);
395 Value *IV = PN->getIncomingValue(i);
396 if (IBB == Preheader) {
397 PreheaderIdx = i;
398 } else {
399 NewPN->addIncoming(IV, IBB);
400 if (HasUniqueIncomingValue) {
401 if (!UniqueValue)
402 UniqueValue = IV;
403 else if (UniqueValue != IV)
404 HasUniqueIncomingValue = false;
405 }
406 }
407 }
408
409 // Delete all of the incoming values from the old PN except the preheader's
410 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
411 if (PreheaderIdx != 0) {
412 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
413 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
414 }
415 // Nuke all entries except the zero'th.
416 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
417 PN->removeIncomingValue(e-i, false);
418
419 // Finally, add the newly constructed PHI node as the entry for the BEBlock.
420 PN->addIncoming(NewPN, BEBlock);
421
422 // As an optimization, if all incoming values in the new PhiNode (which is a
423 // subset of the incoming values of the old PHI node) have the same value,
424 // eliminate the PHI Node.
425 if (HasUniqueIncomingValue) {
426 NewPN->replaceAllUsesWith(UniqueValue);
427 BEBlock->getInstList().erase(NewPN);
428 }
429 }
430
431 // Now that all of the PHI nodes have been inserted and adjusted, modify the
432 // backedge blocks to jump to the BEBlock instead of the header.
433 // If one of the backedges has llvm.loop metadata attached, we remove
434 // it from the backedge and add it to BEBlock.
435 unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop");
436 MDNode *LoopMD = nullptr;
437 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
438 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
439 if (!LoopMD)
440 LoopMD = TI->getMetadata(LoopMDKind);
441 TI->setMetadata(LoopMDKind, nullptr);
442 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
443 if (TI->getSuccessor(Op) == Header)
444 TI->setSuccessor(Op, BEBlock);
445 }
446 BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD);
447
448 //===--- Update all analyses which we must preserve now -----------------===//
449
450 // Update Loop Information - we know that this block is now in the current
451 // loop and all parent loops.
452 L->addBasicBlockToLoop(BEBlock, *LI);
453
454 // Update dominator information
455 DT->splitBlock(BEBlock);
456
457 return BEBlock;
458 }
459
460 /// Simplify one loop and queue further loops for simplification.
simplifyOneLoop(Loop * L,SmallVectorImpl<Loop * > & Worklist,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,AssumptionCache * AC,bool PreserveLCSSA)461 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
462 DominatorTree *DT, LoopInfo *LI,
463 ScalarEvolution *SE, AssumptionCache *AC,
464 bool PreserveLCSSA) {
465 bool Changed = false;
466 ReprocessLoop:
467
468 // Check to see that no blocks (other than the header) in this loop have
469 // predecessors that are not in the loop. This is not valid for natural
470 // loops, but can occur if the blocks are unreachable. Since they are
471 // unreachable we can just shamelessly delete those CFG edges!
472 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
473 BB != E; ++BB) {
474 if (*BB == L->getHeader()) continue;
475
476 SmallPtrSet<BasicBlock*, 4> BadPreds;
477 for (pred_iterator PI = pred_begin(*BB),
478 PE = pred_end(*BB); PI != PE; ++PI) {
479 BasicBlock *P = *PI;
480 if (!L->contains(P))
481 BadPreds.insert(P);
482 }
483
484 // Delete each unique out-of-loop (and thus dead) predecessor.
485 for (BasicBlock *P : BadPreds) {
486
487 LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
488 << P->getName() << "\n");
489
490 // Zap the dead pred's terminator and replace it with unreachable.
491 TerminatorInst *TI = P->getTerminator();
492 changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA);
493 Changed = true;
494 }
495 }
496
497 // If there are exiting blocks with branches on undef, resolve the undef in
498 // the direction which will exit the loop. This will help simplify loop
499 // trip count computations.
500 SmallVector<BasicBlock*, 8> ExitingBlocks;
501 L->getExitingBlocks(ExitingBlocks);
502 for (BasicBlock *ExitingBlock : ExitingBlocks)
503 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
504 if (BI->isConditional()) {
505 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
506
507 LLVM_DEBUG(dbgs()
508 << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
509 << ExitingBlock->getName() << "\n");
510
511 BI->setCondition(ConstantInt::get(Cond->getType(),
512 !L->contains(BI->getSuccessor(0))));
513
514 Changed = true;
515 }
516 }
517
518 // Does the loop already have a preheader? If so, don't insert one.
519 BasicBlock *Preheader = L->getLoopPreheader();
520 if (!Preheader) {
521 Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
522 if (Preheader)
523 Changed = true;
524 }
525
526 // Next, check to make sure that all exit nodes of the loop only have
527 // predecessors that are inside of the loop. This check guarantees that the
528 // loop preheader/header will dominate the exit blocks. If the exit block has
529 // predecessors from outside of the loop, split the edge now.
530 if (formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA))
531 Changed = true;
532
533 // If the header has more than two predecessors at this point (from the
534 // preheader and from multiple backedges), we must adjust the loop.
535 BasicBlock *LoopLatch = L->getLoopLatch();
536 if (!LoopLatch) {
537 // If this is really a nested loop, rip it out into a child loop. Don't do
538 // this for loops with a giant number of backedges, just factor them into a
539 // common backedge instead.
540 if (L->getNumBackEdges() < 8) {
541 if (Loop *OuterL =
542 separateNestedLoop(L, Preheader, DT, LI, SE, PreserveLCSSA, AC)) {
543 ++NumNested;
544 // Enqueue the outer loop as it should be processed next in our
545 // depth-first nest walk.
546 Worklist.push_back(OuterL);
547
548 // This is a big restructuring change, reprocess the whole loop.
549 Changed = true;
550 // GCC doesn't tail recursion eliminate this.
551 // FIXME: It isn't clear we can't rely on LLVM to TRE this.
552 goto ReprocessLoop;
553 }
554 }
555
556 // If we either couldn't, or didn't want to, identify nesting of the loops,
557 // insert a new block that all backedges target, then make it jump to the
558 // loop header.
559 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI);
560 if (LoopLatch)
561 Changed = true;
562 }
563
564 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
565
566 // Scan over the PHI nodes in the loop header. Since they now have only two
567 // incoming values (the loop is canonicalized), we may have simplified the PHI
568 // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
569 PHINode *PN;
570 for (BasicBlock::iterator I = L->getHeader()->begin();
571 (PN = dyn_cast<PHINode>(I++)); )
572 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
573 if (SE) SE->forgetValue(PN);
574 if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
575 PN->replaceAllUsesWith(V);
576 PN->eraseFromParent();
577 }
578 }
579
580 // If this loop has multiple exits and the exits all go to the same
581 // block, attempt to merge the exits. This helps several passes, such
582 // as LoopRotation, which do not support loops with multiple exits.
583 // SimplifyCFG also does this (and this code uses the same utility
584 // function), however this code is loop-aware, where SimplifyCFG is
585 // not. That gives it the advantage of being able to hoist
586 // loop-invariant instructions out of the way to open up more
587 // opportunities, and the disadvantage of having the responsibility
588 // to preserve dominator information.
589 auto HasUniqueExitBlock = [&]() {
590 BasicBlock *UniqueExit = nullptr;
591 for (auto *ExitingBB : ExitingBlocks)
592 for (auto *SuccBB : successors(ExitingBB)) {
593 if (L->contains(SuccBB))
594 continue;
595
596 if (!UniqueExit)
597 UniqueExit = SuccBB;
598 else if (UniqueExit != SuccBB)
599 return false;
600 }
601
602 return true;
603 };
604 if (HasUniqueExitBlock()) {
605 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
606 BasicBlock *ExitingBlock = ExitingBlocks[i];
607 if (!ExitingBlock->getSinglePredecessor()) continue;
608 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
609 if (!BI || !BI->isConditional()) continue;
610 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
611 if (!CI || CI->getParent() != ExitingBlock) continue;
612
613 // Attempt to hoist out all instructions except for the
614 // comparison and the branch.
615 bool AllInvariant = true;
616 bool AnyInvariant = false;
617 for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) {
618 Instruction *Inst = &*I++;
619 if (Inst == CI)
620 continue;
621 if (!L->makeLoopInvariant(Inst, AnyInvariant,
622 Preheader ? Preheader->getTerminator()
623 : nullptr)) {
624 AllInvariant = false;
625 break;
626 }
627 }
628 if (AnyInvariant) {
629 Changed = true;
630 // The loop disposition of all SCEV expressions that depend on any
631 // hoisted values have also changed.
632 if (SE)
633 SE->forgetLoopDispositions(L);
634 }
635 if (!AllInvariant) continue;
636
637 // The block has now been cleared of all instructions except for
638 // a comparison and a conditional branch. SimplifyCFG may be able
639 // to fold it now.
640 if (!FoldBranchToCommonDest(BI))
641 continue;
642
643 // Success. The block is now dead, so remove it from the loop,
644 // update the dominator tree and delete it.
645 LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
646 << ExitingBlock->getName() << "\n");
647
648 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
649 Changed = true;
650 LI->removeBlock(ExitingBlock);
651
652 DomTreeNode *Node = DT->getNode(ExitingBlock);
653 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
654 Node->getChildren();
655 while (!Children.empty()) {
656 DomTreeNode *Child = Children.front();
657 DT->changeImmediateDominator(Child, Node->getIDom());
658 }
659 DT->eraseNode(ExitingBlock);
660
661 BI->getSuccessor(0)->removePredecessor(
662 ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA);
663 BI->getSuccessor(1)->removePredecessor(
664 ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA);
665 ExitingBlock->eraseFromParent();
666 }
667 }
668
669 // Changing exit conditions for blocks may affect exit counts of this loop and
670 // any of its paretns, so we must invalidate the entire subtree if we've made
671 // any changes.
672 if (Changed && SE)
673 SE->forgetTopmostLoop(L);
674
675 return Changed;
676 }
677
simplifyLoop(Loop * L,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,AssumptionCache * AC,bool PreserveLCSSA)678 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
679 ScalarEvolution *SE, AssumptionCache *AC,
680 bool PreserveLCSSA) {
681 bool Changed = false;
682
683 #ifndef NDEBUG
684 // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
685 // form.
686 if (PreserveLCSSA) {
687 assert(DT && "DT not available.");
688 assert(LI && "LI not available.");
689 assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
690 "Requested to preserve LCSSA, but it's already broken.");
691 }
692 #endif
693
694 // Worklist maintains our depth-first queue of loops in this nest to process.
695 SmallVector<Loop *, 4> Worklist;
696 Worklist.push_back(L);
697
698 // Walk the worklist from front to back, pushing newly found sub loops onto
699 // the back. This will let us process loops from back to front in depth-first
700 // order. We can use this simple process because loops form a tree.
701 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
702 Loop *L2 = Worklist[Idx];
703 Worklist.append(L2->begin(), L2->end());
704 }
705
706 while (!Worklist.empty())
707 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
708 AC, PreserveLCSSA);
709
710 return Changed;
711 }
712
713 namespace {
714 struct LoopSimplify : public FunctionPass {
715 static char ID; // Pass identification, replacement for typeid
LoopSimplify__anonc1d74c8f0211::LoopSimplify716 LoopSimplify() : FunctionPass(ID) {
717 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
718 }
719
720 bool runOnFunction(Function &F) override;
721
getAnalysisUsage__anonc1d74c8f0211::LoopSimplify722 void getAnalysisUsage(AnalysisUsage &AU) const override {
723 AU.addRequired<AssumptionCacheTracker>();
724
725 // We need loop information to identify the loops...
726 AU.addRequired<DominatorTreeWrapperPass>();
727 AU.addPreserved<DominatorTreeWrapperPass>();
728
729 AU.addRequired<LoopInfoWrapperPass>();
730 AU.addPreserved<LoopInfoWrapperPass>();
731
732 AU.addPreserved<BasicAAWrapperPass>();
733 AU.addPreserved<AAResultsWrapperPass>();
734 AU.addPreserved<GlobalsAAWrapperPass>();
735 AU.addPreserved<ScalarEvolutionWrapperPass>();
736 AU.addPreserved<SCEVAAWrapperPass>();
737 AU.addPreservedID(LCSSAID);
738 AU.addPreserved<DependenceAnalysisWrapperPass>();
739 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
740 }
741
742 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
743 void verifyAnalysis() const override;
744 };
745 }
746
747 char LoopSimplify::ID = 0;
748 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
749 "Canonicalize natural loops", false, false)
750 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
751 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
752 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
753 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
754 "Canonicalize natural loops", false, false)
755
756 // Publicly exposed interface to pass...
757 char &llvm::LoopSimplifyID = LoopSimplify::ID;
createLoopSimplifyPass()758 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
759
760 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
761 /// it in any convenient order) inserting preheaders...
762 ///
runOnFunction(Function & F)763 bool LoopSimplify::runOnFunction(Function &F) {
764 bool Changed = false;
765 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
766 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
767 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
768 ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
769 AssumptionCache *AC =
770 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
771
772 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
773
774 // Simplify each loop nest in the function.
775 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
776 Changed |= simplifyLoop(*I, DT, LI, SE, AC, PreserveLCSSA);
777
778 #ifndef NDEBUG
779 if (PreserveLCSSA) {
780 bool InLCSSA = all_of(
781 *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
782 assert(InLCSSA && "LCSSA is broken after loop-simplify.");
783 }
784 #endif
785 return Changed;
786 }
787
run(Function & F,FunctionAnalysisManager & AM)788 PreservedAnalyses LoopSimplifyPass::run(Function &F,
789 FunctionAnalysisManager &AM) {
790 bool Changed = false;
791 LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
792 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
793 ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
794 AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
795
796 // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
797 // after simplifying the loops.
798 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
799 Changed |= simplifyLoop(*I, DT, LI, SE, AC, /*PreserveLCSSA*/ false);
800
801 if (!Changed)
802 return PreservedAnalyses::all();
803
804 PreservedAnalyses PA;
805 PA.preserve<DominatorTreeAnalysis>();
806 PA.preserve<LoopAnalysis>();
807 PA.preserve<BasicAA>();
808 PA.preserve<GlobalsAA>();
809 PA.preserve<SCEVAA>();
810 PA.preserve<ScalarEvolutionAnalysis>();
811 PA.preserve<DependenceAnalysis>();
812 return PA;
813 }
814
815 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
816 // below.
817 #if 0
818 static void verifyLoop(Loop *L) {
819 // Verify subloops.
820 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
821 verifyLoop(*I);
822
823 // It used to be possible to just assert L->isLoopSimplifyForm(), however
824 // with the introduction of indirectbr, there are now cases where it's
825 // not possible to transform a loop as necessary. We can at least check
826 // that there is an indirectbr near any time there's trouble.
827
828 // Indirectbr can interfere with preheader and unique backedge insertion.
829 if (!L->getLoopPreheader() || !L->getLoopLatch()) {
830 bool HasIndBrPred = false;
831 for (pred_iterator PI = pred_begin(L->getHeader()),
832 PE = pred_end(L->getHeader()); PI != PE; ++PI)
833 if (isa<IndirectBrInst>((*PI)->getTerminator())) {
834 HasIndBrPred = true;
835 break;
836 }
837 assert(HasIndBrPred &&
838 "LoopSimplify has no excuse for missing loop header info!");
839 (void)HasIndBrPred;
840 }
841
842 // Indirectbr can interfere with exit block canonicalization.
843 if (!L->hasDedicatedExits()) {
844 bool HasIndBrExiting = false;
845 SmallVector<BasicBlock*, 8> ExitingBlocks;
846 L->getExitingBlocks(ExitingBlocks);
847 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
848 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
849 HasIndBrExiting = true;
850 break;
851 }
852 }
853
854 assert(HasIndBrExiting &&
855 "LoopSimplify has no excuse for missing exit block info!");
856 (void)HasIndBrExiting;
857 }
858 }
859 #endif
860
verifyAnalysis() const861 void LoopSimplify::verifyAnalysis() const {
862 // FIXME: This routine is being called mid-way through the loop pass manager
863 // as loop passes destroy this analysis. That's actually fine, but we have no
864 // way of expressing that here. Once all of the passes that destroy this are
865 // hoisted out of the loop pass manager we can add back verification here.
866 #if 0
867 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
868 verifyLoop(*I);
869 #endif
870 }
871