1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches.  This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopIterator.h"
24 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
36 #include "llvm/Transforms/Utils/Cloning.h"
37 #include "llvm/Transforms/Utils/LoopSimplify.h"
38 #include "llvm/Transforms/Utils/LoopUtils.h"
39 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
40 #include "llvm/Transforms/Utils/UnrollLoop.h"
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "loop-unroll"
44 
45 // TODO: Should these be here or in LoopUnroll?
46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
48 
49 static cl::opt<bool>
50 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
51                     cl::desc("Allow runtime unrolled loops to be unrolled "
52                              "with epilog instead of prolog."));
53 
54 static cl::opt<bool>
55 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
56                     cl::desc("Verify domtree after unrolling"),
57 #ifdef NDEBUG
58     cl::init(false)
59 #else
60     cl::init(true)
61 #endif
62                     );
63 
64 /// Convert the instruction operands from referencing the current values into
65 /// those specified by VMap.
remapInstruction(Instruction * I,ValueToValueMapTy & VMap)66 void llvm::remapInstruction(Instruction *I, ValueToValueMapTy &VMap) {
67   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
68     Value *Op = I->getOperand(op);
69 
70     // Unwrap arguments of dbg.value intrinsics.
71     bool Wrapped = false;
72     if (auto *V = dyn_cast<MetadataAsValue>(Op))
73       if (auto *Unwrapped = dyn_cast<ValueAsMetadata>(V->getMetadata())) {
74         Op = Unwrapped->getValue();
75         Wrapped = true;
76       }
77 
78     auto wrap = [&](Value *V) {
79       auto &C = I->getContext();
80       return Wrapped ? MetadataAsValue::get(C, ValueAsMetadata::get(V)) : V;
81     };
82 
83     ValueToValueMapTy::iterator It = VMap.find(Op);
84     if (It != VMap.end())
85       I->setOperand(op, wrap(It->second));
86   }
87 
88   if (PHINode *PN = dyn_cast<PHINode>(I)) {
89     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
90       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
91       if (It != VMap.end())
92         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
93     }
94   }
95 }
96 
97 /// Folds a basic block into its predecessor if it only has one predecessor, and
98 /// that predecessor only has one successor.
99 /// The LoopInfo Analysis that is passed will be kept consistent.
foldBlockIntoPredecessor(BasicBlock * BB,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT)100 BasicBlock *llvm::foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI,
101                                            ScalarEvolution *SE,
102                                            DominatorTree *DT) {
103   // Merge basic blocks into their predecessor if there is only one distinct
104   // pred, and if there is only one distinct successor of the predecessor, and
105   // if there are no PHI nodes.
106   BasicBlock *OnlyPred = BB->getSinglePredecessor();
107   if (!OnlyPred) return nullptr;
108 
109   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
110     return nullptr;
111 
112   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
113                     << OnlyPred->getName() << "\n");
114 
115   // Resolve any PHI nodes at the start of the block.  They are all
116   // guaranteed to have exactly one entry if they exist, unless there are
117   // multiple duplicate (but guaranteed to be equal) entries for the
118   // incoming edges.  This occurs when there are multiple edges from
119   // OnlyPred to OnlySucc.
120   FoldSingleEntryPHINodes(BB);
121 
122   // Delete the unconditional branch from the predecessor...
123   OnlyPred->getInstList().pop_back();
124 
125   // Make all PHI nodes that referred to BB now refer to Pred as their
126   // source...
127   BB->replaceAllUsesWith(OnlyPred);
128 
129   // Move all definitions in the successor to the predecessor...
130   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
131 
132   // OldName will be valid until erased.
133   StringRef OldName = BB->getName();
134 
135   // Erase the old block and update dominator info.
136   if (DT)
137     if (DomTreeNode *DTN = DT->getNode(BB)) {
138       DomTreeNode *PredDTN = DT->getNode(OnlyPred);
139       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
140       for (auto *DI : Children)
141         DT->changeImmediateDominator(DI, PredDTN);
142 
143       DT->eraseNode(BB);
144     }
145 
146   LI->removeBlock(BB);
147 
148   // Inherit predecessor's name if it exists...
149   if (!OldName.empty() && !OnlyPred->hasName())
150     OnlyPred->setName(OldName);
151 
152   BB->eraseFromParent();
153 
154   return OnlyPred;
155 }
156 
157 /// Check if unrolling created a situation where we need to insert phi nodes to
158 /// preserve LCSSA form.
159 /// \param Blocks is a vector of basic blocks representing unrolled loop.
160 /// \param L is the outer loop.
161 /// It's possible that some of the blocks are in L, and some are not. In this
162 /// case, if there is a use is outside L, and definition is inside L, we need to
163 /// insert a phi-node, otherwise LCSSA will be broken.
164 /// The function is just a helper function for llvm::UnrollLoop that returns
165 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
needToInsertPhisForLCSSA(Loop * L,std::vector<BasicBlock * > Blocks,LoopInfo * LI)166 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
167                                      LoopInfo *LI) {
168   for (BasicBlock *BB : Blocks) {
169     if (LI->getLoopFor(BB) == L)
170       continue;
171     for (Instruction &I : *BB) {
172       for (Use &U : I.operands()) {
173         if (auto Def = dyn_cast<Instruction>(U)) {
174           Loop *DefLoop = LI->getLoopFor(Def->getParent());
175           if (!DefLoop)
176             continue;
177           if (DefLoop->contains(L))
178             return true;
179         }
180       }
181     }
182   }
183   return false;
184 }
185 
186 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
187 /// and adds a mapping from the original loop to the new loop to NewLoops.
188 /// Returns nullptr if no new loop was created and a pointer to the
189 /// original loop OriginalBB was part of otherwise.
addClonedBlockToLoopInfo(BasicBlock * OriginalBB,BasicBlock * ClonedBB,LoopInfo * LI,NewLoopsMap & NewLoops)190 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
191                                            BasicBlock *ClonedBB, LoopInfo *LI,
192                                            NewLoopsMap &NewLoops) {
193   // Figure out which loop New is in.
194   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
195   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
196 
197   Loop *&NewLoop = NewLoops[OldLoop];
198   if (!NewLoop) {
199     // Found a new sub-loop.
200     assert(OriginalBB == OldLoop->getHeader() &&
201            "Header should be first in RPO");
202 
203     NewLoop = LI->AllocateLoop();
204     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
205 
206     if (NewLoopParent)
207       NewLoopParent->addChildLoop(NewLoop);
208     else
209       LI->addTopLevelLoop(NewLoop);
210 
211     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
212     return OldLoop;
213   } else {
214     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
215     return nullptr;
216   }
217 }
218 
219 /// The function chooses which type of unroll (epilog or prolog) is more
220 /// profitabale.
221 /// Epilog unroll is more profitable when there is PHI that starts from
222 /// constant.  In this case epilog will leave PHI start from constant,
223 /// but prolog will convert it to non-constant.
224 ///
225 /// loop:
226 ///   PN = PHI [I, Latch], [CI, PreHeader]
227 ///   I = foo(PN)
228 ///   ...
229 ///
230 /// Epilog unroll case.
231 /// loop:
232 ///   PN = PHI [I2, Latch], [CI, PreHeader]
233 ///   I1 = foo(PN)
234 ///   I2 = foo(I1)
235 ///   ...
236 /// Prolog unroll case.
237 ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
238 /// loop:
239 ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
240 ///   I1 = foo(PN)
241 ///   I2 = foo(I1)
242 ///   ...
243 ///
isEpilogProfitable(Loop * L)244 static bool isEpilogProfitable(Loop *L) {
245   BasicBlock *PreHeader = L->getLoopPreheader();
246   BasicBlock *Header = L->getHeader();
247   assert(PreHeader && Header);
248   for (const PHINode &PN : Header->phis()) {
249     if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
250       return true;
251   }
252   return false;
253 }
254 
255 /// Perform some cleanup and simplifications on loops after unrolling. It is
256 /// useful to simplify the IV's in the new loop, as well as do a quick
257 /// simplify/dce pass of the instructions.
simplifyLoopAfterUnroll(Loop * L,bool SimplifyIVs,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,AssumptionCache * AC)258 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
259                                    ScalarEvolution *SE, DominatorTree *DT,
260                                    AssumptionCache *AC) {
261   // Simplify any new induction variables in the partially unrolled loop.
262   if (SE && SimplifyIVs) {
263     SmallVector<WeakTrackingVH, 16> DeadInsts;
264     simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
265 
266     // Aggressively clean up dead instructions that simplifyLoopIVs already
267     // identified. Any remaining should be cleaned up below.
268     while (!DeadInsts.empty())
269       if (Instruction *Inst =
270               dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
271         RecursivelyDeleteTriviallyDeadInstructions(Inst);
272   }
273 
274   // At this point, the code is well formed.  We now do a quick sweep over the
275   // inserted code, doing constant propagation and dead code elimination as we
276   // go.
277   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
278   const std::vector<BasicBlock *> &NewLoopBlocks = L->getBlocks();
279   for (BasicBlock *BB : NewLoopBlocks) {
280     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
281       Instruction *Inst = &*I++;
282 
283       if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
284         if (LI->replacementPreservesLCSSAForm(Inst, V))
285           Inst->replaceAllUsesWith(V);
286       if (isInstructionTriviallyDead(Inst))
287         BB->getInstList().erase(Inst);
288     }
289   }
290 
291   // TODO: after peeling or unrolling, previously loop variant conditions are
292   // likely to fold to constants, eagerly propagating those here will require
293   // fewer cleanup passes to be run.  Alternatively, a LoopEarlyCSE might be
294   // appropriate.
295 }
296 
297 /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
298 /// can only fail when the loop's latch block is not terminated by a conditional
299 /// branch instruction. However, if the trip count (and multiple) are not known,
300 /// loop unrolling will mostly produce more code that is no faster.
301 ///
302 /// TripCount is the upper bound of the iteration on which control exits
303 /// LatchBlock. Control may exit the loop prior to TripCount iterations either
304 /// via an early branch in other loop block or via LatchBlock terminator. This
305 /// is relaxed from the general definition of trip count which is the number of
306 /// times the loop header executes. Note that UnrollLoop assumes that the loop
307 /// counter test is in LatchBlock in order to remove unnecesssary instances of
308 /// the test.  If control can exit the loop from the LatchBlock's terminator
309 /// prior to TripCount iterations, flag PreserveCondBr needs to be set.
310 ///
311 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock
312 /// needs to be preserved.  It is needed when we use trip count upper bound to
313 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
314 /// conditional branch needs to be preserved.
315 ///
316 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
317 /// execute without exiting the loop.
318 ///
319 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
320 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
321 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
322 /// iterations before branching into the unrolled loop.  UnrollLoop will not
323 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
324 /// AllowExpensiveTripCount is false.
325 ///
326 /// If we want to perform PGO-based loop peeling, PeelCount is set to the
327 /// number of iterations we want to peel off.
328 ///
329 /// The LoopInfo Analysis that is passed will be kept consistent.
330 ///
331 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
332 /// DominatorTree if they are non-null.
UnrollLoop(Loop * L,unsigned Count,unsigned TripCount,bool Force,bool AllowRuntime,bool AllowExpensiveTripCount,bool PreserveCondBr,bool PreserveOnlyFirst,unsigned TripMultiple,unsigned PeelCount,bool UnrollRemainder,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,AssumptionCache * AC,OptimizationRemarkEmitter * ORE,bool PreserveLCSSA)333 LoopUnrollResult llvm::UnrollLoop(
334     Loop *L, unsigned Count, unsigned TripCount, bool Force, bool AllowRuntime,
335     bool AllowExpensiveTripCount, bool PreserveCondBr, bool PreserveOnlyFirst,
336     unsigned TripMultiple, unsigned PeelCount, bool UnrollRemainder,
337     LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
338     OptimizationRemarkEmitter *ORE, bool PreserveLCSSA) {
339 
340   BasicBlock *Preheader = L->getLoopPreheader();
341   if (!Preheader) {
342     LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
343     return LoopUnrollResult::Unmodified;
344   }
345 
346   BasicBlock *LatchBlock = L->getLoopLatch();
347   if (!LatchBlock) {
348     LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
349     return LoopUnrollResult::Unmodified;
350   }
351 
352   // Loops with indirectbr cannot be cloned.
353   if (!L->isSafeToClone()) {
354     LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
355     return LoopUnrollResult::Unmodified;
356   }
357 
358   // The current loop unroll pass can only unroll loops with a single latch
359   // that's a conditional branch exiting the loop.
360   // FIXME: The implementation can be extended to work with more complicated
361   // cases, e.g. loops with multiple latches.
362   BasicBlock *Header = L->getHeader();
363   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
364 
365   if (!BI || BI->isUnconditional()) {
366     // The loop-rotate pass can be helpful to avoid this in many cases.
367     LLVM_DEBUG(
368         dbgs()
369         << "  Can't unroll; loop not terminated by a conditional branch.\n");
370     return LoopUnrollResult::Unmodified;
371   }
372 
373   auto CheckSuccessors = [&](unsigned S1, unsigned S2) {
374     return BI->getSuccessor(S1) == Header && !L->contains(BI->getSuccessor(S2));
375   };
376 
377   if (!CheckSuccessors(0, 1) && !CheckSuccessors(1, 0)) {
378     LLVM_DEBUG(dbgs() << "Can't unroll; only loops with one conditional latch"
379                          " exiting the loop can be unrolled\n");
380     return LoopUnrollResult::Unmodified;
381   }
382 
383   if (Header->hasAddressTaken()) {
384     // The loop-rotate pass can be helpful to avoid this in many cases.
385     LLVM_DEBUG(
386         dbgs() << "  Won't unroll loop: address of header block is taken.\n");
387     return LoopUnrollResult::Unmodified;
388   }
389 
390   if (TripCount != 0)
391     LLVM_DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
392   if (TripMultiple != 1)
393     LLVM_DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
394 
395   // Effectively "DCE" unrolled iterations that are beyond the tripcount
396   // and will never be executed.
397   if (TripCount != 0 && Count > TripCount)
398     Count = TripCount;
399 
400   // Don't enter the unroll code if there is nothing to do.
401   if (TripCount == 0 && Count < 2 && PeelCount == 0) {
402     LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
403     return LoopUnrollResult::Unmodified;
404   }
405 
406   assert(Count > 0);
407   assert(TripMultiple > 0);
408   assert(TripCount == 0 || TripCount % TripMultiple == 0);
409 
410   // Are we eliminating the loop control altogether?
411   bool CompletelyUnroll = Count == TripCount;
412   SmallVector<BasicBlock *, 4> ExitBlocks;
413   L->getExitBlocks(ExitBlocks);
414   std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
415 
416   // Go through all exits of L and see if there are any phi-nodes there. We just
417   // conservatively assume that they're inserted to preserve LCSSA form, which
418   // means that complete unrolling might break this form. We need to either fix
419   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
420   // now we just recompute LCSSA for the outer loop, but it should be possible
421   // to fix it in-place.
422   bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
423                         any_of(ExitBlocks, [](const BasicBlock *BB) {
424                           return isa<PHINode>(BB->begin());
425                         });
426 
427   // We assume a run-time trip count if the compiler cannot
428   // figure out the loop trip count and the unroll-runtime
429   // flag is specified.
430   bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
431 
432   assert((!RuntimeTripCount || !PeelCount) &&
433          "Did not expect runtime trip-count unrolling "
434          "and peeling for the same loop");
435 
436   bool Peeled = false;
437   if (PeelCount) {
438     Peeled = peelLoop(L, PeelCount, LI, SE, DT, AC, PreserveLCSSA);
439 
440     // Successful peeling may result in a change in the loop preheader/trip
441     // counts. If we later unroll the loop, we want these to be updated.
442     if (Peeled) {
443       BasicBlock *ExitingBlock = L->getExitingBlock();
444       assert(ExitingBlock && "Loop without exiting block?");
445       Preheader = L->getLoopPreheader();
446       TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
447       TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
448     }
449   }
450 
451   // Loops containing convergent instructions must have a count that divides
452   // their TripMultiple.
453   LLVM_DEBUG(
454       {
455         bool HasConvergent = false;
456         for (auto &BB : L->blocks())
457           for (auto &I : *BB)
458             if (auto CS = CallSite(&I))
459               HasConvergent |= CS.isConvergent();
460         assert((!HasConvergent || TripMultiple % Count == 0) &&
461                "Unroll count must divide trip multiple if loop contains a "
462                "convergent operation.");
463       });
464 
465   bool EpilogProfitability =
466       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
467                                               : isEpilogProfitable(L);
468 
469   if (RuntimeTripCount && TripMultiple % Count != 0 &&
470       !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount,
471                                   EpilogProfitability, UnrollRemainder, LI, SE,
472                                   DT, AC, PreserveLCSSA)) {
473     if (Force)
474       RuntimeTripCount = false;
475     else {
476       LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
477                            "generated when assuming runtime trip count\n");
478       return LoopUnrollResult::Unmodified;
479     }
480   }
481 
482   // If we know the trip count, we know the multiple...
483   unsigned BreakoutTrip = 0;
484   if (TripCount != 0) {
485     BreakoutTrip = TripCount % Count;
486     TripMultiple = 0;
487   } else {
488     // Figure out what multiple to use.
489     BreakoutTrip = TripMultiple =
490       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
491   }
492 
493   using namespace ore;
494   // Report the unrolling decision.
495   if (CompletelyUnroll) {
496     LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
497                       << " with trip count " << TripCount << "!\n");
498     if (ORE)
499       ORE->emit([&]() {
500         return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
501                                   L->getHeader())
502                << "completely unrolled loop with "
503                << NV("UnrollCount", TripCount) << " iterations";
504       });
505   } else if (PeelCount) {
506     LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName()
507                       << " with iteration count " << PeelCount << "!\n");
508     if (ORE)
509       ORE->emit([&]() {
510         return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
511                                   L->getHeader())
512                << " peeled loop by " << NV("PeelCount", PeelCount)
513                << " iterations";
514       });
515   } else {
516     auto DiagBuilder = [&]() {
517       OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
518                               L->getHeader());
519       return Diag << "unrolled loop by a factor of "
520                   << NV("UnrollCount", Count);
521     };
522 
523     LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
524                       << Count);
525     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
526       LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
527       if (ORE)
528         ORE->emit([&]() {
529           return DiagBuilder() << " with a breakout at trip "
530                                << NV("BreakoutTrip", BreakoutTrip);
531         });
532     } else if (TripMultiple != 1) {
533       LLVM_DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
534       if (ORE)
535         ORE->emit([&]() {
536           return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple)
537                                << " trips per branch";
538         });
539     } else if (RuntimeTripCount) {
540       LLVM_DEBUG(dbgs() << " with run-time trip count");
541       if (ORE)
542         ORE->emit(
543             [&]() { return DiagBuilder() << " with run-time trip count"; });
544     }
545     LLVM_DEBUG(dbgs() << "!\n");
546   }
547 
548   // We are going to make changes to this loop. SCEV may be keeping cached info
549   // about it, in particular about backedge taken count. The changes we make
550   // are guaranteed to invalidate this information for our loop. It is tempting
551   // to only invalidate the loop being unrolled, but it is incorrect as long as
552   // all exiting branches from all inner loops have impact on the outer loops,
553   // and if something changes inside them then any of outer loops may also
554   // change. When we forget outermost loop, we also forget all contained loops
555   // and this is what we need here.
556   if (SE)
557     SE->forgetTopmostLoop(L);
558 
559   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
560   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
561 
562   // For the first iteration of the loop, we should use the precloned values for
563   // PHI nodes.  Insert associations now.
564   ValueToValueMapTy LastValueMap;
565   std::vector<PHINode*> OrigPHINode;
566   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
567     OrigPHINode.push_back(cast<PHINode>(I));
568   }
569 
570   std::vector<BasicBlock*> Headers;
571   std::vector<BasicBlock*> Latches;
572   Headers.push_back(Header);
573   Latches.push_back(LatchBlock);
574 
575   // The current on-the-fly SSA update requires blocks to be processed in
576   // reverse postorder so that LastValueMap contains the correct value at each
577   // exit.
578   LoopBlocksDFS DFS(L);
579   DFS.perform(LI);
580 
581   // Stash the DFS iterators before adding blocks to the loop.
582   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
583   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
584 
585   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
586 
587   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
588   // might break loop-simplified form for these loops (as they, e.g., would
589   // share the same exit blocks). We'll keep track of loops for which we can
590   // break this so that later we can re-simplify them.
591   SmallSetVector<Loop *, 4> LoopsToSimplify;
592   for (Loop *SubLoop : *L)
593     LoopsToSimplify.insert(SubLoop);
594 
595   if (Header->getParent()->isDebugInfoForProfiling())
596     for (BasicBlock *BB : L->getBlocks())
597       for (Instruction &I : *BB)
598         if (!isa<DbgInfoIntrinsic>(&I))
599           if (const DILocation *DIL = I.getDebugLoc())
600             I.setDebugLoc(DIL->cloneWithDuplicationFactor(Count));
601 
602   for (unsigned It = 1; It != Count; ++It) {
603     std::vector<BasicBlock*> NewBlocks;
604     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
605     NewLoops[L] = L;
606 
607     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
608       ValueToValueMapTy VMap;
609       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
610       Header->getParent()->getBasicBlockList().push_back(New);
611 
612       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
613              "Header should not be in a sub-loop");
614       // Tell LI about New.
615       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
616       if (OldLoop)
617         LoopsToSimplify.insert(NewLoops[OldLoop]);
618 
619       if (*BB == Header)
620         // Loop over all of the PHI nodes in the block, changing them to use
621         // the incoming values from the previous block.
622         for (PHINode *OrigPHI : OrigPHINode) {
623           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
624           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
625           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
626             if (It > 1 && L->contains(InValI))
627               InVal = LastValueMap[InValI];
628           VMap[OrigPHI] = InVal;
629           New->getInstList().erase(NewPHI);
630         }
631 
632       // Update our running map of newest clones
633       LastValueMap[*BB] = New;
634       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
635            VI != VE; ++VI)
636         LastValueMap[VI->first] = VI->second;
637 
638       // Add phi entries for newly created values to all exit blocks.
639       for (BasicBlock *Succ : successors(*BB)) {
640         if (L->contains(Succ))
641           continue;
642         for (PHINode &PHI : Succ->phis()) {
643           Value *Incoming = PHI.getIncomingValueForBlock(*BB);
644           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
645           if (It != LastValueMap.end())
646             Incoming = It->second;
647           PHI.addIncoming(Incoming, New);
648         }
649       }
650       // Keep track of new headers and latches as we create them, so that
651       // we can insert the proper branches later.
652       if (*BB == Header)
653         Headers.push_back(New);
654       if (*BB == LatchBlock)
655         Latches.push_back(New);
656 
657       NewBlocks.push_back(New);
658       UnrolledLoopBlocks.push_back(New);
659 
660       // Update DomTree: since we just copy the loop body, and each copy has a
661       // dedicated entry block (copy of the header block), this header's copy
662       // dominates all copied blocks. That means, dominance relations in the
663       // copied body are the same as in the original body.
664       if (DT) {
665         if (*BB == Header)
666           DT->addNewBlock(New, Latches[It - 1]);
667         else {
668           auto BBDomNode = DT->getNode(*BB);
669           auto BBIDom = BBDomNode->getIDom();
670           BasicBlock *OriginalBBIDom = BBIDom->getBlock();
671           DT->addNewBlock(
672               New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
673         }
674       }
675     }
676 
677     // Remap all instructions in the most recent iteration
678     for (BasicBlock *NewBlock : NewBlocks) {
679       for (Instruction &I : *NewBlock) {
680         ::remapInstruction(&I, LastValueMap);
681         if (auto *II = dyn_cast<IntrinsicInst>(&I))
682           if (II->getIntrinsicID() == Intrinsic::assume)
683             AC->registerAssumption(II);
684       }
685     }
686   }
687 
688   // Loop over the PHI nodes in the original block, setting incoming values.
689   for (PHINode *PN : OrigPHINode) {
690     if (CompletelyUnroll) {
691       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
692       Header->getInstList().erase(PN);
693     }
694     else if (Count > 1) {
695       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
696       // If this value was defined in the loop, take the value defined by the
697       // last iteration of the loop.
698       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
699         if (L->contains(InValI))
700           InVal = LastValueMap[InVal];
701       }
702       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
703       PN->addIncoming(InVal, Latches.back());
704     }
705   }
706 
707   // Now that all the basic blocks for the unrolled iterations are in place,
708   // set up the branches to connect them.
709   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
710     // The original branch was replicated in each unrolled iteration.
711     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
712 
713     // The branch destination.
714     unsigned j = (i + 1) % e;
715     BasicBlock *Dest = Headers[j];
716     bool NeedConditional = true;
717 
718     if (RuntimeTripCount && j != 0) {
719       NeedConditional = false;
720     }
721 
722     // For a complete unroll, make the last iteration end with a branch
723     // to the exit block.
724     if (CompletelyUnroll) {
725       if (j == 0)
726         Dest = LoopExit;
727       // If using trip count upper bound to completely unroll, we need to keep
728       // the conditional branch except the last one because the loop may exit
729       // after any iteration.
730       assert(NeedConditional &&
731              "NeedCondition cannot be modified by both complete "
732              "unrolling and runtime unrolling");
733       NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0));
734     } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
735       // If we know the trip count or a multiple of it, we can safely use an
736       // unconditional branch for some iterations.
737       NeedConditional = false;
738     }
739 
740     if (NeedConditional) {
741       // Update the conditional branch's successor for the following
742       // iteration.
743       Term->setSuccessor(!ContinueOnTrue, Dest);
744     } else {
745       // Remove phi operands at this loop exit
746       if (Dest != LoopExit) {
747         BasicBlock *BB = Latches[i];
748         for (BasicBlock *Succ: successors(BB)) {
749           if (Succ == Headers[i])
750             continue;
751           for (PHINode &Phi : Succ->phis())
752             Phi.removeIncomingValue(BB, false);
753         }
754       }
755       // Replace the conditional branch with an unconditional one.
756       BranchInst::Create(Dest, Term);
757       Term->eraseFromParent();
758     }
759   }
760 
761   // Update dominators of blocks we might reach through exits.
762   // Immediate dominator of such block might change, because we add more
763   // routes which can lead to the exit: we can now reach it from the copied
764   // iterations too.
765   if (DT && Count > 1) {
766     for (auto *BB : OriginalLoopBlocks) {
767       auto *BBDomNode = DT->getNode(BB);
768       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
769       for (auto *ChildDomNode : BBDomNode->getChildren()) {
770         auto *ChildBB = ChildDomNode->getBlock();
771         if (!L->contains(ChildBB))
772           ChildrenToUpdate.push_back(ChildBB);
773       }
774       BasicBlock *NewIDom;
775       if (BB == LatchBlock) {
776         // The latch is special because we emit unconditional branches in
777         // some cases where the original loop contained a conditional branch.
778         // Since the latch is always at the bottom of the loop, if the latch
779         // dominated an exit before unrolling, the new dominator of that exit
780         // must also be a latch.  Specifically, the dominator is the first
781         // latch which ends in a conditional branch, or the last latch if
782         // there is no such latch.
783         NewIDom = Latches.back();
784         for (BasicBlock *IterLatch : Latches) {
785           TerminatorInst *Term = IterLatch->getTerminator();
786           if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
787             NewIDom = IterLatch;
788             break;
789           }
790         }
791       } else {
792         // The new idom of the block will be the nearest common dominator
793         // of all copies of the previous idom. This is equivalent to the
794         // nearest common dominator of the previous idom and the first latch,
795         // which dominates all copies of the previous idom.
796         NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
797       }
798       for (auto *ChildBB : ChildrenToUpdate)
799         DT->changeImmediateDominator(ChildBB, NewIDom);
800     }
801   }
802 
803   assert(!DT || !UnrollVerifyDomtree ||
804       DT->verify(DominatorTree::VerificationLevel::Fast));
805 
806   // Merge adjacent basic blocks, if possible.
807   for (BasicBlock *Latch : Latches) {
808     BranchInst *Term = cast<BranchInst>(Latch->getTerminator());
809     if (Term->isUnconditional()) {
810       BasicBlock *Dest = Term->getSuccessor(0);
811       if (BasicBlock *Fold = foldBlockIntoPredecessor(Dest, LI, SE, DT)) {
812         // Dest has been folded into Fold. Update our worklists accordingly.
813         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
814         UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
815                                              UnrolledLoopBlocks.end(), Dest),
816                                  UnrolledLoopBlocks.end());
817       }
818     }
819   }
820 
821   // At this point, the code is well formed.  We now simplify the unrolled loop,
822   // doing constant propagation and dead code elimination as we go.
823   simplifyLoopAfterUnroll(L, !CompletelyUnroll && (Count > 1 || Peeled), LI, SE,
824                           DT, AC);
825 
826   NumCompletelyUnrolled += CompletelyUnroll;
827   ++NumUnrolled;
828 
829   Loop *OuterL = L->getParentLoop();
830   // Update LoopInfo if the loop is completely removed.
831   if (CompletelyUnroll)
832     LI->erase(L);
833 
834   // After complete unrolling most of the blocks should be contained in OuterL.
835   // However, some of them might happen to be out of OuterL (e.g. if they
836   // precede a loop exit). In this case we might need to insert PHI nodes in
837   // order to preserve LCSSA form.
838   // We don't need to check this if we already know that we need to fix LCSSA
839   // form.
840   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
841   // it should be possible to fix it in-place.
842   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
843     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
844 
845   // If we have a pass and a DominatorTree we should re-simplify impacted loops
846   // to ensure subsequent analyses can rely on this form. We want to simplify
847   // at least one layer outside of the loop that was unrolled so that any
848   // changes to the parent loop exposed by the unrolling are considered.
849   if (DT) {
850     if (OuterL) {
851       // OuterL includes all loops for which we can break loop-simplify, so
852       // it's sufficient to simplify only it (it'll recursively simplify inner
853       // loops too).
854       if (NeedToFixLCSSA) {
855         // LCSSA must be performed on the outermost affected loop. The unrolled
856         // loop's last loop latch is guaranteed to be in the outermost loop
857         // after LoopInfo's been updated by LoopInfo::erase.
858         Loop *LatchLoop = LI->getLoopFor(Latches.back());
859         Loop *FixLCSSALoop = OuterL;
860         if (!FixLCSSALoop->contains(LatchLoop))
861           while (FixLCSSALoop->getParentLoop() != LatchLoop)
862             FixLCSSALoop = FixLCSSALoop->getParentLoop();
863 
864         formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
865       } else if (PreserveLCSSA) {
866         assert(OuterL->isLCSSAForm(*DT) &&
867                "Loops should be in LCSSA form after loop-unroll.");
868       }
869 
870       // TODO: That potentially might be compile-time expensive. We should try
871       // to fix the loop-simplified form incrementally.
872       simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
873     } else {
874       // Simplify loops for which we might've broken loop-simplify form.
875       for (Loop *SubLoop : LoopsToSimplify)
876         simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA);
877     }
878   }
879 
880   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
881                           : LoopUnrollResult::PartiallyUnrolled;
882 }
883 
884 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
885 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
886 /// such metadata node exists, then nullptr is returned.
GetUnrollMetadata(MDNode * LoopID,StringRef Name)887 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
888   // First operand should refer to the loop id itself.
889   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
890   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
891 
892   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
893     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
894     if (!MD)
895       continue;
896 
897     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
898     if (!S)
899       continue;
900 
901     if (Name.equals(S->getString()))
902       return MD;
903   }
904   return nullptr;
905 }
906