1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches. This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopIterator.h"
24 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
36 #include "llvm/Transforms/Utils/Cloning.h"
37 #include "llvm/Transforms/Utils/LoopSimplify.h"
38 #include "llvm/Transforms/Utils/LoopUtils.h"
39 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
40 #include "llvm/Transforms/Utils/UnrollLoop.h"
41 using namespace llvm;
42
43 #define DEBUG_TYPE "loop-unroll"
44
45 // TODO: Should these be here or in LoopUnroll?
46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
48
49 static cl::opt<bool>
50 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
51 cl::desc("Allow runtime unrolled loops to be unrolled "
52 "with epilog instead of prolog."));
53
54 static cl::opt<bool>
55 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
56 cl::desc("Verify domtree after unrolling"),
57 #ifdef NDEBUG
58 cl::init(false)
59 #else
60 cl::init(true)
61 #endif
62 );
63
64 /// Convert the instruction operands from referencing the current values into
65 /// those specified by VMap.
remapInstruction(Instruction * I,ValueToValueMapTy & VMap)66 void llvm::remapInstruction(Instruction *I, ValueToValueMapTy &VMap) {
67 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
68 Value *Op = I->getOperand(op);
69
70 // Unwrap arguments of dbg.value intrinsics.
71 bool Wrapped = false;
72 if (auto *V = dyn_cast<MetadataAsValue>(Op))
73 if (auto *Unwrapped = dyn_cast<ValueAsMetadata>(V->getMetadata())) {
74 Op = Unwrapped->getValue();
75 Wrapped = true;
76 }
77
78 auto wrap = [&](Value *V) {
79 auto &C = I->getContext();
80 return Wrapped ? MetadataAsValue::get(C, ValueAsMetadata::get(V)) : V;
81 };
82
83 ValueToValueMapTy::iterator It = VMap.find(Op);
84 if (It != VMap.end())
85 I->setOperand(op, wrap(It->second));
86 }
87
88 if (PHINode *PN = dyn_cast<PHINode>(I)) {
89 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
90 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
91 if (It != VMap.end())
92 PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
93 }
94 }
95 }
96
97 /// Folds a basic block into its predecessor if it only has one predecessor, and
98 /// that predecessor only has one successor.
99 /// The LoopInfo Analysis that is passed will be kept consistent.
foldBlockIntoPredecessor(BasicBlock * BB,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT)100 BasicBlock *llvm::foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI,
101 ScalarEvolution *SE,
102 DominatorTree *DT) {
103 // Merge basic blocks into their predecessor if there is only one distinct
104 // pred, and if there is only one distinct successor of the predecessor, and
105 // if there are no PHI nodes.
106 BasicBlock *OnlyPred = BB->getSinglePredecessor();
107 if (!OnlyPred) return nullptr;
108
109 if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
110 return nullptr;
111
112 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
113 << OnlyPred->getName() << "\n");
114
115 // Resolve any PHI nodes at the start of the block. They are all
116 // guaranteed to have exactly one entry if they exist, unless there are
117 // multiple duplicate (but guaranteed to be equal) entries for the
118 // incoming edges. This occurs when there are multiple edges from
119 // OnlyPred to OnlySucc.
120 FoldSingleEntryPHINodes(BB);
121
122 // Delete the unconditional branch from the predecessor...
123 OnlyPred->getInstList().pop_back();
124
125 // Make all PHI nodes that referred to BB now refer to Pred as their
126 // source...
127 BB->replaceAllUsesWith(OnlyPred);
128
129 // Move all definitions in the successor to the predecessor...
130 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
131
132 // OldName will be valid until erased.
133 StringRef OldName = BB->getName();
134
135 // Erase the old block and update dominator info.
136 if (DT)
137 if (DomTreeNode *DTN = DT->getNode(BB)) {
138 DomTreeNode *PredDTN = DT->getNode(OnlyPred);
139 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
140 for (auto *DI : Children)
141 DT->changeImmediateDominator(DI, PredDTN);
142
143 DT->eraseNode(BB);
144 }
145
146 LI->removeBlock(BB);
147
148 // Inherit predecessor's name if it exists...
149 if (!OldName.empty() && !OnlyPred->hasName())
150 OnlyPred->setName(OldName);
151
152 BB->eraseFromParent();
153
154 return OnlyPred;
155 }
156
157 /// Check if unrolling created a situation where we need to insert phi nodes to
158 /// preserve LCSSA form.
159 /// \param Blocks is a vector of basic blocks representing unrolled loop.
160 /// \param L is the outer loop.
161 /// It's possible that some of the blocks are in L, and some are not. In this
162 /// case, if there is a use is outside L, and definition is inside L, we need to
163 /// insert a phi-node, otherwise LCSSA will be broken.
164 /// The function is just a helper function for llvm::UnrollLoop that returns
165 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
needToInsertPhisForLCSSA(Loop * L,std::vector<BasicBlock * > Blocks,LoopInfo * LI)166 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
167 LoopInfo *LI) {
168 for (BasicBlock *BB : Blocks) {
169 if (LI->getLoopFor(BB) == L)
170 continue;
171 for (Instruction &I : *BB) {
172 for (Use &U : I.operands()) {
173 if (auto Def = dyn_cast<Instruction>(U)) {
174 Loop *DefLoop = LI->getLoopFor(Def->getParent());
175 if (!DefLoop)
176 continue;
177 if (DefLoop->contains(L))
178 return true;
179 }
180 }
181 }
182 }
183 return false;
184 }
185
186 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
187 /// and adds a mapping from the original loop to the new loop to NewLoops.
188 /// Returns nullptr if no new loop was created and a pointer to the
189 /// original loop OriginalBB was part of otherwise.
addClonedBlockToLoopInfo(BasicBlock * OriginalBB,BasicBlock * ClonedBB,LoopInfo * LI,NewLoopsMap & NewLoops)190 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
191 BasicBlock *ClonedBB, LoopInfo *LI,
192 NewLoopsMap &NewLoops) {
193 // Figure out which loop New is in.
194 const Loop *OldLoop = LI->getLoopFor(OriginalBB);
195 assert(OldLoop && "Should (at least) be in the loop being unrolled!");
196
197 Loop *&NewLoop = NewLoops[OldLoop];
198 if (!NewLoop) {
199 // Found a new sub-loop.
200 assert(OriginalBB == OldLoop->getHeader() &&
201 "Header should be first in RPO");
202
203 NewLoop = LI->AllocateLoop();
204 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
205
206 if (NewLoopParent)
207 NewLoopParent->addChildLoop(NewLoop);
208 else
209 LI->addTopLevelLoop(NewLoop);
210
211 NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
212 return OldLoop;
213 } else {
214 NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
215 return nullptr;
216 }
217 }
218
219 /// The function chooses which type of unroll (epilog or prolog) is more
220 /// profitabale.
221 /// Epilog unroll is more profitable when there is PHI that starts from
222 /// constant. In this case epilog will leave PHI start from constant,
223 /// but prolog will convert it to non-constant.
224 ///
225 /// loop:
226 /// PN = PHI [I, Latch], [CI, PreHeader]
227 /// I = foo(PN)
228 /// ...
229 ///
230 /// Epilog unroll case.
231 /// loop:
232 /// PN = PHI [I2, Latch], [CI, PreHeader]
233 /// I1 = foo(PN)
234 /// I2 = foo(I1)
235 /// ...
236 /// Prolog unroll case.
237 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
238 /// loop:
239 /// PN = PHI [I2, Latch], [NewPN, PreHeader]
240 /// I1 = foo(PN)
241 /// I2 = foo(I1)
242 /// ...
243 ///
isEpilogProfitable(Loop * L)244 static bool isEpilogProfitable(Loop *L) {
245 BasicBlock *PreHeader = L->getLoopPreheader();
246 BasicBlock *Header = L->getHeader();
247 assert(PreHeader && Header);
248 for (const PHINode &PN : Header->phis()) {
249 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
250 return true;
251 }
252 return false;
253 }
254
255 /// Perform some cleanup and simplifications on loops after unrolling. It is
256 /// useful to simplify the IV's in the new loop, as well as do a quick
257 /// simplify/dce pass of the instructions.
simplifyLoopAfterUnroll(Loop * L,bool SimplifyIVs,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,AssumptionCache * AC)258 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
259 ScalarEvolution *SE, DominatorTree *DT,
260 AssumptionCache *AC) {
261 // Simplify any new induction variables in the partially unrolled loop.
262 if (SE && SimplifyIVs) {
263 SmallVector<WeakTrackingVH, 16> DeadInsts;
264 simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
265
266 // Aggressively clean up dead instructions that simplifyLoopIVs already
267 // identified. Any remaining should be cleaned up below.
268 while (!DeadInsts.empty())
269 if (Instruction *Inst =
270 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
271 RecursivelyDeleteTriviallyDeadInstructions(Inst);
272 }
273
274 // At this point, the code is well formed. We now do a quick sweep over the
275 // inserted code, doing constant propagation and dead code elimination as we
276 // go.
277 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
278 const std::vector<BasicBlock *> &NewLoopBlocks = L->getBlocks();
279 for (BasicBlock *BB : NewLoopBlocks) {
280 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
281 Instruction *Inst = &*I++;
282
283 if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
284 if (LI->replacementPreservesLCSSAForm(Inst, V))
285 Inst->replaceAllUsesWith(V);
286 if (isInstructionTriviallyDead(Inst))
287 BB->getInstList().erase(Inst);
288 }
289 }
290
291 // TODO: after peeling or unrolling, previously loop variant conditions are
292 // likely to fold to constants, eagerly propagating those here will require
293 // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be
294 // appropriate.
295 }
296
297 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling
298 /// can only fail when the loop's latch block is not terminated by a conditional
299 /// branch instruction. However, if the trip count (and multiple) are not known,
300 /// loop unrolling will mostly produce more code that is no faster.
301 ///
302 /// TripCount is the upper bound of the iteration on which control exits
303 /// LatchBlock. Control may exit the loop prior to TripCount iterations either
304 /// via an early branch in other loop block or via LatchBlock terminator. This
305 /// is relaxed from the general definition of trip count which is the number of
306 /// times the loop header executes. Note that UnrollLoop assumes that the loop
307 /// counter test is in LatchBlock in order to remove unnecesssary instances of
308 /// the test. If control can exit the loop from the LatchBlock's terminator
309 /// prior to TripCount iterations, flag PreserveCondBr needs to be set.
310 ///
311 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock
312 /// needs to be preserved. It is needed when we use trip count upper bound to
313 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
314 /// conditional branch needs to be preserved.
315 ///
316 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
317 /// execute without exiting the loop.
318 ///
319 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
320 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these
321 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
322 /// iterations before branching into the unrolled loop. UnrollLoop will not
323 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
324 /// AllowExpensiveTripCount is false.
325 ///
326 /// If we want to perform PGO-based loop peeling, PeelCount is set to the
327 /// number of iterations we want to peel off.
328 ///
329 /// The LoopInfo Analysis that is passed will be kept consistent.
330 ///
331 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
332 /// DominatorTree if they are non-null.
UnrollLoop(Loop * L,unsigned Count,unsigned TripCount,bool Force,bool AllowRuntime,bool AllowExpensiveTripCount,bool PreserveCondBr,bool PreserveOnlyFirst,unsigned TripMultiple,unsigned PeelCount,bool UnrollRemainder,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,AssumptionCache * AC,OptimizationRemarkEmitter * ORE,bool PreserveLCSSA)333 LoopUnrollResult llvm::UnrollLoop(
334 Loop *L, unsigned Count, unsigned TripCount, bool Force, bool AllowRuntime,
335 bool AllowExpensiveTripCount, bool PreserveCondBr, bool PreserveOnlyFirst,
336 unsigned TripMultiple, unsigned PeelCount, bool UnrollRemainder,
337 LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
338 OptimizationRemarkEmitter *ORE, bool PreserveLCSSA) {
339
340 BasicBlock *Preheader = L->getLoopPreheader();
341 if (!Preheader) {
342 LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
343 return LoopUnrollResult::Unmodified;
344 }
345
346 BasicBlock *LatchBlock = L->getLoopLatch();
347 if (!LatchBlock) {
348 LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n");
349 return LoopUnrollResult::Unmodified;
350 }
351
352 // Loops with indirectbr cannot be cloned.
353 if (!L->isSafeToClone()) {
354 LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n");
355 return LoopUnrollResult::Unmodified;
356 }
357
358 // The current loop unroll pass can only unroll loops with a single latch
359 // that's a conditional branch exiting the loop.
360 // FIXME: The implementation can be extended to work with more complicated
361 // cases, e.g. loops with multiple latches.
362 BasicBlock *Header = L->getHeader();
363 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
364
365 if (!BI || BI->isUnconditional()) {
366 // The loop-rotate pass can be helpful to avoid this in many cases.
367 LLVM_DEBUG(
368 dbgs()
369 << " Can't unroll; loop not terminated by a conditional branch.\n");
370 return LoopUnrollResult::Unmodified;
371 }
372
373 auto CheckSuccessors = [&](unsigned S1, unsigned S2) {
374 return BI->getSuccessor(S1) == Header && !L->contains(BI->getSuccessor(S2));
375 };
376
377 if (!CheckSuccessors(0, 1) && !CheckSuccessors(1, 0)) {
378 LLVM_DEBUG(dbgs() << "Can't unroll; only loops with one conditional latch"
379 " exiting the loop can be unrolled\n");
380 return LoopUnrollResult::Unmodified;
381 }
382
383 if (Header->hasAddressTaken()) {
384 // The loop-rotate pass can be helpful to avoid this in many cases.
385 LLVM_DEBUG(
386 dbgs() << " Won't unroll loop: address of header block is taken.\n");
387 return LoopUnrollResult::Unmodified;
388 }
389
390 if (TripCount != 0)
391 LLVM_DEBUG(dbgs() << " Trip Count = " << TripCount << "\n");
392 if (TripMultiple != 1)
393 LLVM_DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n");
394
395 // Effectively "DCE" unrolled iterations that are beyond the tripcount
396 // and will never be executed.
397 if (TripCount != 0 && Count > TripCount)
398 Count = TripCount;
399
400 // Don't enter the unroll code if there is nothing to do.
401 if (TripCount == 0 && Count < 2 && PeelCount == 0) {
402 LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
403 return LoopUnrollResult::Unmodified;
404 }
405
406 assert(Count > 0);
407 assert(TripMultiple > 0);
408 assert(TripCount == 0 || TripCount % TripMultiple == 0);
409
410 // Are we eliminating the loop control altogether?
411 bool CompletelyUnroll = Count == TripCount;
412 SmallVector<BasicBlock *, 4> ExitBlocks;
413 L->getExitBlocks(ExitBlocks);
414 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
415
416 // Go through all exits of L and see if there are any phi-nodes there. We just
417 // conservatively assume that they're inserted to preserve LCSSA form, which
418 // means that complete unrolling might break this form. We need to either fix
419 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
420 // now we just recompute LCSSA for the outer loop, but it should be possible
421 // to fix it in-place.
422 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
423 any_of(ExitBlocks, [](const BasicBlock *BB) {
424 return isa<PHINode>(BB->begin());
425 });
426
427 // We assume a run-time trip count if the compiler cannot
428 // figure out the loop trip count and the unroll-runtime
429 // flag is specified.
430 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
431
432 assert((!RuntimeTripCount || !PeelCount) &&
433 "Did not expect runtime trip-count unrolling "
434 "and peeling for the same loop");
435
436 bool Peeled = false;
437 if (PeelCount) {
438 Peeled = peelLoop(L, PeelCount, LI, SE, DT, AC, PreserveLCSSA);
439
440 // Successful peeling may result in a change in the loop preheader/trip
441 // counts. If we later unroll the loop, we want these to be updated.
442 if (Peeled) {
443 BasicBlock *ExitingBlock = L->getExitingBlock();
444 assert(ExitingBlock && "Loop without exiting block?");
445 Preheader = L->getLoopPreheader();
446 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
447 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
448 }
449 }
450
451 // Loops containing convergent instructions must have a count that divides
452 // their TripMultiple.
453 LLVM_DEBUG(
454 {
455 bool HasConvergent = false;
456 for (auto &BB : L->blocks())
457 for (auto &I : *BB)
458 if (auto CS = CallSite(&I))
459 HasConvergent |= CS.isConvergent();
460 assert((!HasConvergent || TripMultiple % Count == 0) &&
461 "Unroll count must divide trip multiple if loop contains a "
462 "convergent operation.");
463 });
464
465 bool EpilogProfitability =
466 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
467 : isEpilogProfitable(L);
468
469 if (RuntimeTripCount && TripMultiple % Count != 0 &&
470 !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount,
471 EpilogProfitability, UnrollRemainder, LI, SE,
472 DT, AC, PreserveLCSSA)) {
473 if (Force)
474 RuntimeTripCount = false;
475 else {
476 LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
477 "generated when assuming runtime trip count\n");
478 return LoopUnrollResult::Unmodified;
479 }
480 }
481
482 // If we know the trip count, we know the multiple...
483 unsigned BreakoutTrip = 0;
484 if (TripCount != 0) {
485 BreakoutTrip = TripCount % Count;
486 TripMultiple = 0;
487 } else {
488 // Figure out what multiple to use.
489 BreakoutTrip = TripMultiple =
490 (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
491 }
492
493 using namespace ore;
494 // Report the unrolling decision.
495 if (CompletelyUnroll) {
496 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
497 << " with trip count " << TripCount << "!\n");
498 if (ORE)
499 ORE->emit([&]() {
500 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
501 L->getHeader())
502 << "completely unrolled loop with "
503 << NV("UnrollCount", TripCount) << " iterations";
504 });
505 } else if (PeelCount) {
506 LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName()
507 << " with iteration count " << PeelCount << "!\n");
508 if (ORE)
509 ORE->emit([&]() {
510 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
511 L->getHeader())
512 << " peeled loop by " << NV("PeelCount", PeelCount)
513 << " iterations";
514 });
515 } else {
516 auto DiagBuilder = [&]() {
517 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
518 L->getHeader());
519 return Diag << "unrolled loop by a factor of "
520 << NV("UnrollCount", Count);
521 };
522
523 LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
524 << Count);
525 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
526 LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
527 if (ORE)
528 ORE->emit([&]() {
529 return DiagBuilder() << " with a breakout at trip "
530 << NV("BreakoutTrip", BreakoutTrip);
531 });
532 } else if (TripMultiple != 1) {
533 LLVM_DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
534 if (ORE)
535 ORE->emit([&]() {
536 return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple)
537 << " trips per branch";
538 });
539 } else if (RuntimeTripCount) {
540 LLVM_DEBUG(dbgs() << " with run-time trip count");
541 if (ORE)
542 ORE->emit(
543 [&]() { return DiagBuilder() << " with run-time trip count"; });
544 }
545 LLVM_DEBUG(dbgs() << "!\n");
546 }
547
548 // We are going to make changes to this loop. SCEV may be keeping cached info
549 // about it, in particular about backedge taken count. The changes we make
550 // are guaranteed to invalidate this information for our loop. It is tempting
551 // to only invalidate the loop being unrolled, but it is incorrect as long as
552 // all exiting branches from all inner loops have impact on the outer loops,
553 // and if something changes inside them then any of outer loops may also
554 // change. When we forget outermost loop, we also forget all contained loops
555 // and this is what we need here.
556 if (SE)
557 SE->forgetTopmostLoop(L);
558
559 bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
560 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
561
562 // For the first iteration of the loop, we should use the precloned values for
563 // PHI nodes. Insert associations now.
564 ValueToValueMapTy LastValueMap;
565 std::vector<PHINode*> OrigPHINode;
566 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
567 OrigPHINode.push_back(cast<PHINode>(I));
568 }
569
570 std::vector<BasicBlock*> Headers;
571 std::vector<BasicBlock*> Latches;
572 Headers.push_back(Header);
573 Latches.push_back(LatchBlock);
574
575 // The current on-the-fly SSA update requires blocks to be processed in
576 // reverse postorder so that LastValueMap contains the correct value at each
577 // exit.
578 LoopBlocksDFS DFS(L);
579 DFS.perform(LI);
580
581 // Stash the DFS iterators before adding blocks to the loop.
582 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
583 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
584
585 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
586
587 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
588 // might break loop-simplified form for these loops (as they, e.g., would
589 // share the same exit blocks). We'll keep track of loops for which we can
590 // break this so that later we can re-simplify them.
591 SmallSetVector<Loop *, 4> LoopsToSimplify;
592 for (Loop *SubLoop : *L)
593 LoopsToSimplify.insert(SubLoop);
594
595 if (Header->getParent()->isDebugInfoForProfiling())
596 for (BasicBlock *BB : L->getBlocks())
597 for (Instruction &I : *BB)
598 if (!isa<DbgInfoIntrinsic>(&I))
599 if (const DILocation *DIL = I.getDebugLoc())
600 I.setDebugLoc(DIL->cloneWithDuplicationFactor(Count));
601
602 for (unsigned It = 1; It != Count; ++It) {
603 std::vector<BasicBlock*> NewBlocks;
604 SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
605 NewLoops[L] = L;
606
607 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
608 ValueToValueMapTy VMap;
609 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
610 Header->getParent()->getBasicBlockList().push_back(New);
611
612 assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
613 "Header should not be in a sub-loop");
614 // Tell LI about New.
615 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
616 if (OldLoop)
617 LoopsToSimplify.insert(NewLoops[OldLoop]);
618
619 if (*BB == Header)
620 // Loop over all of the PHI nodes in the block, changing them to use
621 // the incoming values from the previous block.
622 for (PHINode *OrigPHI : OrigPHINode) {
623 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
624 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
625 if (Instruction *InValI = dyn_cast<Instruction>(InVal))
626 if (It > 1 && L->contains(InValI))
627 InVal = LastValueMap[InValI];
628 VMap[OrigPHI] = InVal;
629 New->getInstList().erase(NewPHI);
630 }
631
632 // Update our running map of newest clones
633 LastValueMap[*BB] = New;
634 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
635 VI != VE; ++VI)
636 LastValueMap[VI->first] = VI->second;
637
638 // Add phi entries for newly created values to all exit blocks.
639 for (BasicBlock *Succ : successors(*BB)) {
640 if (L->contains(Succ))
641 continue;
642 for (PHINode &PHI : Succ->phis()) {
643 Value *Incoming = PHI.getIncomingValueForBlock(*BB);
644 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
645 if (It != LastValueMap.end())
646 Incoming = It->second;
647 PHI.addIncoming(Incoming, New);
648 }
649 }
650 // Keep track of new headers and latches as we create them, so that
651 // we can insert the proper branches later.
652 if (*BB == Header)
653 Headers.push_back(New);
654 if (*BB == LatchBlock)
655 Latches.push_back(New);
656
657 NewBlocks.push_back(New);
658 UnrolledLoopBlocks.push_back(New);
659
660 // Update DomTree: since we just copy the loop body, and each copy has a
661 // dedicated entry block (copy of the header block), this header's copy
662 // dominates all copied blocks. That means, dominance relations in the
663 // copied body are the same as in the original body.
664 if (DT) {
665 if (*BB == Header)
666 DT->addNewBlock(New, Latches[It - 1]);
667 else {
668 auto BBDomNode = DT->getNode(*BB);
669 auto BBIDom = BBDomNode->getIDom();
670 BasicBlock *OriginalBBIDom = BBIDom->getBlock();
671 DT->addNewBlock(
672 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
673 }
674 }
675 }
676
677 // Remap all instructions in the most recent iteration
678 for (BasicBlock *NewBlock : NewBlocks) {
679 for (Instruction &I : *NewBlock) {
680 ::remapInstruction(&I, LastValueMap);
681 if (auto *II = dyn_cast<IntrinsicInst>(&I))
682 if (II->getIntrinsicID() == Intrinsic::assume)
683 AC->registerAssumption(II);
684 }
685 }
686 }
687
688 // Loop over the PHI nodes in the original block, setting incoming values.
689 for (PHINode *PN : OrigPHINode) {
690 if (CompletelyUnroll) {
691 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
692 Header->getInstList().erase(PN);
693 }
694 else if (Count > 1) {
695 Value *InVal = PN->removeIncomingValue(LatchBlock, false);
696 // If this value was defined in the loop, take the value defined by the
697 // last iteration of the loop.
698 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
699 if (L->contains(InValI))
700 InVal = LastValueMap[InVal];
701 }
702 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
703 PN->addIncoming(InVal, Latches.back());
704 }
705 }
706
707 // Now that all the basic blocks for the unrolled iterations are in place,
708 // set up the branches to connect them.
709 for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
710 // The original branch was replicated in each unrolled iteration.
711 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
712
713 // The branch destination.
714 unsigned j = (i + 1) % e;
715 BasicBlock *Dest = Headers[j];
716 bool NeedConditional = true;
717
718 if (RuntimeTripCount && j != 0) {
719 NeedConditional = false;
720 }
721
722 // For a complete unroll, make the last iteration end with a branch
723 // to the exit block.
724 if (CompletelyUnroll) {
725 if (j == 0)
726 Dest = LoopExit;
727 // If using trip count upper bound to completely unroll, we need to keep
728 // the conditional branch except the last one because the loop may exit
729 // after any iteration.
730 assert(NeedConditional &&
731 "NeedCondition cannot be modified by both complete "
732 "unrolling and runtime unrolling");
733 NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0));
734 } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
735 // If we know the trip count or a multiple of it, we can safely use an
736 // unconditional branch for some iterations.
737 NeedConditional = false;
738 }
739
740 if (NeedConditional) {
741 // Update the conditional branch's successor for the following
742 // iteration.
743 Term->setSuccessor(!ContinueOnTrue, Dest);
744 } else {
745 // Remove phi operands at this loop exit
746 if (Dest != LoopExit) {
747 BasicBlock *BB = Latches[i];
748 for (BasicBlock *Succ: successors(BB)) {
749 if (Succ == Headers[i])
750 continue;
751 for (PHINode &Phi : Succ->phis())
752 Phi.removeIncomingValue(BB, false);
753 }
754 }
755 // Replace the conditional branch with an unconditional one.
756 BranchInst::Create(Dest, Term);
757 Term->eraseFromParent();
758 }
759 }
760
761 // Update dominators of blocks we might reach through exits.
762 // Immediate dominator of such block might change, because we add more
763 // routes which can lead to the exit: we can now reach it from the copied
764 // iterations too.
765 if (DT && Count > 1) {
766 for (auto *BB : OriginalLoopBlocks) {
767 auto *BBDomNode = DT->getNode(BB);
768 SmallVector<BasicBlock *, 16> ChildrenToUpdate;
769 for (auto *ChildDomNode : BBDomNode->getChildren()) {
770 auto *ChildBB = ChildDomNode->getBlock();
771 if (!L->contains(ChildBB))
772 ChildrenToUpdate.push_back(ChildBB);
773 }
774 BasicBlock *NewIDom;
775 if (BB == LatchBlock) {
776 // The latch is special because we emit unconditional branches in
777 // some cases where the original loop contained a conditional branch.
778 // Since the latch is always at the bottom of the loop, if the latch
779 // dominated an exit before unrolling, the new dominator of that exit
780 // must also be a latch. Specifically, the dominator is the first
781 // latch which ends in a conditional branch, or the last latch if
782 // there is no such latch.
783 NewIDom = Latches.back();
784 for (BasicBlock *IterLatch : Latches) {
785 TerminatorInst *Term = IterLatch->getTerminator();
786 if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
787 NewIDom = IterLatch;
788 break;
789 }
790 }
791 } else {
792 // The new idom of the block will be the nearest common dominator
793 // of all copies of the previous idom. This is equivalent to the
794 // nearest common dominator of the previous idom and the first latch,
795 // which dominates all copies of the previous idom.
796 NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
797 }
798 for (auto *ChildBB : ChildrenToUpdate)
799 DT->changeImmediateDominator(ChildBB, NewIDom);
800 }
801 }
802
803 assert(!DT || !UnrollVerifyDomtree ||
804 DT->verify(DominatorTree::VerificationLevel::Fast));
805
806 // Merge adjacent basic blocks, if possible.
807 for (BasicBlock *Latch : Latches) {
808 BranchInst *Term = cast<BranchInst>(Latch->getTerminator());
809 if (Term->isUnconditional()) {
810 BasicBlock *Dest = Term->getSuccessor(0);
811 if (BasicBlock *Fold = foldBlockIntoPredecessor(Dest, LI, SE, DT)) {
812 // Dest has been folded into Fold. Update our worklists accordingly.
813 std::replace(Latches.begin(), Latches.end(), Dest, Fold);
814 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
815 UnrolledLoopBlocks.end(), Dest),
816 UnrolledLoopBlocks.end());
817 }
818 }
819 }
820
821 // At this point, the code is well formed. We now simplify the unrolled loop,
822 // doing constant propagation and dead code elimination as we go.
823 simplifyLoopAfterUnroll(L, !CompletelyUnroll && (Count > 1 || Peeled), LI, SE,
824 DT, AC);
825
826 NumCompletelyUnrolled += CompletelyUnroll;
827 ++NumUnrolled;
828
829 Loop *OuterL = L->getParentLoop();
830 // Update LoopInfo if the loop is completely removed.
831 if (CompletelyUnroll)
832 LI->erase(L);
833
834 // After complete unrolling most of the blocks should be contained in OuterL.
835 // However, some of them might happen to be out of OuterL (e.g. if they
836 // precede a loop exit). In this case we might need to insert PHI nodes in
837 // order to preserve LCSSA form.
838 // We don't need to check this if we already know that we need to fix LCSSA
839 // form.
840 // TODO: For now we just recompute LCSSA for the outer loop in this case, but
841 // it should be possible to fix it in-place.
842 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
843 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
844
845 // If we have a pass and a DominatorTree we should re-simplify impacted loops
846 // to ensure subsequent analyses can rely on this form. We want to simplify
847 // at least one layer outside of the loop that was unrolled so that any
848 // changes to the parent loop exposed by the unrolling are considered.
849 if (DT) {
850 if (OuterL) {
851 // OuterL includes all loops for which we can break loop-simplify, so
852 // it's sufficient to simplify only it (it'll recursively simplify inner
853 // loops too).
854 if (NeedToFixLCSSA) {
855 // LCSSA must be performed on the outermost affected loop. The unrolled
856 // loop's last loop latch is guaranteed to be in the outermost loop
857 // after LoopInfo's been updated by LoopInfo::erase.
858 Loop *LatchLoop = LI->getLoopFor(Latches.back());
859 Loop *FixLCSSALoop = OuterL;
860 if (!FixLCSSALoop->contains(LatchLoop))
861 while (FixLCSSALoop->getParentLoop() != LatchLoop)
862 FixLCSSALoop = FixLCSSALoop->getParentLoop();
863
864 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
865 } else if (PreserveLCSSA) {
866 assert(OuterL->isLCSSAForm(*DT) &&
867 "Loops should be in LCSSA form after loop-unroll.");
868 }
869
870 // TODO: That potentially might be compile-time expensive. We should try
871 // to fix the loop-simplified form incrementally.
872 simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
873 } else {
874 // Simplify loops for which we might've broken loop-simplify form.
875 for (Loop *SubLoop : LoopsToSimplify)
876 simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA);
877 }
878 }
879
880 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
881 : LoopUnrollResult::PartiallyUnrolled;
882 }
883
884 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
885 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
886 /// such metadata node exists, then nullptr is returned.
GetUnrollMetadata(MDNode * LoopID,StringRef Name)887 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
888 // First operand should refer to the loop id itself.
889 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
890 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
891
892 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
893 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
894 if (!MD)
895 continue;
896
897 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
898 if (!S)
899 continue;
900
901 if (Name.equals(S->getString()))
902 return MD;
903 }
904 return nullptr;
905 }
906