1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities for loops with run-time
11 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time
12 // trip counts.
13 //
14 // The functions in this file are used to generate extra code when the
15 // run-time trip count modulo the unroll factor is not 0. When this is the
16 // case, we need to generate code to execute these 'left over' iterations.
17 //
18 // The current strategy generates an if-then-else sequence prior to the
19 // unrolled loop to execute the 'left over' iterations before or after the
20 // unrolled loop.
21 //
22 //===----------------------------------------------------------------------===//
23
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/LoopIterator.h"
28 #include "llvm/Analysis/ScalarEvolution.h"
29 #include "llvm/Analysis/ScalarEvolutionExpander.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Utils.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Cloning.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/UnrollLoop.h"
41 #include <algorithm>
42
43 using namespace llvm;
44
45 #define DEBUG_TYPE "loop-unroll"
46
47 STATISTIC(NumRuntimeUnrolled,
48 "Number of loops unrolled with run-time trip counts");
49 static cl::opt<bool> UnrollRuntimeMultiExit(
50 "unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
51 cl::desc("Allow runtime unrolling for loops with multiple exits, when "
52 "epilog is generated"));
53
54 /// Connect the unrolling prolog code to the original loop.
55 /// The unrolling prolog code contains code to execute the
56 /// 'extra' iterations if the run-time trip count modulo the
57 /// unroll count is non-zero.
58 ///
59 /// This function performs the following:
60 /// - Create PHI nodes at prolog end block to combine values
61 /// that exit the prolog code and jump around the prolog.
62 /// - Add a PHI operand to a PHI node at the loop exit block
63 /// for values that exit the prolog and go around the loop.
64 /// - Branch around the original loop if the trip count is less
65 /// than the unroll factor.
66 ///
ConnectProlog(Loop * L,Value * BECount,unsigned Count,BasicBlock * PrologExit,BasicBlock * OriginalLoopLatchExit,BasicBlock * PreHeader,BasicBlock * NewPreHeader,ValueToValueMapTy & VMap,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA)67 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
68 BasicBlock *PrologExit,
69 BasicBlock *OriginalLoopLatchExit,
70 BasicBlock *PreHeader, BasicBlock *NewPreHeader,
71 ValueToValueMapTy &VMap, DominatorTree *DT,
72 LoopInfo *LI, bool PreserveLCSSA) {
73 BasicBlock *Latch = L->getLoopLatch();
74 assert(Latch && "Loop must have a latch");
75 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
76
77 // Create a PHI node for each outgoing value from the original loop
78 // (which means it is an outgoing value from the prolog code too).
79 // The new PHI node is inserted in the prolog end basic block.
80 // The new PHI node value is added as an operand of a PHI node in either
81 // the loop header or the loop exit block.
82 for (BasicBlock *Succ : successors(Latch)) {
83 for (PHINode &PN : Succ->phis()) {
84 // Add a new PHI node to the prolog end block and add the
85 // appropriate incoming values.
86 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
87 PrologExit->getFirstNonPHI());
88 // Adding a value to the new PHI node from the original loop preheader.
89 // This is the value that skips all the prolog code.
90 if (L->contains(&PN)) {
91 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader),
92 PreHeader);
93 } else {
94 NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader);
95 }
96
97 Value *V = PN.getIncomingValueForBlock(Latch);
98 if (Instruction *I = dyn_cast<Instruction>(V)) {
99 if (L->contains(I)) {
100 V = VMap.lookup(I);
101 }
102 }
103 // Adding a value to the new PHI node from the last prolog block
104 // that was created.
105 NewPN->addIncoming(V, PrologLatch);
106
107 // Update the existing PHI node operand with the value from the
108 // new PHI node. How this is done depends on if the existing
109 // PHI node is in the original loop block, or the exit block.
110 if (L->contains(&PN)) {
111 PN.setIncomingValue(PN.getBasicBlockIndex(NewPreHeader), NewPN);
112 } else {
113 PN.addIncoming(NewPN, PrologExit);
114 }
115 }
116 }
117
118 // Make sure that created prolog loop is in simplified form
119 SmallVector<BasicBlock *, 4> PrologExitPreds;
120 Loop *PrologLoop = LI->getLoopFor(PrologLatch);
121 if (PrologLoop) {
122 for (BasicBlock *PredBB : predecessors(PrologExit))
123 if (PrologLoop->contains(PredBB))
124 PrologExitPreds.push_back(PredBB);
125
126 SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
127 PreserveLCSSA);
128 }
129
130 // Create a branch around the original loop, which is taken if there are no
131 // iterations remaining to be executed after running the prologue.
132 Instruction *InsertPt = PrologExit->getTerminator();
133 IRBuilder<> B(InsertPt);
134
135 assert(Count != 0 && "nonsensical Count!");
136
137 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
138 // This means %xtraiter is (BECount + 1) and all of the iterations of this
139 // loop were executed by the prologue. Note that if BECount <u (Count - 1)
140 // then (BECount + 1) cannot unsigned-overflow.
141 Value *BrLoopExit =
142 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
143 // Split the exit to maintain loop canonicalization guarantees
144 SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
145 SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
146 PreserveLCSSA);
147 // Add the branch to the exit block (around the unrolled loop)
148 B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader);
149 InsertPt->eraseFromParent();
150 if (DT)
151 DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit);
152 }
153
154 /// Connect the unrolling epilog code to the original loop.
155 /// The unrolling epilog code contains code to execute the
156 /// 'extra' iterations if the run-time trip count modulo the
157 /// unroll count is non-zero.
158 ///
159 /// This function performs the following:
160 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
161 /// - Create PHI nodes at the unrolling loop exit to combine
162 /// values that exit the unrolling loop code and jump around it.
163 /// - Update PHI operands in the epilog loop by the new PHI nodes
164 /// - Branch around the epilog loop if extra iters (ModVal) is zero.
165 ///
ConnectEpilog(Loop * L,Value * ModVal,BasicBlock * NewExit,BasicBlock * Exit,BasicBlock * PreHeader,BasicBlock * EpilogPreHeader,BasicBlock * NewPreHeader,ValueToValueMapTy & VMap,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA)166 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
167 BasicBlock *Exit, BasicBlock *PreHeader,
168 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
169 ValueToValueMapTy &VMap, DominatorTree *DT,
170 LoopInfo *LI, bool PreserveLCSSA) {
171 BasicBlock *Latch = L->getLoopLatch();
172 assert(Latch && "Loop must have a latch");
173 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
174
175 // Loop structure should be the following:
176 //
177 // PreHeader
178 // NewPreHeader
179 // Header
180 // ...
181 // Latch
182 // NewExit (PN)
183 // EpilogPreHeader
184 // EpilogHeader
185 // ...
186 // EpilogLatch
187 // Exit (EpilogPN)
188
189 // Update PHI nodes at NewExit and Exit.
190 for (PHINode &PN : NewExit->phis()) {
191 // PN should be used in another PHI located in Exit block as
192 // Exit was split by SplitBlockPredecessors into Exit and NewExit
193 // Basicaly it should look like:
194 // NewExit:
195 // PN = PHI [I, Latch]
196 // ...
197 // Exit:
198 // EpilogPN = PHI [PN, EpilogPreHeader]
199 //
200 // There is EpilogPreHeader incoming block instead of NewExit as
201 // NewExit was spilt 1 more time to get EpilogPreHeader.
202 assert(PN.hasOneUse() && "The phi should have 1 use");
203 PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser());
204 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
205
206 // Add incoming PreHeader from branch around the Loop
207 PN.addIncoming(UndefValue::get(PN.getType()), PreHeader);
208
209 Value *V = PN.getIncomingValueForBlock(Latch);
210 Instruction *I = dyn_cast<Instruction>(V);
211 if (I && L->contains(I))
212 // If value comes from an instruction in the loop add VMap value.
213 V = VMap.lookup(I);
214 // For the instruction out of the loop, constant or undefined value
215 // insert value itself.
216 EpilogPN->addIncoming(V, EpilogLatch);
217
218 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
219 "EpilogPN should have EpilogPreHeader incoming block");
220 // Change EpilogPreHeader incoming block to NewExit.
221 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
222 NewExit);
223 // Now PHIs should look like:
224 // NewExit:
225 // PN = PHI [I, Latch], [undef, PreHeader]
226 // ...
227 // Exit:
228 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
229 }
230
231 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
232 // Update corresponding PHI nodes in epilog loop.
233 for (BasicBlock *Succ : successors(Latch)) {
234 // Skip this as we already updated phis in exit blocks.
235 if (!L->contains(Succ))
236 continue;
237 for (PHINode &PN : Succ->phis()) {
238 // Add new PHI nodes to the loop exit block and update epilog
239 // PHIs with the new PHI values.
240 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
241 NewExit->getFirstNonPHI());
242 // Adding a value to the new PHI node from the unrolling loop preheader.
243 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader);
244 // Adding a value to the new PHI node from the unrolling loop latch.
245 NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch);
246
247 // Update the existing PHI node operand with the value from the new PHI
248 // node. Corresponding instruction in epilog loop should be PHI.
249 PHINode *VPN = cast<PHINode>(VMap[&PN]);
250 VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN);
251 }
252 }
253
254 Instruction *InsertPt = NewExit->getTerminator();
255 IRBuilder<> B(InsertPt);
256 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
257 assert(Exit && "Loop must have a single exit block only");
258 // Split the epilogue exit to maintain loop canonicalization guarantees
259 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
260 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI,
261 PreserveLCSSA);
262 // Add the branch to the exit block (around the unrolling loop)
263 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
264 InsertPt->eraseFromParent();
265 if (DT)
266 DT->changeImmediateDominator(Exit, NewExit);
267
268 // Split the main loop exit to maintain canonicalization guarantees.
269 SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
270 SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI,
271 PreserveLCSSA);
272 }
273
274 /// Create a clone of the blocks in a loop and connect them together.
275 /// If CreateRemainderLoop is false, loop structure will not be cloned,
276 /// otherwise a new loop will be created including all cloned blocks, and the
277 /// iterator of it switches to count NewIter down to 0.
278 /// The cloned blocks should be inserted between InsertTop and InsertBot.
279 /// If loop structure is cloned InsertTop should be new preheader, InsertBot
280 /// new loop exit.
281 /// Return the new cloned loop that is created when CreateRemainderLoop is true.
282 static Loop *
CloneLoopBlocks(Loop * L,Value * NewIter,const bool CreateRemainderLoop,const bool UseEpilogRemainder,const bool UnrollRemainder,BasicBlock * InsertTop,BasicBlock * InsertBot,BasicBlock * Preheader,std::vector<BasicBlock * > & NewBlocks,LoopBlocksDFS & LoopBlocks,ValueToValueMapTy & VMap,DominatorTree * DT,LoopInfo * LI)283 CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop,
284 const bool UseEpilogRemainder, const bool UnrollRemainder,
285 BasicBlock *InsertTop,
286 BasicBlock *InsertBot, BasicBlock *Preheader,
287 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
288 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) {
289 StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
290 BasicBlock *Header = L->getHeader();
291 BasicBlock *Latch = L->getLoopLatch();
292 Function *F = Header->getParent();
293 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
294 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
295 Loop *ParentLoop = L->getParentLoop();
296 NewLoopsMap NewLoops;
297 NewLoops[ParentLoop] = ParentLoop;
298 if (!CreateRemainderLoop)
299 NewLoops[L] = ParentLoop;
300
301 // For each block in the original loop, create a new copy,
302 // and update the value map with the newly created values.
303 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
304 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
305 NewBlocks.push_back(NewBB);
306
307 // If we're unrolling the outermost loop, there's no remainder loop,
308 // and this block isn't in a nested loop, then the new block is not
309 // in any loop. Otherwise, add it to loopinfo.
310 if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop)
311 addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
312
313 VMap[*BB] = NewBB;
314 if (Header == *BB) {
315 // For the first block, add a CFG connection to this newly
316 // created block.
317 InsertTop->getTerminator()->setSuccessor(0, NewBB);
318 }
319
320 if (DT) {
321 if (Header == *BB) {
322 // The header is dominated by the preheader.
323 DT->addNewBlock(NewBB, InsertTop);
324 } else {
325 // Copy information from original loop to unrolled loop.
326 BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
327 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
328 }
329 }
330
331 if (Latch == *BB) {
332 // For the last block, if CreateRemainderLoop is false, create a direct
333 // jump to InsertBot. If not, create a loop back to cloned head.
334 VMap.erase((*BB)->getTerminator());
335 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
336 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
337 IRBuilder<> Builder(LatchBR);
338 if (!CreateRemainderLoop) {
339 Builder.CreateBr(InsertBot);
340 } else {
341 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
342 suffix + ".iter",
343 FirstLoopBB->getFirstNonPHI());
344 Value *IdxSub =
345 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
346 NewIdx->getName() + ".sub");
347 Value *IdxCmp =
348 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
349 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
350 NewIdx->addIncoming(NewIter, InsertTop);
351 NewIdx->addIncoming(IdxSub, NewBB);
352 }
353 LatchBR->eraseFromParent();
354 }
355 }
356
357 // Change the incoming values to the ones defined in the preheader or
358 // cloned loop.
359 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
360 PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
361 if (!CreateRemainderLoop) {
362 if (UseEpilogRemainder) {
363 unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
364 NewPHI->setIncomingBlock(idx, InsertTop);
365 NewPHI->removeIncomingValue(Latch, false);
366 } else {
367 VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
368 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
369 }
370 } else {
371 unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
372 NewPHI->setIncomingBlock(idx, InsertTop);
373 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
374 idx = NewPHI->getBasicBlockIndex(Latch);
375 Value *InVal = NewPHI->getIncomingValue(idx);
376 NewPHI->setIncomingBlock(idx, NewLatch);
377 if (Value *V = VMap.lookup(InVal))
378 NewPHI->setIncomingValue(idx, V);
379 }
380 }
381 if (CreateRemainderLoop) {
382 Loop *NewLoop = NewLoops[L];
383 assert(NewLoop && "L should have been cloned");
384
385 // Only add loop metadata if the loop is not going to be completely
386 // unrolled.
387 if (UnrollRemainder)
388 return NewLoop;
389
390 // Add unroll disable metadata to disable future unrolling for this loop.
391 NewLoop->setLoopAlreadyUnrolled();
392 return NewLoop;
393 }
394 else
395 return nullptr;
396 }
397
398 /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits
399 /// is populated with all the loop exit blocks other than the LatchExit block.
400 static bool
canSafelyUnrollMultiExitLoop(Loop * L,SmallVectorImpl<BasicBlock * > & OtherExits,BasicBlock * LatchExit,bool PreserveLCSSA,bool UseEpilogRemainder)401 canSafelyUnrollMultiExitLoop(Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits,
402 BasicBlock *LatchExit, bool PreserveLCSSA,
403 bool UseEpilogRemainder) {
404
405 // We currently have some correctness constrains in unrolling a multi-exit
406 // loop. Check for these below.
407
408 // We rely on LCSSA form being preserved when the exit blocks are transformed.
409 if (!PreserveLCSSA)
410 return false;
411 SmallVector<BasicBlock *, 4> Exits;
412 L->getUniqueExitBlocks(Exits);
413 for (auto *BB : Exits)
414 if (BB != LatchExit)
415 OtherExits.push_back(BB);
416
417 // TODO: Support multiple exiting blocks jumping to the `LatchExit` when
418 // UnrollRuntimeMultiExit is true. This will need updating the logic in
419 // connectEpilog/connectProlog.
420 if (!LatchExit->getSinglePredecessor()) {
421 LLVM_DEBUG(
422 dbgs() << "Bailout for multi-exit handling when latch exit has >1 "
423 "predecessor.\n");
424 return false;
425 }
426 // FIXME: We bail out of multi-exit unrolling when epilog loop is generated
427 // and L is an inner loop. This is because in presence of multiple exits, the
428 // outer loop is incorrect: we do not add the EpilogPreheader and exit to the
429 // outer loop. This is automatically handled in the prolog case, so we do not
430 // have that bug in prolog generation.
431 if (UseEpilogRemainder && L->getParentLoop())
432 return false;
433
434 // All constraints have been satisfied.
435 return true;
436 }
437
438 /// Returns true if we can profitably unroll the multi-exit loop L. Currently,
439 /// we return true only if UnrollRuntimeMultiExit is set to true.
canProfitablyUnrollMultiExitLoop(Loop * L,SmallVectorImpl<BasicBlock * > & OtherExits,BasicBlock * LatchExit,bool PreserveLCSSA,bool UseEpilogRemainder)440 static bool canProfitablyUnrollMultiExitLoop(
441 Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
442 bool PreserveLCSSA, bool UseEpilogRemainder) {
443
444 #if !defined(NDEBUG)
445 SmallVector<BasicBlock *, 8> OtherExitsDummyCheck;
446 assert(canSafelyUnrollMultiExitLoop(L, OtherExitsDummyCheck, LatchExit,
447 PreserveLCSSA, UseEpilogRemainder) &&
448 "Should be safe to unroll before checking profitability!");
449 #endif
450
451 // Priority goes to UnrollRuntimeMultiExit if it's supplied.
452 if (UnrollRuntimeMultiExit.getNumOccurrences())
453 return UnrollRuntimeMultiExit;
454
455 // The main pain point with multi-exit loop unrolling is that once unrolled,
456 // we will not be able to merge all blocks into a straight line code.
457 // There are branches within the unrolled loop that go to the OtherExits.
458 // The second point is the increase in code size, but this is true
459 // irrespective of multiple exits.
460
461 // Note: Both the heuristics below are coarse grained. We are essentially
462 // enabling unrolling of loops that have a single side exit other than the
463 // normal LatchExit (i.e. exiting into a deoptimize block).
464 // The heuristics considered are:
465 // 1. low number of branches in the unrolled version.
466 // 2. high predictability of these extra branches.
467 // We avoid unrolling loops that have more than two exiting blocks. This
468 // limits the total number of branches in the unrolled loop to be atmost
469 // the unroll factor (since one of the exiting blocks is the latch block).
470 SmallVector<BasicBlock*, 4> ExitingBlocks;
471 L->getExitingBlocks(ExitingBlocks);
472 if (ExitingBlocks.size() > 2)
473 return false;
474
475 // The second heuristic is that L has one exit other than the latchexit and
476 // that exit is a deoptimize block. We know that deoptimize blocks are rarely
477 // taken, which also implies the branch leading to the deoptimize block is
478 // highly predictable.
479 return (OtherExits.size() == 1 &&
480 OtherExits[0]->getTerminatingDeoptimizeCall());
481 // TODO: These can be fine-tuned further to consider code size or deopt states
482 // that are captured by the deoptimize exit block.
483 // Also, we can extend this to support more cases, if we actually
484 // know of kinds of multiexit loops that would benefit from unrolling.
485 }
486
487 /// Insert code in the prolog/epilog code when unrolling a loop with a
488 /// run-time trip-count.
489 ///
490 /// This method assumes that the loop unroll factor is total number
491 /// of loop bodies in the loop after unrolling. (Some folks refer
492 /// to the unroll factor as the number of *extra* copies added).
493 /// We assume also that the loop unroll factor is a power-of-two. So, after
494 /// unrolling the loop, the number of loop bodies executed is 2,
495 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch
496 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for
497 /// the switch instruction is generated.
498 ///
499 /// ***Prolog case***
500 /// extraiters = tripcount % loopfactor
501 /// if (extraiters == 0) jump Loop:
502 /// else jump Prol:
503 /// Prol: LoopBody;
504 /// extraiters -= 1 // Omitted if unroll factor is 2.
505 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
506 /// if (tripcount < loopfactor) jump End:
507 /// Loop:
508 /// ...
509 /// End:
510 ///
511 /// ***Epilog case***
512 /// extraiters = tripcount % loopfactor
513 /// if (tripcount < loopfactor) jump LoopExit:
514 /// unroll_iters = tripcount - extraiters
515 /// Loop: LoopBody; (executes unroll_iter times);
516 /// unroll_iter -= 1
517 /// if (unroll_iter != 0) jump Loop:
518 /// LoopExit:
519 /// if (extraiters == 0) jump EpilExit:
520 /// Epil: LoopBody; (executes extraiters times)
521 /// extraiters -= 1 // Omitted if unroll factor is 2.
522 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
523 /// EpilExit:
524
UnrollRuntimeLoopRemainder(Loop * L,unsigned Count,bool AllowExpensiveTripCount,bool UseEpilogRemainder,bool UnrollRemainder,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,AssumptionCache * AC,bool PreserveLCSSA)525 bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count,
526 bool AllowExpensiveTripCount,
527 bool UseEpilogRemainder,
528 bool UnrollRemainder,
529 LoopInfo *LI, ScalarEvolution *SE,
530 DominatorTree *DT, AssumptionCache *AC,
531 bool PreserveLCSSA) {
532 LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
533 LLVM_DEBUG(L->dump());
534 LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n"
535 : dbgs() << "Using prolog remainder.\n");
536
537 // Make sure the loop is in canonical form.
538 if (!L->isLoopSimplifyForm()) {
539 LLVM_DEBUG(dbgs() << "Not in simplify form!\n");
540 return false;
541 }
542
543 // Guaranteed by LoopSimplifyForm.
544 BasicBlock *Latch = L->getLoopLatch();
545 BasicBlock *Header = L->getHeader();
546
547 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
548 unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
549 BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
550 // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
551 // targets of the Latch be an exit block out of the loop. This needs
552 // to be guaranteed by the callers of UnrollRuntimeLoopRemainder.
553 assert(!L->contains(LatchExit) &&
554 "one of the loop latch successors should be the exit block!");
555 // These are exit blocks other than the target of the latch exiting block.
556 SmallVector<BasicBlock *, 4> OtherExits;
557 bool isMultiExitUnrollingEnabled =
558 canSafelyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
559 UseEpilogRemainder) &&
560 canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
561 UseEpilogRemainder);
562 // Support only single exit and exiting block unless multi-exit loop unrolling is enabled.
563 if (!isMultiExitUnrollingEnabled &&
564 (!L->getExitingBlock() || OtherExits.size())) {
565 LLVM_DEBUG(
566 dbgs()
567 << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
568 "enabled!\n");
569 return false;
570 }
571 // Use Scalar Evolution to compute the trip count. This allows more loops to
572 // be unrolled than relying on induction var simplification.
573 if (!SE)
574 return false;
575
576 // Only unroll loops with a computable trip count, and the trip count needs
577 // to be an int value (allowing a pointer type is a TODO item).
578 // We calculate the backedge count by using getExitCount on the Latch block,
579 // which is proven to be the only exiting block in this loop. This is same as
580 // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
581 // exiting blocks).
582 const SCEV *BECountSC = SE->getExitCount(L, Latch);
583 if (isa<SCEVCouldNotCompute>(BECountSC) ||
584 !BECountSC->getType()->isIntegerTy()) {
585 LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n");
586 return false;
587 }
588
589 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
590
591 // Add 1 since the backedge count doesn't include the first loop iteration.
592 const SCEV *TripCountSC =
593 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
594 if (isa<SCEVCouldNotCompute>(TripCountSC)) {
595 LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
596 return false;
597 }
598
599 BasicBlock *PreHeader = L->getLoopPreheader();
600 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
601 const DataLayout &DL = Header->getModule()->getDataLayout();
602 SCEVExpander Expander(*SE, DL, "loop-unroll");
603 if (!AllowExpensiveTripCount &&
604 Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) {
605 LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
606 return false;
607 }
608
609 // This constraint lets us deal with an overflowing trip count easily; see the
610 // comment on ModVal below.
611 if (Log2_32(Count) > BEWidth) {
612 LLVM_DEBUG(
613 dbgs()
614 << "Count failed constraint on overflow trip count calculation.\n");
615 return false;
616 }
617
618 // Loop structure is the following:
619 //
620 // PreHeader
621 // Header
622 // ...
623 // Latch
624 // LatchExit
625
626 BasicBlock *NewPreHeader;
627 BasicBlock *NewExit = nullptr;
628 BasicBlock *PrologExit = nullptr;
629 BasicBlock *EpilogPreHeader = nullptr;
630 BasicBlock *PrologPreHeader = nullptr;
631
632 if (UseEpilogRemainder) {
633 // If epilog remainder
634 // Split PreHeader to insert a branch around loop for unrolling.
635 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
636 NewPreHeader->setName(PreHeader->getName() + ".new");
637 // Split LatchExit to create phi nodes from branch above.
638 SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit));
639 NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa",
640 DT, LI, PreserveLCSSA);
641 // NewExit gets its DebugLoc from LatchExit, which is not part of the
642 // original Loop.
643 // Fix this by setting Loop's DebugLoc to NewExit.
644 auto *NewExitTerminator = NewExit->getTerminator();
645 NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc());
646 // Split NewExit to insert epilog remainder loop.
647 EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI);
648 EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
649 } else {
650 // If prolog remainder
651 // Split the original preheader twice to insert prolog remainder loop
652 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
653 PrologPreHeader->setName(Header->getName() + ".prol.preheader");
654 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
655 DT, LI);
656 PrologExit->setName(Header->getName() + ".prol.loopexit");
657 // Split PrologExit to get NewPreHeader.
658 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
659 NewPreHeader->setName(PreHeader->getName() + ".new");
660 }
661 // Loop structure should be the following:
662 // Epilog Prolog
663 //
664 // PreHeader PreHeader
665 // *NewPreHeader *PrologPreHeader
666 // Header *PrologExit
667 // ... *NewPreHeader
668 // Latch Header
669 // *NewExit ...
670 // *EpilogPreHeader Latch
671 // LatchExit LatchExit
672
673 // Calculate conditions for branch around loop for unrolling
674 // in epilog case and around prolog remainder loop in prolog case.
675 // Compute the number of extra iterations required, which is:
676 // extra iterations = run-time trip count % loop unroll factor
677 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
678 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
679 PreHeaderBR);
680 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
681 PreHeaderBR);
682 IRBuilder<> B(PreHeaderBR);
683 Value *ModVal;
684 // Calculate ModVal = (BECount + 1) % Count.
685 // Note that TripCount is BECount + 1.
686 if (isPowerOf2_32(Count)) {
687 // When Count is power of 2 we don't BECount for epilog case, however we'll
688 // need it for a branch around unrolling loop for prolog case.
689 ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
690 // 1. There are no iterations to be run in the prolog/epilog loop.
691 // OR
692 // 2. The addition computing TripCount overflowed.
693 //
694 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
695 // the number of iterations that remain to be run in the original loop is a
696 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
697 // explicitly check this above).
698 } else {
699 // As (BECount + 1) can potentially unsigned overflow we count
700 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
701 Value *ModValTmp = B.CreateURem(BECount,
702 ConstantInt::get(BECount->getType(),
703 Count));
704 Value *ModValAdd = B.CreateAdd(ModValTmp,
705 ConstantInt::get(ModValTmp->getType(), 1));
706 // At that point (BECount % Count) + 1 could be equal to Count.
707 // To handle this case we need to take mod by Count one more time.
708 ModVal = B.CreateURem(ModValAdd,
709 ConstantInt::get(BECount->getType(), Count),
710 "xtraiter");
711 }
712 Value *BranchVal =
713 UseEpilogRemainder ? B.CreateICmpULT(BECount,
714 ConstantInt::get(BECount->getType(),
715 Count - 1)) :
716 B.CreateIsNotNull(ModVal, "lcmp.mod");
717 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
718 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
719 // Branch to either remainder (extra iterations) loop or unrolling loop.
720 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
721 PreHeaderBR->eraseFromParent();
722 if (DT) {
723 if (UseEpilogRemainder)
724 DT->changeImmediateDominator(NewExit, PreHeader);
725 else
726 DT->changeImmediateDominator(PrologExit, PreHeader);
727 }
728 Function *F = Header->getParent();
729 // Get an ordered list of blocks in the loop to help with the ordering of the
730 // cloned blocks in the prolog/epilog code
731 LoopBlocksDFS LoopBlocks(L);
732 LoopBlocks.perform(LI);
733
734 //
735 // For each extra loop iteration, create a copy of the loop's basic blocks
736 // and generate a condition that branches to the copy depending on the
737 // number of 'left over' iterations.
738 //
739 std::vector<BasicBlock *> NewBlocks;
740 ValueToValueMapTy VMap;
741
742 // For unroll factor 2 remainder loop will have 1 iterations.
743 // Do not create 1 iteration loop.
744 bool CreateRemainderLoop = (Count != 2);
745
746 // Clone all the basic blocks in the loop. If Count is 2, we don't clone
747 // the loop, otherwise we create a cloned loop to execute the extra
748 // iterations. This function adds the appropriate CFG connections.
749 BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
750 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
751 Loop *remainderLoop = CloneLoopBlocks(
752 L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder,
753 InsertTop, InsertBot,
754 NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI);
755
756 // Insert the cloned blocks into the function.
757 F->getBasicBlockList().splice(InsertBot->getIterator(),
758 F->getBasicBlockList(),
759 NewBlocks[0]->getIterator(),
760 F->end());
761
762 // Now the loop blocks are cloned and the other exiting blocks from the
763 // remainder are connected to the original Loop's exit blocks. The remaining
764 // work is to update the phi nodes in the original loop, and take in the
765 // values from the cloned region. Also update the dominator info for
766 // OtherExits and their immediate successors, since we have new edges into
767 // OtherExits.
768 SmallPtrSet<BasicBlock*, 8> ImmediateSuccessorsOfExitBlocks;
769 for (auto *BB : OtherExits) {
770 for (auto &II : *BB) {
771
772 // Given we preserve LCSSA form, we know that the values used outside the
773 // loop will be used through these phi nodes at the exit blocks that are
774 // transformed below.
775 if (!isa<PHINode>(II))
776 break;
777 PHINode *Phi = cast<PHINode>(&II);
778 unsigned oldNumOperands = Phi->getNumIncomingValues();
779 // Add the incoming values from the remainder code to the end of the phi
780 // node.
781 for (unsigned i =0; i < oldNumOperands; i++){
782 Value *newVal = VMap.lookup(Phi->getIncomingValue(i));
783 // newVal can be a constant or derived from values outside the loop, and
784 // hence need not have a VMap value. Also, since lookup already generated
785 // a default "null" VMap entry for this value, we need to populate that
786 // VMap entry correctly, with the mapped entry being itself.
787 if (!newVal) {
788 newVal = Phi->getIncomingValue(i);
789 VMap[Phi->getIncomingValue(i)] = Phi->getIncomingValue(i);
790 }
791 Phi->addIncoming(newVal,
792 cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)]));
793 }
794 }
795 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
796 for (BasicBlock *SuccBB : successors(BB)) {
797 assert(!(any_of(OtherExits,
798 [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) ||
799 SuccBB == LatchExit) &&
800 "Breaks the definition of dedicated exits!");
801 }
802 #endif
803 // Update the dominator info because the immediate dominator is no longer the
804 // header of the original Loop. BB has edges both from L and remainder code.
805 // Since the preheader determines which loop is run (L or directly jump to
806 // the remainder code), we set the immediate dominator as the preheader.
807 if (DT) {
808 DT->changeImmediateDominator(BB, PreHeader);
809 // Also update the IDom for immediate successors of BB. If the current
810 // IDom is the header, update the IDom to be the preheader because that is
811 // the nearest common dominator of all predecessors of SuccBB. We need to
812 // check for IDom being the header because successors of exit blocks can
813 // have edges from outside the loop, and we should not incorrectly update
814 // the IDom in that case.
815 for (BasicBlock *SuccBB: successors(BB))
816 if (ImmediateSuccessorsOfExitBlocks.insert(SuccBB).second) {
817 if (DT->getNode(SuccBB)->getIDom()->getBlock() == Header) {
818 assert(!SuccBB->getSinglePredecessor() &&
819 "BB should be the IDom then!");
820 DT->changeImmediateDominator(SuccBB, PreHeader);
821 }
822 }
823 }
824 }
825
826 // Loop structure should be the following:
827 // Epilog Prolog
828 //
829 // PreHeader PreHeader
830 // NewPreHeader PrologPreHeader
831 // Header PrologHeader
832 // ... ...
833 // Latch PrologLatch
834 // NewExit PrologExit
835 // EpilogPreHeader NewPreHeader
836 // EpilogHeader Header
837 // ... ...
838 // EpilogLatch Latch
839 // LatchExit LatchExit
840
841 // Rewrite the cloned instruction operands to use the values created when the
842 // clone is created.
843 for (BasicBlock *BB : NewBlocks) {
844 for (Instruction &I : *BB) {
845 RemapInstruction(&I, VMap,
846 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
847 }
848 }
849
850 if (UseEpilogRemainder) {
851 // Connect the epilog code to the original loop and update the
852 // PHI functions.
853 ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader,
854 EpilogPreHeader, NewPreHeader, VMap, DT, LI,
855 PreserveLCSSA);
856
857 // Update counter in loop for unrolling.
858 // I should be multiply of Count.
859 IRBuilder<> B2(NewPreHeader->getTerminator());
860 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
861 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
862 B2.SetInsertPoint(LatchBR);
863 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
864 Header->getFirstNonPHI());
865 Value *IdxSub =
866 B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
867 NewIdx->getName() + ".nsub");
868 Value *IdxCmp;
869 if (LatchBR->getSuccessor(0) == Header)
870 IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp");
871 else
872 IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp");
873 NewIdx->addIncoming(TestVal, NewPreHeader);
874 NewIdx->addIncoming(IdxSub, Latch);
875 LatchBR->setCondition(IdxCmp);
876 } else {
877 // Connect the prolog code to the original loop and update the
878 // PHI functions.
879 ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
880 NewPreHeader, VMap, DT, LI, PreserveLCSSA);
881 }
882
883 // If this loop is nested, then the loop unroller changes the code in the any
884 // of its parent loops, so the Scalar Evolution pass needs to be run again.
885 SE->forgetTopmostLoop(L);
886
887 // Canonicalize to LoopSimplifyForm both original and remainder loops. We
888 // cannot rely on the LoopUnrollPass to do this because it only does
889 // canonicalization for parent/subloops and not the sibling loops.
890 if (OtherExits.size() > 0) {
891 // Generate dedicated exit blocks for the original loop, to preserve
892 // LoopSimplifyForm.
893 formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA);
894 // Generate dedicated exit blocks for the remainder loop if one exists, to
895 // preserve LoopSimplifyForm.
896 if (remainderLoop)
897 formDedicatedExitBlocks(remainderLoop, DT, LI, PreserveLCSSA);
898 }
899
900 if (remainderLoop && UnrollRemainder) {
901 LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n");
902 UnrollLoop(remainderLoop, /*Count*/ Count - 1, /*TripCount*/ Count - 1,
903 /*Force*/ false, /*AllowRuntime*/ false,
904 /*AllowExpensiveTripCount*/ false, /*PreserveCondBr*/ true,
905 /*PreserveOnlyFirst*/ false, /*TripMultiple*/ 1,
906 /*PeelCount*/ 0, /*UnrollRemainder*/ false, LI, SE, DT, AC,
907 /*ORE*/ nullptr, PreserveLCSSA);
908 }
909
910 NumRuntimeUnrolled++;
911 return true;
912 }
913