1 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The LowerSwitch transformation rewrites switch instructions with a sequence
11 // of branches, which allows targets to get away with not implementing the
12 // switch instruction until it is convenient.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/InstrTypes.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Transforms/Utils.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstdint>
37 #include <iterator>
38 #include <limits>
39 #include <vector>
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "lower-switch"
44 
45 namespace {
46 
47   struct IntRange {
48     int64_t Low, High;
49   };
50 
51 } // end anonymous namespace
52 
53 // Return true iff R is covered by Ranges.
IsInRanges(const IntRange & R,const std::vector<IntRange> & Ranges)54 static bool IsInRanges(const IntRange &R,
55                        const std::vector<IntRange> &Ranges) {
56   // Note: Ranges must be sorted, non-overlapping and non-adjacent.
57 
58   // Find the first range whose High field is >= R.High,
59   // then check if the Low field is <= R.Low. If so, we
60   // have a Range that covers R.
61   auto I = std::lower_bound(
62       Ranges.begin(), Ranges.end(), R,
63       [](const IntRange &A, const IntRange &B) { return A.High < B.High; });
64   return I != Ranges.end() && I->Low <= R.Low;
65 }
66 
67 namespace {
68 
69   /// Replace all SwitchInst instructions with chained branch instructions.
70   class LowerSwitch : public FunctionPass {
71   public:
72     // Pass identification, replacement for typeid
73     static char ID;
74 
LowerSwitch()75     LowerSwitch() : FunctionPass(ID) {
76       initializeLowerSwitchPass(*PassRegistry::getPassRegistry());
77     }
78 
79     bool runOnFunction(Function &F) override;
80 
81     struct CaseRange {
82       ConstantInt* Low;
83       ConstantInt* High;
84       BasicBlock* BB;
85 
CaseRange__anon20b205030311::LowerSwitch::CaseRange86       CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
87           : Low(low), High(high), BB(bb) {}
88     };
89 
90     using CaseVector = std::vector<CaseRange>;
91     using CaseItr = std::vector<CaseRange>::iterator;
92 
93   private:
94     void processSwitchInst(SwitchInst *SI, SmallPtrSetImpl<BasicBlock*> &DeleteList);
95 
96     BasicBlock *switchConvert(CaseItr Begin, CaseItr End,
97                               ConstantInt *LowerBound, ConstantInt *UpperBound,
98                               Value *Val, BasicBlock *Predecessor,
99                               BasicBlock *OrigBlock, BasicBlock *Default,
100                               const std::vector<IntRange> &UnreachableRanges);
101     BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, BasicBlock *OrigBlock,
102                              BasicBlock *Default);
103     unsigned Clusterify(CaseVector &Cases, SwitchInst *SI);
104   };
105 
106   /// The comparison function for sorting the switch case values in the vector.
107   /// WARNING: Case ranges should be disjoint!
108   struct CaseCmp {
operator ()__anon20b205030311::CaseCmp109     bool operator()(const LowerSwitch::CaseRange& C1,
110                     const LowerSwitch::CaseRange& C2) {
111       const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
112       const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
113       return CI1->getValue().slt(CI2->getValue());
114     }
115   };
116 
117 } // end anonymous namespace
118 
119 char LowerSwitch::ID = 0;
120 
121 // Publicly exposed interface to pass...
122 char &llvm::LowerSwitchID = LowerSwitch::ID;
123 
124 INITIALIZE_PASS(LowerSwitch, "lowerswitch",
125                 "Lower SwitchInst's to branches", false, false)
126 
127 // createLowerSwitchPass - Interface to this file...
createLowerSwitchPass()128 FunctionPass *llvm::createLowerSwitchPass() {
129   return new LowerSwitch();
130 }
131 
runOnFunction(Function & F)132 bool LowerSwitch::runOnFunction(Function &F) {
133   bool Changed = false;
134   SmallPtrSet<BasicBlock*, 8> DeleteList;
135 
136   for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
137     BasicBlock *Cur = &*I++; // Advance over block so we don't traverse new blocks
138 
139     // If the block is a dead Default block that will be deleted later, don't
140     // waste time processing it.
141     if (DeleteList.count(Cur))
142       continue;
143 
144     if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
145       Changed = true;
146       processSwitchInst(SI, DeleteList);
147     }
148   }
149 
150   for (BasicBlock* BB: DeleteList) {
151     DeleteDeadBlock(BB);
152   }
153 
154   return Changed;
155 }
156 
157 /// Used for debugging purposes.
158 LLVM_ATTRIBUTE_USED
operator <<(raw_ostream & O,const LowerSwitch::CaseVector & C)159 static raw_ostream &operator<<(raw_ostream &O,
160                                const LowerSwitch::CaseVector &C) {
161   O << "[";
162 
163   for (LowerSwitch::CaseVector::const_iterator B = C.begin(),
164          E = C.end(); B != E; ) {
165     O << *B->Low << " -" << *B->High;
166     if (++B != E) O << ", ";
167   }
168 
169   return O << "]";
170 }
171 
172 /// Update the first occurrence of the "switch statement" BB in the PHI
173 /// node with the "new" BB. The other occurrences will:
174 ///
175 /// 1) Be updated by subsequent calls to this function.  Switch statements may
176 /// have more than one outcoming edge into the same BB if they all have the same
177 /// value. When the switch statement is converted these incoming edges are now
178 /// coming from multiple BBs.
179 /// 2) Removed if subsequent incoming values now share the same case, i.e.,
180 /// multiple outcome edges are condensed into one. This is necessary to keep the
181 /// number of phi values equal to the number of branches to SuccBB.
fixPhis(BasicBlock * SuccBB,BasicBlock * OrigBB,BasicBlock * NewBB,unsigned NumMergedCases)182 static void fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
183                     unsigned NumMergedCases) {
184   for (BasicBlock::iterator I = SuccBB->begin(),
185                             IE = SuccBB->getFirstNonPHI()->getIterator();
186        I != IE; ++I) {
187     PHINode *PN = cast<PHINode>(I);
188 
189     // Only update the first occurrence.
190     unsigned Idx = 0, E = PN->getNumIncomingValues();
191     unsigned LocalNumMergedCases = NumMergedCases;
192     for (; Idx != E; ++Idx) {
193       if (PN->getIncomingBlock(Idx) == OrigBB) {
194         PN->setIncomingBlock(Idx, NewBB);
195         break;
196       }
197     }
198 
199     // Remove additional occurrences coming from condensed cases and keep the
200     // number of incoming values equal to the number of branches to SuccBB.
201     SmallVector<unsigned, 8> Indices;
202     for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
203       if (PN->getIncomingBlock(Idx) == OrigBB) {
204         Indices.push_back(Idx);
205         LocalNumMergedCases--;
206       }
207     // Remove incoming values in the reverse order to prevent invalidating
208     // *successive* index.
209     for (unsigned III : llvm::reverse(Indices))
210       PN->removeIncomingValue(III);
211   }
212 }
213 
214 /// Convert the switch statement into a binary lookup of the case values.
215 /// The function recursively builds this tree. LowerBound and UpperBound are
216 /// used to keep track of the bounds for Val that have already been checked by
217 /// a block emitted by one of the previous calls to switchConvert in the call
218 /// stack.
219 BasicBlock *
switchConvert(CaseItr Begin,CaseItr End,ConstantInt * LowerBound,ConstantInt * UpperBound,Value * Val,BasicBlock * Predecessor,BasicBlock * OrigBlock,BasicBlock * Default,const std::vector<IntRange> & UnreachableRanges)220 LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
221                            ConstantInt *UpperBound, Value *Val,
222                            BasicBlock *Predecessor, BasicBlock *OrigBlock,
223                            BasicBlock *Default,
224                            const std::vector<IntRange> &UnreachableRanges) {
225   unsigned Size = End - Begin;
226 
227   if (Size == 1) {
228     // Check if the Case Range is perfectly squeezed in between
229     // already checked Upper and Lower bounds. If it is then we can avoid
230     // emitting the code that checks if the value actually falls in the range
231     // because the bounds already tell us so.
232     if (Begin->Low == LowerBound && Begin->High == UpperBound) {
233       unsigned NumMergedCases = 0;
234       if (LowerBound && UpperBound)
235         NumMergedCases =
236             UpperBound->getSExtValue() - LowerBound->getSExtValue();
237       fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
238       return Begin->BB;
239     }
240     return newLeafBlock(*Begin, Val, OrigBlock, Default);
241   }
242 
243   unsigned Mid = Size / 2;
244   std::vector<CaseRange> LHS(Begin, Begin + Mid);
245   LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n");
246   std::vector<CaseRange> RHS(Begin + Mid, End);
247   LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n");
248 
249   CaseRange &Pivot = *(Begin + Mid);
250   LLVM_DEBUG(dbgs() << "Pivot ==> " << Pivot.Low->getValue() << " -"
251                     << Pivot.High->getValue() << "\n");
252 
253   // NewLowerBound here should never be the integer minimal value.
254   // This is because it is computed from a case range that is never
255   // the smallest, so there is always a case range that has at least
256   // a smaller value.
257   ConstantInt *NewLowerBound = Pivot.Low;
258 
259   // Because NewLowerBound is never the smallest representable integer
260   // it is safe here to subtract one.
261   ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
262                                                 NewLowerBound->getValue() - 1);
263 
264   if (!UnreachableRanges.empty()) {
265     // Check if the gap between LHS's highest and NewLowerBound is unreachable.
266     int64_t GapLow = LHS.back().High->getSExtValue() + 1;
267     int64_t GapHigh = NewLowerBound->getSExtValue() - 1;
268     IntRange Gap = { GapLow, GapHigh };
269     if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges))
270       NewUpperBound = LHS.back().High;
271   }
272 
273   LLVM_DEBUG(dbgs() << "LHS Bounds ==> "; if (LowerBound) {
274     dbgs() << LowerBound->getSExtValue();
275   } else { dbgs() << "NONE"; } dbgs() << " - "
276                                       << NewUpperBound->getSExtValue() << "\n";
277              dbgs() << "RHS Bounds ==> ";
278              dbgs() << NewLowerBound->getSExtValue() << " - "; if (UpperBound) {
279                dbgs() << UpperBound->getSExtValue() << "\n";
280              } else { dbgs() << "NONE\n"; });
281 
282   // Create a new node that checks if the value is < pivot. Go to the
283   // left branch if it is and right branch if not.
284   Function* F = OrigBlock->getParent();
285   BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
286 
287   ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
288                                 Val, Pivot.Low, "Pivot");
289 
290   BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound,
291                                       NewUpperBound, Val, NewNode, OrigBlock,
292                                       Default, UnreachableRanges);
293   BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound,
294                                       UpperBound, Val, NewNode, OrigBlock,
295                                       Default, UnreachableRanges);
296 
297   F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode);
298   NewNode->getInstList().push_back(Comp);
299 
300   BranchInst::Create(LBranch, RBranch, Comp, NewNode);
301   return NewNode;
302 }
303 
304 /// Create a new leaf block for the binary lookup tree. It checks if the
305 /// switch's value == the case's value. If not, then it jumps to the default
306 /// branch. At this point in the tree, the value can't be another valid case
307 /// value, so the jump to the "default" branch is warranted.
newLeafBlock(CaseRange & Leaf,Value * Val,BasicBlock * OrigBlock,BasicBlock * Default)308 BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val,
309                                       BasicBlock* OrigBlock,
310                                       BasicBlock* Default) {
311   Function* F = OrigBlock->getParent();
312   BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
313   F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf);
314 
315   // Emit comparison
316   ICmpInst* Comp = nullptr;
317   if (Leaf.Low == Leaf.High) {
318     // Make the seteq instruction...
319     Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val,
320                         Leaf.Low, "SwitchLeaf");
321   } else {
322     // Make range comparison
323     if (Leaf.Low->isMinValue(true /*isSigned*/)) {
324       // Val >= Min && Val <= Hi --> Val <= Hi
325       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
326                           "SwitchLeaf");
327     } else if (Leaf.Low->isZero()) {
328       // Val >= 0 && Val <= Hi --> Val <=u Hi
329       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
330                           "SwitchLeaf");
331     } else {
332       // Emit V-Lo <=u Hi-Lo
333       Constant* NegLo = ConstantExpr::getNeg(Leaf.Low);
334       Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo,
335                                                    Val->getName()+".off",
336                                                    NewLeaf);
337       Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
338       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
339                           "SwitchLeaf");
340     }
341   }
342 
343   // Make the conditional branch...
344   BasicBlock* Succ = Leaf.BB;
345   BranchInst::Create(Succ, Default, Comp, NewLeaf);
346 
347   // If there were any PHI nodes in this successor, rewrite one entry
348   // from OrigBlock to come from NewLeaf.
349   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
350     PHINode* PN = cast<PHINode>(I);
351     // Remove all but one incoming entries from the cluster
352     uint64_t Range = Leaf.High->getSExtValue() -
353                      Leaf.Low->getSExtValue();
354     for (uint64_t j = 0; j < Range; ++j) {
355       PN->removeIncomingValue(OrigBlock);
356     }
357 
358     int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
359     assert(BlockIdx != -1 && "Switch didn't go to this successor??");
360     PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
361   }
362 
363   return NewLeaf;
364 }
365 
366 /// Transform simple list of Cases into list of CaseRange's.
Clusterify(CaseVector & Cases,SwitchInst * SI)367 unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) {
368   unsigned numCmps = 0;
369 
370   // Start with "simple" cases
371   for (auto Case : SI->cases())
372     Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(),
373                               Case.getCaseSuccessor()));
374 
375   llvm::sort(Cases.begin(), Cases.end(), CaseCmp());
376 
377   // Merge case into clusters
378   if (Cases.size() >= 2) {
379     CaseItr I = Cases.begin();
380     for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
381       int64_t nextValue = J->Low->getSExtValue();
382       int64_t currentValue = I->High->getSExtValue();
383       BasicBlock* nextBB = J->BB;
384       BasicBlock* currentBB = I->BB;
385 
386       // If the two neighboring cases go to the same destination, merge them
387       // into a single case.
388       assert(nextValue > currentValue && "Cases should be strictly ascending");
389       if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
390         I->High = J->High;
391         // FIXME: Combine branch weights.
392       } else if (++I != J) {
393         *I = *J;
394       }
395     }
396     Cases.erase(std::next(I), Cases.end());
397   }
398 
399   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
400     if (I->Low != I->High)
401       // A range counts double, since it requires two compares.
402       ++numCmps;
403   }
404 
405   return numCmps;
406 }
407 
408 /// Replace the specified switch instruction with a sequence of chained if-then
409 /// insts in a balanced binary search.
processSwitchInst(SwitchInst * SI,SmallPtrSetImpl<BasicBlock * > & DeleteList)410 void LowerSwitch::processSwitchInst(SwitchInst *SI,
411                                     SmallPtrSetImpl<BasicBlock*> &DeleteList) {
412   BasicBlock *CurBlock = SI->getParent();
413   BasicBlock *OrigBlock = CurBlock;
414   Function *F = CurBlock->getParent();
415   Value *Val = SI->getCondition();  // The value we are switching on...
416   BasicBlock* Default = SI->getDefaultDest();
417 
418   // Don't handle unreachable blocks. If there are successors with phis, this
419   // would leave them behind with missing predecessors.
420   if ((CurBlock != &F->getEntryBlock() && pred_empty(CurBlock)) ||
421       CurBlock->getSinglePredecessor() == CurBlock) {
422     DeleteList.insert(CurBlock);
423     return;
424   }
425 
426   // If there is only the default destination, just branch.
427   if (!SI->getNumCases()) {
428     BranchInst::Create(Default, CurBlock);
429     SI->eraseFromParent();
430     return;
431   }
432 
433   // Prepare cases vector.
434   CaseVector Cases;
435   unsigned numCmps = Clusterify(Cases, SI);
436   LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
437                     << ". Total compares: " << numCmps << "\n");
438   LLVM_DEBUG(dbgs() << "Cases: " << Cases << "\n");
439   (void)numCmps;
440 
441   ConstantInt *LowerBound = nullptr;
442   ConstantInt *UpperBound = nullptr;
443   std::vector<IntRange> UnreachableRanges;
444 
445   if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
446     // Make the bounds tightly fitted around the case value range, because we
447     // know that the value passed to the switch must be exactly one of the case
448     // values.
449     assert(!Cases.empty());
450     LowerBound = Cases.front().Low;
451     UpperBound = Cases.back().High;
452 
453     DenseMap<BasicBlock *, unsigned> Popularity;
454     unsigned MaxPop = 0;
455     BasicBlock *PopSucc = nullptr;
456 
457     IntRange R = {std::numeric_limits<int64_t>::min(),
458                   std::numeric_limits<int64_t>::max()};
459     UnreachableRanges.push_back(R);
460     for (const auto &I : Cases) {
461       int64_t Low = I.Low->getSExtValue();
462       int64_t High = I.High->getSExtValue();
463 
464       IntRange &LastRange = UnreachableRanges.back();
465       if (LastRange.Low == Low) {
466         // There is nothing left of the previous range.
467         UnreachableRanges.pop_back();
468       } else {
469         // Terminate the previous range.
470         assert(Low > LastRange.Low);
471         LastRange.High = Low - 1;
472       }
473       if (High != std::numeric_limits<int64_t>::max()) {
474         IntRange R = { High + 1, std::numeric_limits<int64_t>::max() };
475         UnreachableRanges.push_back(R);
476       }
477 
478       // Count popularity.
479       int64_t N = High - Low + 1;
480       unsigned &Pop = Popularity[I.BB];
481       if ((Pop += N) > MaxPop) {
482         MaxPop = Pop;
483         PopSucc = I.BB;
484       }
485     }
486 #ifndef NDEBUG
487     /* UnreachableRanges should be sorted and the ranges non-adjacent. */
488     for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
489          I != E; ++I) {
490       assert(I->Low <= I->High);
491       auto Next = I + 1;
492       if (Next != E) {
493         assert(Next->Low > I->High);
494       }
495     }
496 #endif
497 
498     // As the default block in the switch is unreachable, update the PHI nodes
499     // (remove the entry to the default block) to reflect this.
500     Default->removePredecessor(OrigBlock);
501 
502     // Use the most popular block as the new default, reducing the number of
503     // cases.
504     assert(MaxPop > 0 && PopSucc);
505     Default = PopSucc;
506     Cases.erase(
507         llvm::remove_if(
508             Cases, [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }),
509         Cases.end());
510 
511     // If there are no cases left, just branch.
512     if (Cases.empty()) {
513       BranchInst::Create(Default, CurBlock);
514       SI->eraseFromParent();
515       // As all the cases have been replaced with a single branch, only keep
516       // one entry in the PHI nodes.
517       for (unsigned I = 0 ; I < (MaxPop - 1) ; ++I)
518         PopSucc->removePredecessor(OrigBlock);
519       return;
520     }
521   }
522 
523   unsigned NrOfDefaults = (SI->getDefaultDest() == Default) ? 1 : 0;
524   for (const auto &Case : SI->cases())
525     if (Case.getCaseSuccessor() == Default)
526       NrOfDefaults++;
527 
528   // Create a new, empty default block so that the new hierarchy of
529   // if-then statements go to this and the PHI nodes are happy.
530   BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
531   F->getBasicBlockList().insert(Default->getIterator(), NewDefault);
532   BranchInst::Create(Default, NewDefault);
533 
534   BasicBlock *SwitchBlock =
535       switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
536                     OrigBlock, OrigBlock, NewDefault, UnreachableRanges);
537 
538   // If there are entries in any PHI nodes for the default edge, make sure
539   // to update them as well.
540   fixPhis(Default, OrigBlock, NewDefault, NrOfDefaults);
541 
542   // Branch to our shiny new if-then stuff...
543   BranchInst::Create(SwitchBlock, OrigBlock);
544 
545   // We are now done with the switch instruction, delete it.
546   BasicBlock *OldDefault = SI->getDefaultDest();
547   CurBlock->getInstList().erase(SI);
548 
549   // If the Default block has no more predecessors just add it to DeleteList.
550   if (pred_begin(OldDefault) == pred_end(OldDefault))
551     DeleteList.insert(OldDefault);
552 }
553