1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SSAUpdater class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SSAUpdater.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/TinyPtrVector.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugLoc.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/Use.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/IR/ValueHandle.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
34 #include <cassert>
35 #include <utility>
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "ssaupdater"
40 
41 using AvailableValsTy = DenseMap<BasicBlock *, Value *>;
42 
getAvailableVals(void * AV)43 static AvailableValsTy &getAvailableVals(void *AV) {
44   return *static_cast<AvailableValsTy*>(AV);
45 }
46 
SSAUpdater(SmallVectorImpl<PHINode * > * NewPHI)47 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI)
48   : InsertedPHIs(NewPHI) {}
49 
~SSAUpdater()50 SSAUpdater::~SSAUpdater() {
51   delete static_cast<AvailableValsTy*>(AV);
52 }
53 
Initialize(Type * Ty,StringRef Name)54 void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
55   if (!AV)
56     AV = new AvailableValsTy();
57   else
58     getAvailableVals(AV).clear();
59   ProtoType = Ty;
60   ProtoName = Name;
61 }
62 
HasValueForBlock(BasicBlock * BB) const63 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
64   return getAvailableVals(AV).count(BB);
65 }
66 
FindValueForBlock(BasicBlock * BB) const67 Value *SSAUpdater::FindValueForBlock(BasicBlock *BB) const {
68   AvailableValsTy::iterator AVI = getAvailableVals(AV).find(BB);
69   return (AVI != getAvailableVals(AV).end()) ? AVI->second : nullptr;
70 }
71 
AddAvailableValue(BasicBlock * BB,Value * V)72 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
73   assert(ProtoType && "Need to initialize SSAUpdater");
74   assert(ProtoType == V->getType() &&
75          "All rewritten values must have the same type");
76   getAvailableVals(AV)[BB] = V;
77 }
78 
IsEquivalentPHI(PHINode * PHI,SmallDenseMap<BasicBlock *,Value *,8> & ValueMapping)79 static bool IsEquivalentPHI(PHINode *PHI,
80                         SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) {
81   unsigned PHINumValues = PHI->getNumIncomingValues();
82   if (PHINumValues != ValueMapping.size())
83     return false;
84 
85   // Scan the phi to see if it matches.
86   for (unsigned i = 0, e = PHINumValues; i != e; ++i)
87     if (ValueMapping[PHI->getIncomingBlock(i)] !=
88         PHI->getIncomingValue(i)) {
89       return false;
90     }
91 
92   return true;
93 }
94 
GetValueAtEndOfBlock(BasicBlock * BB)95 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
96   Value *Res = GetValueAtEndOfBlockInternal(BB);
97   return Res;
98 }
99 
GetValueInMiddleOfBlock(BasicBlock * BB)100 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
101   // If there is no definition of the renamed variable in this block, just use
102   // GetValueAtEndOfBlock to do our work.
103   if (!HasValueForBlock(BB))
104     return GetValueAtEndOfBlock(BB);
105 
106   // Otherwise, we have the hard case.  Get the live-in values for each
107   // predecessor.
108   SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues;
109   Value *SingularValue = nullptr;
110 
111   // We can get our predecessor info by walking the pred_iterator list, but it
112   // is relatively slow.  If we already have PHI nodes in this block, walk one
113   // of them to get the predecessor list instead.
114   if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
115     for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
116       BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
117       Value *PredVal = GetValueAtEndOfBlock(PredBB);
118       PredValues.push_back(std::make_pair(PredBB, PredVal));
119 
120       // Compute SingularValue.
121       if (i == 0)
122         SingularValue = PredVal;
123       else if (PredVal != SingularValue)
124         SingularValue = nullptr;
125     }
126   } else {
127     bool isFirstPred = true;
128     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
129       BasicBlock *PredBB = *PI;
130       Value *PredVal = GetValueAtEndOfBlock(PredBB);
131       PredValues.push_back(std::make_pair(PredBB, PredVal));
132 
133       // Compute SingularValue.
134       if (isFirstPred) {
135         SingularValue = PredVal;
136         isFirstPred = false;
137       } else if (PredVal != SingularValue)
138         SingularValue = nullptr;
139     }
140   }
141 
142   // If there are no predecessors, just return undef.
143   if (PredValues.empty())
144     return UndefValue::get(ProtoType);
145 
146   // Otherwise, if all the merged values are the same, just use it.
147   if (SingularValue)
148     return SingularValue;
149 
150   // Otherwise, we do need a PHI: check to see if we already have one available
151   // in this block that produces the right value.
152   if (isa<PHINode>(BB->begin())) {
153     SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(),
154                                                          PredValues.end());
155     for (PHINode &SomePHI : BB->phis()) {
156       if (IsEquivalentPHI(&SomePHI, ValueMapping))
157         return &SomePHI;
158     }
159   }
160 
161   // Ok, we have no way out, insert a new one now.
162   PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
163                                          ProtoName, &BB->front());
164 
165   // Fill in all the predecessors of the PHI.
166   for (const auto &PredValue : PredValues)
167     InsertedPHI->addIncoming(PredValue.second, PredValue.first);
168 
169   // See if the PHI node can be merged to a single value.  This can happen in
170   // loop cases when we get a PHI of itself and one other value.
171   if (Value *V =
172           SimplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) {
173     InsertedPHI->eraseFromParent();
174     return V;
175   }
176 
177   // Set the DebugLoc of the inserted PHI, if available.
178   DebugLoc DL;
179   if (const Instruction *I = BB->getFirstNonPHI())
180       DL = I->getDebugLoc();
181   InsertedPHI->setDebugLoc(DL);
182 
183   // If the client wants to know about all new instructions, tell it.
184   if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
185 
186   LLVM_DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
187   return InsertedPHI;
188 }
189 
RewriteUse(Use & U)190 void SSAUpdater::RewriteUse(Use &U) {
191   Instruction *User = cast<Instruction>(U.getUser());
192 
193   Value *V;
194   if (PHINode *UserPN = dyn_cast<PHINode>(User))
195     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
196   else
197     V = GetValueInMiddleOfBlock(User->getParent());
198 
199   // Notify that users of the existing value that it is being replaced.
200   Value *OldVal = U.get();
201   if (OldVal != V && OldVal->hasValueHandle())
202     ValueHandleBase::ValueIsRAUWd(OldVal, V);
203 
204   U.set(V);
205 }
206 
RewriteUseAfterInsertions(Use & U)207 void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
208   Instruction *User = cast<Instruction>(U.getUser());
209 
210   Value *V;
211   if (PHINode *UserPN = dyn_cast<PHINode>(User))
212     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
213   else
214     V = GetValueAtEndOfBlock(User->getParent());
215 
216   U.set(V);
217 }
218 
219 namespace llvm {
220 
221 template<>
222 class SSAUpdaterTraits<SSAUpdater> {
223 public:
224   using BlkT = BasicBlock;
225   using ValT = Value *;
226   using PhiT = PHINode;
227   using BlkSucc_iterator = succ_iterator;
228 
BlkSucc_begin(BlkT * BB)229   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
BlkSucc_end(BlkT * BB)230   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
231 
232   class PHI_iterator {
233   private:
234     PHINode *PHI;
235     unsigned idx;
236 
237   public:
PHI_iterator(PHINode * P)238     explicit PHI_iterator(PHINode *P) // begin iterator
239       : PHI(P), idx(0) {}
PHI_iterator(PHINode * P,bool)240     PHI_iterator(PHINode *P, bool) // end iterator
241       : PHI(P), idx(PHI->getNumIncomingValues()) {}
242 
operator ++()243     PHI_iterator &operator++() { ++idx; return *this; }
operator ==(const PHI_iterator & x) const244     bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
operator !=(const PHI_iterator & x) const245     bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
246 
getIncomingValue()247     Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
getIncomingBlock()248     BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
249   };
250 
PHI_begin(PhiT * PHI)251   static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
PHI_end(PhiT * PHI)252   static PHI_iterator PHI_end(PhiT *PHI) {
253     return PHI_iterator(PHI, true);
254   }
255 
256   /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
257   /// vector, set Info->NumPreds, and allocate space in Info->Preds.
FindPredecessorBlocks(BasicBlock * BB,SmallVectorImpl<BasicBlock * > * Preds)258   static void FindPredecessorBlocks(BasicBlock *BB,
259                                     SmallVectorImpl<BasicBlock *> *Preds) {
260     // We can get our predecessor info by walking the pred_iterator list,
261     // but it is relatively slow.  If we already have PHI nodes in this
262     // block, walk one of them to get the predecessor list instead.
263     if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
264       Preds->append(SomePhi->block_begin(), SomePhi->block_end());
265     } else {
266       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
267         Preds->push_back(*PI);
268     }
269   }
270 
271   /// GetUndefVal - Get an undefined value of the same type as the value
272   /// being handled.
GetUndefVal(BasicBlock * BB,SSAUpdater * Updater)273   static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
274     return UndefValue::get(Updater->ProtoType);
275   }
276 
277   /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
278   /// Reserve space for the operands but do not fill them in yet.
CreateEmptyPHI(BasicBlock * BB,unsigned NumPreds,SSAUpdater * Updater)279   static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
280                                SSAUpdater *Updater) {
281     PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
282                                    Updater->ProtoName, &BB->front());
283     return PHI;
284   }
285 
286   /// AddPHIOperand - Add the specified value as an operand of the PHI for
287   /// the specified predecessor block.
AddPHIOperand(PHINode * PHI,Value * Val,BasicBlock * Pred)288   static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
289     PHI->addIncoming(Val, Pred);
290   }
291 
292   /// InstrIsPHI - Check if an instruction is a PHI.
293   ///
InstrIsPHI(Instruction * I)294   static PHINode *InstrIsPHI(Instruction *I) {
295     return dyn_cast<PHINode>(I);
296   }
297 
298   /// ValueIsPHI - Check if a value is a PHI.
ValueIsPHI(Value * Val,SSAUpdater * Updater)299   static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
300     return dyn_cast<PHINode>(Val);
301   }
302 
303   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
304   /// operands, i.e., it was just added.
ValueIsNewPHI(Value * Val,SSAUpdater * Updater)305   static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
306     PHINode *PHI = ValueIsPHI(Val, Updater);
307     if (PHI && PHI->getNumIncomingValues() == 0)
308       return PHI;
309     return nullptr;
310   }
311 
312   /// GetPHIValue - For the specified PHI instruction, return the value
313   /// that it defines.
GetPHIValue(PHINode * PHI)314   static Value *GetPHIValue(PHINode *PHI) {
315     return PHI;
316   }
317 };
318 
319 } // end namespace llvm
320 
321 /// Check to see if AvailableVals has an entry for the specified BB and if so,
322 /// return it.  If not, construct SSA form by first calculating the required
323 /// placement of PHIs and then inserting new PHIs where needed.
GetValueAtEndOfBlockInternal(BasicBlock * BB)324 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
325   AvailableValsTy &AvailableVals = getAvailableVals(AV);
326   if (Value *V = AvailableVals[BB])
327     return V;
328 
329   SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
330   return Impl.GetValue(BB);
331 }
332 
333 //===----------------------------------------------------------------------===//
334 // LoadAndStorePromoter Implementation
335 //===----------------------------------------------------------------------===//
336 
337 LoadAndStorePromoter::
LoadAndStorePromoter(ArrayRef<const Instruction * > Insts,SSAUpdater & S,StringRef BaseName)338 LoadAndStorePromoter(ArrayRef<const Instruction *> Insts,
339                      SSAUpdater &S, StringRef BaseName) : SSA(S) {
340   if (Insts.empty()) return;
341 
342   const Value *SomeVal;
343   if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
344     SomeVal = LI;
345   else
346     SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
347 
348   if (BaseName.empty())
349     BaseName = SomeVal->getName();
350   SSA.Initialize(SomeVal->getType(), BaseName);
351 }
352 
353 void LoadAndStorePromoter::
run(const SmallVectorImpl<Instruction * > & Insts) const354 run(const SmallVectorImpl<Instruction *> &Insts) const {
355   // First step: bucket up uses of the alloca by the block they occur in.
356   // This is important because we have to handle multiple defs/uses in a block
357   // ourselves: SSAUpdater is purely for cross-block references.
358   DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock;
359 
360   for (Instruction *User : Insts)
361     UsesByBlock[User->getParent()].push_back(User);
362 
363   // Okay, now we can iterate over all the blocks in the function with uses,
364   // processing them.  Keep track of which loads are loading a live-in value.
365   // Walk the uses in the use-list order to be determinstic.
366   SmallVector<LoadInst *, 32> LiveInLoads;
367   DenseMap<Value *, Value *> ReplacedLoads;
368 
369   for (Instruction *User : Insts) {
370     BasicBlock *BB = User->getParent();
371     TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB];
372 
373     // If this block has already been processed, ignore this repeat use.
374     if (BlockUses.empty()) continue;
375 
376     // Okay, this is the first use in the block.  If this block just has a
377     // single user in it, we can rewrite it trivially.
378     if (BlockUses.size() == 1) {
379       // If it is a store, it is a trivial def of the value in the block.
380       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
381         updateDebugInfo(SI);
382         SSA.AddAvailableValue(BB, SI->getOperand(0));
383       } else
384         // Otherwise it is a load, queue it to rewrite as a live-in load.
385         LiveInLoads.push_back(cast<LoadInst>(User));
386       BlockUses.clear();
387       continue;
388     }
389 
390     // Otherwise, check to see if this block is all loads.
391     bool HasStore = false;
392     for (Instruction *I : BlockUses) {
393       if (isa<StoreInst>(I)) {
394         HasStore = true;
395         break;
396       }
397     }
398 
399     // If so, we can queue them all as live in loads.  We don't have an
400     // efficient way to tell which on is first in the block and don't want to
401     // scan large blocks, so just add all loads as live ins.
402     if (!HasStore) {
403       for (Instruction *I : BlockUses)
404         LiveInLoads.push_back(cast<LoadInst>(I));
405       BlockUses.clear();
406       continue;
407     }
408 
409     // Otherwise, we have mixed loads and stores (or just a bunch of stores).
410     // Since SSAUpdater is purely for cross-block values, we need to determine
411     // the order of these instructions in the block.  If the first use in the
412     // block is a load, then it uses the live in value.  The last store defines
413     // the live out value.  We handle this by doing a linear scan of the block.
414     Value *StoredValue = nullptr;
415     for (Instruction &I : *BB) {
416       if (LoadInst *L = dyn_cast<LoadInst>(&I)) {
417         // If this is a load from an unrelated pointer, ignore it.
418         if (!isInstInList(L, Insts)) continue;
419 
420         // If we haven't seen a store yet, this is a live in use, otherwise
421         // use the stored value.
422         if (StoredValue) {
423           replaceLoadWithValue(L, StoredValue);
424           L->replaceAllUsesWith(StoredValue);
425           ReplacedLoads[L] = StoredValue;
426         } else {
427           LiveInLoads.push_back(L);
428         }
429         continue;
430       }
431 
432       if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
433         // If this is a store to an unrelated pointer, ignore it.
434         if (!isInstInList(SI, Insts)) continue;
435         updateDebugInfo(SI);
436 
437         // Remember that this is the active value in the block.
438         StoredValue = SI->getOperand(0);
439       }
440     }
441 
442     // The last stored value that happened is the live-out for the block.
443     assert(StoredValue && "Already checked that there is a store in block");
444     SSA.AddAvailableValue(BB, StoredValue);
445     BlockUses.clear();
446   }
447 
448   // Okay, now we rewrite all loads that use live-in values in the loop,
449   // inserting PHI nodes as necessary.
450   for (LoadInst *ALoad : LiveInLoads) {
451     Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
452     replaceLoadWithValue(ALoad, NewVal);
453 
454     // Avoid assertions in unreachable code.
455     if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
456     ALoad->replaceAllUsesWith(NewVal);
457     ReplacedLoads[ALoad] = NewVal;
458   }
459 
460   // Allow the client to do stuff before we start nuking things.
461   doExtraRewritesBeforeFinalDeletion();
462 
463   // Now that everything is rewritten, delete the old instructions from the
464   // function.  They should all be dead now.
465   for (Instruction *User : Insts) {
466     // If this is a load that still has uses, then the load must have been added
467     // as a live value in the SSAUpdate data structure for a block (e.g. because
468     // the loaded value was stored later).  In this case, we need to recursively
469     // propagate the updates until we get to the real value.
470     if (!User->use_empty()) {
471       Value *NewVal = ReplacedLoads[User];
472       assert(NewVal && "not a replaced load?");
473 
474       // Propagate down to the ultimate replacee.  The intermediately loads
475       // could theoretically already have been deleted, so we don't want to
476       // dereference the Value*'s.
477       DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
478       while (RLI != ReplacedLoads.end()) {
479         NewVal = RLI->second;
480         RLI = ReplacedLoads.find(NewVal);
481       }
482 
483       replaceLoadWithValue(cast<LoadInst>(User), NewVal);
484       User->replaceAllUsesWith(NewVal);
485     }
486 
487     instructionDeleted(User);
488     User->eraseFromParent();
489   }
490 }
491 
492 bool
isInstInList(Instruction * I,const SmallVectorImpl<Instruction * > & Insts) const493 LoadAndStorePromoter::isInstInList(Instruction *I,
494                                    const SmallVectorImpl<Instruction *> &Insts)
495                                    const {
496   return is_contained(Insts, I);
497 }
498