1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SSAUpdater class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/SSAUpdater.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/TinyPtrVector.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugLoc.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/Use.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/IR/ValueHandle.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
34 #include <cassert>
35 #include <utility>
36
37 using namespace llvm;
38
39 #define DEBUG_TYPE "ssaupdater"
40
41 using AvailableValsTy = DenseMap<BasicBlock *, Value *>;
42
getAvailableVals(void * AV)43 static AvailableValsTy &getAvailableVals(void *AV) {
44 return *static_cast<AvailableValsTy*>(AV);
45 }
46
SSAUpdater(SmallVectorImpl<PHINode * > * NewPHI)47 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI)
48 : InsertedPHIs(NewPHI) {}
49
~SSAUpdater()50 SSAUpdater::~SSAUpdater() {
51 delete static_cast<AvailableValsTy*>(AV);
52 }
53
Initialize(Type * Ty,StringRef Name)54 void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
55 if (!AV)
56 AV = new AvailableValsTy();
57 else
58 getAvailableVals(AV).clear();
59 ProtoType = Ty;
60 ProtoName = Name;
61 }
62
HasValueForBlock(BasicBlock * BB) const63 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
64 return getAvailableVals(AV).count(BB);
65 }
66
FindValueForBlock(BasicBlock * BB) const67 Value *SSAUpdater::FindValueForBlock(BasicBlock *BB) const {
68 AvailableValsTy::iterator AVI = getAvailableVals(AV).find(BB);
69 return (AVI != getAvailableVals(AV).end()) ? AVI->second : nullptr;
70 }
71
AddAvailableValue(BasicBlock * BB,Value * V)72 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
73 assert(ProtoType && "Need to initialize SSAUpdater");
74 assert(ProtoType == V->getType() &&
75 "All rewritten values must have the same type");
76 getAvailableVals(AV)[BB] = V;
77 }
78
IsEquivalentPHI(PHINode * PHI,SmallDenseMap<BasicBlock *,Value *,8> & ValueMapping)79 static bool IsEquivalentPHI(PHINode *PHI,
80 SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) {
81 unsigned PHINumValues = PHI->getNumIncomingValues();
82 if (PHINumValues != ValueMapping.size())
83 return false;
84
85 // Scan the phi to see if it matches.
86 for (unsigned i = 0, e = PHINumValues; i != e; ++i)
87 if (ValueMapping[PHI->getIncomingBlock(i)] !=
88 PHI->getIncomingValue(i)) {
89 return false;
90 }
91
92 return true;
93 }
94
GetValueAtEndOfBlock(BasicBlock * BB)95 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
96 Value *Res = GetValueAtEndOfBlockInternal(BB);
97 return Res;
98 }
99
GetValueInMiddleOfBlock(BasicBlock * BB)100 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
101 // If there is no definition of the renamed variable in this block, just use
102 // GetValueAtEndOfBlock to do our work.
103 if (!HasValueForBlock(BB))
104 return GetValueAtEndOfBlock(BB);
105
106 // Otherwise, we have the hard case. Get the live-in values for each
107 // predecessor.
108 SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues;
109 Value *SingularValue = nullptr;
110
111 // We can get our predecessor info by walking the pred_iterator list, but it
112 // is relatively slow. If we already have PHI nodes in this block, walk one
113 // of them to get the predecessor list instead.
114 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
115 for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
116 BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
117 Value *PredVal = GetValueAtEndOfBlock(PredBB);
118 PredValues.push_back(std::make_pair(PredBB, PredVal));
119
120 // Compute SingularValue.
121 if (i == 0)
122 SingularValue = PredVal;
123 else if (PredVal != SingularValue)
124 SingularValue = nullptr;
125 }
126 } else {
127 bool isFirstPred = true;
128 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
129 BasicBlock *PredBB = *PI;
130 Value *PredVal = GetValueAtEndOfBlock(PredBB);
131 PredValues.push_back(std::make_pair(PredBB, PredVal));
132
133 // Compute SingularValue.
134 if (isFirstPred) {
135 SingularValue = PredVal;
136 isFirstPred = false;
137 } else if (PredVal != SingularValue)
138 SingularValue = nullptr;
139 }
140 }
141
142 // If there are no predecessors, just return undef.
143 if (PredValues.empty())
144 return UndefValue::get(ProtoType);
145
146 // Otherwise, if all the merged values are the same, just use it.
147 if (SingularValue)
148 return SingularValue;
149
150 // Otherwise, we do need a PHI: check to see if we already have one available
151 // in this block that produces the right value.
152 if (isa<PHINode>(BB->begin())) {
153 SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(),
154 PredValues.end());
155 for (PHINode &SomePHI : BB->phis()) {
156 if (IsEquivalentPHI(&SomePHI, ValueMapping))
157 return &SomePHI;
158 }
159 }
160
161 // Ok, we have no way out, insert a new one now.
162 PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
163 ProtoName, &BB->front());
164
165 // Fill in all the predecessors of the PHI.
166 for (const auto &PredValue : PredValues)
167 InsertedPHI->addIncoming(PredValue.second, PredValue.first);
168
169 // See if the PHI node can be merged to a single value. This can happen in
170 // loop cases when we get a PHI of itself and one other value.
171 if (Value *V =
172 SimplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) {
173 InsertedPHI->eraseFromParent();
174 return V;
175 }
176
177 // Set the DebugLoc of the inserted PHI, if available.
178 DebugLoc DL;
179 if (const Instruction *I = BB->getFirstNonPHI())
180 DL = I->getDebugLoc();
181 InsertedPHI->setDebugLoc(DL);
182
183 // If the client wants to know about all new instructions, tell it.
184 if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
185
186 LLVM_DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
187 return InsertedPHI;
188 }
189
RewriteUse(Use & U)190 void SSAUpdater::RewriteUse(Use &U) {
191 Instruction *User = cast<Instruction>(U.getUser());
192
193 Value *V;
194 if (PHINode *UserPN = dyn_cast<PHINode>(User))
195 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
196 else
197 V = GetValueInMiddleOfBlock(User->getParent());
198
199 // Notify that users of the existing value that it is being replaced.
200 Value *OldVal = U.get();
201 if (OldVal != V && OldVal->hasValueHandle())
202 ValueHandleBase::ValueIsRAUWd(OldVal, V);
203
204 U.set(V);
205 }
206
RewriteUseAfterInsertions(Use & U)207 void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
208 Instruction *User = cast<Instruction>(U.getUser());
209
210 Value *V;
211 if (PHINode *UserPN = dyn_cast<PHINode>(User))
212 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
213 else
214 V = GetValueAtEndOfBlock(User->getParent());
215
216 U.set(V);
217 }
218
219 namespace llvm {
220
221 template<>
222 class SSAUpdaterTraits<SSAUpdater> {
223 public:
224 using BlkT = BasicBlock;
225 using ValT = Value *;
226 using PhiT = PHINode;
227 using BlkSucc_iterator = succ_iterator;
228
BlkSucc_begin(BlkT * BB)229 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
BlkSucc_end(BlkT * BB)230 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
231
232 class PHI_iterator {
233 private:
234 PHINode *PHI;
235 unsigned idx;
236
237 public:
PHI_iterator(PHINode * P)238 explicit PHI_iterator(PHINode *P) // begin iterator
239 : PHI(P), idx(0) {}
PHI_iterator(PHINode * P,bool)240 PHI_iterator(PHINode *P, bool) // end iterator
241 : PHI(P), idx(PHI->getNumIncomingValues()) {}
242
operator ++()243 PHI_iterator &operator++() { ++idx; return *this; }
operator ==(const PHI_iterator & x) const244 bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
operator !=(const PHI_iterator & x) const245 bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
246
getIncomingValue()247 Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
getIncomingBlock()248 BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
249 };
250
PHI_begin(PhiT * PHI)251 static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
PHI_end(PhiT * PHI)252 static PHI_iterator PHI_end(PhiT *PHI) {
253 return PHI_iterator(PHI, true);
254 }
255
256 /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
257 /// vector, set Info->NumPreds, and allocate space in Info->Preds.
FindPredecessorBlocks(BasicBlock * BB,SmallVectorImpl<BasicBlock * > * Preds)258 static void FindPredecessorBlocks(BasicBlock *BB,
259 SmallVectorImpl<BasicBlock *> *Preds) {
260 // We can get our predecessor info by walking the pred_iterator list,
261 // but it is relatively slow. If we already have PHI nodes in this
262 // block, walk one of them to get the predecessor list instead.
263 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
264 Preds->append(SomePhi->block_begin(), SomePhi->block_end());
265 } else {
266 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
267 Preds->push_back(*PI);
268 }
269 }
270
271 /// GetUndefVal - Get an undefined value of the same type as the value
272 /// being handled.
GetUndefVal(BasicBlock * BB,SSAUpdater * Updater)273 static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
274 return UndefValue::get(Updater->ProtoType);
275 }
276
277 /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
278 /// Reserve space for the operands but do not fill them in yet.
CreateEmptyPHI(BasicBlock * BB,unsigned NumPreds,SSAUpdater * Updater)279 static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
280 SSAUpdater *Updater) {
281 PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
282 Updater->ProtoName, &BB->front());
283 return PHI;
284 }
285
286 /// AddPHIOperand - Add the specified value as an operand of the PHI for
287 /// the specified predecessor block.
AddPHIOperand(PHINode * PHI,Value * Val,BasicBlock * Pred)288 static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
289 PHI->addIncoming(Val, Pred);
290 }
291
292 /// InstrIsPHI - Check if an instruction is a PHI.
293 ///
InstrIsPHI(Instruction * I)294 static PHINode *InstrIsPHI(Instruction *I) {
295 return dyn_cast<PHINode>(I);
296 }
297
298 /// ValueIsPHI - Check if a value is a PHI.
ValueIsPHI(Value * Val,SSAUpdater * Updater)299 static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
300 return dyn_cast<PHINode>(Val);
301 }
302
303 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
304 /// operands, i.e., it was just added.
ValueIsNewPHI(Value * Val,SSAUpdater * Updater)305 static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
306 PHINode *PHI = ValueIsPHI(Val, Updater);
307 if (PHI && PHI->getNumIncomingValues() == 0)
308 return PHI;
309 return nullptr;
310 }
311
312 /// GetPHIValue - For the specified PHI instruction, return the value
313 /// that it defines.
GetPHIValue(PHINode * PHI)314 static Value *GetPHIValue(PHINode *PHI) {
315 return PHI;
316 }
317 };
318
319 } // end namespace llvm
320
321 /// Check to see if AvailableVals has an entry for the specified BB and if so,
322 /// return it. If not, construct SSA form by first calculating the required
323 /// placement of PHIs and then inserting new PHIs where needed.
GetValueAtEndOfBlockInternal(BasicBlock * BB)324 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
325 AvailableValsTy &AvailableVals = getAvailableVals(AV);
326 if (Value *V = AvailableVals[BB])
327 return V;
328
329 SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
330 return Impl.GetValue(BB);
331 }
332
333 //===----------------------------------------------------------------------===//
334 // LoadAndStorePromoter Implementation
335 //===----------------------------------------------------------------------===//
336
337 LoadAndStorePromoter::
LoadAndStorePromoter(ArrayRef<const Instruction * > Insts,SSAUpdater & S,StringRef BaseName)338 LoadAndStorePromoter(ArrayRef<const Instruction *> Insts,
339 SSAUpdater &S, StringRef BaseName) : SSA(S) {
340 if (Insts.empty()) return;
341
342 const Value *SomeVal;
343 if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
344 SomeVal = LI;
345 else
346 SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
347
348 if (BaseName.empty())
349 BaseName = SomeVal->getName();
350 SSA.Initialize(SomeVal->getType(), BaseName);
351 }
352
353 void LoadAndStorePromoter::
run(const SmallVectorImpl<Instruction * > & Insts) const354 run(const SmallVectorImpl<Instruction *> &Insts) const {
355 // First step: bucket up uses of the alloca by the block they occur in.
356 // This is important because we have to handle multiple defs/uses in a block
357 // ourselves: SSAUpdater is purely for cross-block references.
358 DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock;
359
360 for (Instruction *User : Insts)
361 UsesByBlock[User->getParent()].push_back(User);
362
363 // Okay, now we can iterate over all the blocks in the function with uses,
364 // processing them. Keep track of which loads are loading a live-in value.
365 // Walk the uses in the use-list order to be determinstic.
366 SmallVector<LoadInst *, 32> LiveInLoads;
367 DenseMap<Value *, Value *> ReplacedLoads;
368
369 for (Instruction *User : Insts) {
370 BasicBlock *BB = User->getParent();
371 TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB];
372
373 // If this block has already been processed, ignore this repeat use.
374 if (BlockUses.empty()) continue;
375
376 // Okay, this is the first use in the block. If this block just has a
377 // single user in it, we can rewrite it trivially.
378 if (BlockUses.size() == 1) {
379 // If it is a store, it is a trivial def of the value in the block.
380 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
381 updateDebugInfo(SI);
382 SSA.AddAvailableValue(BB, SI->getOperand(0));
383 } else
384 // Otherwise it is a load, queue it to rewrite as a live-in load.
385 LiveInLoads.push_back(cast<LoadInst>(User));
386 BlockUses.clear();
387 continue;
388 }
389
390 // Otherwise, check to see if this block is all loads.
391 bool HasStore = false;
392 for (Instruction *I : BlockUses) {
393 if (isa<StoreInst>(I)) {
394 HasStore = true;
395 break;
396 }
397 }
398
399 // If so, we can queue them all as live in loads. We don't have an
400 // efficient way to tell which on is first in the block and don't want to
401 // scan large blocks, so just add all loads as live ins.
402 if (!HasStore) {
403 for (Instruction *I : BlockUses)
404 LiveInLoads.push_back(cast<LoadInst>(I));
405 BlockUses.clear();
406 continue;
407 }
408
409 // Otherwise, we have mixed loads and stores (or just a bunch of stores).
410 // Since SSAUpdater is purely for cross-block values, we need to determine
411 // the order of these instructions in the block. If the first use in the
412 // block is a load, then it uses the live in value. The last store defines
413 // the live out value. We handle this by doing a linear scan of the block.
414 Value *StoredValue = nullptr;
415 for (Instruction &I : *BB) {
416 if (LoadInst *L = dyn_cast<LoadInst>(&I)) {
417 // If this is a load from an unrelated pointer, ignore it.
418 if (!isInstInList(L, Insts)) continue;
419
420 // If we haven't seen a store yet, this is a live in use, otherwise
421 // use the stored value.
422 if (StoredValue) {
423 replaceLoadWithValue(L, StoredValue);
424 L->replaceAllUsesWith(StoredValue);
425 ReplacedLoads[L] = StoredValue;
426 } else {
427 LiveInLoads.push_back(L);
428 }
429 continue;
430 }
431
432 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
433 // If this is a store to an unrelated pointer, ignore it.
434 if (!isInstInList(SI, Insts)) continue;
435 updateDebugInfo(SI);
436
437 // Remember that this is the active value in the block.
438 StoredValue = SI->getOperand(0);
439 }
440 }
441
442 // The last stored value that happened is the live-out for the block.
443 assert(StoredValue && "Already checked that there is a store in block");
444 SSA.AddAvailableValue(BB, StoredValue);
445 BlockUses.clear();
446 }
447
448 // Okay, now we rewrite all loads that use live-in values in the loop,
449 // inserting PHI nodes as necessary.
450 for (LoadInst *ALoad : LiveInLoads) {
451 Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
452 replaceLoadWithValue(ALoad, NewVal);
453
454 // Avoid assertions in unreachable code.
455 if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
456 ALoad->replaceAllUsesWith(NewVal);
457 ReplacedLoads[ALoad] = NewVal;
458 }
459
460 // Allow the client to do stuff before we start nuking things.
461 doExtraRewritesBeforeFinalDeletion();
462
463 // Now that everything is rewritten, delete the old instructions from the
464 // function. They should all be dead now.
465 for (Instruction *User : Insts) {
466 // If this is a load that still has uses, then the load must have been added
467 // as a live value in the SSAUpdate data structure for a block (e.g. because
468 // the loaded value was stored later). In this case, we need to recursively
469 // propagate the updates until we get to the real value.
470 if (!User->use_empty()) {
471 Value *NewVal = ReplacedLoads[User];
472 assert(NewVal && "not a replaced load?");
473
474 // Propagate down to the ultimate replacee. The intermediately loads
475 // could theoretically already have been deleted, so we don't want to
476 // dereference the Value*'s.
477 DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
478 while (RLI != ReplacedLoads.end()) {
479 NewVal = RLI->second;
480 RLI = ReplacedLoads.find(NewVal);
481 }
482
483 replaceLoadWithValue(cast<LoadInst>(User), NewVal);
484 User->replaceAllUsesWith(NewVal);
485 }
486
487 instructionDeleted(User);
488 User->eraseFromParent();
489 }
490 }
491
492 bool
isInstInList(Instruction * I,const SmallVectorImpl<Instruction * > & Insts) const493 LoadAndStorePromoter::isInstInList(Instruction *I,
494 const SmallVectorImpl<Instruction *> &Insts)
495 const {
496 return is_contained(Insts, I);
497 }
498