1; RUN: opt -basicaa -loop-accesses -analyze < %s | FileCheck %s -check-prefix=LAA
2; RUN: opt -passes='require<aa>,require<scalar-evolution>,require<aa>,loop(print-access-info)' -aa-pipeline='basic-aa' -disable-output < %s  2>&1 | FileCheck %s --check-prefix=LAA
3; RUN: opt -loop-versioning -S < %s | FileCheck %s -check-prefix=LV
4
5target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
6
7; For this loop:
8;   unsigned index = 0;
9;   for (int i = 0; i < n; i++) {
10;    A[2 * index] = A[2 * index] + B[i];
11;    index++;
12;   }
13;
14; SCEV is unable to prove that A[2 * i] does not overflow.
15;
16; Analyzing the IR does not help us because the GEPs are not
17; affine AddRecExprs. However, we can turn them into AddRecExprs
18; using SCEV Predicates.
19;
20; Once we have an affine expression we need to add an additional NUSW
21; to check that the pointers don't wrap since the GEPs are not
22; inbound.
23
24; LAA-LABEL: f1
25; LAA: Memory dependences are safe{{$}}
26; LAA: SCEV assumptions:
27; LAA-NEXT: {0,+,2}<%for.body> Added Flags: <nusw>
28; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: <nusw>
29
30; The expression for %mul_ext as analyzed by SCEV is
31;    (zext i32 {0,+,2}<%for.body> to i64)
32; We have added the nusw flag to turn this expression into the SCEV expression:
33;    i64 {0,+,2}<%for.body>
34
35; LAA: [PSE]  %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext:
36; LAA-NEXT: ((2 * (zext i32 {0,+,2}<%for.body> to i64))<nuw><nsw> + %a)
37; LAA-NEXT: --> {%a,+,4}<%for.body>
38
39
40; LV-LABEL: f1
41; LV-LABEL: for.body.lver.check
42
43; LV:      [[BETrunc:%[^ ]*]] = trunc i64 [[BE:%[^ ]*]] to i32
44; LV-NEXT: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc]])
45; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0
46; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1
47; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 0, [[OFMulResult]]
48; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 0, [[OFMulResult]]
49; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp ugt i32 [[SubEnd]], 0
50; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp ult i32 [[AddEnd]], 0
51; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg]], i1 [[CmpPos]]
52; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295
53; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]]
54; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]]
55
56; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]]
57
58; LV-NEXT: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE]])
59; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0
60; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1
61; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[A0:%[^ ]*]], [[OFMulResult1]]
62; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[A0]], [[OFMulResult1]]
63; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[A0]]
64; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[A0]]
65; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg1]], i1 [[CmpPos1]]
66; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]]
67
68; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]]
69; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph
70define void @f1(i16* noalias %a,
71                i16* noalias %b, i64 %N) {
72entry:
73  br label %for.body
74
75for.body:                                         ; preds = %for.body, %entry
76  %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
77  %ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ]
78
79  %mul = mul i32 %ind1, 2
80  %mul_ext = zext i32 %mul to i64
81
82  %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext
83  %loadA = load i16, i16* %arrayidxA, align 2
84
85  %arrayidxB = getelementptr i16, i16* %b, i64 %ind
86  %loadB = load i16, i16* %arrayidxB, align 2
87
88  %add = mul i16 %loadA, %loadB
89
90  store i16 %add, i16* %arrayidxA, align 2
91
92  %inc = add nuw nsw i64 %ind, 1
93  %inc1 = add i32 %ind1, 1
94
95  %exitcond = icmp eq i64 %inc, %N
96  br i1 %exitcond, label %for.end, label %for.body
97
98for.end:                                          ; preds = %for.body
99  ret void
100}
101
102; For this loop:
103;   unsigned index = n;
104;   for (int i = 0; i < n; i++) {
105;    A[2 * index] = A[2 * index] + B[i];
106;    index--;
107;   }
108;
109; the SCEV expression for 2 * index is not an AddRecExpr
110; (and implictly not affine). However, we are able to make assumptions
111; that will turn the expression into an affine one and continue the
112; analysis.
113;
114; Once we have an affine expression we need to add an additional NUSW
115; to check that the pointers don't wrap since the GEPs are not
116; inbounds.
117;
118; This loop has a negative stride for A, and the nusw flag is required in
119; order to properly extend the increment from i32 -4 to i64 -4.
120
121; LAA-LABEL: f2
122; LAA: Memory dependences are safe{{$}}
123; LAA: SCEV assumptions:
124; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nusw>
125; LAA-NEXT: {((4 * (zext i31 (trunc i64 %N to i31) to i64)) + %a),+,-4}<%for.body> Added Flags: <nusw>
126
127; The expression for %mul_ext as analyzed by SCEV is
128;     (zext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64)
129; We have added the nusw flag to turn this expression into the following SCEV:
130;     i64 {zext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body>
131
132; LAA: [PSE]  %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext:
133; LAA-NEXT: ((2 * (zext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64))<nuw><nsw> + %a)
134; LAA-NEXT: --> {((4 * (zext i31 (trunc i64 %N to i31) to i64)) + %a),+,-4}<%for.body>
135
136; LV-LABEL: f2
137; LV-LABEL: for.body.lver.check
138
139; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]])
140; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0
141; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1
142; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]]
143; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]]
144; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp ugt i32 [[SubEnd]], [[Start]]
145; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp ult i32 [[AddEnd]], [[Start]]
146; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]]
147; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295
148; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]]
149; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]]
150
151; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]]
152
153; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE]])
154; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0
155; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1
156; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]]
157; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]]
158; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]]
159; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]]
160; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]]
161; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]]
162
163; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]]
164; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph
165define void @f2(i16* noalias %a,
166                i16* noalias %b, i64 %N) {
167entry:
168  %TruncN = trunc i64 %N to i32
169  br label %for.body
170
171for.body:                                         ; preds = %for.body, %entry
172  %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
173  %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ]
174
175  %mul = mul i32 %ind1, 2
176  %mul_ext = zext i32 %mul to i64
177
178  %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext
179  %loadA = load i16, i16* %arrayidxA, align 2
180
181  %arrayidxB = getelementptr i16, i16* %b, i64 %ind
182  %loadB = load i16, i16* %arrayidxB, align 2
183
184  %add = mul i16 %loadA, %loadB
185
186  store i16 %add, i16* %arrayidxA, align 2
187
188  %inc = add nuw nsw i64 %ind, 1
189  %dec = sub i32 %ind1, 1
190
191  %exitcond = icmp eq i64 %inc, %N
192  br i1 %exitcond, label %for.end, label %for.body
193
194for.end:                                          ; preds = %for.body
195  ret void
196}
197
198; We replicate the tests above, but this time sign extend 2 * index instead
199; of zero extending it.
200
201; LAA-LABEL: f3
202; LAA: Memory dependences are safe{{$}}
203; LAA: SCEV assumptions:
204; LAA-NEXT: {0,+,2}<%for.body> Added Flags: <nssw>
205; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: <nusw>
206
207; The expression for %mul_ext as analyzed by SCEV is
208;     i64 (sext i32 {0,+,2}<%for.body> to i64)
209; We have added the nssw flag to turn this expression into the following SCEV:
210;     i64 {0,+,2}<%for.body>
211
212; LAA: [PSE]  %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext:
213; LAA-NEXT: ((2 * (sext i32 {0,+,2}<%for.body> to i64))<nsw> + %a)
214; LAA-NEXT: --> {%a,+,4}<%for.body>
215
216; LV-LABEL: f3
217; LV-LABEL: for.body.lver.check
218
219; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]])
220; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0
221; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1
222; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 0, [[OFMulResult]]
223; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 0, [[OFMulResult]]
224; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], 0
225; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], 0
226; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg]], i1 [[CmpPos]]
227; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295
228; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]]
229; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]]
230
231; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]]
232
233; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]])
234; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0
235; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1
236; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[A0:%[^ ]*]], [[OFMulResult1]]
237; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[A0]], [[OFMulResult1]]
238; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[A0]]
239; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[A0]]
240; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg1]], i1 [[CmpPos1]]
241; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]]
242
243; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]]
244; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph
245define void @f3(i16* noalias %a,
246                i16* noalias %b, i64 %N) {
247entry:
248  br label %for.body
249
250for.body:                                         ; preds = %for.body, %entry
251  %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
252  %ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ]
253
254  %mul = mul i32 %ind1, 2
255  %mul_ext = sext i32 %mul to i64
256
257  %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext
258  %loadA = load i16, i16* %arrayidxA, align 2
259
260  %arrayidxB = getelementptr i16, i16* %b, i64 %ind
261  %loadB = load i16, i16* %arrayidxB, align 2
262
263  %add = mul i16 %loadA, %loadB
264
265  store i16 %add, i16* %arrayidxA, align 2
266
267  %inc = add nuw nsw i64 %ind, 1
268  %inc1 = add i32 %ind1, 1
269
270  %exitcond = icmp eq i64 %inc, %N
271  br i1 %exitcond, label %for.end, label %for.body
272
273for.end:                                          ; preds = %for.body
274  ret void
275}
276
277; LAA-LABEL: f4
278; LAA: Memory dependences are safe{{$}}
279; LAA: SCEV assumptions:
280; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nssw>
281; LAA-NEXT: {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body> Added Flags: <nusw>
282
283; The expression for %mul_ext as analyzed by SCEV is
284;     i64  (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64)
285; We have added the nssw flag to turn this expression into the following SCEV:
286;     i64 {sext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body>
287
288; LAA: [PSE]  %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext:
289; LAA-NEXT: ((2 * (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64))<nsw> + %a)
290; LAA-NEXT: --> {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body>
291
292; LV-LABEL: f4
293; LV-LABEL: for.body.lver.check
294
295; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]])
296; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0
297; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1
298; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]]
299; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]]
300; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], [[Start]]
301; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], [[Start]]
302; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]]
303; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295
304; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]]
305; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]]
306
307; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]]
308
309; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]])
310; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0
311; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1
312; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]]
313; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]]
314; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]]
315; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]]
316; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]]
317; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]]
318
319; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]]
320; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph
321define void @f4(i16* noalias %a,
322                i16* noalias %b, i64 %N) {
323entry:
324  %TruncN = trunc i64 %N to i32
325  br label %for.body
326
327for.body:                                         ; preds = %for.body, %entry
328  %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
329  %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ]
330
331  %mul = mul i32 %ind1, 2
332  %mul_ext = sext i32 %mul to i64
333
334  %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext
335  %loadA = load i16, i16* %arrayidxA, align 2
336
337  %arrayidxB = getelementptr i16, i16* %b, i64 %ind
338  %loadB = load i16, i16* %arrayidxB, align 2
339
340  %add = mul i16 %loadA, %loadB
341
342  store i16 %add, i16* %arrayidxA, align 2
343
344  %inc = add nuw nsw i64 %ind, 1
345  %dec = sub i32 %ind1, 1
346
347  %exitcond = icmp eq i64 %inc, %N
348  br i1 %exitcond, label %for.end, label %for.body
349
350for.end:                                          ; preds = %for.body
351  ret void
352}
353
354; The following function is similar to the one above, but has the GEP
355; to pointer %A inbounds. The index %mul doesn't have the nsw flag.
356; This means that the SCEV expression for %mul can wrap and we need
357; a SCEV predicate to continue analysis.
358;
359; We can still analyze this by adding the required no wrap SCEV predicates.
360
361; LAA-LABEL: f5
362; LAA: Memory dependences are safe{{$}}
363; LAA: SCEV assumptions:
364; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nssw>
365; LAA-NEXT: {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body> Added Flags: <nusw>
366
367; LAA: [PSE]  %arrayidxA = getelementptr inbounds i16, i16* %a, i32 %mul:
368; LAA-NEXT: ((2 * (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64))<nsw> + %a)<nsw>
369; LAA-NEXT: --> {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body>
370
371; LV-LABEL: f5
372; LV-LABEL: for.body.lver.check
373; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]])
374; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0
375; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1
376; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]]
377; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]]
378; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], [[Start]]
379; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], [[Start]]
380; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]]
381; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295
382; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]]
383; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]]
384
385; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]]
386
387; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]])
388; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0
389; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1
390; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]]
391; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]]
392; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]]
393; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]]
394; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]]
395; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]]
396
397; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]]
398; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph
399define void @f5(i16* noalias %a,
400                i16* noalias %b, i64 %N) {
401entry:
402  %TruncN = trunc i64 %N to i32
403  br label %for.body
404
405for.body:                                         ; preds = %for.body, %entry
406  %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
407  %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ]
408
409  %mul = mul i32 %ind1, 2
410
411  %arrayidxA = getelementptr inbounds i16, i16* %a, i32 %mul
412  %loadA = load i16, i16* %arrayidxA, align 2
413
414  %arrayidxB = getelementptr inbounds i16, i16* %b, i64 %ind
415  %loadB = load i16, i16* %arrayidxB, align 2
416
417  %add = mul i16 %loadA, %loadB
418
419  store i16 %add, i16* %arrayidxA, align 2
420
421  %inc = add nuw nsw i64 %ind, 1
422  %dec = sub i32 %ind1, 1
423
424  %exitcond = icmp eq i64 %inc, %N
425  br i1 %exitcond, label %for.end, label %for.body
426
427for.end:                                          ; preds = %for.body
428  ret void
429}
430