1; REQUIRES: asserts 2; RUN: llc < %s -mtriple=arm64-linux-gnu -mcpu=cortex-a53 -pre-RA-sched=source -enable-misched -verify-misched -debug-only=machine-scheduler -disable-machine-dce -o - 2>&1 > /dev/null | FileCheck %s 3; RUN: llc < %s -mtriple=arm64-linux-gnu -mcpu=cortex-a53 -pre-RA-sched=source -enable-misched -verify-misched -debug-only=machine-scheduler -disable-machine-dce -o - -misched-limit=2 2>&1 > /dev/null | FileCheck %s 4; 5; The Cortex-A53 machine model will cause the MADD instruction to be scheduled 6; much higher than the ADD instructions in order to hide latency. When not 7; specifying a subtarget, the MADD will remain near the end of the block. 8; 9; CHECK: ********** MI Scheduling ********** 10; CHECK: main 11; CHECK: *** Final schedule for %bb.2 *** 12; CHECK: MADDWrrr 13; CHECK: ADDWri 14; CHECK: ********** INTERVALS ********** 15@main.x = private unnamed_addr constant [8 x i32] [i32 1, i32 1, i32 1, i32 1, i32 1, i32 1, i32 1, i32 1], align 4 16@main.y = private unnamed_addr constant [8 x i32] [i32 2, i32 2, i32 2, i32 2, i32 2, i32 2, i32 2, i32 2], align 4 17 18; Function Attrs: nounwind 19define i32 @main() #0 { 20entry: 21 %retval = alloca i32, align 4 22 %x = alloca [8 x i32], align 4 23 %y = alloca [8 x i32], align 4 24 %i = alloca i32, align 4 25 %xx = alloca i32, align 4 26 %yy = alloca i32, align 4 27 store i32 0, i32* %retval 28 %0 = bitcast [8 x i32]* %x to i8* 29 call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 %0, i8* align 4 bitcast ([8 x i32]* @main.x to i8*), i64 32, i1 false) 30 %1 = bitcast [8 x i32]* %y to i8* 31 call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 %1, i8* align 4 bitcast ([8 x i32]* @main.y to i8*), i64 32, i1 false) 32 store i32 0, i32* %xx, align 4 33 store i32 0, i32* %yy, align 4 34 store i32 0, i32* %i, align 4 35 br label %for.cond 36 37for.cond: ; preds = %for.inc, %entry 38 %2 = load i32, i32* %i, align 4 39 %cmp = icmp slt i32 %2, 8 40 br i1 %cmp, label %for.body, label %for.end 41 42for.body: ; preds = %for.cond 43 %3 = load i32, i32* %i, align 4 44 %idxprom = sext i32 %3 to i64 45 %arrayidx = getelementptr inbounds [8 x i32], [8 x i32]* %x, i32 0, i64 %idxprom 46 %4 = load i32, i32* %arrayidx, align 4 47 %add = add nsw i32 %4, 1 48 store i32 %add, i32* %xx, align 4 49 %5 = load i32, i32* %xx, align 4 50 %add1 = add nsw i32 %5, 12 51 store i32 %add1, i32* %xx, align 4 52 %6 = load i32, i32* %xx, align 4 53 %add2 = add nsw i32 %6, 23 54 store i32 %add2, i32* %xx, align 4 55 %7 = load i32, i32* %xx, align 4 56 %add3 = add nsw i32 %7, 34 57 store i32 %add3, i32* %xx, align 4 58 %8 = load i32, i32* %i, align 4 59 %idxprom4 = sext i32 %8 to i64 60 %arrayidx5 = getelementptr inbounds [8 x i32], [8 x i32]* %y, i32 0, i64 %idxprom4 61 %9 = load i32, i32* %arrayidx5, align 4 62 %10 = load i32, i32* %yy, align 4 63 %mul = mul nsw i32 %10, %9 64 store i32 %mul, i32* %yy, align 4 65 br label %for.inc 66 67for.inc: ; preds = %for.body 68 %11 = load i32, i32* %i, align 4 69 %inc = add nsw i32 %11, 1 70 store i32 %inc, i32* %i, align 4 71 br label %for.cond 72 73for.end: ; preds = %for.cond 74 %12 = load i32, i32* %xx, align 4 75 %13 = load i32, i32* %yy, align 4 76 %add6 = add nsw i32 %12, %13 77 ret i32 %add6 78} 79 80 81; The Cortex-A53 machine model will cause the FDIVvvv_42 to be raised to 82; hide latency. Whereas normally there would only be a single FADDvvv_4s 83; after it, this test checks to make sure there are more than one. 84; 85; CHECK: ********** MI Scheduling ********** 86; CHECK: neon4xfloat:%bb.0 87; CHECK: *** Final schedule for %bb.0 *** 88; CHECK: FDIVv4f32 89; CHECK: FADDv4f32 90; CHECK: FADDv4f32 91; CHECK: ********** INTERVALS ********** 92define <4 x float> @neon4xfloat(<4 x float> %A, <4 x float> %B) { 93 %tmp1 = fadd <4 x float> %A, %B; 94 %tmp2 = fadd <4 x float> %A, %tmp1; 95 %tmp3 = fadd <4 x float> %A, %tmp2; 96 %tmp4 = fadd <4 x float> %A, %tmp3; 97 %tmp5 = fadd <4 x float> %A, %tmp4; 98 %tmp6 = fadd <4 x float> %A, %tmp5; 99 %tmp7 = fadd <4 x float> %A, %tmp6; 100 %tmp8 = fadd <4 x float> %A, %tmp7; 101 %tmp9 = fdiv <4 x float> %A, %B; 102 %tmp10 = fadd <4 x float> %tmp8, %tmp9; 103 104 ret <4 x float> %tmp10 105} 106 107; Function Attrs: nounwind 108declare void @llvm.memcpy.p0i8.p0i8.i64(i8* nocapture, i8* nocapture readonly, i64, i1) #1 109 110attributes #0 = { nounwind "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" } 111attributes #1 = { nounwind } 112 113 114; Regression Test for PR19761 115; [ARM64] Cortex-a53 schedule mode can't handle NEON post-increment load 116; 117; Nothing explicit to check other than llc not crashing. 118define { <16 x i8>, <16 x i8> } @test_v16i8_post_imm_ld2(i8* %A, i8** %ptr) { 119 %ld2 = tail call { <16 x i8>, <16 x i8> } @llvm.aarch64.neon.ld2.v16i8.p0i8(i8* %A) 120 %tmp = getelementptr i8, i8* %A, i32 32 121 store i8* %tmp, i8** %ptr 122 ret { <16 x i8>, <16 x i8> } %ld2 123} 124 125declare { <16 x i8>, <16 x i8> } @llvm.aarch64.neon.ld2.v16i8.p0i8(i8*) 126 127; Regression Test for PR20057. 128; 129; Cortex-A53 machine model stalls on A53UnitFPMDS contention. Instructions that 130; are otherwise ready are jammed in the pending queue. 131; CHECK: ********** MI Scheduling ********** 132; CHECK: testResourceConflict 133; CHECK: *** Final schedule for %bb.0 *** 134; CHECK: BRK 135; CHECK: ********** INTERVALS ********** 136define void @testResourceConflict(float* %ptr) { 137entry: 138 %add1 = fadd float undef, undef 139 %mul2 = fmul float undef, undef 140 %add3 = fadd float %mul2, undef 141 %mul4 = fmul float undef, %add3 142 %add5 = fadd float %mul4, undef 143 %sub6 = fsub float 0.000000e+00, undef 144 %sub7 = fsub float %add5, undef 145 %div8 = fdiv float 1.000000e+00, undef 146 %mul9 = fmul float %div8, %sub7 147 %mul14 = fmul float %sub6, %div8 148 %mul10 = fsub float -0.000000e+00, %mul14 149 %mul15 = fmul float undef, %div8 150 %mul11 = fsub float -0.000000e+00, %mul15 151 %mul12 = fmul float 0.000000e+00, %div8 152 %mul13 = fmul float %add1, %mul9 153 %mul21 = fmul float %add5, %mul11 154 %add22 = fadd float %mul13, %mul21 155 store float %add22, float* %ptr, align 4 156 %mul28 = fmul float %add1, %mul10 157 %mul33 = fmul float %add5, %mul12 158 %add34 = fadd float %mul33, %mul28 159 store float %add34, float* %ptr, align 4 160 %mul240 = fmul float undef, %mul9 161 %add246 = fadd float %mul240, undef 162 store float %add246, float* %ptr, align 4 163 %mul52 = fmul float undef, %mul10 164 %mul57 = fmul float undef, %mul12 165 %add58 = fadd float %mul57, %mul52 166 store float %add58, float* %ptr, align 4 167 %mul27 = fmul float 0.000000e+00, %mul9 168 %mul81 = fmul float undef, %mul10 169 %add82 = fadd float %mul27, %mul81 170 store float %add82, float* %ptr, align 4 171 call void @llvm.trap() 172 unreachable 173} 174 175declare void @llvm.trap() 176 177; Regression test for PR20057: "permanent hazard"' 178; Resource contention on LDST. 179; CHECK: ********** MI Scheduling ********** 180; CHECK: testLdStConflict 181; CHECK: *** Final schedule for %bb.1 *** 182; CHECK: LD4Fourv2d 183; CHECK: STRQui 184; CHECK: ********** INTERVALS ********** 185define void @testLdStConflict(<2 x i64> %v) { 186entry: 187 br label %loop 188 189loop: 190 %0 = call { <2 x i64>, <2 x i64>, <2 x i64>, <2 x i64> } @llvm.aarch64.neon.ld4.v2i64.p0i8(i8* null) 191 %ptr = bitcast i8* undef to <2 x i64>* 192 store <2 x i64> %v, <2 x i64>* %ptr, align 4 193 %ptr1 = bitcast i8* undef to <2 x i64>* 194 store <2 x i64> %v, <2 x i64>* %ptr1, align 4 195 %ptr2 = bitcast i8* undef to <2 x i64>* 196 store <2 x i64> %v, <2 x i64>* %ptr2, align 4 197 %ptr3 = bitcast i8* undef to <2 x i64>* 198 store <2 x i64> %v, <2 x i64>* %ptr3, align 4 199 %ptr4 = bitcast i8* undef to <2 x i64>* 200 store <2 x i64> %v, <2 x i64>* %ptr4, align 4 201 br label %loop 202} 203 204declare { <2 x i64>, <2 x i64>, <2 x i64>, <2 x i64> } @llvm.aarch64.neon.ld4.v2i64.p0i8(i8*) 205