1; RUN: llc < %s -march=nvptx64 -mcpu=sm_35 | FileCheck %s
2
3; Check that invariant loads from the global addrspace are lowered to
4; ld.global.nc.
5
6; CHECK-LABEL: @ld_global
7define i32 @ld_global(i32 addrspace(1)* %ptr) {
8; CHECK: ld.global.nc.{{[a-z]}}32
9  %a = load i32, i32 addrspace(1)* %ptr, !invariant.load !0
10  ret i32 %a
11}
12
13; CHECK-LABEL: @ld_global_v2f16
14define half @ld_global_v2f16(<2 x half> addrspace(1)* %ptr) {
15; Load of v2f16 is weird. We consider it to be a legal type, which happens to be
16; loaded/stored as a 32-bit scalar.
17; CHECK: ld.global.nc.b32
18  %a = load <2 x half>, <2 x half> addrspace(1)* %ptr, !invariant.load !0
19  %v1 = extractelement <2 x half> %a, i32 0
20  %v2 = extractelement <2 x half> %a, i32 1
21  %sum = fadd half %v1, %v2
22  ret half %sum
23}
24
25; CHECK-LABEL: @ld_global_v4f16
26define half @ld_global_v4f16(<4 x half> addrspace(1)* %ptr) {
27; Larger f16 vectors may be split into individual f16 elements and multiple
28; loads/stores may be vectorized using f16 element type. Practically it's
29; limited to v4 variant only.
30; CHECK: ld.global.nc.v4.b16
31  %a = load <4 x half>, <4 x half> addrspace(1)* %ptr, !invariant.load !0
32  %v1 = extractelement <4 x half> %a, i32 0
33  %v2 = extractelement <4 x half> %a, i32 1
34  %v3 = extractelement <4 x half> %a, i32 2
35  %v4 = extractelement <4 x half> %a, i32 3
36  %sum1 = fadd half %v1, %v2
37  %sum2 = fadd half %v3, %v4
38  %sum = fadd half %sum1, %sum2
39  ret half %sum
40}
41
42; CHECK-LABEL: @ld_global_v8f16
43define half @ld_global_v8f16(<8 x half> addrspace(1)* %ptr) {
44; Larger vectors are, again, loaded as v4i32. PTX has no v8 variants of loads/stores,
45; so load/store vectorizer has to convert v8f16 -> v4 x v2f16.
46; CHECK: ld.global.nc.v4.b32
47  %a = load <8 x half>, <8 x half> addrspace(1)* %ptr, !invariant.load !0
48  %v1 = extractelement <8 x half> %a, i32 0
49  %v2 = extractelement <8 x half> %a, i32 2
50  %v3 = extractelement <8 x half> %a, i32 4
51  %v4 = extractelement <8 x half> %a, i32 6
52  %sum1 = fadd half %v1, %v2
53  %sum2 = fadd half %v3, %v4
54  %sum = fadd half %sum1, %sum2
55  ret half %sum
56}
57
58; CHECK-LABEL: @ld_global_v2i32
59define i32 @ld_global_v2i32(<2 x i32> addrspace(1)* %ptr) {
60; CHECK: ld.global.nc.v2.{{[a-z]}}32
61  %a = load <2 x i32>, <2 x i32> addrspace(1)* %ptr, !invariant.load !0
62  %v1 = extractelement <2 x i32> %a, i32 0
63  %v2 = extractelement <2 x i32> %a, i32 1
64  %sum = add i32 %v1, %v2
65  ret i32 %sum
66}
67
68; CHECK-LABEL: @ld_global_v4i32
69define i32 @ld_global_v4i32(<4 x i32> addrspace(1)* %ptr) {
70; CHECK: ld.global.nc.v4.{{[a-z]}}32
71  %a = load <4 x i32>, <4 x i32> addrspace(1)* %ptr, !invariant.load !0
72  %v1 = extractelement <4 x i32> %a, i32 0
73  %v2 = extractelement <4 x i32> %a, i32 1
74  %v3 = extractelement <4 x i32> %a, i32 2
75  %v4 = extractelement <4 x i32> %a, i32 3
76  %sum1 = add i32 %v1, %v2
77  %sum2 = add i32 %v3, %v4
78  %sum3 = add i32 %sum1, %sum2
79  ret i32 %sum3
80}
81
82; CHECK-LABEL: @ld_not_invariant
83define i32 @ld_not_invariant(i32 addrspace(1)* %ptr) {
84; CHECK: ld.global.{{[a-z]}}32
85  %a = load i32, i32 addrspace(1)* %ptr
86  ret i32 %a
87}
88
89; CHECK-LABEL: @ld_not_global_addrspace
90define i32 @ld_not_global_addrspace(i32 addrspace(0)* %ptr) {
91; CHECK: ld.{{[a-z]}}32
92  %a = load i32, i32 addrspace(0)* %ptr
93  ret i32 %a
94}
95
96!0 = !{}
97