1; Test high-part i64->i128 multiplications.
2;
3; RUN: llc < %s -mtriple=s390x-linux-gnu -asm-verbose=0 | FileCheck %s
4
5declare i64 @foo()
6
7; Check zero-extended multiplication in which only the high part is used.
8define i64 @f1(i64 %dummy, i64 %a, i64 %b) {
9; CHECK-LABEL: f1:
10; CHECK-NOT: {{%r[234]}}
11; CHECK: mlgr %r2, %r4
12; CHECK: br %r14
13  %ax = zext i64 %a to i128
14  %bx = zext i64 %b to i128
15  %mulx = mul i128 %ax, %bx
16  %highx = lshr i128 %mulx, 64
17  %high = trunc i128 %highx to i64
18  ret i64 %high
19}
20
21; Check sign-extended multiplication in which only the high part is used.
22; This needs a rather convoluted sequence.
23define i64 @f2(i64 %dummy, i64 %a, i64 %b) {
24; CHECK-LABEL: f2:
25; CHECK-DAG: srag [[RES1:%r[0-5]]], %r3, 63
26; CHECK-DAG: srag [[RES2:%r[0-5]]], %r4, 63
27; CHECK-DAG: ngr [[RES1]], %r4
28; CHECK-DAG: ngr [[RES2]], %r3
29; CHECK-DAG: agr [[RES2]], [[RES1]]
30; CHECK-DAG: mlgr %r2, %r4
31; CHECK: sgr %r2, [[RES2]]
32; CHECK: br %r14
33  %ax = sext i64 %a to i128
34  %bx = sext i64 %b to i128
35  %mulx = mul i128 %ax, %bx
36  %highx = lshr i128 %mulx, 64
37  %high = trunc i128 %highx to i64
38  ret i64 %high
39}
40
41; Check zero-extended multiplication in which only part of the high half
42; is used.
43define i64 @f3(i64 %dummy, i64 %a, i64 %b) {
44; CHECK-LABEL: f3:
45; CHECK-NOT: {{%r[234]}}
46; CHECK: mlgr %r2, %r4
47; CHECK: srlg %r2, %r2, 3
48; CHECK: br %r14
49  %ax = zext i64 %a to i128
50  %bx = zext i64 %b to i128
51  %mulx = mul i128 %ax, %bx
52  %highx = lshr i128 %mulx, 67
53  %high = trunc i128 %highx to i64
54  ret i64 %high
55}
56
57; Check zero-extended multiplication in which the result is split into
58; high and low halves.
59define i64 @f4(i64 %dummy, i64 %a, i64 %b) {
60; CHECK-LABEL: f4:
61; CHECK-NOT: {{%r[234]}}
62; CHECK: mlgr %r2, %r4
63; CHECK: ogr %r2, %r3
64; CHECK: br %r14
65  %ax = zext i64 %a to i128
66  %bx = zext i64 %b to i128
67  %mulx = mul i128 %ax, %bx
68  %highx = lshr i128 %mulx, 64
69  %high = trunc i128 %highx to i64
70  %low = trunc i128 %mulx to i64
71  %or = or i64 %high, %low
72  ret i64 %or
73}
74
75; Check division by a constant, which should use multiplication instead.
76define i64 @f5(i64 %dummy, i64 %a) {
77; CHECK-LABEL: f5:
78; CHECK: mlgr %r2,
79; CHECK: srlg %r2, %r2,
80; CHECK: br %r14
81  %res = udiv i64 %a, 1234
82  ret i64 %res
83}
84
85; Check MLG with no displacement.
86define i64 @f6(i64 %dummy, i64 %a, i64 *%src) {
87; CHECK-LABEL: f6:
88; CHECK-NOT: {{%r[234]}}
89; CHECK: mlg %r2, 0(%r4)
90; CHECK: br %r14
91  %b = load i64, i64 *%src
92  %ax = zext i64 %a to i128
93  %bx = zext i64 %b to i128
94  %mulx = mul i128 %ax, %bx
95  %highx = lshr i128 %mulx, 64
96  %high = trunc i128 %highx to i64
97  ret i64 %high
98}
99
100; Check the high end of the aligned MLG range.
101define i64 @f7(i64 %dummy, i64 %a, i64 *%src) {
102; CHECK-LABEL: f7:
103; CHECK: mlg %r2, 524280(%r4)
104; CHECK: br %r14
105  %ptr = getelementptr i64, i64 *%src, i64 65535
106  %b = load i64, i64 *%ptr
107  %ax = zext i64 %a to i128
108  %bx = zext i64 %b to i128
109  %mulx = mul i128 %ax, %bx
110  %highx = lshr i128 %mulx, 64
111  %high = trunc i128 %highx to i64
112  ret i64 %high
113}
114
115; Check the next doubleword up, which requires separate address logic.
116; Other sequences besides this one would be OK.
117define i64 @f8(i64 %dummy, i64 %a, i64 *%src) {
118; CHECK-LABEL: f8:
119; CHECK: agfi %r4, 524288
120; CHECK: mlg %r2, 0(%r4)
121; CHECK: br %r14
122  %ptr = getelementptr i64, i64 *%src, i64 65536
123  %b = load i64, i64 *%ptr
124  %ax = zext i64 %a to i128
125  %bx = zext i64 %b to i128
126  %mulx = mul i128 %ax, %bx
127  %highx = lshr i128 %mulx, 64
128  %high = trunc i128 %highx to i64
129  ret i64 %high
130}
131
132; Check the high end of the negative aligned MLG range.
133define i64 @f9(i64 %dummy, i64 %a, i64 *%src) {
134; CHECK-LABEL: f9:
135; CHECK: mlg %r2, -8(%r4)
136; CHECK: br %r14
137  %ptr = getelementptr i64, i64 *%src, i64 -1
138  %b = load i64, i64 *%ptr
139  %ax = zext i64 %a to i128
140  %bx = zext i64 %b to i128
141  %mulx = mul i128 %ax, %bx
142  %highx = lshr i128 %mulx, 64
143  %high = trunc i128 %highx to i64
144  ret i64 %high
145}
146
147; Check the low end of the MLG range.
148define i64 @f10(i64 %dummy, i64 %a, i64 *%src) {
149; CHECK-LABEL: f10:
150; CHECK: mlg %r2, -524288(%r4)
151; CHECK: br %r14
152  %ptr = getelementptr i64, i64 *%src, i64 -65536
153  %b = load i64, i64 *%ptr
154  %ax = zext i64 %a to i128
155  %bx = zext i64 %b to i128
156  %mulx = mul i128 %ax, %bx
157  %highx = lshr i128 %mulx, 64
158  %high = trunc i128 %highx to i64
159  ret i64 %high
160}
161
162; Check the next doubleword down, which needs separate address logic.
163; Other sequences besides this one would be OK.
164define i64 @f11(i64 *%dest, i64 %a, i64 *%src) {
165; CHECK-LABEL: f11:
166; CHECK: agfi %r4, -524296
167; CHECK: mlg %r2, 0(%r4)
168; CHECK: br %r14
169  %ptr = getelementptr i64, i64 *%src, i64 -65537
170  %b = load i64, i64 *%ptr
171  %ax = zext i64 %a to i128
172  %bx = zext i64 %b to i128
173  %mulx = mul i128 %ax, %bx
174  %highx = lshr i128 %mulx, 64
175  %high = trunc i128 %highx to i64
176  ret i64 %high
177}
178
179; Check that MLG allows an index.
180define i64 @f12(i64 *%dest, i64 %a, i64 %src, i64 %index) {
181; CHECK-LABEL: f12:
182; CHECK: mlg %r2, 524287(%r5,%r4)
183; CHECK: br %r14
184  %add1 = add i64 %src, %index
185  %add2 = add i64 %add1, 524287
186  %ptr = inttoptr i64 %add2 to i64 *
187  %b = load i64, i64 *%ptr
188  %ax = zext i64 %a to i128
189  %bx = zext i64 %b to i128
190  %mulx = mul i128 %ax, %bx
191  %highx = lshr i128 %mulx, 64
192  %high = trunc i128 %highx to i64
193  ret i64 %high
194}
195
196; Check that multiplications of spilled values can use MLG rather than MLGR.
197define i64 @f13(i64 *%ptr0) {
198; CHECK-LABEL: f13:
199; CHECK: brasl %r14, foo@PLT
200; CHECK: mlg {{%r[0-9]+}}, 160(%r15)
201; CHECK: br %r14
202  %ptr1 = getelementptr i64, i64 *%ptr0, i64 2
203  %ptr2 = getelementptr i64, i64 *%ptr0, i64 4
204  %ptr3 = getelementptr i64, i64 *%ptr0, i64 6
205  %ptr4 = getelementptr i64, i64 *%ptr0, i64 8
206  %ptr5 = getelementptr i64, i64 *%ptr0, i64 10
207  %ptr6 = getelementptr i64, i64 *%ptr0, i64 12
208  %ptr7 = getelementptr i64, i64 *%ptr0, i64 14
209  %ptr8 = getelementptr i64, i64 *%ptr0, i64 16
210  %ptr9 = getelementptr i64, i64 *%ptr0, i64 18
211
212  %val0 = load i64, i64 *%ptr0
213  %val1 = load i64, i64 *%ptr1
214  %val2 = load i64, i64 *%ptr2
215  %val3 = load i64, i64 *%ptr3
216  %val4 = load i64, i64 *%ptr4
217  %val5 = load i64, i64 *%ptr5
218  %val6 = load i64, i64 *%ptr6
219  %val7 = load i64, i64 *%ptr7
220  %val8 = load i64, i64 *%ptr8
221  %val9 = load i64, i64 *%ptr9
222
223  %ret = call i64 @foo()
224
225  %retx = zext i64 %ret to i128
226  %val0x = zext i64 %val0 to i128
227  %mul0d = mul i128 %retx, %val0x
228  %mul0x = lshr i128 %mul0d, 64
229
230  %val1x = zext i64 %val1 to i128
231  %mul1d = mul i128 %mul0x, %val1x
232  %mul1x = lshr i128 %mul1d, 64
233
234  %val2x = zext i64 %val2 to i128
235  %mul2d = mul i128 %mul1x, %val2x
236  %mul2x = lshr i128 %mul2d, 64
237
238  %val3x = zext i64 %val3 to i128
239  %mul3d = mul i128 %mul2x, %val3x
240  %mul3x = lshr i128 %mul3d, 64
241
242  %val4x = zext i64 %val4 to i128
243  %mul4d = mul i128 %mul3x, %val4x
244  %mul4x = lshr i128 %mul4d, 64
245
246  %val5x = zext i64 %val5 to i128
247  %mul5d = mul i128 %mul4x, %val5x
248  %mul5x = lshr i128 %mul5d, 64
249
250  %val6x = zext i64 %val6 to i128
251  %mul6d = mul i128 %mul5x, %val6x
252  %mul6x = lshr i128 %mul6d, 64
253
254  %val7x = zext i64 %val7 to i128
255  %mul7d = mul i128 %mul6x, %val7x
256  %mul7x = lshr i128 %mul7d, 64
257
258  %val8x = zext i64 %val8 to i128
259  %mul8d = mul i128 %mul7x, %val8x
260  %mul8x = lshr i128 %mul8d, 64
261
262  %val9x = zext i64 %val9 to i128
263  %mul9d = mul i128 %mul8x, %val9x
264  %mul9x = lshr i128 %mul9d, 64
265
266  %mul9 = trunc i128 %mul9x to i64
267  ret i64 %mul9
268}
269