1; Test 32-bit additions of constants to memory. 2; 3; RUN: llc < %s -mtriple=s390x-linux-gnu | FileCheck %s 4 5declare i32 @foo() 6 7; Check addition of 1. 8define zeroext i1 @f1(i32 *%ptr) { 9; CHECK-LABEL: f1: 10; CHECK: asi 0(%r2), 1 11; CHECK: ipm [[REG:%r[0-5]]] 12; CHECK: afi [[REG]], 1342177280 13; CHECK: risbg %r2, [[REG]], 63, 191, 33 14; CHECK: br %r14 15 %a = load i32, i32 *%ptr 16 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 1) 17 %val = extractvalue {i32, i1} %t, 0 18 %obit = extractvalue {i32, i1} %t, 1 19 store i32 %val, i32 *%ptr 20 ret i1 %obit 21} 22 23; Check the high end of the constant range. 24define zeroext i1 @f2(i32 *%ptr) { 25; CHECK-LABEL: f2: 26; CHECK: asi 0(%r2), 127 27; CHECK: ipm [[REG:%r[0-5]]] 28; CHECK: afi [[REG]], 1342177280 29; CHECK: risbg %r2, [[REG]], 63, 191, 33 30; CHECK: br %r14 31 %a = load i32, i32 *%ptr 32 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 127) 33 %val = extractvalue {i32, i1} %t, 0 34 %obit = extractvalue {i32, i1} %t, 1 35 store i32 %val, i32 *%ptr 36 ret i1 %obit 37} 38 39; Check the next constant up, which must use an addition and a store. 40define zeroext i1 @f3(i32 %dummy, i32 *%ptr) { 41; CHECK-LABEL: f3: 42; CHECK: l [[VAL:%r[0-5]]], 0(%r3) 43; CHECK: ahi [[VAL]], 128 44; CHECK-DAG: st [[VAL]], 0(%r3) 45; CHECK-DAG: ipm [[REG:%r[0-5]]] 46; CHECK-DAG: afi [[REG]], 1342177280 47; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33 48; CHECK: br %r14 49 %a = load i32, i32 *%ptr 50 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 128) 51 %val = extractvalue {i32, i1} %t, 0 52 %obit = extractvalue {i32, i1} %t, 1 53 store i32 %val, i32 *%ptr 54 ret i1 %obit 55} 56 57; Check the low end of the constant range. 58define zeroext i1 @f4(i32 *%ptr) { 59; CHECK-LABEL: f4: 60; CHECK: asi 0(%r2), -128 61; CHECK: ipm [[REG:%r[0-5]]] 62; CHECK: afi [[REG]], 1342177280 63; CHECK: risbg %r2, [[REG]], 63, 191, 33 64; CHECK: br %r14 65 %a = load i32, i32 *%ptr 66 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 -128) 67 %val = extractvalue {i32, i1} %t, 0 68 %obit = extractvalue {i32, i1} %t, 1 69 store i32 %val, i32 *%ptr 70 ret i1 %obit 71} 72 73; Check the next value down, with the same comment as f3. 74define zeroext i1 @f5(i32 %dummy, i32 *%ptr) { 75; CHECK-LABEL: f5: 76; CHECK: l [[VAL:%r[0-5]]], 0(%r3) 77; CHECK: ahi [[VAL]], -129 78; CHECK-DAG: st [[VAL]], 0(%r3) 79; CHECK-DAG: ipm [[REG:%r[0-5]]] 80; CHECK-DAG: afi [[REG]], 1342177280 81; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33 82; CHECK: br %r14 83 %a = load i32, i32 *%ptr 84 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 -129) 85 %val = extractvalue {i32, i1} %t, 0 86 %obit = extractvalue {i32, i1} %t, 1 87 store i32 %val, i32 *%ptr 88 ret i1 %obit 89} 90 91; Check the high end of the aligned ASI range. 92define zeroext i1 @f6(i32 *%base) { 93; CHECK-LABEL: f6: 94; CHECK: asi 524284(%r2), 1 95; CHECK: ipm [[REG:%r[0-5]]] 96; CHECK: afi [[REG]], 1342177280 97; CHECK: risbg %r2, [[REG]], 63, 191, 33 98; CHECK: br %r14 99 %ptr = getelementptr i32, i32 *%base, i64 131071 100 %a = load i32, i32 *%ptr 101 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 1) 102 %val = extractvalue {i32, i1} %t, 0 103 %obit = extractvalue {i32, i1} %t, 1 104 store i32 %val, i32 *%ptr 105 ret i1 %obit 106} 107 108; Check the next word up, which must use separate address logic. 109; Other sequences besides this one would be OK. 110define zeroext i1 @f7(i32 *%base) { 111; CHECK-LABEL: f7: 112; CHECK: agfi %r2, 524288 113; CHECK: asi 0(%r2), 1 114; CHECK: ipm [[REG:%r[0-5]]] 115; CHECK: afi [[REG]], 1342177280 116; CHECK: risbg %r2, [[REG]], 63, 191, 33 117; CHECK: br %r14 118 %ptr = getelementptr i32, i32 *%base, i64 131072 119 %a = load i32, i32 *%ptr 120 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 1) 121 %val = extractvalue {i32, i1} %t, 0 122 %obit = extractvalue {i32, i1} %t, 1 123 store i32 %val, i32 *%ptr 124 ret i1 %obit 125} 126 127; Check the low end of the ASI range. 128define zeroext i1 @f8(i32 *%base) { 129; CHECK-LABEL: f8: 130; CHECK: asi -524288(%r2), 1 131; CHECK: ipm [[REG:%r[0-5]]] 132; CHECK: afi [[REG]], 1342177280 133; CHECK: risbg %r2, [[REG]], 63, 191, 33 134; CHECK: br %r14 135 %ptr = getelementptr i32, i32 *%base, i64 -131072 136 %a = load i32, i32 *%ptr 137 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 1) 138 %val = extractvalue {i32, i1} %t, 0 139 %obit = extractvalue {i32, i1} %t, 1 140 store i32 %val, i32 *%ptr 141 ret i1 %obit 142} 143 144; Check the next word down, which must use separate address logic. 145; Other sequences besides this one would be OK. 146define zeroext i1 @f9(i32 *%base) { 147; CHECK-LABEL: f9: 148; CHECK: agfi %r2, -524292 149; CHECK: asi 0(%r2), 1 150; CHECK: ipm [[REG:%r[0-5]]] 151; CHECK: afi [[REG]], 1342177280 152; CHECK: risbg %r2, [[REG]], 63, 191, 33 153; CHECK: br %r14 154 %ptr = getelementptr i32, i32 *%base, i64 -131073 155 %a = load i32, i32 *%ptr 156 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 1) 157 %val = extractvalue {i32, i1} %t, 0 158 %obit = extractvalue {i32, i1} %t, 1 159 store i32 %val, i32 *%ptr 160 ret i1 %obit 161} 162 163; Check that ASI does not allow indices. 164define zeroext i1 @f10(i64 %base, i64 %index) { 165; CHECK-LABEL: f10: 166; CHECK: agr %r2, %r3 167; CHECK: asi 4(%r2), 1 168; CHECK: ipm [[REG:%r[0-5]]] 169; CHECK: afi [[REG]], 1342177280 170; CHECK: risbg %r2, [[REG]], 63, 191, 33 171; CHECK: br %r14 172 %add1 = add i64 %base, %index 173 %add2 = add i64 %add1, 4 174 %ptr = inttoptr i64 %add2 to i32 * 175 %a = load i32, i32 *%ptr 176 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 1) 177 %val = extractvalue {i32, i1} %t, 0 178 %obit = extractvalue {i32, i1} %t, 1 179 store i32 %val, i32 *%ptr 180 ret i1 %obit 181} 182 183; Check that adding 127 to a spilled value can use ASI. 184define zeroext i1 @f11(i32 *%ptr, i32 %sel) { 185; CHECK-LABEL: f11: 186; CHECK: asi {{[0-9]+}}(%r15), 127 187; CHECK: br %r14 188entry: 189 %val0 = load volatile i32, i32 *%ptr 190 %val1 = load volatile i32, i32 *%ptr 191 %val2 = load volatile i32, i32 *%ptr 192 %val3 = load volatile i32, i32 *%ptr 193 %val4 = load volatile i32, i32 *%ptr 194 %val5 = load volatile i32, i32 *%ptr 195 %val6 = load volatile i32, i32 *%ptr 196 %val7 = load volatile i32, i32 *%ptr 197 %val8 = load volatile i32, i32 *%ptr 198 %val9 = load volatile i32, i32 *%ptr 199 %val10 = load volatile i32, i32 *%ptr 200 %val11 = load volatile i32, i32 *%ptr 201 %val12 = load volatile i32, i32 *%ptr 202 %val13 = load volatile i32, i32 *%ptr 203 %val14 = load volatile i32, i32 *%ptr 204 %val15 = load volatile i32, i32 *%ptr 205 206 %test = icmp ne i32 %sel, 0 207 br i1 %test, label %add, label %store 208 209add: 210 %t0 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val0, i32 127) 211 %add0 = extractvalue {i32, i1} %t0, 0 212 %obit0 = extractvalue {i32, i1} %t0, 1 213 %t1 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val1, i32 127) 214 %add1 = extractvalue {i32, i1} %t1, 0 215 %obit1 = extractvalue {i32, i1} %t1, 1 216 %res1 = or i1 %obit0, %obit1 217 %t2 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val2, i32 127) 218 %add2 = extractvalue {i32, i1} %t2, 0 219 %obit2 = extractvalue {i32, i1} %t2, 1 220 %res2 = or i1 %res1, %obit2 221 %t3 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val3, i32 127) 222 %add3 = extractvalue {i32, i1} %t3, 0 223 %obit3 = extractvalue {i32, i1} %t3, 1 224 %res3 = or i1 %res2, %obit3 225 %t4 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val4, i32 127) 226 %add4 = extractvalue {i32, i1} %t4, 0 227 %obit4 = extractvalue {i32, i1} %t4, 1 228 %res4 = or i1 %res3, %obit4 229 %t5 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val5, i32 127) 230 %add5 = extractvalue {i32, i1} %t5, 0 231 %obit5 = extractvalue {i32, i1} %t5, 1 232 %res5 = or i1 %res4, %obit5 233 %t6 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val6, i32 127) 234 %add6 = extractvalue {i32, i1} %t6, 0 235 %obit6 = extractvalue {i32, i1} %t6, 1 236 %res6 = or i1 %res5, %obit6 237 %t7 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val7, i32 127) 238 %add7 = extractvalue {i32, i1} %t7, 0 239 %obit7 = extractvalue {i32, i1} %t7, 1 240 %res7 = or i1 %res6, %obit7 241 %t8 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val8, i32 127) 242 %add8 = extractvalue {i32, i1} %t8, 0 243 %obit8 = extractvalue {i32, i1} %t8, 1 244 %res8 = or i1 %res7, %obit8 245 %t9 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val9, i32 127) 246 %add9 = extractvalue {i32, i1} %t9, 0 247 %obit9 = extractvalue {i32, i1} %t9, 1 248 %res9 = or i1 %res8, %obit9 249 %t10 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val10, i32 127) 250 %add10 = extractvalue {i32, i1} %t10, 0 251 %obit10 = extractvalue {i32, i1} %t10, 1 252 %res10 = or i1 %res9, %obit10 253 %t11 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val11, i32 127) 254 %add11 = extractvalue {i32, i1} %t11, 0 255 %obit11 = extractvalue {i32, i1} %t11, 1 256 %res11 = or i1 %res10, %obit11 257 %t12 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val12, i32 127) 258 %add12 = extractvalue {i32, i1} %t12, 0 259 %obit12 = extractvalue {i32, i1} %t12, 1 260 %res12 = or i1 %res11, %obit12 261 %t13 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val13, i32 127) 262 %add13 = extractvalue {i32, i1} %t13, 0 263 %obit13 = extractvalue {i32, i1} %t13, 1 264 %res13 = or i1 %res12, %obit13 265 %t14 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val14, i32 127) 266 %add14 = extractvalue {i32, i1} %t14, 0 267 %obit14 = extractvalue {i32, i1} %t14, 1 268 %res14 = or i1 %res13, %obit14 269 %t15 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val15, i32 127) 270 %add15 = extractvalue {i32, i1} %t15, 0 271 %obit15 = extractvalue {i32, i1} %t15, 1 272 %res15 = or i1 %res14, %obit15 273 274 br label %store 275 276store: 277 %new0 = phi i32 [ %val0, %entry ], [ %add0, %add ] 278 %new1 = phi i32 [ %val1, %entry ], [ %add1, %add ] 279 %new2 = phi i32 [ %val2, %entry ], [ %add2, %add ] 280 %new3 = phi i32 [ %val3, %entry ], [ %add3, %add ] 281 %new4 = phi i32 [ %val4, %entry ], [ %add4, %add ] 282 %new5 = phi i32 [ %val5, %entry ], [ %add5, %add ] 283 %new6 = phi i32 [ %val6, %entry ], [ %add6, %add ] 284 %new7 = phi i32 [ %val7, %entry ], [ %add7, %add ] 285 %new8 = phi i32 [ %val8, %entry ], [ %add8, %add ] 286 %new9 = phi i32 [ %val9, %entry ], [ %add9, %add ] 287 %new10 = phi i32 [ %val10, %entry ], [ %add10, %add ] 288 %new11 = phi i32 [ %val11, %entry ], [ %add11, %add ] 289 %new12 = phi i32 [ %val12, %entry ], [ %add12, %add ] 290 %new13 = phi i32 [ %val13, %entry ], [ %add13, %add ] 291 %new14 = phi i32 [ %val14, %entry ], [ %add14, %add ] 292 %new15 = phi i32 [ %val15, %entry ], [ %add15, %add ] 293 %res = phi i1 [ 0, %entry ], [ %res15, %add ] 294 295 store volatile i32 %new0, i32 *%ptr 296 store volatile i32 %new1, i32 *%ptr 297 store volatile i32 %new2, i32 *%ptr 298 store volatile i32 %new3, i32 *%ptr 299 store volatile i32 %new4, i32 *%ptr 300 store volatile i32 %new5, i32 *%ptr 301 store volatile i32 %new6, i32 *%ptr 302 store volatile i32 %new7, i32 *%ptr 303 store volatile i32 %new8, i32 *%ptr 304 store volatile i32 %new9, i32 *%ptr 305 store volatile i32 %new10, i32 *%ptr 306 store volatile i32 %new11, i32 *%ptr 307 store volatile i32 %new12, i32 *%ptr 308 store volatile i32 %new13, i32 *%ptr 309 store volatile i32 %new14, i32 *%ptr 310 store volatile i32 %new15, i32 *%ptr 311 312 ret i1 %res 313} 314 315; Check that adding -128 to a spilled value can use ASI. 316define zeroext i1 @f12(i32 *%ptr, i32 %sel) { 317; CHECK-LABEL: f12: 318; CHECK: asi {{[0-9]+}}(%r15), -128 319; CHECK: br %r14 320entry: 321 %val0 = load volatile i32, i32 *%ptr 322 %val1 = load volatile i32, i32 *%ptr 323 %val2 = load volatile i32, i32 *%ptr 324 %val3 = load volatile i32, i32 *%ptr 325 %val4 = load volatile i32, i32 *%ptr 326 %val5 = load volatile i32, i32 *%ptr 327 %val6 = load volatile i32, i32 *%ptr 328 %val7 = load volatile i32, i32 *%ptr 329 %val8 = load volatile i32, i32 *%ptr 330 %val9 = load volatile i32, i32 *%ptr 331 %val10 = load volatile i32, i32 *%ptr 332 %val11 = load volatile i32, i32 *%ptr 333 %val12 = load volatile i32, i32 *%ptr 334 %val13 = load volatile i32, i32 *%ptr 335 %val14 = load volatile i32, i32 *%ptr 336 %val15 = load volatile i32, i32 *%ptr 337 338 %test = icmp ne i32 %sel, 0 339 br i1 %test, label %add, label %store 340 341add: 342 %t0 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val0, i32 -128) 343 %add0 = extractvalue {i32, i1} %t0, 0 344 %obit0 = extractvalue {i32, i1} %t0, 1 345 %t1 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val1, i32 -128) 346 %add1 = extractvalue {i32, i1} %t1, 0 347 %obit1 = extractvalue {i32, i1} %t1, 1 348 %res1 = or i1 %obit0, %obit1 349 %t2 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val2, i32 -128) 350 %add2 = extractvalue {i32, i1} %t2, 0 351 %obit2 = extractvalue {i32, i1} %t2, 1 352 %res2 = or i1 %res1, %obit2 353 %t3 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val3, i32 -128) 354 %add3 = extractvalue {i32, i1} %t3, 0 355 %obit3 = extractvalue {i32, i1} %t3, 1 356 %res3 = or i1 %res2, %obit3 357 %t4 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val4, i32 -128) 358 %add4 = extractvalue {i32, i1} %t4, 0 359 %obit4 = extractvalue {i32, i1} %t4, 1 360 %res4 = or i1 %res3, %obit4 361 %t5 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val5, i32 -128) 362 %add5 = extractvalue {i32, i1} %t5, 0 363 %obit5 = extractvalue {i32, i1} %t5, 1 364 %res5 = or i1 %res4, %obit5 365 %t6 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val6, i32 -128) 366 %add6 = extractvalue {i32, i1} %t6, 0 367 %obit6 = extractvalue {i32, i1} %t6, 1 368 %res6 = or i1 %res5, %obit6 369 %t7 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val7, i32 -128) 370 %add7 = extractvalue {i32, i1} %t7, 0 371 %obit7 = extractvalue {i32, i1} %t7, 1 372 %res7 = or i1 %res6, %obit7 373 %t8 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val8, i32 -128) 374 %add8 = extractvalue {i32, i1} %t8, 0 375 %obit8 = extractvalue {i32, i1} %t8, 1 376 %res8 = or i1 %res7, %obit8 377 %t9 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val9, i32 -128) 378 %add9 = extractvalue {i32, i1} %t9, 0 379 %obit9 = extractvalue {i32, i1} %t9, 1 380 %res9 = or i1 %res8, %obit9 381 %t10 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val10, i32 -128) 382 %add10 = extractvalue {i32, i1} %t10, 0 383 %obit10 = extractvalue {i32, i1} %t10, 1 384 %res10 = or i1 %res9, %obit10 385 %t11 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val11, i32 -128) 386 %add11 = extractvalue {i32, i1} %t11, 0 387 %obit11 = extractvalue {i32, i1} %t11, 1 388 %res11 = or i1 %res10, %obit11 389 %t12 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val12, i32 -128) 390 %add12 = extractvalue {i32, i1} %t12, 0 391 %obit12 = extractvalue {i32, i1} %t12, 1 392 %res12 = or i1 %res11, %obit12 393 %t13 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val13, i32 -128) 394 %add13 = extractvalue {i32, i1} %t13, 0 395 %obit13 = extractvalue {i32, i1} %t13, 1 396 %res13 = or i1 %res12, %obit13 397 %t14 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val14, i32 -128) 398 %add14 = extractvalue {i32, i1} %t14, 0 399 %obit14 = extractvalue {i32, i1} %t14, 1 400 %res14 = or i1 %res13, %obit14 401 %t15 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val15, i32 -128) 402 %add15 = extractvalue {i32, i1} %t15, 0 403 %obit15 = extractvalue {i32, i1} %t15, 1 404 %res15 = or i1 %res14, %obit15 405 406 br label %store 407 408store: 409 %new0 = phi i32 [ %val0, %entry ], [ %add0, %add ] 410 %new1 = phi i32 [ %val1, %entry ], [ %add1, %add ] 411 %new2 = phi i32 [ %val2, %entry ], [ %add2, %add ] 412 %new3 = phi i32 [ %val3, %entry ], [ %add3, %add ] 413 %new4 = phi i32 [ %val4, %entry ], [ %add4, %add ] 414 %new5 = phi i32 [ %val5, %entry ], [ %add5, %add ] 415 %new6 = phi i32 [ %val6, %entry ], [ %add6, %add ] 416 %new7 = phi i32 [ %val7, %entry ], [ %add7, %add ] 417 %new8 = phi i32 [ %val8, %entry ], [ %add8, %add ] 418 %new9 = phi i32 [ %val9, %entry ], [ %add9, %add ] 419 %new10 = phi i32 [ %val10, %entry ], [ %add10, %add ] 420 %new11 = phi i32 [ %val11, %entry ], [ %add11, %add ] 421 %new12 = phi i32 [ %val12, %entry ], [ %add12, %add ] 422 %new13 = phi i32 [ %val13, %entry ], [ %add13, %add ] 423 %new14 = phi i32 [ %val14, %entry ], [ %add14, %add ] 424 %new15 = phi i32 [ %val15, %entry ], [ %add15, %add ] 425 %res = phi i1 [ 0, %entry ], [ %res15, %add ] 426 427 store volatile i32 %new0, i32 *%ptr 428 store volatile i32 %new1, i32 *%ptr 429 store volatile i32 %new2, i32 *%ptr 430 store volatile i32 %new3, i32 *%ptr 431 store volatile i32 %new4, i32 *%ptr 432 store volatile i32 %new5, i32 *%ptr 433 store volatile i32 %new6, i32 *%ptr 434 store volatile i32 %new7, i32 *%ptr 435 store volatile i32 %new8, i32 *%ptr 436 store volatile i32 %new9, i32 *%ptr 437 store volatile i32 %new10, i32 *%ptr 438 store volatile i32 %new11, i32 *%ptr 439 store volatile i32 %new12, i32 *%ptr 440 store volatile i32 %new13, i32 *%ptr 441 store volatile i32 %new14, i32 *%ptr 442 store volatile i32 %new15, i32 *%ptr 443 444 ret i1 %res 445} 446 447; Check using the overflow result for a branch. 448define void @f13(i32 *%ptr) { 449; CHECK-LABEL: f13: 450; CHECK: asi 0(%r2), 1 451; CHECK: jgo foo@PLT 452; CHECK: br %r14 453 %a = load i32, i32 *%ptr 454 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 1) 455 %val = extractvalue {i32, i1} %t, 0 456 %obit = extractvalue {i32, i1} %t, 1 457 store i32 %val, i32 *%ptr 458 br i1 %obit, label %call, label %exit 459 460call: 461 tail call i32 @foo() 462 br label %exit 463 464exit: 465 ret void 466} 467 468; ... and the same with the inverted direction. 469define void @f14(i32 *%ptr) { 470; CHECK-LABEL: f14: 471; CHECK: asi 0(%r2), 1 472; CHECK: jgno foo@PLT 473; CHECK: br %r14 474 %a = load i32, i32 *%ptr 475 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 1) 476 %val = extractvalue {i32, i1} %t, 0 477 %obit = extractvalue {i32, i1} %t, 1 478 store i32 %val, i32 *%ptr 479 br i1 %obit, label %exit, label %call 480 481call: 482 tail call i32 @foo() 483 br label %exit 484 485exit: 486 ret void 487} 488 489declare {i32, i1} @llvm.sadd.with.overflow.i32(i32, i32) nounwind readnone 490 491