1; RUN: llc < %s -asm-verbose=false -disable-wasm-fallthrough-return-opt | FileCheck %s
2
3; Test that basic 64-bit floating-point operations assemble as expected.
4
5target datalayout = "e-m:e-p:32:32-i64:64-n32:64-S128"
6target triple = "wasm32-unknown-unknown"
7
8declare double @llvm.fabs.f64(double)
9declare double @llvm.copysign.f64(double, double)
10declare double @llvm.sqrt.f64(double)
11declare double @llvm.ceil.f64(double)
12declare double @llvm.floor.f64(double)
13declare double @llvm.trunc.f64(double)
14declare double @llvm.nearbyint.f64(double)
15declare double @llvm.rint.f64(double)
16declare double @llvm.fma.f64(double, double, double)
17
18; CHECK-LABEL: fadd64:
19; CHECK-NEXT: .param f64, f64{{$}}
20; CHECK-NEXT: .result f64{{$}}
21; CHECK-NEXT: get_local $push[[L0:[0-9]+]]=, 0{{$}}
22; CHECK-NEXT: get_local $push[[L1:[0-9]+]]=, 1{{$}}
23; CHECK-NEXT: f64.add $push[[LR:[0-9]+]]=, $pop[[L0]], $pop[[L1]]{{$}}
24; CHECK-NEXT: return $pop[[LR]]{{$}}
25define double @fadd64(double %x, double %y) {
26  %a = fadd double %x, %y
27  ret double %a
28}
29
30; CHECK-LABEL: fsub64:
31; CHECK: f64.sub $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}, $pop{{[0-9]+}}{{$}}
32; CHECK-NEXT: return $pop[[LR]]{{$}}
33define double @fsub64(double %x, double %y) {
34  %a = fsub double %x, %y
35  ret double %a
36}
37
38; CHECK-LABEL: fmul64:
39; CHECK: f64.mul $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}, $pop{{[0-9]+}}{{$}}
40; CHECK-NEXT: return $pop[[LR]]{{$}}
41define double @fmul64(double %x, double %y) {
42  %a = fmul double %x, %y
43  ret double %a
44}
45
46; CHECK-LABEL: fdiv64:
47; CHECK: f64.div $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}, $pop{{[0-9]+}}{{$}}
48; CHECK-NEXT: return $pop[[LR]]{{$}}
49define double @fdiv64(double %x, double %y) {
50  %a = fdiv double %x, %y
51  ret double %a
52}
53
54; CHECK-LABEL: fabs64:
55; CHECK: f64.abs $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}{{$}}
56; CHECK-NEXT: return $pop[[LR]]{{$}}
57define double @fabs64(double %x) {
58  %a = call double @llvm.fabs.f64(double %x)
59  ret double %a
60}
61
62; CHECK-LABEL: fneg64:
63; CHECK: f64.neg $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}{{$}}
64; CHECK-NEXT: return $pop[[LR]]{{$}}
65define double @fneg64(double %x) {
66  %a = fsub double -0., %x
67  ret double %a
68}
69
70; CHECK-LABEL: copysign64:
71; CHECK: f64.copysign $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}, $pop{{[0-9]+}}{{$}}
72; CHECK-NEXT: return $pop[[LR]]{{$}}
73define double @copysign64(double %x, double %y) {
74  %a = call double @llvm.copysign.f64(double %x, double %y)
75  ret double %a
76}
77
78; CHECK-LABEL: sqrt64:
79; CHECK: f64.sqrt $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}{{$}}
80; CHECK-NEXT: return $pop[[LR]]{{$}}
81define double @sqrt64(double %x) {
82  %a = call double @llvm.sqrt.f64(double %x)
83  ret double %a
84}
85
86; CHECK-LABEL: ceil64:
87; CHECK: f64.ceil $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}{{$}}
88; CHECK-NEXT: return $pop[[LR]]{{$}}
89define double @ceil64(double %x) {
90  %a = call double @llvm.ceil.f64(double %x)
91  ret double %a
92}
93
94; CHECK-LABEL: floor64:
95; CHECK: f64.floor $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}{{$}}
96; CHECK-NEXT: return $pop[[LR]]{{$}}
97define double @floor64(double %x) {
98  %a = call double @llvm.floor.f64(double %x)
99  ret double %a
100}
101
102; CHECK-LABEL: trunc64:
103; CHECK: f64.trunc $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}{{$}}
104; CHECK-NEXT: return $pop[[LR]]{{$}}
105define double @trunc64(double %x) {
106  %a = call double @llvm.trunc.f64(double %x)
107  ret double %a
108}
109
110; CHECK-LABEL: nearest64:
111; CHECK: f64.nearest $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}{{$}}
112; CHECK-NEXT: return $pop[[LR]]{{$}}
113define double @nearest64(double %x) {
114  %a = call double @llvm.nearbyint.f64(double %x)
115  ret double %a
116}
117
118; CHECK-LABEL: nearest64_via_rint:
119; CHECK: f64.nearest $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}{{$}}
120; CHECK-NEXT: return $pop[[LR]]{{$}}
121define double @nearest64_via_rint(double %x) {
122  %a = call double @llvm.rint.f64(double %x)
123  ret double %a
124}
125
126; Min and max tests. LLVM currently only forms fminnan and fmaxnan nodes in
127; cases where there's a single fcmp with a select and it can prove that one
128; of the arms is never NaN, so we only test that case. In the future if LLVM
129; learns to form fminnan/fmaxnan in more cases, we can write more general
130; tests.
131
132; CHECK-LABEL: fmin64:
133; CHECK: f64.min $push1=, $pop{{[0-9]+}}, $pop[[LR]]{{$}}
134; CHECK-NEXT: return $pop1{{$}}
135define double @fmin64(double %x) {
136  %a = fcmp ult double %x, 0.0
137  %b = select i1 %a, double %x, double 0.0
138  ret double %b
139}
140
141; CHECK-LABEL: fmax64:
142; CHECK: f64.max $push1=, $pop{{[0-9]+}}, $pop[[LR]]{{$}}
143; CHECK-NEXT: return $pop1{{$}}
144define double @fmax64(double %x) {
145  %a = fcmp ugt double %x, 0.0
146  %b = select i1 %a, double %x, double 0.0
147  ret double %b
148}
149
150; CHECK-LABEL: fma64:
151; CHECK: {{^}} f64.call $push[[LR:[0-9]+]]=, fma@FUNCTION, $pop{{[0-9]+}}, $pop{{[0-9]+}}, $pop{{[0-9]+}}{{$}}
152; CHECK-NEXT: return $pop[[LR]]{{$}}
153define double @fma64(double %a, double %b, double %c) {
154  %d = call double @llvm.fma.f64(double %a, double %b, double %c)
155  ret double %d
156}
157