1; NOTE: Assertions have been autogenerated by utils/update_test_checks.py 2; RUN: opt < %s -instsimplify -S | FileCheck %s 3 4define i32 @zero_dividend(i32 %A) { 5; CHECK-LABEL: @zero_dividend( 6; CHECK-NEXT: ret i32 0 7; 8 %B = urem i32 0, %A 9 ret i32 %B 10} 11 12define <2 x i32> @zero_dividend_vector(<2 x i32> %A) { 13; CHECK-LABEL: @zero_dividend_vector( 14; CHECK-NEXT: ret <2 x i32> zeroinitializer 15; 16 %B = srem <2 x i32> zeroinitializer, %A 17 ret <2 x i32> %B 18} 19 20define <2 x i32> @zero_dividend_vector_undef_elt(<2 x i32> %A) { 21; CHECK-LABEL: @zero_dividend_vector_undef_elt( 22; CHECK-NEXT: ret <2 x i32> zeroinitializer 23; 24 %B = urem <2 x i32> <i32 undef, i32 0>, %A 25 ret <2 x i32> %B 26} 27 28; Division-by-zero is undef. UB in any vector lane means the whole op is undef. 29 30define <2 x i8> @srem_zero_elt_vec_constfold(<2 x i8> %x) { 31; CHECK-LABEL: @srem_zero_elt_vec_constfold( 32; CHECK-NEXT: ret <2 x i8> undef 33; 34 %rem = srem <2 x i8> <i8 1, i8 2>, <i8 0, i8 -42> 35 ret <2 x i8> %rem 36} 37 38define <2 x i8> @urem_zero_elt_vec_constfold(<2 x i8> %x) { 39; CHECK-LABEL: @urem_zero_elt_vec_constfold( 40; CHECK-NEXT: ret <2 x i8> undef 41; 42 %rem = urem <2 x i8> <i8 1, i8 2>, <i8 42, i8 0> 43 ret <2 x i8> %rem 44} 45 46define <2 x i8> @srem_zero_elt_vec(<2 x i8> %x) { 47; CHECK-LABEL: @srem_zero_elt_vec( 48; CHECK-NEXT: ret <2 x i8> undef 49; 50 %rem = srem <2 x i8> %x, <i8 -42, i8 0> 51 ret <2 x i8> %rem 52} 53 54define <2 x i8> @urem_zero_elt_vec(<2 x i8> %x) { 55; CHECK-LABEL: @urem_zero_elt_vec( 56; CHECK-NEXT: ret <2 x i8> undef 57; 58 %rem = urem <2 x i8> %x, <i8 0, i8 42> 59 ret <2 x i8> %rem 60} 61 62define <2 x i8> @srem_undef_elt_vec(<2 x i8> %x) { 63; CHECK-LABEL: @srem_undef_elt_vec( 64; CHECK-NEXT: ret <2 x i8> undef 65; 66 %rem = srem <2 x i8> %x, <i8 -42, i8 undef> 67 ret <2 x i8> %rem 68} 69 70define <2 x i8> @urem_undef_elt_vec(<2 x i8> %x) { 71; CHECK-LABEL: @urem_undef_elt_vec( 72; CHECK-NEXT: ret <2 x i8> undef 73; 74 %rem = urem <2 x i8> %x, <i8 undef, i8 42> 75 ret <2 x i8> %rem 76} 77 78; Division-by-zero is undef. UB in any vector lane means the whole op is undef. 79; Thus, we can simplify this: if any element of 'y' is 0, we can do anything. 80; Therefore, assume that all elements of 'y' must be 1. 81 82define <2 x i1> @srem_bool_vec(<2 x i1> %x, <2 x i1> %y) { 83; CHECK-LABEL: @srem_bool_vec( 84; CHECK-NEXT: ret <2 x i1> zeroinitializer 85; 86 %rem = srem <2 x i1> %x, %y 87 ret <2 x i1> %rem 88} 89 90define <2 x i1> @urem_bool_vec(<2 x i1> %x, <2 x i1> %y) { 91; CHECK-LABEL: @urem_bool_vec( 92; CHECK-NEXT: ret <2 x i1> zeroinitializer 93; 94 %rem = urem <2 x i1> %x, %y 95 ret <2 x i1> %rem 96} 97 98define <2 x i32> @zext_bool_urem_divisor_vec(<2 x i1> %x, <2 x i32> %y) { 99; CHECK-LABEL: @zext_bool_urem_divisor_vec( 100; CHECK-NEXT: ret <2 x i32> zeroinitializer 101; 102 %ext = zext <2 x i1> %x to <2 x i32> 103 %r = urem <2 x i32> %y, %ext 104 ret <2 x i32> %r 105} 106 107define i32 @zext_bool_srem_divisor(i1 %x, i32 %y) { 108; CHECK-LABEL: @zext_bool_srem_divisor( 109; CHECK-NEXT: ret i32 0 110; 111 %ext = zext i1 %x to i32 112 %r = srem i32 %y, %ext 113 ret i32 %r 114} 115 116define i32 @select1(i32 %x, i1 %b) { 117; CHECK-LABEL: @select1( 118; CHECK-NEXT: ret i32 0 119; 120 %rhs = select i1 %b, i32 %x, i32 1 121 %rem = srem i32 %x, %rhs 122 ret i32 %rem 123} 124 125define i32 @select2(i32 %x, i1 %b) { 126; CHECK-LABEL: @select2( 127; CHECK-NEXT: ret i32 0 128; 129 %rhs = select i1 %b, i32 %x, i32 1 130 %rem = urem i32 %x, %rhs 131 ret i32 %rem 132} 133 134define i32 @rem1(i32 %x, i32 %n) { 135; CHECK-LABEL: @rem1( 136; CHECK-NEXT: [[MOD:%.*]] = srem i32 [[X:%.*]], [[N:%.*]] 137; CHECK-NEXT: ret i32 [[MOD]] 138; 139 %mod = srem i32 %x, %n 140 %mod1 = srem i32 %mod, %n 141 ret i32 %mod1 142} 143 144define i32 @rem2(i32 %x, i32 %n) { 145; CHECK-LABEL: @rem2( 146; CHECK-NEXT: [[MOD:%.*]] = urem i32 [[X:%.*]], [[N:%.*]] 147; CHECK-NEXT: ret i32 [[MOD]] 148; 149 %mod = urem i32 %x, %n 150 %mod1 = urem i32 %mod, %n 151 ret i32 %mod1 152} 153 154define i32 @rem3(i32 %x, i32 %n) { 155; CHECK-LABEL: @rem3( 156; CHECK-NEXT: [[MOD:%.*]] = srem i32 [[X:%.*]], [[N:%.*]] 157; CHECK-NEXT: [[MOD1:%.*]] = urem i32 [[MOD]], [[N]] 158; CHECK-NEXT: ret i32 [[MOD1]] 159; 160 %mod = srem i32 %x, %n 161 %mod1 = urem i32 %mod, %n 162 ret i32 %mod1 163} 164 165define i32 @urem_dividend_known_smaller_than_constant_divisor(i32 %x) { 166; CHECK-LABEL: @urem_dividend_known_smaller_than_constant_divisor( 167; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 250 168; CHECK-NEXT: ret i32 [[AND]] 169; 170 %and = and i32 %x, 250 171 %r = urem i32 %and, 251 172 ret i32 %r 173} 174 175define i32 @not_urem_dividend_known_smaller_than_constant_divisor(i32 %x) { 176; CHECK-LABEL: @not_urem_dividend_known_smaller_than_constant_divisor( 177; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 251 178; CHECK-NEXT: [[R:%.*]] = urem i32 [[AND]], 251 179; CHECK-NEXT: ret i32 [[R]] 180; 181 %and = and i32 %x, 251 182 %r = urem i32 %and, 251 183 ret i32 %r 184} 185 186define i32 @urem_constant_dividend_known_smaller_than_divisor(i32 %x) { 187; CHECK-LABEL: @urem_constant_dividend_known_smaller_than_divisor( 188; CHECK-NEXT: ret i32 250 189; 190 %or = or i32 %x, 251 191 %r = urem i32 250, %or 192 ret i32 %r 193} 194 195define i32 @not_urem_constant_dividend_known_smaller_than_divisor(i32 %x) { 196; CHECK-LABEL: @not_urem_constant_dividend_known_smaller_than_divisor( 197; CHECK-NEXT: [[OR:%.*]] = or i32 [[X:%.*]], 251 198; CHECK-NEXT: [[R:%.*]] = urem i32 251, [[OR]] 199; CHECK-NEXT: ret i32 [[R]] 200; 201 %or = or i32 %x, 251 202 %r = urem i32 251, %or 203 ret i32 %r 204} 205 206; This would require computing known bits on both x and y. Is it worth doing? 207 208define i32 @urem_dividend_known_smaller_than_divisor(i32 %x, i32 %y) { 209; CHECK-LABEL: @urem_dividend_known_smaller_than_divisor( 210; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 250 211; CHECK-NEXT: [[OR:%.*]] = or i32 [[Y:%.*]], 251 212; CHECK-NEXT: [[R:%.*]] = urem i32 [[AND]], [[OR]] 213; CHECK-NEXT: ret i32 [[R]] 214; 215 %and = and i32 %x, 250 216 %or = or i32 %y, 251 217 %r = urem i32 %and, %or 218 ret i32 %r 219} 220 221define i32 @not_urem_dividend_known_smaller_than_divisor(i32 %x, i32 %y) { 222; CHECK-LABEL: @not_urem_dividend_known_smaller_than_divisor( 223; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 251 224; CHECK-NEXT: [[OR:%.*]] = or i32 [[Y:%.*]], 251 225; CHECK-NEXT: [[R:%.*]] = urem i32 [[AND]], [[OR]] 226; CHECK-NEXT: ret i32 [[R]] 227; 228 %and = and i32 %x, 251 229 %or = or i32 %y, 251 230 %r = urem i32 %and, %or 231 ret i32 %r 232} 233 234declare i32 @external() 235 236define i32 @rem4() { 237; CHECK-LABEL: @rem4( 238; CHECK-NEXT: [[CALL:%.*]] = call i32 @external(), !range !0 239; CHECK-NEXT: ret i32 [[CALL]] 240; 241 %call = call i32 @external(), !range !0 242 %urem = urem i32 %call, 3 243 ret i32 %urem 244} 245 246!0 = !{i32 0, i32 3} 247 248define i32 @rem5(i32 %x, i32 %y) { 249; CHECK-LABEL: @rem5( 250; CHECK-NEXT: ret i32 0 251; 252 %shl = shl nsw i32 %x, %y 253 %mod = srem i32 %shl, %x 254 ret i32 %mod 255} 256 257define <2 x i32> @rem6(<2 x i32> %x, <2 x i32> %y) { 258; CHECK-LABEL: @rem6( 259; CHECK-NEXT: ret <2 x i32> zeroinitializer 260; 261 %shl = shl nsw <2 x i32> %x, %y 262 %mod = srem <2 x i32> %shl, %x 263 ret <2 x i32> %mod 264} 265 266; make sure the previous fold doesn't take place for wrapped shifts 267 268define i32 @rem7(i32 %x, i32 %y) { 269; CHECK-LABEL: @rem7( 270; CHECK-NEXT: [[SHL:%.*]] = shl i32 [[X:%.*]], [[Y:%.*]] 271; CHECK-NEXT: [[MOD:%.*]] = srem i32 [[SHL]], [[X]] 272; CHECK-NEXT: ret i32 [[MOD]] 273; 274 %shl = shl i32 %x, %y 275 %mod = srem i32 %shl, %x 276 ret i32 %mod 277} 278 279define i32 @rem8(i32 %x, i32 %y) { 280; CHECK-LABEL: @rem8( 281; CHECK-NEXT: ret i32 0 282; 283 %shl = shl nuw i32 %x, %y 284 %mod = urem i32 %shl, %x 285 ret i32 %mod 286} 287 288define <2 x i32> @rem9(<2 x i32> %x, <2 x i32> %y) { 289; CHECK-LABEL: @rem9( 290; CHECK-NEXT: ret <2 x i32> zeroinitializer 291; 292 %shl = shl nuw <2 x i32> %x, %y 293 %mod = urem <2 x i32> %shl, %x 294 ret <2 x i32> %mod 295} 296 297; make sure the previous fold doesn't take place for wrapped shifts 298 299define i32 @rem10(i32 %x, i32 %y) { 300; CHECK-LABEL: @rem10( 301; CHECK-NEXT: [[SHL:%.*]] = shl i32 [[X:%.*]], [[Y:%.*]] 302; CHECK-NEXT: [[MOD:%.*]] = urem i32 [[SHL]], [[X]] 303; CHECK-NEXT: ret i32 [[MOD]] 304; 305 %shl = shl i32 %x, %y 306 %mod = urem i32 %shl, %x 307 ret i32 %mod 308} 309 310define i32 @srem_with_sext_bool_divisor(i1 %x, i32 %y) { 311; CHECK-LABEL: @srem_with_sext_bool_divisor( 312; CHECK-NEXT: ret i32 0 313; 314 %s = sext i1 %x to i32 315 %r = srem i32 %y, %s 316 ret i32 %r 317} 318 319define <2 x i32> @srem_with_sext_bool_divisor_vec(<2 x i1> %x, <2 x i32> %y) { 320; CHECK-LABEL: @srem_with_sext_bool_divisor_vec( 321; CHECK-NEXT: ret <2 x i32> zeroinitializer 322; 323 %s = sext <2 x i1> %x to <2 x i32> 324 %r = srem <2 x i32> %y, %s 325 ret <2 x i32> %r 326} 327 328