1 //===-- DifferenceEngine.cpp - Structural function/module comparison ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the implementation of the LLVM difference
11 // engine, which structurally compares global values within a module.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "DifferenceEngine.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringSet.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Support/type_traits.h"
29 #include <utility>
30 
31 using namespace llvm;
32 
33 namespace {
34 
35 /// A priority queue, implemented as a heap.
36 template <class T, class Sorter, unsigned InlineCapacity>
37 class PriorityQueue {
38   Sorter Precedes;
39   llvm::SmallVector<T, InlineCapacity> Storage;
40 
41 public:
PriorityQueue(const Sorter & Precedes)42   PriorityQueue(const Sorter &Precedes) : Precedes(Precedes) {}
43 
44   /// Checks whether the heap is empty.
empty() const45   bool empty() const { return Storage.empty(); }
46 
47   /// Insert a new value on the heap.
insert(const T & V)48   void insert(const T &V) {
49     unsigned Index = Storage.size();
50     Storage.push_back(V);
51     if (Index == 0) return;
52 
53     T *data = Storage.data();
54     while (true) {
55       unsigned Target = (Index + 1) / 2 - 1;
56       if (!Precedes(data[Index], data[Target])) return;
57       std::swap(data[Index], data[Target]);
58       if (Target == 0) return;
59       Index = Target;
60     }
61   }
62 
63   /// Remove the minimum value in the heap.  Only valid on a non-empty heap.
remove_min()64   T remove_min() {
65     assert(!empty());
66     T tmp = Storage[0];
67 
68     unsigned NewSize = Storage.size() - 1;
69     if (NewSize) {
70       // Move the slot at the end to the beginning.
71       if (isPodLike<T>::value)
72         Storage[0] = Storage[NewSize];
73       else
74         std::swap(Storage[0], Storage[NewSize]);
75 
76       // Bubble the root up as necessary.
77       unsigned Index = 0;
78       while (true) {
79         // With a 1-based index, the children would be Index*2 and Index*2+1.
80         unsigned R = (Index + 1) * 2;
81         unsigned L = R - 1;
82 
83         // If R is out of bounds, we're done after this in any case.
84         if (R >= NewSize) {
85           // If L is also out of bounds, we're done immediately.
86           if (L >= NewSize) break;
87 
88           // Otherwise, test whether we should swap L and Index.
89           if (Precedes(Storage[L], Storage[Index]))
90             std::swap(Storage[L], Storage[Index]);
91           break;
92         }
93 
94         // Otherwise, we need to compare with the smaller of L and R.
95         // Prefer R because it's closer to the end of the array.
96         unsigned IndexToTest = (Precedes(Storage[L], Storage[R]) ? L : R);
97 
98         // If Index is >= the min of L and R, then heap ordering is restored.
99         if (!Precedes(Storage[IndexToTest], Storage[Index]))
100           break;
101 
102         // Otherwise, keep bubbling up.
103         std::swap(Storage[IndexToTest], Storage[Index]);
104         Index = IndexToTest;
105       }
106     }
107     Storage.pop_back();
108 
109     return tmp;
110   }
111 };
112 
113 /// A function-scope difference engine.
114 class FunctionDifferenceEngine {
115   DifferenceEngine &Engine;
116 
117   /// The current mapping from old local values to new local values.
118   DenseMap<Value*, Value*> Values;
119 
120   /// The current mapping from old blocks to new blocks.
121   DenseMap<BasicBlock*, BasicBlock*> Blocks;
122 
123   DenseSet<std::pair<Value*, Value*> > TentativeValues;
124 
getUnprocPredCount(BasicBlock * Block) const125   unsigned getUnprocPredCount(BasicBlock *Block) const {
126     unsigned Count = 0;
127     for (pred_iterator I = pred_begin(Block), E = pred_end(Block); I != E; ++I)
128       if (!Blocks.count(*I)) Count++;
129     return Count;
130   }
131 
132   typedef std::pair<BasicBlock*, BasicBlock*> BlockPair;
133 
134   /// A type which sorts a priority queue by the number of unprocessed
135   /// predecessor blocks it has remaining.
136   ///
137   /// This is actually really expensive to calculate.
138   struct QueueSorter {
139     const FunctionDifferenceEngine &fde;
QueueSorter__anone3e538550111::FunctionDifferenceEngine::QueueSorter140     explicit QueueSorter(const FunctionDifferenceEngine &fde) : fde(fde) {}
141 
operator ()__anone3e538550111::FunctionDifferenceEngine::QueueSorter142     bool operator()(const BlockPair &Old, const BlockPair &New) {
143       return fde.getUnprocPredCount(Old.first)
144            < fde.getUnprocPredCount(New.first);
145     }
146   };
147 
148   /// A queue of unified blocks to process.
149   PriorityQueue<BlockPair, QueueSorter, 20> Queue;
150 
151   /// Try to unify the given two blocks.  Enqueues them for processing
152   /// if they haven't already been processed.
153   ///
154   /// Returns true if there was a problem unifying them.
tryUnify(BasicBlock * L,BasicBlock * R)155   bool tryUnify(BasicBlock *L, BasicBlock *R) {
156     BasicBlock *&Ref = Blocks[L];
157 
158     if (Ref) {
159       if (Ref == R) return false;
160 
161       Engine.logf("successor %l cannot be equivalent to %r; "
162                   "it's already equivalent to %r")
163         << L << R << Ref;
164       return true;
165     }
166 
167     Ref = R;
168     Queue.insert(BlockPair(L, R));
169     return false;
170   }
171 
172   /// Unifies two instructions, given that they're known not to have
173   /// structural differences.
unify(Instruction * L,Instruction * R)174   void unify(Instruction *L, Instruction *R) {
175     DifferenceEngine::Context C(Engine, L, R);
176 
177     bool Result = diff(L, R, true, true);
178     assert(!Result && "structural differences second time around?");
179     (void) Result;
180     if (!L->use_empty())
181       Values[L] = R;
182   }
183 
processQueue()184   void processQueue() {
185     while (!Queue.empty()) {
186       BlockPair Pair = Queue.remove_min();
187       diff(Pair.first, Pair.second);
188     }
189   }
190 
diff(BasicBlock * L,BasicBlock * R)191   void diff(BasicBlock *L, BasicBlock *R) {
192     DifferenceEngine::Context C(Engine, L, R);
193 
194     BasicBlock::iterator LI = L->begin(), LE = L->end();
195     BasicBlock::iterator RI = R->begin();
196 
197     do {
198       assert(LI != LE && RI != R->end());
199       Instruction *LeftI = &*LI, *RightI = &*RI;
200 
201       // If the instructions differ, start the more sophisticated diff
202       // algorithm at the start of the block.
203       if (diff(LeftI, RightI, false, false)) {
204         TentativeValues.clear();
205         return runBlockDiff(L->begin(), R->begin());
206       }
207 
208       // Otherwise, tentatively unify them.
209       if (!LeftI->use_empty())
210         TentativeValues.insert(std::make_pair(LeftI, RightI));
211 
212       ++LI;
213       ++RI;
214     } while (LI != LE); // This is sufficient: we can't get equality of
215                         // terminators if there are residual instructions.
216 
217     // Unify everything in the block, non-tentatively this time.
218     TentativeValues.clear();
219     for (LI = L->begin(), RI = R->begin(); LI != LE; ++LI, ++RI)
220       unify(&*LI, &*RI);
221   }
222 
223   bool matchForBlockDiff(Instruction *L, Instruction *R);
224   void runBlockDiff(BasicBlock::iterator LI, BasicBlock::iterator RI);
225 
diffCallSites(CallSite L,CallSite R,bool Complain)226   bool diffCallSites(CallSite L, CallSite R, bool Complain) {
227     // FIXME: call attributes
228     if (!equivalentAsOperands(L.getCalledValue(), R.getCalledValue())) {
229       if (Complain) Engine.log("called functions differ");
230       return true;
231     }
232     if (L.arg_size() != R.arg_size()) {
233       if (Complain) Engine.log("argument counts differ");
234       return true;
235     }
236     for (unsigned I = 0, E = L.arg_size(); I != E; ++I)
237       if (!equivalentAsOperands(L.getArgument(I), R.getArgument(I))) {
238         if (Complain)
239           Engine.logf("arguments %l and %r differ")
240             << L.getArgument(I) << R.getArgument(I);
241         return true;
242       }
243     return false;
244   }
245 
diff(Instruction * L,Instruction * R,bool Complain,bool TryUnify)246   bool diff(Instruction *L, Instruction *R, bool Complain, bool TryUnify) {
247     // FIXME: metadata (if Complain is set)
248 
249     // Different opcodes always imply different operations.
250     if (L->getOpcode() != R->getOpcode()) {
251       if (Complain) Engine.log("different instruction types");
252       return true;
253     }
254 
255     if (isa<CmpInst>(L)) {
256       if (cast<CmpInst>(L)->getPredicate()
257             != cast<CmpInst>(R)->getPredicate()) {
258         if (Complain) Engine.log("different predicates");
259         return true;
260       }
261     } else if (isa<CallInst>(L)) {
262       return diffCallSites(CallSite(L), CallSite(R), Complain);
263     } else if (isa<PHINode>(L)) {
264       // FIXME: implement.
265 
266       // This is really weird;  type uniquing is broken?
267       if (L->getType() != R->getType()) {
268         if (!L->getType()->isPointerTy() || !R->getType()->isPointerTy()) {
269           if (Complain) Engine.log("different phi types");
270           return true;
271         }
272       }
273       return false;
274 
275     // Terminators.
276     } else if (isa<InvokeInst>(L)) {
277       InvokeInst *LI = cast<InvokeInst>(L);
278       InvokeInst *RI = cast<InvokeInst>(R);
279       if (diffCallSites(CallSite(LI), CallSite(RI), Complain))
280         return true;
281 
282       if (TryUnify) {
283         tryUnify(LI->getNormalDest(), RI->getNormalDest());
284         tryUnify(LI->getUnwindDest(), RI->getUnwindDest());
285       }
286       return false;
287 
288     } else if (isa<BranchInst>(L)) {
289       BranchInst *LI = cast<BranchInst>(L);
290       BranchInst *RI = cast<BranchInst>(R);
291       if (LI->isConditional() != RI->isConditional()) {
292         if (Complain) Engine.log("branch conditionality differs");
293         return true;
294       }
295 
296       if (LI->isConditional()) {
297         if (!equivalentAsOperands(LI->getCondition(), RI->getCondition())) {
298           if (Complain) Engine.log("branch conditions differ");
299           return true;
300         }
301         if (TryUnify) tryUnify(LI->getSuccessor(1), RI->getSuccessor(1));
302       }
303       if (TryUnify) tryUnify(LI->getSuccessor(0), RI->getSuccessor(0));
304       return false;
305 
306     } else if (isa<IndirectBrInst>(L)) {
307       IndirectBrInst *LI = cast<IndirectBrInst>(L);
308       IndirectBrInst *RI = cast<IndirectBrInst>(R);
309       if (LI->getNumDestinations() != RI->getNumDestinations()) {
310         if (Complain) Engine.log("indirectbr # of destinations differ");
311         return true;
312       }
313 
314       if (!equivalentAsOperands(LI->getAddress(), RI->getAddress())) {
315         if (Complain) Engine.log("indirectbr addresses differ");
316         return true;
317       }
318 
319       if (TryUnify) {
320         for (unsigned i = 0; i < LI->getNumDestinations(); i++) {
321           tryUnify(LI->getDestination(i), RI->getDestination(i));
322         }
323       }
324       return false;
325 
326     } else if (isa<SwitchInst>(L)) {
327       SwitchInst *LI = cast<SwitchInst>(L);
328       SwitchInst *RI = cast<SwitchInst>(R);
329       if (!equivalentAsOperands(LI->getCondition(), RI->getCondition())) {
330         if (Complain) Engine.log("switch conditions differ");
331         return true;
332       }
333       if (TryUnify) tryUnify(LI->getDefaultDest(), RI->getDefaultDest());
334 
335       bool Difference = false;
336 
337       DenseMap<ConstantInt*,BasicBlock*> LCases;
338       for (auto Case : LI->cases())
339         LCases[Case.getCaseValue()] = Case.getCaseSuccessor();
340 
341       for (auto Case : RI->cases()) {
342         ConstantInt *CaseValue = Case.getCaseValue();
343         BasicBlock *LCase = LCases[CaseValue];
344         if (LCase) {
345           if (TryUnify)
346             tryUnify(LCase, Case.getCaseSuccessor());
347           LCases.erase(CaseValue);
348         } else if (Complain || !Difference) {
349           if (Complain)
350             Engine.logf("right switch has extra case %r") << CaseValue;
351           Difference = true;
352         }
353       }
354       if (!Difference)
355         for (DenseMap<ConstantInt*,BasicBlock*>::iterator
356                I = LCases.begin(), E = LCases.end(); I != E; ++I) {
357           if (Complain)
358             Engine.logf("left switch has extra case %l") << I->first;
359           Difference = true;
360         }
361       return Difference;
362     } else if (isa<UnreachableInst>(L)) {
363       return false;
364     }
365 
366     if (L->getNumOperands() != R->getNumOperands()) {
367       if (Complain) Engine.log("instructions have different operand counts");
368       return true;
369     }
370 
371     for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
372       Value *LO = L->getOperand(I), *RO = R->getOperand(I);
373       if (!equivalentAsOperands(LO, RO)) {
374         if (Complain) Engine.logf("operands %l and %r differ") << LO << RO;
375         return true;
376       }
377     }
378 
379     return false;
380   }
381 
equivalentAsOperands(Constant * L,Constant * R)382   bool equivalentAsOperands(Constant *L, Constant *R) {
383     // Use equality as a preliminary filter.
384     if (L == R)
385       return true;
386 
387     if (L->getValueID() != R->getValueID())
388       return false;
389 
390     // Ask the engine about global values.
391     if (isa<GlobalValue>(L))
392       return Engine.equivalentAsOperands(cast<GlobalValue>(L),
393                                          cast<GlobalValue>(R));
394 
395     // Compare constant expressions structurally.
396     if (isa<ConstantExpr>(L))
397       return equivalentAsOperands(cast<ConstantExpr>(L),
398                                   cast<ConstantExpr>(R));
399 
400     // Constants of the "same type" don't always actually have the same
401     // type; I don't know why.  Just white-list them.
402     if (isa<ConstantPointerNull>(L) || isa<UndefValue>(L) || isa<ConstantAggregateZero>(L))
403       return true;
404 
405     // Block addresses only match if we've already encountered the
406     // block.  FIXME: tentative matches?
407     if (isa<BlockAddress>(L))
408       return Blocks[cast<BlockAddress>(L)->getBasicBlock()]
409                  == cast<BlockAddress>(R)->getBasicBlock();
410 
411     // If L and R are ConstantVectors, compare each element
412     if (isa<ConstantVector>(L)) {
413       ConstantVector *CVL = cast<ConstantVector>(L);
414       ConstantVector *CVR = cast<ConstantVector>(R);
415       if (CVL->getType()->getNumElements() != CVR->getType()->getNumElements())
416         return false;
417       for (unsigned i = 0; i < CVL->getType()->getNumElements(); i++) {
418         if (!equivalentAsOperands(CVL->getOperand(i), CVR->getOperand(i)))
419           return false;
420       }
421       return true;
422     }
423 
424     return false;
425   }
426 
equivalentAsOperands(ConstantExpr * L,ConstantExpr * R)427   bool equivalentAsOperands(ConstantExpr *L, ConstantExpr *R) {
428     if (L == R)
429       return true;
430     if (L->getOpcode() != R->getOpcode())
431       return false;
432 
433     switch (L->getOpcode()) {
434     case Instruction::ICmp:
435     case Instruction::FCmp:
436       if (L->getPredicate() != R->getPredicate())
437         return false;
438       break;
439 
440     case Instruction::GetElementPtr:
441       // FIXME: inbounds?
442       break;
443 
444     default:
445       break;
446     }
447 
448     if (L->getNumOperands() != R->getNumOperands())
449       return false;
450 
451     for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I)
452       if (!equivalentAsOperands(L->getOperand(I), R->getOperand(I)))
453         return false;
454 
455     return true;
456   }
457 
equivalentAsOperands(Value * L,Value * R)458   bool equivalentAsOperands(Value *L, Value *R) {
459     // Fall out if the values have different kind.
460     // This possibly shouldn't take priority over oracles.
461     if (L->getValueID() != R->getValueID())
462       return false;
463 
464     // Value subtypes:  Argument, Constant, Instruction, BasicBlock,
465     //                  InlineAsm, MDNode, MDString, PseudoSourceValue
466 
467     if (isa<Constant>(L))
468       return equivalentAsOperands(cast<Constant>(L), cast<Constant>(R));
469 
470     if (isa<Instruction>(L))
471       return Values[L] == R || TentativeValues.count(std::make_pair(L, R));
472 
473     if (isa<Argument>(L))
474       return Values[L] == R;
475 
476     if (isa<BasicBlock>(L))
477       return Blocks[cast<BasicBlock>(L)] != R;
478 
479     // Pretend everything else is identical.
480     return true;
481   }
482 
483   // Avoid a gcc warning about accessing 'this' in an initializer.
this_()484   FunctionDifferenceEngine *this_() { return this; }
485 
486 public:
FunctionDifferenceEngine(DifferenceEngine & Engine)487   FunctionDifferenceEngine(DifferenceEngine &Engine) :
488     Engine(Engine), Queue(QueueSorter(*this_())) {}
489 
diff(Function * L,Function * R)490   void diff(Function *L, Function *R) {
491     if (L->arg_size() != R->arg_size())
492       Engine.log("different argument counts");
493 
494     // Map the arguments.
495     for (Function::arg_iterator
496            LI = L->arg_begin(), LE = L->arg_end(),
497            RI = R->arg_begin(), RE = R->arg_end();
498          LI != LE && RI != RE; ++LI, ++RI)
499       Values[&*LI] = &*RI;
500 
501     tryUnify(&*L->begin(), &*R->begin());
502     processQueue();
503   }
504 };
505 
506 struct DiffEntry {
DiffEntry__anone3e538550111::DiffEntry507   DiffEntry() : Cost(0) {}
508 
509   unsigned Cost;
510   llvm::SmallVector<char, 8> Path; // actually of DifferenceEngine::DiffChange
511 };
512 
matchForBlockDiff(Instruction * L,Instruction * R)513 bool FunctionDifferenceEngine::matchForBlockDiff(Instruction *L,
514                                                  Instruction *R) {
515   return !diff(L, R, false, false);
516 }
517 
runBlockDiff(BasicBlock::iterator LStart,BasicBlock::iterator RStart)518 void FunctionDifferenceEngine::runBlockDiff(BasicBlock::iterator LStart,
519                                             BasicBlock::iterator RStart) {
520   BasicBlock::iterator LE = LStart->getParent()->end();
521   BasicBlock::iterator RE = RStart->getParent()->end();
522 
523   unsigned NL = std::distance(LStart, LE);
524 
525   SmallVector<DiffEntry, 20> Paths1(NL+1);
526   SmallVector<DiffEntry, 20> Paths2(NL+1);
527 
528   DiffEntry *Cur = Paths1.data();
529   DiffEntry *Next = Paths2.data();
530 
531   const unsigned LeftCost = 2;
532   const unsigned RightCost = 2;
533   const unsigned MatchCost = 0;
534 
535   assert(TentativeValues.empty());
536 
537   // Initialize the first column.
538   for (unsigned I = 0; I != NL+1; ++I) {
539     Cur[I].Cost = I * LeftCost;
540     for (unsigned J = 0; J != I; ++J)
541       Cur[I].Path.push_back(DC_left);
542   }
543 
544   for (BasicBlock::iterator RI = RStart; RI != RE; ++RI) {
545     // Initialize the first row.
546     Next[0] = Cur[0];
547     Next[0].Cost += RightCost;
548     Next[0].Path.push_back(DC_right);
549 
550     unsigned Index = 1;
551     for (BasicBlock::iterator LI = LStart; LI != LE; ++LI, ++Index) {
552       if (matchForBlockDiff(&*LI, &*RI)) {
553         Next[Index] = Cur[Index-1];
554         Next[Index].Cost += MatchCost;
555         Next[Index].Path.push_back(DC_match);
556         TentativeValues.insert(std::make_pair(&*LI, &*RI));
557       } else if (Next[Index-1].Cost <= Cur[Index].Cost) {
558         Next[Index] = Next[Index-1];
559         Next[Index].Cost += LeftCost;
560         Next[Index].Path.push_back(DC_left);
561       } else {
562         Next[Index] = Cur[Index];
563         Next[Index].Cost += RightCost;
564         Next[Index].Path.push_back(DC_right);
565       }
566     }
567 
568     std::swap(Cur, Next);
569   }
570 
571   // We don't need the tentative values anymore; everything from here
572   // on out should be non-tentative.
573   TentativeValues.clear();
574 
575   SmallVectorImpl<char> &Path = Cur[NL].Path;
576   BasicBlock::iterator LI = LStart, RI = RStart;
577 
578   DiffLogBuilder Diff(Engine.getConsumer());
579 
580   // Drop trailing matches.
581   while (Path.back() == DC_match)
582     Path.pop_back();
583 
584   // Skip leading matches.
585   SmallVectorImpl<char>::iterator
586     PI = Path.begin(), PE = Path.end();
587   while (PI != PE && *PI == DC_match) {
588     unify(&*LI, &*RI);
589     ++PI;
590     ++LI;
591     ++RI;
592   }
593 
594   for (; PI != PE; ++PI) {
595     switch (static_cast<DiffChange>(*PI)) {
596     case DC_match:
597       assert(LI != LE && RI != RE);
598       {
599         Instruction *L = &*LI, *R = &*RI;
600         unify(L, R);
601         Diff.addMatch(L, R);
602       }
603       ++LI; ++RI;
604       break;
605 
606     case DC_left:
607       assert(LI != LE);
608       Diff.addLeft(&*LI);
609       ++LI;
610       break;
611 
612     case DC_right:
613       assert(RI != RE);
614       Diff.addRight(&*RI);
615       ++RI;
616       break;
617     }
618   }
619 
620   // Finishing unifying and complaining about the tails of the block,
621   // which should be matches all the way through.
622   while (LI != LE) {
623     assert(RI != RE);
624     unify(&*LI, &*RI);
625     ++LI;
626     ++RI;
627   }
628 
629   // If the terminators have different kinds, but one is an invoke and the
630   // other is an unconditional branch immediately following a call, unify
631   // the results and the destinations.
632   TerminatorInst *LTerm = LStart->getParent()->getTerminator();
633   TerminatorInst *RTerm = RStart->getParent()->getTerminator();
634   if (isa<BranchInst>(LTerm) && isa<InvokeInst>(RTerm)) {
635     if (cast<BranchInst>(LTerm)->isConditional()) return;
636     BasicBlock::iterator I = LTerm->getIterator();
637     if (I == LStart->getParent()->begin()) return;
638     --I;
639     if (!isa<CallInst>(*I)) return;
640     CallInst *LCall = cast<CallInst>(&*I);
641     InvokeInst *RInvoke = cast<InvokeInst>(RTerm);
642     if (!equivalentAsOperands(LCall->getCalledValue(), RInvoke->getCalledValue()))
643       return;
644     if (!LCall->use_empty())
645       Values[LCall] = RInvoke;
646     tryUnify(LTerm->getSuccessor(0), RInvoke->getNormalDest());
647   } else if (isa<InvokeInst>(LTerm) && isa<BranchInst>(RTerm)) {
648     if (cast<BranchInst>(RTerm)->isConditional()) return;
649     BasicBlock::iterator I = RTerm->getIterator();
650     if (I == RStart->getParent()->begin()) return;
651     --I;
652     if (!isa<CallInst>(*I)) return;
653     CallInst *RCall = cast<CallInst>(I);
654     InvokeInst *LInvoke = cast<InvokeInst>(LTerm);
655     if (!equivalentAsOperands(LInvoke->getCalledValue(), RCall->getCalledValue()))
656       return;
657     if (!LInvoke->use_empty())
658       Values[LInvoke] = RCall;
659     tryUnify(LInvoke->getNormalDest(), RTerm->getSuccessor(0));
660   }
661 }
662 
663 }
664 
anchor()665 void DifferenceEngine::Oracle::anchor() { }
666 
diff(Function * L,Function * R)667 void DifferenceEngine::diff(Function *L, Function *R) {
668   Context C(*this, L, R);
669 
670   // FIXME: types
671   // FIXME: attributes and CC
672   // FIXME: parameter attributes
673 
674   // If both are declarations, we're done.
675   if (L->empty() && R->empty())
676     return;
677   else if (L->empty())
678     log("left function is declaration, right function is definition");
679   else if (R->empty())
680     log("right function is declaration, left function is definition");
681   else
682     FunctionDifferenceEngine(*this).diff(L, R);
683 }
684 
diff(Module * L,Module * R)685 void DifferenceEngine::diff(Module *L, Module *R) {
686   StringSet<> LNames;
687   SmallVector<std::pair<Function*,Function*>, 20> Queue;
688 
689   for (Module::iterator I = L->begin(), E = L->end(); I != E; ++I) {
690     Function *LFn = &*I;
691     LNames.insert(LFn->getName());
692 
693     if (Function *RFn = R->getFunction(LFn->getName()))
694       Queue.push_back(std::make_pair(LFn, RFn));
695     else
696       logf("function %l exists only in left module") << LFn;
697   }
698 
699   for (Module::iterator I = R->begin(), E = R->end(); I != E; ++I) {
700     Function *RFn = &*I;
701     if (!LNames.count(RFn->getName()))
702       logf("function %r exists only in right module") << RFn;
703   }
704 
705   for (SmallVectorImpl<std::pair<Function*,Function*> >::iterator
706          I = Queue.begin(), E = Queue.end(); I != E; ++I)
707     diff(I->first, I->second);
708 }
709 
equivalentAsOperands(GlobalValue * L,GlobalValue * R)710 bool DifferenceEngine::equivalentAsOperands(GlobalValue *L, GlobalValue *R) {
711   if (globalValueOracle) return (*globalValueOracle)(L, R);
712   return L->getName() == R->getName();
713 }
714