1 //===----- llvm/unittest/ADT/SCCIteratorTest.cpp - SCCIterator tests ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/ADT/SCCIterator.h"
11 #include "TestGraph.h"
12 #include "gtest/gtest.h"
13 #include <limits.h>
14 
15 using namespace llvm;
16 
17 namespace llvm {
18 
TEST(SCCIteratorTest,AllSmallGraphs)19 TEST(SCCIteratorTest, AllSmallGraphs) {
20   // Test SCC computation against every graph with NUM_NODES nodes or less.
21   // Since SCC considers every node to have an implicit self-edge, we only
22   // create graphs for which every node has a self-edge.
23 #define NUM_NODES 4
24 #define NUM_GRAPHS (NUM_NODES * (NUM_NODES - 1))
25   typedef Graph<NUM_NODES> GT;
26 
27   /// Enumerate all graphs using NUM_GRAPHS bits.
28   static_assert(NUM_GRAPHS < sizeof(unsigned) * CHAR_BIT, "Too many graphs!");
29   for (unsigned GraphDescriptor = 0; GraphDescriptor < (1U << NUM_GRAPHS);
30        ++GraphDescriptor) {
31     GT G;
32 
33     // Add edges as specified by the descriptor.
34     unsigned DescriptorCopy = GraphDescriptor;
35     for (unsigned i = 0; i != NUM_NODES; ++i)
36       for (unsigned j = 0; j != NUM_NODES; ++j) {
37         // Always add a self-edge.
38         if (i == j) {
39           G.AddEdge(i, j);
40           continue;
41         }
42         if (DescriptorCopy & 1)
43           G.AddEdge(i, j);
44         DescriptorCopy >>= 1;
45       }
46 
47     // Test the SCC logic on this graph.
48 
49     /// NodesInSomeSCC - Those nodes which are in some SCC.
50     GT::NodeSubset NodesInSomeSCC;
51 
52     for (scc_iterator<GT> I = scc_begin(G), E = scc_end(G); I != E; ++I) {
53       const std::vector<GT::NodeType *> &SCC = *I;
54 
55       // Get the nodes in this SCC as a NodeSubset rather than a vector.
56       GT::NodeSubset NodesInThisSCC;
57       for (unsigned i = 0, e = SCC.size(); i != e; ++i)
58         NodesInThisSCC.AddNode(SCC[i]->first);
59 
60       // There should be at least one node in every SCC.
61       EXPECT_FALSE(NodesInThisSCC.isEmpty());
62 
63       // Check that every node in the SCC is reachable from every other node in
64       // the SCC.
65       for (unsigned i = 0; i != NUM_NODES; ++i)
66         if (NodesInThisSCC.count(i)) {
67           EXPECT_TRUE(NodesInThisSCC.isSubsetOf(G.NodesReachableFrom(i)));
68         }
69 
70       // OK, now that we now that every node in the SCC is reachable from every
71       // other, this means that the set of nodes reachable from any node in the
72       // SCC is the same as the set of nodes reachable from every node in the
73       // SCC.  Check that for every node N not in the SCC but reachable from the
74       // SCC, no element of the SCC is reachable from N.
75       for (unsigned i = 0; i != NUM_NODES; ++i)
76         if (NodesInThisSCC.count(i)) {
77           GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
78           GT::NodeSubset ReachableButNotInSCC =
79             NodesReachableFromSCC.Meet(NodesInThisSCC.Complement());
80 
81           for (unsigned j = 0; j != NUM_NODES; ++j)
82             if (ReachableButNotInSCC.count(j)) {
83               EXPECT_TRUE(G.NodesReachableFrom(j).Meet(NodesInThisSCC).isEmpty());
84             }
85 
86           // The result must be the same for all other nodes in this SCC, so
87           // there is no point in checking them.
88           break;
89         }
90 
91       // This is indeed a SCC: a maximal set of nodes for which each node is
92       // reachable from every other.
93 
94       // Check that we didn't already see this SCC.
95       EXPECT_TRUE(NodesInSomeSCC.Meet(NodesInThisSCC).isEmpty());
96 
97       NodesInSomeSCC = NodesInSomeSCC.Join(NodesInThisSCC);
98 
99       // Check a property that is specific to the LLVM SCC iterator and
100       // guaranteed by it: if a node in SCC S1 has an edge to a node in
101       // SCC S2, then S1 is visited *after* S2.  This means that the set
102       // of nodes reachable from this SCC must be contained either in the
103       // union of this SCC and all previously visited SCC's.
104 
105       for (unsigned i = 0; i != NUM_NODES; ++i)
106         if (NodesInThisSCC.count(i)) {
107           GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
108           EXPECT_TRUE(NodesReachableFromSCC.isSubsetOf(NodesInSomeSCC));
109           // The result must be the same for all other nodes in this SCC, so
110           // there is no point in checking them.
111           break;
112         }
113     }
114 
115     // Finally, check that the nodes in some SCC are exactly those that are
116     // reachable from the initial node.
117     EXPECT_EQ(NodesInSomeSCC, G.NodesReachableFrom(0));
118   }
119 }
120 
121 }
122