1 //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the DenseMap class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ADT_DENSEMAP_H
15 #define LLVM_ADT_DENSEMAP_H
16 
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/EpochTracker.h"
19 #include "llvm/Support/AlignOf.h"
20 #include "llvm/Support/Compiler.h"
21 #include "llvm/Support/MathExtras.h"
22 #include "llvm/Support/type_traits.h"
23 #include <algorithm>
24 #include <cassert>
25 #include <cstddef>
26 #include <cstring>
27 #include <iterator>
28 #include <limits>
29 #include <new>
30 #include <utility>
31 
32 namespace llvm {
33 
34 namespace detail {
35 
36 // We extend a pair to allow users to override the bucket type with their own
37 // implementation without requiring two members.
38 template <typename KeyT, typename ValueT>
39 struct DenseMapPair : public std::pair<KeyT, ValueT> {
getFirstDenseMapPair40   KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; }
getFirstDenseMapPair41   const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; }
getSecondDenseMapPair42   ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; }
getSecondDenseMapPair43   const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; }
44 };
45 
46 } // end namespace detail
47 
48 template <
49     typename KeyT, typename ValueT, typename KeyInfoT = DenseMapInfo<KeyT>,
50     typename Bucket = detail::DenseMapPair<KeyT, ValueT>, bool IsConst = false>
51 class DenseMapIterator;
52 
53 template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
54           typename BucketT>
55 class DenseMapBase : public DebugEpochBase {
56 public:
57   typedef unsigned size_type;
58   typedef KeyT key_type;
59   typedef ValueT mapped_type;
60   typedef BucketT value_type;
61 
62   typedef DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT> iterator;
63   typedef DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true>
64       const_iterator;
begin()65   inline iterator begin() {
66     // When the map is empty, avoid the overhead of AdvancePastEmptyBuckets().
67     return empty() ? end() : iterator(getBuckets(), getBucketsEnd(), *this);
68   }
end()69   inline iterator end() {
70     return iterator(getBucketsEnd(), getBucketsEnd(), *this, true);
71   }
begin()72   inline const_iterator begin() const {
73     return empty() ? end()
74                    : const_iterator(getBuckets(), getBucketsEnd(), *this);
75   }
end()76   inline const_iterator end() const {
77     return const_iterator(getBucketsEnd(), getBucketsEnd(), *this, true);
78   }
79 
empty()80   LLVM_NODISCARD bool empty() const {
81     return getNumEntries() == 0;
82   }
size()83   unsigned size() const { return getNumEntries(); }
84 
85   /// Grow the densemap so that it can contain at least \p NumEntries items
86   /// before resizing again.
reserve(size_type NumEntries)87   void reserve(size_type NumEntries) {
88     auto NumBuckets = getMinBucketToReserveForEntries(NumEntries);
89     incrementEpoch();
90     if (NumBuckets > getNumBuckets())
91       grow(NumBuckets);
92   }
93 
clear()94   void clear() {
95     incrementEpoch();
96     if (getNumEntries() == 0 && getNumTombstones() == 0) return;
97 
98     // If the capacity of the array is huge, and the # elements used is small,
99     // shrink the array.
100     if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
101       shrink_and_clear();
102       return;
103     }
104 
105     const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
106     unsigned NumEntries = getNumEntries();
107     for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
108       if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) {
109         if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
110           P->getSecond().~ValueT();
111           --NumEntries;
112         }
113         P->getFirst() = EmptyKey;
114       }
115     }
116     assert(NumEntries == 0 && "Node count imbalance!");
117     setNumEntries(0);
118     setNumTombstones(0);
119   }
120 
121   /// Return 1 if the specified key is in the map, 0 otherwise.
count(const KeyT & Val)122   size_type count(const KeyT &Val) const {
123     const BucketT *TheBucket;
124     return LookupBucketFor(Val, TheBucket) ? 1 : 0;
125   }
126 
find(const KeyT & Val)127   iterator find(const KeyT &Val) {
128     BucketT *TheBucket;
129     if (LookupBucketFor(Val, TheBucket))
130       return iterator(TheBucket, getBucketsEnd(), *this, true);
131     return end();
132   }
find(const KeyT & Val)133   const_iterator find(const KeyT &Val) const {
134     const BucketT *TheBucket;
135     if (LookupBucketFor(Val, TheBucket))
136       return const_iterator(TheBucket, getBucketsEnd(), *this, true);
137     return end();
138   }
139 
140   /// Alternate version of find() which allows a different, and possibly
141   /// less expensive, key type.
142   /// The DenseMapInfo is responsible for supplying methods
143   /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
144   /// type used.
145   template<class LookupKeyT>
find_as(const LookupKeyT & Val)146   iterator find_as(const LookupKeyT &Val) {
147     BucketT *TheBucket;
148     if (LookupBucketFor(Val, TheBucket))
149       return iterator(TheBucket, getBucketsEnd(), *this, true);
150     return end();
151   }
152   template<class LookupKeyT>
find_as(const LookupKeyT & Val)153   const_iterator find_as(const LookupKeyT &Val) const {
154     const BucketT *TheBucket;
155     if (LookupBucketFor(Val, TheBucket))
156       return const_iterator(TheBucket, getBucketsEnd(), *this, true);
157     return end();
158   }
159 
160   /// lookup - Return the entry for the specified key, or a default
161   /// constructed value if no such entry exists.
lookup(const KeyT & Val)162   ValueT lookup(const KeyT &Val) const {
163     const BucketT *TheBucket;
164     if (LookupBucketFor(Val, TheBucket))
165       return TheBucket->getSecond();
166     return ValueT();
167   }
168 
169   // Inserts key,value pair into the map if the key isn't already in the map.
170   // If the key is already in the map, it returns false and doesn't update the
171   // value.
insert(const std::pair<KeyT,ValueT> & KV)172   std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
173     return try_emplace(KV.first, KV.second);
174   }
175 
176   // Inserts key,value pair into the map if the key isn't already in the map.
177   // If the key is already in the map, it returns false and doesn't update the
178   // value.
insert(std::pair<KeyT,ValueT> && KV)179   std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
180     return try_emplace(std::move(KV.first), std::move(KV.second));
181   }
182 
183   // Inserts key,value pair into the map if the key isn't already in the map.
184   // The value is constructed in-place if the key is not in the map, otherwise
185   // it is not moved.
186   template <typename... Ts>
try_emplace(KeyT && Key,Ts &&...Args)187   std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&... Args) {
188     BucketT *TheBucket;
189     if (LookupBucketFor(Key, TheBucket))
190       return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
191                             false); // Already in map.
192 
193     // Otherwise, insert the new element.
194     TheBucket =
195         InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...);
196     return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
197                           true);
198   }
199 
200   // Inserts key,value pair into the map if the key isn't already in the map.
201   // The value is constructed in-place if the key is not in the map, otherwise
202   // it is not moved.
203   template <typename... Ts>
try_emplace(const KeyT & Key,Ts &&...Args)204   std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&... Args) {
205     BucketT *TheBucket;
206     if (LookupBucketFor(Key, TheBucket))
207       return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
208                             false); // Already in map.
209 
210     // Otherwise, insert the new element.
211     TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...);
212     return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
213                           true);
214   }
215 
216   /// Alternate version of insert() which allows a different, and possibly
217   /// less expensive, key type.
218   /// The DenseMapInfo is responsible for supplying methods
219   /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
220   /// type used.
221   template <typename LookupKeyT>
insert_as(std::pair<KeyT,ValueT> && KV,const LookupKeyT & Val)222   std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV,
223                                       const LookupKeyT &Val) {
224     BucketT *TheBucket;
225     if (LookupBucketFor(Val, TheBucket))
226       return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
227                             false); // Already in map.
228 
229     // Otherwise, insert the new element.
230     TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first),
231                                            std::move(KV.second), Val);
232     return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
233                           true);
234   }
235 
236   /// insert - Range insertion of pairs.
237   template<typename InputIt>
insert(InputIt I,InputIt E)238   void insert(InputIt I, InputIt E) {
239     for (; I != E; ++I)
240       insert(*I);
241   }
242 
erase(const KeyT & Val)243   bool erase(const KeyT &Val) {
244     BucketT *TheBucket;
245     if (!LookupBucketFor(Val, TheBucket))
246       return false; // not in map.
247 
248     TheBucket->getSecond().~ValueT();
249     TheBucket->getFirst() = getTombstoneKey();
250     decrementNumEntries();
251     incrementNumTombstones();
252     return true;
253   }
erase(iterator I)254   void erase(iterator I) {
255     BucketT *TheBucket = &*I;
256     TheBucket->getSecond().~ValueT();
257     TheBucket->getFirst() = getTombstoneKey();
258     decrementNumEntries();
259     incrementNumTombstones();
260   }
261 
FindAndConstruct(const KeyT & Key)262   value_type& FindAndConstruct(const KeyT &Key) {
263     BucketT *TheBucket;
264     if (LookupBucketFor(Key, TheBucket))
265       return *TheBucket;
266 
267     return *InsertIntoBucket(TheBucket, Key);
268   }
269 
270   ValueT &operator[](const KeyT &Key) {
271     return FindAndConstruct(Key).second;
272   }
273 
FindAndConstruct(KeyT && Key)274   value_type& FindAndConstruct(KeyT &&Key) {
275     BucketT *TheBucket;
276     if (LookupBucketFor(Key, TheBucket))
277       return *TheBucket;
278 
279     return *InsertIntoBucket(TheBucket, std::move(Key));
280   }
281 
282   ValueT &operator[](KeyT &&Key) {
283     return FindAndConstruct(std::move(Key)).second;
284   }
285 
286   /// isPointerIntoBucketsArray - Return true if the specified pointer points
287   /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
288   /// value in the DenseMap).
isPointerIntoBucketsArray(const void * Ptr)289   bool isPointerIntoBucketsArray(const void *Ptr) const {
290     return Ptr >= getBuckets() && Ptr < getBucketsEnd();
291   }
292 
293   /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
294   /// array.  In conjunction with the previous method, this can be used to
295   /// determine whether an insertion caused the DenseMap to reallocate.
getPointerIntoBucketsArray()296   const void *getPointerIntoBucketsArray() const { return getBuckets(); }
297 
298 protected:
299   DenseMapBase() = default;
300 
destroyAll()301   void destroyAll() {
302     if (getNumBuckets() == 0) // Nothing to do.
303       return;
304 
305     const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
306     for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
307       if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
308           !KeyInfoT::isEqual(P->getFirst(), TombstoneKey))
309         P->getSecond().~ValueT();
310       P->getFirst().~KeyT();
311     }
312   }
313 
initEmpty()314   void initEmpty() {
315     setNumEntries(0);
316     setNumTombstones(0);
317 
318     assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
319            "# initial buckets must be a power of two!");
320     const KeyT EmptyKey = getEmptyKey();
321     for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
322       ::new (&B->getFirst()) KeyT(EmptyKey);
323   }
324 
325   /// Returns the number of buckets to allocate to ensure that the DenseMap can
326   /// accommodate \p NumEntries without need to grow().
getMinBucketToReserveForEntries(unsigned NumEntries)327   unsigned getMinBucketToReserveForEntries(unsigned NumEntries) {
328     // Ensure that "NumEntries * 4 < NumBuckets * 3"
329     if (NumEntries == 0)
330       return 0;
331     // +1 is required because of the strict equality.
332     // For example if NumEntries is 48, we need to return 401.
333     return NextPowerOf2(NumEntries * 4 / 3 + 1);
334   }
335 
moveFromOldBuckets(BucketT * OldBucketsBegin,BucketT * OldBucketsEnd)336   void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
337     initEmpty();
338 
339     // Insert all the old elements.
340     const KeyT EmptyKey = getEmptyKey();
341     const KeyT TombstoneKey = getTombstoneKey();
342     for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
343       if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) &&
344           !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) {
345         // Insert the key/value into the new table.
346         BucketT *DestBucket;
347         bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket);
348         (void)FoundVal; // silence warning.
349         assert(!FoundVal && "Key already in new map?");
350         DestBucket->getFirst() = std::move(B->getFirst());
351         ::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond()));
352         incrementNumEntries();
353 
354         // Free the value.
355         B->getSecond().~ValueT();
356       }
357       B->getFirst().~KeyT();
358     }
359   }
360 
361   template <typename OtherBaseT>
copyFrom(const DenseMapBase<OtherBaseT,KeyT,ValueT,KeyInfoT,BucketT> & other)362   void copyFrom(
363       const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) {
364     assert(&other != this);
365     assert(getNumBuckets() == other.getNumBuckets());
366 
367     setNumEntries(other.getNumEntries());
368     setNumTombstones(other.getNumTombstones());
369 
370     if (isPodLike<KeyT>::value && isPodLike<ValueT>::value)
371       memcpy(getBuckets(), other.getBuckets(),
372              getNumBuckets() * sizeof(BucketT));
373     else
374       for (size_t i = 0; i < getNumBuckets(); ++i) {
375         ::new (&getBuckets()[i].getFirst())
376             KeyT(other.getBuckets()[i].getFirst());
377         if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) &&
378             !KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey()))
379           ::new (&getBuckets()[i].getSecond())
380               ValueT(other.getBuckets()[i].getSecond());
381       }
382   }
383 
getHashValue(const KeyT & Val)384   static unsigned getHashValue(const KeyT &Val) {
385     return KeyInfoT::getHashValue(Val);
386   }
387   template<typename LookupKeyT>
getHashValue(const LookupKeyT & Val)388   static unsigned getHashValue(const LookupKeyT &Val) {
389     return KeyInfoT::getHashValue(Val);
390   }
getEmptyKey()391   static const KeyT getEmptyKey() {
392     return KeyInfoT::getEmptyKey();
393   }
getTombstoneKey()394   static const KeyT getTombstoneKey() {
395     return KeyInfoT::getTombstoneKey();
396   }
397 
398 private:
getNumEntries()399   unsigned getNumEntries() const {
400     return static_cast<const DerivedT *>(this)->getNumEntries();
401   }
setNumEntries(unsigned Num)402   void setNumEntries(unsigned Num) {
403     static_cast<DerivedT *>(this)->setNumEntries(Num);
404   }
incrementNumEntries()405   void incrementNumEntries() {
406     setNumEntries(getNumEntries() + 1);
407   }
decrementNumEntries()408   void decrementNumEntries() {
409     setNumEntries(getNumEntries() - 1);
410   }
getNumTombstones()411   unsigned getNumTombstones() const {
412     return static_cast<const DerivedT *>(this)->getNumTombstones();
413   }
setNumTombstones(unsigned Num)414   void setNumTombstones(unsigned Num) {
415     static_cast<DerivedT *>(this)->setNumTombstones(Num);
416   }
incrementNumTombstones()417   void incrementNumTombstones() {
418     setNumTombstones(getNumTombstones() + 1);
419   }
decrementNumTombstones()420   void decrementNumTombstones() {
421     setNumTombstones(getNumTombstones() - 1);
422   }
getBuckets()423   const BucketT *getBuckets() const {
424     return static_cast<const DerivedT *>(this)->getBuckets();
425   }
getBuckets()426   BucketT *getBuckets() {
427     return static_cast<DerivedT *>(this)->getBuckets();
428   }
getNumBuckets()429   unsigned getNumBuckets() const {
430     return static_cast<const DerivedT *>(this)->getNumBuckets();
431   }
getBucketsEnd()432   BucketT *getBucketsEnd() {
433     return getBuckets() + getNumBuckets();
434   }
getBucketsEnd()435   const BucketT *getBucketsEnd() const {
436     return getBuckets() + getNumBuckets();
437   }
438 
grow(unsigned AtLeast)439   void grow(unsigned AtLeast) {
440     static_cast<DerivedT *>(this)->grow(AtLeast);
441   }
442 
shrink_and_clear()443   void shrink_and_clear() {
444     static_cast<DerivedT *>(this)->shrink_and_clear();
445   }
446 
447   template <typename KeyArg, typename... ValueArgs>
InsertIntoBucket(BucketT * TheBucket,KeyArg && Key,ValueArgs &&...Values)448   BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key,
449                             ValueArgs &&... Values) {
450     TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket);
451 
452     TheBucket->getFirst() = std::forward<KeyArg>(Key);
453     ::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...);
454     return TheBucket;
455   }
456 
457   template <typename LookupKeyT>
InsertIntoBucketWithLookup(BucketT * TheBucket,KeyT && Key,ValueT && Value,LookupKeyT & Lookup)458   BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key,
459                                       ValueT &&Value, LookupKeyT &Lookup) {
460     TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket);
461 
462     TheBucket->getFirst() = std::move(Key);
463     ::new (&TheBucket->getSecond()) ValueT(std::move(Value));
464     return TheBucket;
465   }
466 
467   template <typename LookupKeyT>
InsertIntoBucketImpl(const KeyT & Key,const LookupKeyT & Lookup,BucketT * TheBucket)468   BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup,
469                                 BucketT *TheBucket) {
470     incrementEpoch();
471 
472     // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
473     // the buckets are empty (meaning that many are filled with tombstones),
474     // grow the table.
475     //
476     // The later case is tricky.  For example, if we had one empty bucket with
477     // tons of tombstones, failing lookups (e.g. for insertion) would have to
478     // probe almost the entire table until it found the empty bucket.  If the
479     // table completely filled with tombstones, no lookup would ever succeed,
480     // causing infinite loops in lookup.
481     unsigned NewNumEntries = getNumEntries() + 1;
482     unsigned NumBuckets = getNumBuckets();
483     if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) {
484       this->grow(NumBuckets * 2);
485       LookupBucketFor(Lookup, TheBucket);
486       NumBuckets = getNumBuckets();
487     } else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <=
488                              NumBuckets/8)) {
489       this->grow(NumBuckets);
490       LookupBucketFor(Lookup, TheBucket);
491     }
492     assert(TheBucket);
493 
494     // Only update the state after we've grown our bucket space appropriately
495     // so that when growing buckets we have self-consistent entry count.
496     incrementNumEntries();
497 
498     // If we are writing over a tombstone, remember this.
499     const KeyT EmptyKey = getEmptyKey();
500     if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey))
501       decrementNumTombstones();
502 
503     return TheBucket;
504   }
505 
506   /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
507   /// FoundBucket.  If the bucket contains the key and a value, this returns
508   /// true, otherwise it returns a bucket with an empty marker or tombstone and
509   /// returns false.
510   template<typename LookupKeyT>
LookupBucketFor(const LookupKeyT & Val,const BucketT * & FoundBucket)511   bool LookupBucketFor(const LookupKeyT &Val,
512                        const BucketT *&FoundBucket) const {
513     const BucketT *BucketsPtr = getBuckets();
514     const unsigned NumBuckets = getNumBuckets();
515 
516     if (NumBuckets == 0) {
517       FoundBucket = nullptr;
518       return false;
519     }
520 
521     // FoundTombstone - Keep track of whether we find a tombstone while probing.
522     const BucketT *FoundTombstone = nullptr;
523     const KeyT EmptyKey = getEmptyKey();
524     const KeyT TombstoneKey = getTombstoneKey();
525     assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
526            !KeyInfoT::isEqual(Val, TombstoneKey) &&
527            "Empty/Tombstone value shouldn't be inserted into map!");
528 
529     unsigned BucketNo = getHashValue(Val) & (NumBuckets-1);
530     unsigned ProbeAmt = 1;
531     while (true) {
532       const BucketT *ThisBucket = BucketsPtr + BucketNo;
533       // Found Val's bucket?  If so, return it.
534       if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) {
535         FoundBucket = ThisBucket;
536         return true;
537       }
538 
539       // If we found an empty bucket, the key doesn't exist in the set.
540       // Insert it and return the default value.
541       if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) {
542         // If we've already seen a tombstone while probing, fill it in instead
543         // of the empty bucket we eventually probed to.
544         FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
545         return false;
546       }
547 
548       // If this is a tombstone, remember it.  If Val ends up not in the map, we
549       // prefer to return it than something that would require more probing.
550       if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) &&
551           !FoundTombstone)
552         FoundTombstone = ThisBucket;  // Remember the first tombstone found.
553 
554       // Otherwise, it's a hash collision or a tombstone, continue quadratic
555       // probing.
556       BucketNo += ProbeAmt++;
557       BucketNo &= (NumBuckets-1);
558     }
559   }
560 
561   template <typename LookupKeyT>
LookupBucketFor(const LookupKeyT & Val,BucketT * & FoundBucket)562   bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
563     const BucketT *ConstFoundBucket;
564     bool Result = const_cast<const DenseMapBase *>(this)
565       ->LookupBucketFor(Val, ConstFoundBucket);
566     FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
567     return Result;
568   }
569 
570 public:
571   /// Return the approximate size (in bytes) of the actual map.
572   /// This is just the raw memory used by DenseMap.
573   /// If entries are pointers to objects, the size of the referenced objects
574   /// are not included.
getMemorySize()575   size_t getMemorySize() const {
576     return getNumBuckets() * sizeof(BucketT);
577   }
578 };
579 
580 template <typename KeyT, typename ValueT,
581           typename KeyInfoT = DenseMapInfo<KeyT>,
582           typename BucketT = detail::DenseMapPair<KeyT, ValueT>>
583 class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>,
584                                      KeyT, ValueT, KeyInfoT, BucketT> {
585   // Lift some types from the dependent base class into this class for
586   // simplicity of referring to them.
587   typedef DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT> BaseT;
588   friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
589 
590   BucketT *Buckets;
591   unsigned NumEntries;
592   unsigned NumTombstones;
593   unsigned NumBuckets;
594 
595 public:
596   /// Create a DenseMap wth an optional \p InitialReserve that guarantee that
597   /// this number of elements can be inserted in the map without grow()
598   explicit DenseMap(unsigned InitialReserve = 0) { init(InitialReserve); }
599 
DenseMap(const DenseMap & other)600   DenseMap(const DenseMap &other) : BaseT() {
601     init(0);
602     copyFrom(other);
603   }
604 
DenseMap(DenseMap && other)605   DenseMap(DenseMap &&other) : BaseT() {
606     init(0);
607     swap(other);
608   }
609 
610   template<typename InputIt>
DenseMap(const InputIt & I,const InputIt & E)611   DenseMap(const InputIt &I, const InputIt &E) {
612     init(std::distance(I, E));
613     this->insert(I, E);
614   }
615 
~DenseMap()616   ~DenseMap() {
617     this->destroyAll();
618     operator delete(Buckets);
619   }
620 
swap(DenseMap & RHS)621   void swap(DenseMap& RHS) {
622     this->incrementEpoch();
623     RHS.incrementEpoch();
624     std::swap(Buckets, RHS.Buckets);
625     std::swap(NumEntries, RHS.NumEntries);
626     std::swap(NumTombstones, RHS.NumTombstones);
627     std::swap(NumBuckets, RHS.NumBuckets);
628   }
629 
630   DenseMap& operator=(const DenseMap& other) {
631     if (&other != this)
632       copyFrom(other);
633     return *this;
634   }
635 
636   DenseMap& operator=(DenseMap &&other) {
637     this->destroyAll();
638     operator delete(Buckets);
639     init(0);
640     swap(other);
641     return *this;
642   }
643 
copyFrom(const DenseMap & other)644   void copyFrom(const DenseMap& other) {
645     this->destroyAll();
646     operator delete(Buckets);
647     if (allocateBuckets(other.NumBuckets)) {
648       this->BaseT::copyFrom(other);
649     } else {
650       NumEntries = 0;
651       NumTombstones = 0;
652     }
653   }
654 
init(unsigned InitNumEntries)655   void init(unsigned InitNumEntries) {
656     auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries);
657     if (allocateBuckets(InitBuckets)) {
658       this->BaseT::initEmpty();
659     } else {
660       NumEntries = 0;
661       NumTombstones = 0;
662     }
663   }
664 
grow(unsigned AtLeast)665   void grow(unsigned AtLeast) {
666     unsigned OldNumBuckets = NumBuckets;
667     BucketT *OldBuckets = Buckets;
668 
669     allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1))));
670     assert(Buckets);
671     if (!OldBuckets) {
672       this->BaseT::initEmpty();
673       return;
674     }
675 
676     this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets);
677 
678     // Free the old table.
679     operator delete(OldBuckets);
680   }
681 
shrink_and_clear()682   void shrink_and_clear() {
683     unsigned OldNumEntries = NumEntries;
684     this->destroyAll();
685 
686     // Reduce the number of buckets.
687     unsigned NewNumBuckets = 0;
688     if (OldNumEntries)
689       NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
690     if (NewNumBuckets == NumBuckets) {
691       this->BaseT::initEmpty();
692       return;
693     }
694 
695     operator delete(Buckets);
696     init(NewNumBuckets);
697   }
698 
699 private:
getNumEntries()700   unsigned getNumEntries() const {
701     return NumEntries;
702   }
setNumEntries(unsigned Num)703   void setNumEntries(unsigned Num) {
704     NumEntries = Num;
705   }
706 
getNumTombstones()707   unsigned getNumTombstones() const {
708     return NumTombstones;
709   }
setNumTombstones(unsigned Num)710   void setNumTombstones(unsigned Num) {
711     NumTombstones = Num;
712   }
713 
getBuckets()714   BucketT *getBuckets() const {
715     return Buckets;
716   }
717 
getNumBuckets()718   unsigned getNumBuckets() const {
719     return NumBuckets;
720   }
721 
allocateBuckets(unsigned Num)722   bool allocateBuckets(unsigned Num) {
723     NumBuckets = Num;
724     if (NumBuckets == 0) {
725       Buckets = nullptr;
726       return false;
727     }
728 
729     Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets));
730     return true;
731   }
732 };
733 
734 template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4,
735           typename KeyInfoT = DenseMapInfo<KeyT>,
736           typename BucketT = detail::DenseMapPair<KeyT, ValueT>>
737 class SmallDenseMap
738     : public DenseMapBase<
739           SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT,
740           ValueT, KeyInfoT, BucketT> {
741   // Lift some types from the dependent base class into this class for
742   // simplicity of referring to them.
743   typedef DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT> BaseT;
744   friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
745   static_assert(isPowerOf2_64(InlineBuckets),
746                 "InlineBuckets must be a power of 2.");
747 
748   unsigned Small : 1;
749   unsigned NumEntries : 31;
750   unsigned NumTombstones;
751 
752   struct LargeRep {
753     BucketT *Buckets;
754     unsigned NumBuckets;
755   };
756 
757   /// A "union" of an inline bucket array and the struct representing
758   /// a large bucket. This union will be discriminated by the 'Small' bit.
759   AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage;
760 
761 public:
762   explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
763     init(NumInitBuckets);
764   }
765 
SmallDenseMap(const SmallDenseMap & other)766   SmallDenseMap(const SmallDenseMap &other) : BaseT() {
767     init(0);
768     copyFrom(other);
769   }
770 
SmallDenseMap(SmallDenseMap && other)771   SmallDenseMap(SmallDenseMap &&other) : BaseT() {
772     init(0);
773     swap(other);
774   }
775 
776   template<typename InputIt>
SmallDenseMap(const InputIt & I,const InputIt & E)777   SmallDenseMap(const InputIt &I, const InputIt &E) {
778     init(NextPowerOf2(std::distance(I, E)));
779     this->insert(I, E);
780   }
781 
~SmallDenseMap()782   ~SmallDenseMap() {
783     this->destroyAll();
784     deallocateBuckets();
785   }
786 
swap(SmallDenseMap & RHS)787   void swap(SmallDenseMap& RHS) {
788     unsigned TmpNumEntries = RHS.NumEntries;
789     RHS.NumEntries = NumEntries;
790     NumEntries = TmpNumEntries;
791     std::swap(NumTombstones, RHS.NumTombstones);
792 
793     const KeyT EmptyKey = this->getEmptyKey();
794     const KeyT TombstoneKey = this->getTombstoneKey();
795     if (Small && RHS.Small) {
796       // If we're swapping inline bucket arrays, we have to cope with some of
797       // the tricky bits of DenseMap's storage system: the buckets are not
798       // fully initialized. Thus we swap every key, but we may have
799       // a one-directional move of the value.
800       for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
801         BucketT *LHSB = &getInlineBuckets()[i],
802                 *RHSB = &RHS.getInlineBuckets()[i];
803         bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) &&
804                             !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey));
805         bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) &&
806                             !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey));
807         if (hasLHSValue && hasRHSValue) {
808           // Swap together if we can...
809           std::swap(*LHSB, *RHSB);
810           continue;
811         }
812         // Swap separately and handle any assymetry.
813         std::swap(LHSB->getFirst(), RHSB->getFirst());
814         if (hasLHSValue) {
815           ::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond()));
816           LHSB->getSecond().~ValueT();
817         } else if (hasRHSValue) {
818           ::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond()));
819           RHSB->getSecond().~ValueT();
820         }
821       }
822       return;
823     }
824     if (!Small && !RHS.Small) {
825       std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
826       std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
827       return;
828     }
829 
830     SmallDenseMap &SmallSide = Small ? *this : RHS;
831     SmallDenseMap &LargeSide = Small ? RHS : *this;
832 
833     // First stash the large side's rep and move the small side across.
834     LargeRep TmpRep = std::move(*LargeSide.getLargeRep());
835     LargeSide.getLargeRep()->~LargeRep();
836     LargeSide.Small = true;
837     // This is similar to the standard move-from-old-buckets, but the bucket
838     // count hasn't actually rotated in this case. So we have to carefully
839     // move construct the keys and values into their new locations, but there
840     // is no need to re-hash things.
841     for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
842       BucketT *NewB = &LargeSide.getInlineBuckets()[i],
843               *OldB = &SmallSide.getInlineBuckets()[i];
844       ::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst()));
845       OldB->getFirst().~KeyT();
846       if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) &&
847           !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) {
848         ::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond()));
849         OldB->getSecond().~ValueT();
850       }
851     }
852 
853     // The hard part of moving the small buckets across is done, just move
854     // the TmpRep into its new home.
855     SmallSide.Small = false;
856     new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep));
857   }
858 
859   SmallDenseMap& operator=(const SmallDenseMap& other) {
860     if (&other != this)
861       copyFrom(other);
862     return *this;
863   }
864 
865   SmallDenseMap& operator=(SmallDenseMap &&other) {
866     this->destroyAll();
867     deallocateBuckets();
868     init(0);
869     swap(other);
870     return *this;
871   }
872 
copyFrom(const SmallDenseMap & other)873   void copyFrom(const SmallDenseMap& other) {
874     this->destroyAll();
875     deallocateBuckets();
876     Small = true;
877     if (other.getNumBuckets() > InlineBuckets) {
878       Small = false;
879       new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets()));
880     }
881     this->BaseT::copyFrom(other);
882   }
883 
init(unsigned InitBuckets)884   void init(unsigned InitBuckets) {
885     Small = true;
886     if (InitBuckets > InlineBuckets) {
887       Small = false;
888       new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
889     }
890     this->BaseT::initEmpty();
891   }
892 
grow(unsigned AtLeast)893   void grow(unsigned AtLeast) {
894     if (AtLeast >= InlineBuckets)
895       AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1));
896 
897     if (Small) {
898       if (AtLeast < InlineBuckets)
899         return; // Nothing to do.
900 
901       // First move the inline buckets into a temporary storage.
902       AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage;
903       BucketT *TmpBegin = reinterpret_cast<BucketT *>(TmpStorage.buffer);
904       BucketT *TmpEnd = TmpBegin;
905 
906       // Loop over the buckets, moving non-empty, non-tombstones into the
907       // temporary storage. Have the loop move the TmpEnd forward as it goes.
908       const KeyT EmptyKey = this->getEmptyKey();
909       const KeyT TombstoneKey = this->getTombstoneKey();
910       for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
911         if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
912             !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
913           assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
914                  "Too many inline buckets!");
915           ::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst()));
916           ::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond()));
917           ++TmpEnd;
918           P->getSecond().~ValueT();
919         }
920         P->getFirst().~KeyT();
921       }
922 
923       // Now make this map use the large rep, and move all the entries back
924       // into it.
925       Small = false;
926       new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
927       this->moveFromOldBuckets(TmpBegin, TmpEnd);
928       return;
929     }
930 
931     LargeRep OldRep = std::move(*getLargeRep());
932     getLargeRep()->~LargeRep();
933     if (AtLeast <= InlineBuckets) {
934       Small = true;
935     } else {
936       new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
937     }
938 
939     this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets);
940 
941     // Free the old table.
942     operator delete(OldRep.Buckets);
943   }
944 
shrink_and_clear()945   void shrink_and_clear() {
946     unsigned OldSize = this->size();
947     this->destroyAll();
948 
949     // Reduce the number of buckets.
950     unsigned NewNumBuckets = 0;
951     if (OldSize) {
952       NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
953       if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
954         NewNumBuckets = 64;
955     }
956     if ((Small && NewNumBuckets <= InlineBuckets) ||
957         (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
958       this->BaseT::initEmpty();
959       return;
960     }
961 
962     deallocateBuckets();
963     init(NewNumBuckets);
964   }
965 
966 private:
getNumEntries()967   unsigned getNumEntries() const {
968     return NumEntries;
969   }
setNumEntries(unsigned Num)970   void setNumEntries(unsigned Num) {
971     // NumEntries is hardcoded to be 31 bits wide.
972     assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries");
973     NumEntries = Num;
974   }
975 
getNumTombstones()976   unsigned getNumTombstones() const {
977     return NumTombstones;
978   }
setNumTombstones(unsigned Num)979   void setNumTombstones(unsigned Num) {
980     NumTombstones = Num;
981   }
982 
getInlineBuckets()983   const BucketT *getInlineBuckets() const {
984     assert(Small);
985     // Note that this cast does not violate aliasing rules as we assert that
986     // the memory's dynamic type is the small, inline bucket buffer, and the
987     // 'storage.buffer' static type is 'char *'.
988     return reinterpret_cast<const BucketT *>(storage.buffer);
989   }
getInlineBuckets()990   BucketT *getInlineBuckets() {
991     return const_cast<BucketT *>(
992       const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
993   }
getLargeRep()994   const LargeRep *getLargeRep() const {
995     assert(!Small);
996     // Note, same rule about aliasing as with getInlineBuckets.
997     return reinterpret_cast<const LargeRep *>(storage.buffer);
998   }
getLargeRep()999   LargeRep *getLargeRep() {
1000     return const_cast<LargeRep *>(
1001       const_cast<const SmallDenseMap *>(this)->getLargeRep());
1002   }
1003 
getBuckets()1004   const BucketT *getBuckets() const {
1005     return Small ? getInlineBuckets() : getLargeRep()->Buckets;
1006   }
getBuckets()1007   BucketT *getBuckets() {
1008     return const_cast<BucketT *>(
1009       const_cast<const SmallDenseMap *>(this)->getBuckets());
1010   }
getNumBuckets()1011   unsigned getNumBuckets() const {
1012     return Small ? InlineBuckets : getLargeRep()->NumBuckets;
1013   }
1014 
deallocateBuckets()1015   void deallocateBuckets() {
1016     if (Small)
1017       return;
1018 
1019     operator delete(getLargeRep()->Buckets);
1020     getLargeRep()->~LargeRep();
1021   }
1022 
allocateBuckets(unsigned Num)1023   LargeRep allocateBuckets(unsigned Num) {
1024     assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
1025     LargeRep Rep = {
1026       static_cast<BucketT*>(operator new(sizeof(BucketT) * Num)), Num
1027     };
1028     return Rep;
1029   }
1030 };
1031 
1032 template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket,
1033           bool IsConst>
1034 class DenseMapIterator : DebugEpochBase::HandleBase {
1035   typedef DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true> ConstIterator;
1036   friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;
1037   friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>;
1038 
1039 public:
1040   typedef ptrdiff_t difference_type;
1041   typedef typename std::conditional<IsConst, const Bucket, Bucket>::type
1042   value_type;
1043   typedef value_type *pointer;
1044   typedef value_type &reference;
1045   typedef std::forward_iterator_tag iterator_category;
1046 
1047 private:
1048   pointer Ptr, End;
1049 
1050 public:
DenseMapIterator()1051   DenseMapIterator() : Ptr(nullptr), End(nullptr) {}
1052 
1053   DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch,
1054                    bool NoAdvance = false)
1055       : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) {
1056     assert(isHandleInSync() && "invalid construction!");
1057     if (!NoAdvance) AdvancePastEmptyBuckets();
1058   }
1059 
1060   // Converting ctor from non-const iterators to const iterators. SFINAE'd out
1061   // for const iterator destinations so it doesn't end up as a user defined copy
1062   // constructor.
1063   template <bool IsConstSrc,
1064             typename = typename std::enable_if<!IsConstSrc && IsConst>::type>
DenseMapIterator(const DenseMapIterator<KeyT,ValueT,KeyInfoT,Bucket,IsConstSrc> & I)1065   DenseMapIterator(
1066       const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I)
1067       : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {}
1068 
1069   reference operator*() const {
1070     assert(isHandleInSync() && "invalid iterator access!");
1071     return *Ptr;
1072   }
1073   pointer operator->() const {
1074     assert(isHandleInSync() && "invalid iterator access!");
1075     return Ptr;
1076   }
1077 
1078   bool operator==(const ConstIterator &RHS) const {
1079     assert((!Ptr || isHandleInSync()) && "handle not in sync!");
1080     assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
1081     assert(getEpochAddress() == RHS.getEpochAddress() &&
1082            "comparing incomparable iterators!");
1083     return Ptr == RHS.Ptr;
1084   }
1085   bool operator!=(const ConstIterator &RHS) const {
1086     assert((!Ptr || isHandleInSync()) && "handle not in sync!");
1087     assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
1088     assert(getEpochAddress() == RHS.getEpochAddress() &&
1089            "comparing incomparable iterators!");
1090     return Ptr != RHS.Ptr;
1091   }
1092 
1093   inline DenseMapIterator& operator++() {  // Preincrement
1094     assert(isHandleInSync() && "invalid iterator access!");
1095     ++Ptr;
1096     AdvancePastEmptyBuckets();
1097     return *this;
1098   }
1099   DenseMapIterator operator++(int) {  // Postincrement
1100     assert(isHandleInSync() && "invalid iterator access!");
1101     DenseMapIterator tmp = *this; ++*this; return tmp;
1102   }
1103 
1104 private:
AdvancePastEmptyBuckets()1105   void AdvancePastEmptyBuckets() {
1106     const KeyT Empty = KeyInfoT::getEmptyKey();
1107     const KeyT Tombstone = KeyInfoT::getTombstoneKey();
1108 
1109     while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) ||
1110                           KeyInfoT::isEqual(Ptr->getFirst(), Tombstone)))
1111       ++Ptr;
1112   }
1113 };
1114 
1115 template<typename KeyT, typename ValueT, typename KeyInfoT>
1116 static inline size_t
capacity_in_bytes(const DenseMap<KeyT,ValueT,KeyInfoT> & X)1117 capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) {
1118   return X.getMemorySize();
1119 }
1120 
1121 } // end namespace llvm
1122 
1123 #endif // LLVM_ADT_DENSEMAP_H
1124