1 //===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the newly proposed standard C++ interfaces for hashing
11 // arbitrary data and building hash functions for user-defined types. This
12 // interface was originally proposed in N3333[1] and is currently under review
13 // for inclusion in a future TR and/or standard.
14 //
15 // The primary interfaces provide are comprised of one type and three functions:
16 //
17 // -- 'hash_code' class is an opaque type representing the hash code for some
18 // data. It is the intended product of hashing, and can be used to implement
19 // hash tables, checksumming, and other common uses of hashes. It is not an
20 // integer type (although it can be converted to one) because it is risky
21 // to assume much about the internals of a hash_code. In particular, each
22 // execution of the program has a high probability of producing a different
23 // hash_code for a given input. Thus their values are not stable to save or
24 // persist, and should only be used during the execution for the
25 // construction of hashing datastructures.
26 //
27 // -- 'hash_value' is a function designed to be overloaded for each
28 // user-defined type which wishes to be used within a hashing context. It
29 // should be overloaded within the user-defined type's namespace and found
30 // via ADL. Overloads for primitive types are provided by this library.
31 //
32 // -- 'hash_combine' and 'hash_combine_range' are functions designed to aid
33 // programmers in easily and intuitively combining a set of data into
34 // a single hash_code for their object. They should only logically be used
35 // within the implementation of a 'hash_value' routine or similar context.
36 //
37 // Note that 'hash_combine_range' contains very special logic for hashing
38 // a contiguous array of integers or pointers. This logic is *extremely* fast,
39 // on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were
40 // benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys
41 // under 32-bytes.
42 //
43 //===----------------------------------------------------------------------===//
44
45 #ifndef LLVM_ADT_HASHING_H
46 #define LLVM_ADT_HASHING_H
47
48 #include "llvm/Support/DataTypes.h"
49 #include "llvm/Support/Host.h"
50 #include "llvm/Support/SwapByteOrder.h"
51 #include "llvm/Support/type_traits.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstring>
55 #include <string>
56 #include <utility>
57
58 namespace llvm {
59
60 /// \brief An opaque object representing a hash code.
61 ///
62 /// This object represents the result of hashing some entity. It is intended to
63 /// be used to implement hashtables or other hashing-based data structures.
64 /// While it wraps and exposes a numeric value, this value should not be
65 /// trusted to be stable or predictable across processes or executions.
66 ///
67 /// In order to obtain the hash_code for an object 'x':
68 /// \code
69 /// using llvm::hash_value;
70 /// llvm::hash_code code = hash_value(x);
71 /// \endcode
72 class hash_code {
73 size_t value;
74
75 public:
76 /// \brief Default construct a hash_code.
77 /// Note that this leaves the value uninitialized.
78 hash_code() = default;
79
80 /// \brief Form a hash code directly from a numerical value.
hash_code(size_t value)81 hash_code(size_t value) : value(value) {}
82
83 /// \brief Convert the hash code to its numerical value for use.
size_t()84 /*explicit*/ operator size_t() const { return value; }
85
86 friend bool operator==(const hash_code &lhs, const hash_code &rhs) {
87 return lhs.value == rhs.value;
88 }
89 friend bool operator!=(const hash_code &lhs, const hash_code &rhs) {
90 return lhs.value != rhs.value;
91 }
92
93 /// \brief Allow a hash_code to be directly run through hash_value.
hash_value(const hash_code & code)94 friend size_t hash_value(const hash_code &code) { return code.value; }
95 };
96
97 /// \brief Compute a hash_code for any integer value.
98 ///
99 /// Note that this function is intended to compute the same hash_code for
100 /// a particular value without regard to the pre-promotion type. This is in
101 /// contrast to hash_combine which may produce different hash_codes for
102 /// differing argument types even if they would implicit promote to a common
103 /// type without changing the value.
104 template <typename T>
105 typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type
106 hash_value(T value);
107
108 /// \brief Compute a hash_code for a pointer's address.
109 ///
110 /// N.B.: This hashes the *address*. Not the value and not the type.
111 template <typename T> hash_code hash_value(const T *ptr);
112
113 /// \brief Compute a hash_code for a pair of objects.
114 template <typename T, typename U>
115 hash_code hash_value(const std::pair<T, U> &arg);
116
117 /// \brief Compute a hash_code for a standard string.
118 template <typename T>
119 hash_code hash_value(const std::basic_string<T> &arg);
120
121
122 /// \brief Override the execution seed with a fixed value.
123 ///
124 /// This hashing library uses a per-execution seed designed to change on each
125 /// run with high probability in order to ensure that the hash codes are not
126 /// attackable and to ensure that output which is intended to be stable does
127 /// not rely on the particulars of the hash codes produced.
128 ///
129 /// That said, there are use cases where it is important to be able to
130 /// reproduce *exactly* a specific behavior. To that end, we provide a function
131 /// which will forcibly set the seed to a fixed value. This must be done at the
132 /// start of the program, before any hashes are computed. Also, it cannot be
133 /// undone. This makes it thread-hostile and very hard to use outside of
134 /// immediately on start of a simple program designed for reproducible
135 /// behavior.
136 void set_fixed_execution_hash_seed(size_t fixed_value);
137
138
139 // All of the implementation details of actually computing the various hash
140 // code values are held within this namespace. These routines are included in
141 // the header file mainly to allow inlining and constant propagation.
142 namespace hashing {
143 namespace detail {
144
fetch64(const char * p)145 inline uint64_t fetch64(const char *p) {
146 uint64_t result;
147 memcpy(&result, p, sizeof(result));
148 if (sys::IsBigEndianHost)
149 sys::swapByteOrder(result);
150 return result;
151 }
152
fetch32(const char * p)153 inline uint32_t fetch32(const char *p) {
154 uint32_t result;
155 memcpy(&result, p, sizeof(result));
156 if (sys::IsBigEndianHost)
157 sys::swapByteOrder(result);
158 return result;
159 }
160
161 /// Some primes between 2^63 and 2^64 for various uses.
162 static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
163 static const uint64_t k1 = 0xb492b66fbe98f273ULL;
164 static const uint64_t k2 = 0x9ae16a3b2f90404fULL;
165 static const uint64_t k3 = 0xc949d7c7509e6557ULL;
166
167 /// \brief Bitwise right rotate.
168 /// Normally this will compile to a single instruction, especially if the
169 /// shift is a manifest constant.
rotate(uint64_t val,size_t shift)170 inline uint64_t rotate(uint64_t val, size_t shift) {
171 // Avoid shifting by 64: doing so yields an undefined result.
172 return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
173 }
174
shift_mix(uint64_t val)175 inline uint64_t shift_mix(uint64_t val) {
176 return val ^ (val >> 47);
177 }
178
hash_16_bytes(uint64_t low,uint64_t high)179 inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) {
180 // Murmur-inspired hashing.
181 const uint64_t kMul = 0x9ddfea08eb382d69ULL;
182 uint64_t a = (low ^ high) * kMul;
183 a ^= (a >> 47);
184 uint64_t b = (high ^ a) * kMul;
185 b ^= (b >> 47);
186 b *= kMul;
187 return b;
188 }
189
hash_1to3_bytes(const char * s,size_t len,uint64_t seed)190 inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) {
191 uint8_t a = s[0];
192 uint8_t b = s[len >> 1];
193 uint8_t c = s[len - 1];
194 uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
195 uint32_t z = len + (static_cast<uint32_t>(c) << 2);
196 return shift_mix(y * k2 ^ z * k3 ^ seed) * k2;
197 }
198
hash_4to8_bytes(const char * s,size_t len,uint64_t seed)199 inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) {
200 uint64_t a = fetch32(s);
201 return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4));
202 }
203
hash_9to16_bytes(const char * s,size_t len,uint64_t seed)204 inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) {
205 uint64_t a = fetch64(s);
206 uint64_t b = fetch64(s + len - 8);
207 return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b;
208 }
209
hash_17to32_bytes(const char * s,size_t len,uint64_t seed)210 inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) {
211 uint64_t a = fetch64(s) * k1;
212 uint64_t b = fetch64(s + 8);
213 uint64_t c = fetch64(s + len - 8) * k2;
214 uint64_t d = fetch64(s + len - 16) * k0;
215 return hash_16_bytes(rotate(a - b, 43) + rotate(c ^ seed, 30) + d,
216 a + rotate(b ^ k3, 20) - c + len + seed);
217 }
218
hash_33to64_bytes(const char * s,size_t len,uint64_t seed)219 inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) {
220 uint64_t z = fetch64(s + 24);
221 uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0;
222 uint64_t b = rotate(a + z, 52);
223 uint64_t c = rotate(a, 37);
224 a += fetch64(s + 8);
225 c += rotate(a, 7);
226 a += fetch64(s + 16);
227 uint64_t vf = a + z;
228 uint64_t vs = b + rotate(a, 31) + c;
229 a = fetch64(s + 16) + fetch64(s + len - 32);
230 z = fetch64(s + len - 8);
231 b = rotate(a + z, 52);
232 c = rotate(a, 37);
233 a += fetch64(s + len - 24);
234 c += rotate(a, 7);
235 a += fetch64(s + len - 16);
236 uint64_t wf = a + z;
237 uint64_t ws = b + rotate(a, 31) + c;
238 uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0);
239 return shift_mix((seed ^ (r * k0)) + vs) * k2;
240 }
241
hash_short(const char * s,size_t length,uint64_t seed)242 inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) {
243 if (length >= 4 && length <= 8)
244 return hash_4to8_bytes(s, length, seed);
245 if (length > 8 && length <= 16)
246 return hash_9to16_bytes(s, length, seed);
247 if (length > 16 && length <= 32)
248 return hash_17to32_bytes(s, length, seed);
249 if (length > 32)
250 return hash_33to64_bytes(s, length, seed);
251 if (length != 0)
252 return hash_1to3_bytes(s, length, seed);
253
254 return k2 ^ seed;
255 }
256
257 /// \brief The intermediate state used during hashing.
258 /// Currently, the algorithm for computing hash codes is based on CityHash and
259 /// keeps 56 bytes of arbitrary state.
260 struct hash_state {
261 uint64_t h0, h1, h2, h3, h4, h5, h6;
262
263 /// \brief Create a new hash_state structure and initialize it based on the
264 /// seed and the first 64-byte chunk.
265 /// This effectively performs the initial mix.
createhash_state266 static hash_state create(const char *s, uint64_t seed) {
267 hash_state state = {
268 0, seed, hash_16_bytes(seed, k1), rotate(seed ^ k1, 49),
269 seed * k1, shift_mix(seed), 0 };
270 state.h6 = hash_16_bytes(state.h4, state.h5);
271 state.mix(s);
272 return state;
273 }
274
275 /// \brief Mix 32-bytes from the input sequence into the 16-bytes of 'a'
276 /// and 'b', including whatever is already in 'a' and 'b'.
mix_32_byteshash_state277 static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) {
278 a += fetch64(s);
279 uint64_t c = fetch64(s + 24);
280 b = rotate(b + a + c, 21);
281 uint64_t d = a;
282 a += fetch64(s + 8) + fetch64(s + 16);
283 b += rotate(a, 44) + d;
284 a += c;
285 }
286
287 /// \brief Mix in a 64-byte buffer of data.
288 /// We mix all 64 bytes even when the chunk length is smaller, but we
289 /// record the actual length.
mixhash_state290 void mix(const char *s) {
291 h0 = rotate(h0 + h1 + h3 + fetch64(s + 8), 37) * k1;
292 h1 = rotate(h1 + h4 + fetch64(s + 48), 42) * k1;
293 h0 ^= h6;
294 h1 += h3 + fetch64(s + 40);
295 h2 = rotate(h2 + h5, 33) * k1;
296 h3 = h4 * k1;
297 h4 = h0 + h5;
298 mix_32_bytes(s, h3, h4);
299 h5 = h2 + h6;
300 h6 = h1 + fetch64(s + 16);
301 mix_32_bytes(s + 32, h5, h6);
302 std::swap(h2, h0);
303 }
304
305 /// \brief Compute the final 64-bit hash code value based on the current
306 /// state and the length of bytes hashed.
finalizehash_state307 uint64_t finalize(size_t length) {
308 return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2,
309 hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0);
310 }
311 };
312
313
314 /// \brief A global, fixed seed-override variable.
315 ///
316 /// This variable can be set using the \see llvm::set_fixed_execution_seed
317 /// function. See that function for details. Do not, under any circumstances,
318 /// set or read this variable.
319 extern size_t fixed_seed_override;
320
get_execution_seed()321 inline size_t get_execution_seed() {
322 // FIXME: This needs to be a per-execution seed. This is just a placeholder
323 // implementation. Switching to a per-execution seed is likely to flush out
324 // instability bugs and so will happen as its own commit.
325 //
326 // However, if there is a fixed seed override set the first time this is
327 // called, return that instead of the per-execution seed.
328 const uint64_t seed_prime = 0xff51afd7ed558ccdULL;
329 static size_t seed = fixed_seed_override ? fixed_seed_override
330 : (size_t)seed_prime;
331 return seed;
332 }
333
334
335 /// \brief Trait to indicate whether a type's bits can be hashed directly.
336 ///
337 /// A type trait which is true if we want to combine values for hashing by
338 /// reading the underlying data. It is false if values of this type must
339 /// first be passed to hash_value, and the resulting hash_codes combined.
340 //
341 // FIXME: We want to replace is_integral_or_enum and is_pointer here with
342 // a predicate which asserts that comparing the underlying storage of two
343 // values of the type for equality is equivalent to comparing the two values
344 // for equality. For all the platforms we care about, this holds for integers
345 // and pointers, but there are platforms where it doesn't and we would like to
346 // support user-defined types which happen to satisfy this property.
347 template <typename T> struct is_hashable_data
348 : std::integral_constant<bool, ((is_integral_or_enum<T>::value ||
349 std::is_pointer<T>::value) &&
350 64 % sizeof(T) == 0)> {};
351
352 // Special case std::pair to detect when both types are viable and when there
353 // is no alignment-derived padding in the pair. This is a bit of a lie because
354 // std::pair isn't truly POD, but it's close enough in all reasonable
355 // implementations for our use case of hashing the underlying data.
356 template <typename T, typename U> struct is_hashable_data<std::pair<T, U> >
357 : std::integral_constant<bool, (is_hashable_data<T>::value &&
358 is_hashable_data<U>::value &&
359 (sizeof(T) + sizeof(U)) ==
360 sizeof(std::pair<T, U>))> {};
361
362 /// \brief Helper to get the hashable data representation for a type.
363 /// This variant is enabled when the type itself can be used.
364 template <typename T>
365 typename std::enable_if<is_hashable_data<T>::value, T>::type
366 get_hashable_data(const T &value) {
367 return value;
368 }
369 /// \brief Helper to get the hashable data representation for a type.
370 /// This variant is enabled when we must first call hash_value and use the
371 /// result as our data.
372 template <typename T>
373 typename std::enable_if<!is_hashable_data<T>::value, size_t>::type
374 get_hashable_data(const T &value) {
375 using ::llvm::hash_value;
376 return hash_value(value);
377 }
378
379 /// \brief Helper to store data from a value into a buffer and advance the
380 /// pointer into that buffer.
381 ///
382 /// This routine first checks whether there is enough space in the provided
383 /// buffer, and if not immediately returns false. If there is space, it
384 /// copies the underlying bytes of value into the buffer, advances the
385 /// buffer_ptr past the copied bytes, and returns true.
386 template <typename T>
387 bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value,
388 size_t offset = 0) {
389 size_t store_size = sizeof(value) - offset;
390 if (buffer_ptr + store_size > buffer_end)
391 return false;
392 const char *value_data = reinterpret_cast<const char *>(&value);
393 memcpy(buffer_ptr, value_data + offset, store_size);
394 buffer_ptr += store_size;
395 return true;
396 }
397
398 /// \brief Implement the combining of integral values into a hash_code.
399 ///
400 /// This overload is selected when the value type of the iterator is
401 /// integral. Rather than computing a hash_code for each object and then
402 /// combining them, this (as an optimization) directly combines the integers.
403 template <typename InputIteratorT>
404 hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) {
405 const size_t seed = get_execution_seed();
406 char buffer[64], *buffer_ptr = buffer;
407 char *const buffer_end = std::end(buffer);
408 while (first != last && store_and_advance(buffer_ptr, buffer_end,
409 get_hashable_data(*first)))
410 ++first;
411 if (first == last)
412 return hash_short(buffer, buffer_ptr - buffer, seed);
413 assert(buffer_ptr == buffer_end);
414
415 hash_state state = state.create(buffer, seed);
416 size_t length = 64;
417 while (first != last) {
418 // Fill up the buffer. We don't clear it, which re-mixes the last round
419 // when only a partial 64-byte chunk is left.
420 buffer_ptr = buffer;
421 while (first != last && store_and_advance(buffer_ptr, buffer_end,
422 get_hashable_data(*first)))
423 ++first;
424
425 // Rotate the buffer if we did a partial fill in order to simulate doing
426 // a mix of the last 64-bytes. That is how the algorithm works when we
427 // have a contiguous byte sequence, and we want to emulate that here.
428 std::rotate(buffer, buffer_ptr, buffer_end);
429
430 // Mix this chunk into the current state.
431 state.mix(buffer);
432 length += buffer_ptr - buffer;
433 };
434
435 return state.finalize(length);
436 }
437
438 /// \brief Implement the combining of integral values into a hash_code.
439 ///
440 /// This overload is selected when the value type of the iterator is integral
441 /// and when the input iterator is actually a pointer. Rather than computing
442 /// a hash_code for each object and then combining them, this (as an
443 /// optimization) directly combines the integers. Also, because the integers
444 /// are stored in contiguous memory, this routine avoids copying each value
445 /// and directly reads from the underlying memory.
446 template <typename ValueT>
447 typename std::enable_if<is_hashable_data<ValueT>::value, hash_code>::type
448 hash_combine_range_impl(ValueT *first, ValueT *last) {
449 const size_t seed = get_execution_seed();
450 const char *s_begin = reinterpret_cast<const char *>(first);
451 const char *s_end = reinterpret_cast<const char *>(last);
452 const size_t length = std::distance(s_begin, s_end);
453 if (length <= 64)
454 return hash_short(s_begin, length, seed);
455
456 const char *s_aligned_end = s_begin + (length & ~63);
457 hash_state state = state.create(s_begin, seed);
458 s_begin += 64;
459 while (s_begin != s_aligned_end) {
460 state.mix(s_begin);
461 s_begin += 64;
462 }
463 if (length & 63)
464 state.mix(s_end - 64);
465
466 return state.finalize(length);
467 }
468
469 } // namespace detail
470 } // namespace hashing
471
472
473 /// \brief Compute a hash_code for a sequence of values.
474 ///
475 /// This hashes a sequence of values. It produces the same hash_code as
476 /// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences
477 /// and is significantly faster given pointers and types which can be hashed as
478 /// a sequence of bytes.
479 template <typename InputIteratorT>
480 hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) {
481 return ::llvm::hashing::detail::hash_combine_range_impl(first, last);
482 }
483
484
485 // Implementation details for hash_combine.
486 namespace hashing {
487 namespace detail {
488
489 /// \brief Helper class to manage the recursive combining of hash_combine
490 /// arguments.
491 ///
492 /// This class exists to manage the state and various calls involved in the
493 /// recursive combining of arguments used in hash_combine. It is particularly
494 /// useful at minimizing the code in the recursive calls to ease the pain
495 /// caused by a lack of variadic functions.
496 struct hash_combine_recursive_helper {
497 char buffer[64];
498 hash_state state;
499 const size_t seed;
500
501 public:
502 /// \brief Construct a recursive hash combining helper.
503 ///
504 /// This sets up the state for a recursive hash combine, including getting
505 /// the seed and buffer setup.
506 hash_combine_recursive_helper()
507 : seed(get_execution_seed()) {}
508
509 /// \brief Combine one chunk of data into the current in-flight hash.
510 ///
511 /// This merges one chunk of data into the hash. First it tries to buffer
512 /// the data. If the buffer is full, it hashes the buffer into its
513 /// hash_state, empties it, and then merges the new chunk in. This also
514 /// handles cases where the data straddles the end of the buffer.
515 template <typename T>
516 char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) {
517 if (!store_and_advance(buffer_ptr, buffer_end, data)) {
518 // Check for skew which prevents the buffer from being packed, and do
519 // a partial store into the buffer to fill it. This is only a concern
520 // with the variadic combine because that formation can have varying
521 // argument types.
522 size_t partial_store_size = buffer_end - buffer_ptr;
523 memcpy(buffer_ptr, &data, partial_store_size);
524
525 // If the store fails, our buffer is full and ready to hash. We have to
526 // either initialize the hash state (on the first full buffer) or mix
527 // this buffer into the existing hash state. Length tracks the *hashed*
528 // length, not the buffered length.
529 if (length == 0) {
530 state = state.create(buffer, seed);
531 length = 64;
532 } else {
533 // Mix this chunk into the current state and bump length up by 64.
534 state.mix(buffer);
535 length += 64;
536 }
537 // Reset the buffer_ptr to the head of the buffer for the next chunk of
538 // data.
539 buffer_ptr = buffer;
540
541 // Try again to store into the buffer -- this cannot fail as we only
542 // store types smaller than the buffer.
543 if (!store_and_advance(buffer_ptr, buffer_end, data,
544 partial_store_size))
545 abort();
546 }
547 return buffer_ptr;
548 }
549
550 /// \brief Recursive, variadic combining method.
551 ///
552 /// This function recurses through each argument, combining that argument
553 /// into a single hash.
554 template <typename T, typename ...Ts>
555 hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
556 const T &arg, const Ts &...args) {
557 buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg));
558
559 // Recurse to the next argument.
560 return combine(length, buffer_ptr, buffer_end, args...);
561 }
562
563 /// \brief Base case for recursive, variadic combining.
564 ///
565 /// The base case when combining arguments recursively is reached when all
566 /// arguments have been handled. It flushes the remaining buffer and
567 /// constructs a hash_code.
568 hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) {
569 // Check whether the entire set of values fit in the buffer. If so, we'll
570 // use the optimized short hashing routine and skip state entirely.
571 if (length == 0)
572 return hash_short(buffer, buffer_ptr - buffer, seed);
573
574 // Mix the final buffer, rotating it if we did a partial fill in order to
575 // simulate doing a mix of the last 64-bytes. That is how the algorithm
576 // works when we have a contiguous byte sequence, and we want to emulate
577 // that here.
578 std::rotate(buffer, buffer_ptr, buffer_end);
579
580 // Mix this chunk into the current state.
581 state.mix(buffer);
582 length += buffer_ptr - buffer;
583
584 return state.finalize(length);
585 }
586 };
587
588 } // namespace detail
589 } // namespace hashing
590
591 /// \brief Combine values into a single hash_code.
592 ///
593 /// This routine accepts a varying number of arguments of any type. It will
594 /// attempt to combine them into a single hash_code. For user-defined types it
595 /// attempts to call a \see hash_value overload (via ADL) for the type. For
596 /// integer and pointer types it directly combines their data into the
597 /// resulting hash_code.
598 ///
599 /// The result is suitable for returning from a user's hash_value
600 /// *implementation* for their user-defined type. Consumers of a type should
601 /// *not* call this routine, they should instead call 'hash_value'.
602 template <typename ...Ts> hash_code hash_combine(const Ts &...args) {
603 // Recursively hash each argument using a helper class.
604 ::llvm::hashing::detail::hash_combine_recursive_helper helper;
605 return helper.combine(0, helper.buffer, helper.buffer + 64, args...);
606 }
607
608 // Implementation details for implementations of hash_value overloads provided
609 // here.
610 namespace hashing {
611 namespace detail {
612
613 /// \brief Helper to hash the value of a single integer.
614 ///
615 /// Overloads for smaller integer types are not provided to ensure consistent
616 /// behavior in the presence of integral promotions. Essentially,
617 /// "hash_value('4')" and "hash_value('0' + 4)" should be the same.
618 inline hash_code hash_integer_value(uint64_t value) {
619 // Similar to hash_4to8_bytes but using a seed instead of length.
620 const uint64_t seed = get_execution_seed();
621 const char *s = reinterpret_cast<const char *>(&value);
622 const uint64_t a = fetch32(s);
623 return hash_16_bytes(seed + (a << 3), fetch32(s + 4));
624 }
625
626 } // namespace detail
627 } // namespace hashing
628
629 // Declared and documented above, but defined here so that any of the hashing
630 // infrastructure is available.
631 template <typename T>
632 typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type
633 hash_value(T value) {
634 return ::llvm::hashing::detail::hash_integer_value(
635 static_cast<uint64_t>(value));
636 }
637
638 // Declared and documented above, but defined here so that any of the hashing
639 // infrastructure is available.
640 template <typename T> hash_code hash_value(const T *ptr) {
641 return ::llvm::hashing::detail::hash_integer_value(
642 reinterpret_cast<uintptr_t>(ptr));
643 }
644
645 // Declared and documented above, but defined here so that any of the hashing
646 // infrastructure is available.
647 template <typename T, typename U>
648 hash_code hash_value(const std::pair<T, U> &arg) {
649 return hash_combine(arg.first, arg.second);
650 }
651
652 // Declared and documented above, but defined here so that any of the hashing
653 // infrastructure is available.
654 template <typename T>
655 hash_code hash_value(const std::basic_string<T> &arg) {
656 return hash_combine_range(arg.begin(), arg.end());
657 }
658
659 } // namespace llvm
660
661 #endif
662