1 //===- Endian.h - Utilities for IO with endian specific data ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares generic functions to read and write endian specific data.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_SUPPORT_ENDIAN_H
15 #define LLVM_SUPPORT_ENDIAN_H
16 
17 #include "llvm/Support/Host.h"
18 #include "llvm/Support/SwapByteOrder.h"
19 
20 namespace llvm {
21 namespace support {
22 enum endianness {big, little, native};
23 
24 // These are named values for common alignments.
25 enum {aligned = 0, unaligned = 1};
26 
27 namespace detail {
28   /// \brief ::value is either alignment, or alignof(T) if alignment is 0.
29   template<class T, int alignment>
30   struct PickAlignment {
31     enum { value = alignment == 0 ? alignof(T) : alignment };
32   };
33 } // end namespace detail
34 
35 namespace endian {
36 /// Swap the bytes of value to match the given endianness.
37 template<typename value_type, endianness endian>
byte_swap(value_type value)38 inline value_type byte_swap(value_type value) {
39   if (endian != native && sys::IsBigEndianHost != (endian == big))
40     sys::swapByteOrder(value);
41   return value;
42 }
43 
44 /// Read a value of a particular endianness from memory.
45 template<typename value_type,
46          endianness endian,
47          std::size_t alignment>
read(const void * memory)48 inline value_type read(const void *memory) {
49   value_type ret;
50 
51   memcpy(&ret,
52          LLVM_ASSUME_ALIGNED(memory,
53            (detail::PickAlignment<value_type, alignment>::value)),
54          sizeof(value_type));
55   return byte_swap<value_type, endian>(ret);
56 }
57 
58 /// Read a value of a particular endianness from a buffer, and increment the
59 /// buffer past that value.
60 template<typename value_type, endianness endian, std::size_t alignment,
61          typename CharT>
readNext(const CharT * & memory)62 inline value_type readNext(const CharT *&memory) {
63   value_type ret = read<value_type, endian, alignment>(memory);
64   memory += sizeof(value_type);
65   return ret;
66 }
67 
68 /// Write a value to memory with a particular endianness.
69 template<typename value_type,
70          endianness endian,
71          std::size_t alignment>
write(void * memory,value_type value)72 inline void write(void *memory, value_type value) {
73   value = byte_swap<value_type, endian>(value);
74   memcpy(LLVM_ASSUME_ALIGNED(memory,
75            (detail::PickAlignment<value_type, alignment>::value)),
76          &value,
77          sizeof(value_type));
78 }
79 
80 template <typename value_type>
81 using make_unsigned_t = typename std::make_unsigned<value_type>::type;
82 
83 /// Read a value of a particular endianness from memory, for a location
84 /// that starts at the given bit offset within the first byte.
85 template <typename value_type, endianness endian, std::size_t alignment>
readAtBitAlignment(const void * memory,uint64_t startBit)86 inline value_type readAtBitAlignment(const void *memory, uint64_t startBit) {
87   assert(startBit < 8);
88   if (startBit == 0)
89     return read<value_type, endian, alignment>(memory);
90   else {
91     // Read two values and compose the result from them.
92     value_type val[2];
93     memcpy(&val[0],
94            LLVM_ASSUME_ALIGNED(
95                memory, (detail::PickAlignment<value_type, alignment>::value)),
96            sizeof(value_type) * 2);
97     val[0] = byte_swap<value_type, endian>(val[0]);
98     val[1] = byte_swap<value_type, endian>(val[1]);
99 
100     // Shift bits from the lower value into place.
101     make_unsigned_t<value_type> lowerVal = val[0] >> startBit;
102     // Mask off upper bits after right shift in case of signed type.
103     make_unsigned_t<value_type> numBitsFirstVal =
104         (sizeof(value_type) * 8) - startBit;
105     lowerVal &= ((make_unsigned_t<value_type>)1 << numBitsFirstVal) - 1;
106 
107     // Get the bits from the upper value.
108     make_unsigned_t<value_type> upperVal =
109         val[1] & (((make_unsigned_t<value_type>)1 << startBit) - 1);
110     // Shift them in to place.
111     upperVal <<= numBitsFirstVal;
112 
113     return lowerVal | upperVal;
114   }
115 }
116 
117 /// Write a value to memory with a particular endianness, for a location
118 /// that starts at the given bit offset within the first byte.
119 template <typename value_type, endianness endian, std::size_t alignment>
writeAtBitAlignment(void * memory,value_type value,uint64_t startBit)120 inline void writeAtBitAlignment(void *memory, value_type value,
121                                 uint64_t startBit) {
122   assert(startBit < 8);
123   if (startBit == 0)
124     write<value_type, endian, alignment>(memory, value);
125   else {
126     // Read two values and shift the result into them.
127     value_type val[2];
128     memcpy(&val[0],
129            LLVM_ASSUME_ALIGNED(
130                memory, (detail::PickAlignment<value_type, alignment>::value)),
131            sizeof(value_type) * 2);
132     val[0] = byte_swap<value_type, endian>(val[0]);
133     val[1] = byte_swap<value_type, endian>(val[1]);
134 
135     // Mask off any existing bits in the upper part of the lower value that
136     // we want to replace.
137     val[0] &= ((make_unsigned_t<value_type>)1 << startBit) - 1;
138     make_unsigned_t<value_type> numBitsFirstVal =
139         (sizeof(value_type) * 8) - startBit;
140     make_unsigned_t<value_type> lowerVal = value;
141     if (startBit > 0) {
142       // Mask off the upper bits in the new value that are not going to go into
143       // the lower value. This avoids a left shift of a negative value, which
144       // is undefined behavior.
145       lowerVal &= (((make_unsigned_t<value_type>)1 << numBitsFirstVal) - 1);
146       // Now shift the new bits into place
147       lowerVal <<= startBit;
148     }
149     val[0] |= lowerVal;
150 
151     // Mask off any existing bits in the lower part of the upper value that
152     // we want to replace.
153     val[1] &= ~(((make_unsigned_t<value_type>)1 << startBit) - 1);
154     // Next shift the bits that go into the upper value into position.
155     make_unsigned_t<value_type> upperVal = value >> numBitsFirstVal;
156     // Mask off upper bits after right shift in case of signed type.
157     upperVal &= ((make_unsigned_t<value_type>)1 << startBit) - 1;
158     val[1] |= upperVal;
159 
160     // Finally, rewrite values.
161     val[0] = byte_swap<value_type, endian>(val[0]);
162     val[1] = byte_swap<value_type, endian>(val[1]);
163     memcpy(LLVM_ASSUME_ALIGNED(
164                memory, (detail::PickAlignment<value_type, alignment>::value)),
165            &val[0], sizeof(value_type) * 2);
166   }
167 }
168 } // end namespace endian
169 
170 namespace detail {
171 template<typename value_type,
172          endianness endian,
173          std::size_t alignment>
174 struct packed_endian_specific_integral {
175   packed_endian_specific_integral() = default;
176 
packed_endian_specific_integralpacked_endian_specific_integral177   explicit packed_endian_specific_integral(value_type val) { *this = val; }
178 
value_typepacked_endian_specific_integral179   operator value_type() const {
180     return endian::read<value_type, endian, alignment>(
181       (const void*)Value.buffer);
182   }
183 
184   void operator=(value_type newValue) {
185     endian::write<value_type, endian, alignment>(
186       (void*)Value.buffer, newValue);
187   }
188 
189   packed_endian_specific_integral &operator+=(value_type newValue) {
190     *this = *this + newValue;
191     return *this;
192   }
193 
194   packed_endian_specific_integral &operator-=(value_type newValue) {
195     *this = *this - newValue;
196     return *this;
197   }
198 
199   packed_endian_specific_integral &operator|=(value_type newValue) {
200     *this = *this | newValue;
201     return *this;
202   }
203 
204   packed_endian_specific_integral &operator&=(value_type newValue) {
205     *this = *this & newValue;
206     return *this;
207   }
208 
209 private:
210   AlignedCharArray<PickAlignment<value_type, alignment>::value,
211                    sizeof(value_type)> Value;
212 
213 public:
214   struct ref {
refpacked_endian_specific_integral::ref215     explicit ref(void *Ptr) : Ptr(Ptr) {}
216 
value_typepacked_endian_specific_integral::ref217     operator value_type() const {
218       return endian::read<value_type, endian, alignment>(Ptr);
219     }
220 
221     void operator=(value_type NewValue) {
222       endian::write<value_type, endian, alignment>(Ptr, NewValue);
223     }
224 
225   private:
226     void *Ptr;
227   };
228 };
229 
230 } // end namespace detail
231 
232 typedef detail::packed_endian_specific_integral
233                   <uint16_t, little, unaligned> ulittle16_t;
234 typedef detail::packed_endian_specific_integral
235                   <uint32_t, little, unaligned> ulittle32_t;
236 typedef detail::packed_endian_specific_integral
237                   <uint64_t, little, unaligned> ulittle64_t;
238 
239 typedef detail::packed_endian_specific_integral
240                    <int16_t, little, unaligned> little16_t;
241 typedef detail::packed_endian_specific_integral
242                    <int32_t, little, unaligned> little32_t;
243 typedef detail::packed_endian_specific_integral
244                    <int64_t, little, unaligned> little64_t;
245 
246 typedef detail::packed_endian_specific_integral
247                     <uint16_t, little, aligned> aligned_ulittle16_t;
248 typedef detail::packed_endian_specific_integral
249                     <uint32_t, little, aligned> aligned_ulittle32_t;
250 typedef detail::packed_endian_specific_integral
251                     <uint64_t, little, aligned> aligned_ulittle64_t;
252 
253 typedef detail::packed_endian_specific_integral
254                      <int16_t, little, aligned> aligned_little16_t;
255 typedef detail::packed_endian_specific_integral
256                      <int32_t, little, aligned> aligned_little32_t;
257 typedef detail::packed_endian_specific_integral
258                      <int64_t, little, aligned> aligned_little64_t;
259 
260 typedef detail::packed_endian_specific_integral
261                   <uint16_t, big, unaligned>    ubig16_t;
262 typedef detail::packed_endian_specific_integral
263                   <uint32_t, big, unaligned>    ubig32_t;
264 typedef detail::packed_endian_specific_integral
265                   <uint64_t, big, unaligned>    ubig64_t;
266 
267 typedef detail::packed_endian_specific_integral
268                    <int16_t, big, unaligned>    big16_t;
269 typedef detail::packed_endian_specific_integral
270                    <int32_t, big, unaligned>    big32_t;
271 typedef detail::packed_endian_specific_integral
272                    <int64_t, big, unaligned>    big64_t;
273 
274 typedef detail::packed_endian_specific_integral
275                     <uint16_t, big, aligned>    aligned_ubig16_t;
276 typedef detail::packed_endian_specific_integral
277                     <uint32_t, big, aligned>    aligned_ubig32_t;
278 typedef detail::packed_endian_specific_integral
279                     <uint64_t, big, aligned>    aligned_ubig64_t;
280 
281 typedef detail::packed_endian_specific_integral
282                      <int16_t, big, aligned>    aligned_big16_t;
283 typedef detail::packed_endian_specific_integral
284                      <int32_t, big, aligned>    aligned_big32_t;
285 typedef detail::packed_endian_specific_integral
286                      <int64_t, big, aligned>    aligned_big64_t;
287 
288 typedef detail::packed_endian_specific_integral
289                   <uint16_t, native, unaligned> unaligned_uint16_t;
290 typedef detail::packed_endian_specific_integral
291                   <uint32_t, native, unaligned> unaligned_uint32_t;
292 typedef detail::packed_endian_specific_integral
293                   <uint64_t, native, unaligned> unaligned_uint64_t;
294 
295 typedef detail::packed_endian_specific_integral
296                    <int16_t, native, unaligned> unaligned_int16_t;
297 typedef detail::packed_endian_specific_integral
298                    <int32_t, native, unaligned> unaligned_int32_t;
299 typedef detail::packed_endian_specific_integral
300                    <int64_t, native, unaligned> unaligned_int64_t;
301 
302 namespace endian {
read(const void * P)303 template <typename T, endianness E> inline T read(const void *P) {
304   return *(const detail::packed_endian_specific_integral<T, E, unaligned> *)P;
305 }
306 
read16(const void * P)307 template <endianness E> inline uint16_t read16(const void *P) {
308   return read<uint16_t, E>(P);
309 }
read32(const void * P)310 template <endianness E> inline uint32_t read32(const void *P) {
311   return read<uint32_t, E>(P);
312 }
read64(const void * P)313 template <endianness E> inline uint64_t read64(const void *P) {
314   return read<uint64_t, E>(P);
315 }
316 
read16le(const void * P)317 inline uint16_t read16le(const void *P) { return read16<little>(P); }
read32le(const void * P)318 inline uint32_t read32le(const void *P) { return read32<little>(P); }
read64le(const void * P)319 inline uint64_t read64le(const void *P) { return read64<little>(P); }
read16be(const void * P)320 inline uint16_t read16be(const void *P) { return read16<big>(P); }
read32be(const void * P)321 inline uint32_t read32be(const void *P) { return read32<big>(P); }
read64be(const void * P)322 inline uint64_t read64be(const void *P) { return read64<big>(P); }
323 
write(void * P,T V)324 template <typename T, endianness E> inline void write(void *P, T V) {
325   *(detail::packed_endian_specific_integral<T, E, unaligned> *)P = V;
326 }
327 
write16(void * P,uint16_t V)328 template <endianness E> inline void write16(void *P, uint16_t V) {
329   write<uint16_t, E>(P, V);
330 }
write32(void * P,uint32_t V)331 template <endianness E> inline void write32(void *P, uint32_t V) {
332   write<uint32_t, E>(P, V);
333 }
write64(void * P,uint64_t V)334 template <endianness E> inline void write64(void *P, uint64_t V) {
335   write<uint64_t, E>(P, V);
336 }
337 
write16le(void * P,uint16_t V)338 inline void write16le(void *P, uint16_t V) { write16<little>(P, V); }
write32le(void * P,uint32_t V)339 inline void write32le(void *P, uint32_t V) { write32<little>(P, V); }
write64le(void * P,uint64_t V)340 inline void write64le(void *P, uint64_t V) { write64<little>(P, V); }
write16be(void * P,uint16_t V)341 inline void write16be(void *P, uint16_t V) { write16<big>(P, V); }
write32be(void * P,uint32_t V)342 inline void write32be(void *P, uint32_t V) { write32<big>(P, V); }
write64be(void * P,uint64_t V)343 inline void write64be(void *P, uint64_t V) { write64<big>(P, V); }
344 } // end namespace endian
345 } // end namespace support
346 } // end namespace llvm
347 
348 #endif
349