1 //===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements the operating system Host concept.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Support/Host.h"
15 #include "llvm/ADT/SmallSet.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/StringSwitch.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/Config/config.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/FileSystem.h"
23 #include "llvm/Support/MemoryBuffer.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include <assert.h>
26 #include <string.h>
27 
28 // Include the platform-specific parts of this class.
29 #ifdef LLVM_ON_UNIX
30 #include "Unix/Host.inc"
31 #endif
32 #ifdef LLVM_ON_WIN32
33 #include "Windows/Host.inc"
34 #endif
35 #ifdef _MSC_VER
36 #include <intrin.h>
37 #endif
38 #if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
39 #include <mach/host_info.h>
40 #include <mach/mach.h>
41 #include <mach/mach_host.h>
42 #include <mach/machine.h>
43 #endif
44 
45 #define DEBUG_TYPE "host-detection"
46 
47 //===----------------------------------------------------------------------===//
48 //
49 //  Implementations of the CPU detection routines
50 //
51 //===----------------------------------------------------------------------===//
52 
53 using namespace llvm;
54 
55 #if defined(__linux__)
readCpuInfo(void * Buf,size_t Size)56 static ssize_t LLVM_ATTRIBUTE_UNUSED readCpuInfo(void *Buf, size_t Size) {
57   // Note: We cannot mmap /proc/cpuinfo here and then process the resulting
58   // memory buffer because the 'file' has 0 size (it can be read from only
59   // as a stream).
60 
61   int FD;
62   std::error_code EC = sys::fs::openFileForRead("/proc/cpuinfo", FD);
63   if (EC) {
64     DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << EC.message() << "\n");
65     return -1;
66   }
67   int Ret = read(FD, Buf, Size);
68   int CloseStatus = close(FD);
69   if (CloseStatus)
70     return -1;
71   return Ret;
72 }
73 #endif
74 
75 #if defined(__i386__) || defined(_M_IX86) || \
76     defined(__x86_64__) || defined(_M_X64)
77 
78 enum VendorSignatures {
79   SIG_INTEL = 0x756e6547 /* Genu */,
80   SIG_AMD = 0x68747541 /* Auth */
81 };
82 
83 enum ProcessorVendors {
84   VENDOR_INTEL = 1,
85   VENDOR_AMD,
86   VENDOR_OTHER,
87   VENDOR_MAX
88 };
89 
90 enum ProcessorTypes {
91   INTEL_ATOM = 1,
92   INTEL_CORE2,
93   INTEL_COREI7,
94   AMDFAM10H,
95   AMDFAM15H,
96   INTEL_i386,
97   INTEL_i486,
98   INTEL_PENTIUM,
99   INTEL_PENTIUM_PRO,
100   INTEL_PENTIUM_II,
101   INTEL_PENTIUM_III,
102   INTEL_PENTIUM_IV,
103   INTEL_PENTIUM_M,
104   INTEL_CORE_DUO,
105   INTEL_XEONPHI,
106   INTEL_X86_64,
107   INTEL_NOCONA,
108   INTEL_PRESCOTT,
109   AMD_i486,
110   AMDPENTIUM,
111   AMDATHLON,
112   AMDFAM14H,
113   AMDFAM16H,
114   CPU_TYPE_MAX
115 };
116 
117 enum ProcessorSubtypes {
118   INTEL_COREI7_NEHALEM = 1,
119   INTEL_COREI7_WESTMERE,
120   INTEL_COREI7_SANDYBRIDGE,
121   AMDFAM10H_BARCELONA,
122   AMDFAM10H_SHANGHAI,
123   AMDFAM10H_ISTANBUL,
124   AMDFAM15H_BDVER1,
125   AMDFAM15H_BDVER2,
126   INTEL_PENTIUM_MMX,
127   INTEL_CORE2_65,
128   INTEL_CORE2_45,
129   INTEL_COREI7_IVYBRIDGE,
130   INTEL_COREI7_HASWELL,
131   INTEL_COREI7_BROADWELL,
132   INTEL_COREI7_SKYLAKE,
133   INTEL_COREI7_SKYLAKE_AVX512,
134   INTEL_ATOM_BONNELL,
135   INTEL_ATOM_SILVERMONT,
136   INTEL_KNIGHTS_LANDING,
137   AMDPENTIUM_K6,
138   AMDPENTIUM_K62,
139   AMDPENTIUM_K63,
140   AMDPENTIUM_GEODE,
141   AMDATHLON_TBIRD,
142   AMDATHLON_MP,
143   AMDATHLON_XP,
144   AMDATHLON_K8SSE3,
145   AMDATHLON_OPTERON,
146   AMDATHLON_FX,
147   AMDATHLON_64,
148   AMD_BTVER1,
149   AMD_BTVER2,
150   AMDFAM15H_BDVER3,
151   AMDFAM15H_BDVER4,
152   CPU_SUBTYPE_MAX
153 };
154 
155 enum ProcessorFeatures {
156   FEATURE_CMOV = 0,
157   FEATURE_MMX,
158   FEATURE_POPCNT,
159   FEATURE_SSE,
160   FEATURE_SSE2,
161   FEATURE_SSE3,
162   FEATURE_SSSE3,
163   FEATURE_SSE4_1,
164   FEATURE_SSE4_2,
165   FEATURE_AVX,
166   FEATURE_AVX2,
167   FEATURE_AVX512,
168   FEATURE_AVX512SAVE,
169   FEATURE_MOVBE,
170   FEATURE_ADX,
171   FEATURE_EM64T
172 };
173 
174 // The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
175 // Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
176 // support. Consequently, for i386, the presence of CPUID is checked first
177 // via the corresponding eflags bit.
178 // Removal of cpuid.h header motivated by PR30384
179 // Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp
180 // or test-suite, but are used in external projects e.g. libstdcxx
isCpuIdSupported()181 static bool isCpuIdSupported() {
182 #if defined(__GNUC__) || defined(__clang__)
183 #if defined(__i386__)
184   int __cpuid_supported;
185   __asm__("  pushfl\n"
186           "  popl   %%eax\n"
187           "  movl   %%eax,%%ecx\n"
188           "  xorl   $0x00200000,%%eax\n"
189           "  pushl  %%eax\n"
190           "  popfl\n"
191           "  pushfl\n"
192           "  popl   %%eax\n"
193           "  movl   $0,%0\n"
194           "  cmpl   %%eax,%%ecx\n"
195           "  je     1f\n"
196           "  movl   $1,%0\n"
197           "1:"
198           : "=r"(__cpuid_supported)
199           :
200           : "eax", "ecx");
201   if (!__cpuid_supported)
202     return false;
203 #endif
204   return true;
205 #endif
206   return true;
207 }
208 
209 /// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
210 /// the specified arguments.  If we can't run cpuid on the host, return true.
getX86CpuIDAndInfo(unsigned value,unsigned * rEAX,unsigned * rEBX,unsigned * rECX,unsigned * rEDX)211 static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
212                                unsigned *rECX, unsigned *rEDX) {
213 #if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER)
214 #if defined(__GNUC__) || defined(__clang__)
215 #if defined(__x86_64__)
216   // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
217   // FIXME: should we save this for Clang?
218   __asm__("movq\t%%rbx, %%rsi\n\t"
219           "cpuid\n\t"
220           "xchgq\t%%rbx, %%rsi\n\t"
221           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
222           : "a"(value));
223 #elif defined(__i386__)
224   __asm__("movl\t%%ebx, %%esi\n\t"
225           "cpuid\n\t"
226           "xchgl\t%%ebx, %%esi\n\t"
227           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
228           : "a"(value));
229 #else
230   assert(0 && "This method is defined only for x86.");
231 #endif
232 #elif defined(_MSC_VER)
233   // The MSVC intrinsic is portable across x86 and x64.
234   int registers[4];
235   __cpuid(registers, value);
236   *rEAX = registers[0];
237   *rEBX = registers[1];
238   *rECX = registers[2];
239   *rEDX = registers[3];
240 #endif
241   return false;
242 #else
243   return true;
244 #endif
245 }
246 
247 /// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
248 /// the 4 values in the specified arguments.  If we can't run cpuid on the host,
249 /// return true.
getX86CpuIDAndInfoEx(unsigned value,unsigned subleaf,unsigned * rEAX,unsigned * rEBX,unsigned * rECX,unsigned * rEDX)250 static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
251                                  unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
252                                  unsigned *rEDX) {
253 #if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER)
254 #if defined(__x86_64__) || defined(_M_X64)
255 #if defined(__GNUC__) || defined(__clang__)
256   // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
257   // FIXME: should we save this for Clang?
258   __asm__("movq\t%%rbx, %%rsi\n\t"
259           "cpuid\n\t"
260           "xchgq\t%%rbx, %%rsi\n\t"
261           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
262           : "a"(value), "c"(subleaf));
263 #elif defined(_MSC_VER)
264   int registers[4];
265   __cpuidex(registers, value, subleaf);
266   *rEAX = registers[0];
267   *rEBX = registers[1];
268   *rECX = registers[2];
269   *rEDX = registers[3];
270 #endif
271 #elif defined(__i386__) || defined(_M_IX86)
272 #if defined(__GNUC__) || defined(__clang__)
273   __asm__("movl\t%%ebx, %%esi\n\t"
274           "cpuid\n\t"
275           "xchgl\t%%ebx, %%esi\n\t"
276           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
277           : "a"(value), "c"(subleaf));
278 #elif defined(_MSC_VER)
279   __asm {
280       mov   eax,value
281       mov   ecx,subleaf
282       cpuid
283       mov   esi,rEAX
284       mov   dword ptr [esi],eax
285       mov   esi,rEBX
286       mov   dword ptr [esi],ebx
287       mov   esi,rECX
288       mov   dword ptr [esi],ecx
289       mov   esi,rEDX
290       mov   dword ptr [esi],edx
291   }
292 #endif
293 #else
294   assert(0 && "This method is defined only for x86.");
295 #endif
296   return false;
297 #else
298   return true;
299 #endif
300 }
301 
getX86XCR0(unsigned * rEAX,unsigned * rEDX)302 static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
303 #if defined(__GNUC__) || defined(__clang__)
304   // Check xgetbv; this uses a .byte sequence instead of the instruction
305   // directly because older assemblers do not include support for xgetbv and
306   // there is no easy way to conditionally compile based on the assembler used.
307   __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
308   return false;
309 #elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
310   unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
311   *rEAX = Result;
312   *rEDX = Result >> 32;
313   return false;
314 #else
315   return true;
316 #endif
317 }
318 
detectX86FamilyModel(unsigned EAX,unsigned * Family,unsigned * Model)319 static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
320                                  unsigned *Model) {
321   *Family = (EAX >> 8) & 0xf; // Bits 8 - 11
322   *Model = (EAX >> 4) & 0xf;  // Bits 4 - 7
323   if (*Family == 6 || *Family == 0xf) {
324     if (*Family == 0xf)
325       // Examine extended family ID if family ID is F.
326       *Family += (EAX >> 20) & 0xff; // Bits 20 - 27
327     // Examine extended model ID if family ID is 6 or F.
328     *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
329   }
330 }
331 
332 static void
getIntelProcessorTypeAndSubtype(unsigned int Family,unsigned int Model,unsigned int Brand_id,unsigned int Features,unsigned * Type,unsigned * Subtype)333 getIntelProcessorTypeAndSubtype(unsigned int Family, unsigned int Model,
334                                 unsigned int Brand_id, unsigned int Features,
335                                 unsigned *Type, unsigned *Subtype) {
336   if (Brand_id != 0)
337     return;
338   switch (Family) {
339   case 3:
340     *Type = INTEL_i386;
341     break;
342   case 4:
343     switch (Model) {
344     case 0: // Intel486 DX processors
345     case 1: // Intel486 DX processors
346     case 2: // Intel486 SX processors
347     case 3: // Intel487 processors, IntelDX2 OverDrive processors,
348             // IntelDX2 processors
349     case 4: // Intel486 SL processor
350     case 5: // IntelSX2 processors
351     case 7: // Write-Back Enhanced IntelDX2 processors
352     case 8: // IntelDX4 OverDrive processors, IntelDX4 processors
353     default:
354       *Type = INTEL_i486;
355       break;
356     }
357     break;
358   case 5:
359     switch (Model) {
360     case 1: // Pentium OverDrive processor for Pentium processor (60, 66),
361             // Pentium processors (60, 66)
362     case 2: // Pentium OverDrive processor for Pentium processor (75, 90,
363             // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133,
364             // 150, 166, 200)
365     case 3: // Pentium OverDrive processors for Intel486 processor-based
366             // systems
367       *Type = INTEL_PENTIUM;
368       break;
369     case 4: // Pentium OverDrive processor with MMX technology for Pentium
370             // processor (75, 90, 100, 120, 133), Pentium processor with
371             // MMX technology (166, 200)
372       *Type = INTEL_PENTIUM;
373       *Subtype = INTEL_PENTIUM_MMX;
374       break;
375     default:
376       *Type = INTEL_PENTIUM;
377       break;
378     }
379     break;
380   case 6:
381     switch (Model) {
382     case 0x01: // Pentium Pro processor
383       *Type = INTEL_PENTIUM_PRO;
384       break;
385     case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor,
386                // model 03
387     case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor,
388                // model 05, and Intel Celeron processor, model 05
389     case 0x06: // Celeron processor, model 06
390       *Type = INTEL_PENTIUM_II;
391       break;
392     case 0x07: // Pentium III processor, model 07, and Pentium III Xeon
393                // processor, model 07
394     case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor,
395                // model 08, and Celeron processor, model 08
396     case 0x0a: // Pentium III Xeon processor, model 0Ah
397     case 0x0b: // Pentium III processor, model 0Bh
398       *Type = INTEL_PENTIUM_III;
399       break;
400     case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09.
401     case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model
402                // 0Dh. All processors are manufactured using the 90 nm process.
403     case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579
404                // Integrated Processor with Intel QuickAssist Technology
405       *Type = INTEL_PENTIUM_M;
406       break;
407     case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model
408                // 0Eh. All processors are manufactured using the 65 nm process.
409       *Type = INTEL_CORE_DUO;
410       break;   // yonah
411     case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
412                // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
413                // mobile processor, Intel Core 2 Extreme processor, Intel
414                // Pentium Dual-Core processor, Intel Xeon processor, model
415                // 0Fh. All processors are manufactured using the 65 nm process.
416     case 0x16: // Intel Celeron processor model 16h. All processors are
417                // manufactured using the 65 nm process
418       *Type = INTEL_CORE2; // "core2"
419       *Subtype = INTEL_CORE2_65;
420       break;
421     case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
422                // 17h. All processors are manufactured using the 45 nm process.
423                //
424                // 45nm: Penryn , Wolfdale, Yorkfield (XE)
425     case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
426                // the 45 nm process.
427       *Type = INTEL_CORE2; // "penryn"
428       *Subtype = INTEL_CORE2_45;
429       break;
430     case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
431                // processors are manufactured using the 45 nm process.
432     case 0x1e: // Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz.
433                // As found in a Summer 2010 model iMac.
434     case 0x1f:
435     case 0x2e:             // Nehalem EX
436       *Type = INTEL_COREI7; // "nehalem"
437       *Subtype = INTEL_COREI7_NEHALEM;
438       break;
439     case 0x25: // Intel Core i7, laptop version.
440     case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
441                // processors are manufactured using the 32 nm process.
442     case 0x2f: // Westmere EX
443       *Type = INTEL_COREI7; // "westmere"
444       *Subtype = INTEL_COREI7_WESTMERE;
445       break;
446     case 0x2a: // Intel Core i7 processor. All processors are manufactured
447                // using the 32 nm process.
448     case 0x2d:
449       *Type = INTEL_COREI7; //"sandybridge"
450       *Subtype = INTEL_COREI7_SANDYBRIDGE;
451       break;
452     case 0x3a:
453     case 0x3e:             // Ivy Bridge EP
454       *Type = INTEL_COREI7; // "ivybridge"
455       *Subtype = INTEL_COREI7_IVYBRIDGE;
456       break;
457 
458     // Haswell:
459     case 0x3c:
460     case 0x3f:
461     case 0x45:
462     case 0x46:
463       *Type = INTEL_COREI7; // "haswell"
464       *Subtype = INTEL_COREI7_HASWELL;
465       break;
466 
467     // Broadwell:
468     case 0x3d:
469     case 0x47:
470     case 0x4f:
471     case 0x56:
472       *Type = INTEL_COREI7; // "broadwell"
473       *Subtype = INTEL_COREI7_BROADWELL;
474       break;
475 
476     // Skylake:
477     case 0x4e:
478       *Type = INTEL_COREI7; // "skylake-avx512"
479       *Subtype = INTEL_COREI7_SKYLAKE_AVX512;
480       break;
481     case 0x5e:
482       *Type = INTEL_COREI7; // "skylake"
483       *Subtype = INTEL_COREI7_SKYLAKE;
484       break;
485 
486     case 0x1c: // Most 45 nm Intel Atom processors
487     case 0x26: // 45 nm Atom Lincroft
488     case 0x27: // 32 nm Atom Medfield
489     case 0x35: // 32 nm Atom Midview
490     case 0x36: // 32 nm Atom Midview
491       *Type = INTEL_ATOM;
492       *Subtype = INTEL_ATOM_BONNELL;
493       break; // "bonnell"
494 
495     // Atom Silvermont codes from the Intel software optimization guide.
496     case 0x37:
497     case 0x4a:
498     case 0x4d:
499     case 0x5a:
500     case 0x5d:
501     case 0x4c: // really airmont
502       *Type = INTEL_ATOM;
503       *Subtype = INTEL_ATOM_SILVERMONT;
504       break; // "silvermont"
505 
506     case 0x57:
507       *Type = INTEL_XEONPHI; // knl
508       *Subtype = INTEL_KNIGHTS_LANDING;
509       break;
510 
511     default: // Unknown family 6 CPU, try to guess.
512       if (Features & (1 << FEATURE_AVX512)) {
513         *Type = INTEL_XEONPHI; // knl
514         *Subtype = INTEL_KNIGHTS_LANDING;
515         break;
516       }
517       if (Features & (1 << FEATURE_ADX)) {
518         *Type = INTEL_COREI7;
519         *Subtype = INTEL_COREI7_BROADWELL;
520         break;
521       }
522       if (Features & (1 << FEATURE_AVX2)) {
523         *Type = INTEL_COREI7;
524         *Subtype = INTEL_COREI7_HASWELL;
525         break;
526       }
527       if (Features & (1 << FEATURE_AVX)) {
528         *Type = INTEL_COREI7;
529         *Subtype = INTEL_COREI7_SANDYBRIDGE;
530         break;
531       }
532       if (Features & (1 << FEATURE_SSE4_2)) {
533         if (Features & (1 << FEATURE_MOVBE)) {
534           *Type = INTEL_ATOM;
535           *Subtype = INTEL_ATOM_SILVERMONT;
536         } else {
537           *Type = INTEL_COREI7;
538           *Subtype = INTEL_COREI7_NEHALEM;
539         }
540         break;
541       }
542       if (Features & (1 << FEATURE_SSE4_1)) {
543         *Type = INTEL_CORE2; // "penryn"
544         *Subtype = INTEL_CORE2_45;
545         break;
546       }
547       if (Features & (1 << FEATURE_SSSE3)) {
548         if (Features & (1 << FEATURE_MOVBE)) {
549           *Type = INTEL_ATOM;
550           *Subtype = INTEL_ATOM_BONNELL; // "bonnell"
551         } else {
552           *Type = INTEL_CORE2; // "core2"
553           *Subtype = INTEL_CORE2_65;
554         }
555         break;
556       }
557       if (Features & (1 << FEATURE_EM64T)) {
558         *Type = INTEL_X86_64;
559         break; // x86-64
560       }
561       if (Features & (1 << FEATURE_SSE2)) {
562         *Type = INTEL_PENTIUM_M;
563         break;
564       }
565       if (Features & (1 << FEATURE_SSE)) {
566         *Type = INTEL_PENTIUM_III;
567         break;
568       }
569       if (Features & (1 << FEATURE_MMX)) {
570         *Type = INTEL_PENTIUM_II;
571         break;
572       }
573       *Type = INTEL_PENTIUM_PRO;
574       break;
575     }
576     break;
577   case 15: {
578     switch (Model) {
579     case 0: // Pentium 4 processor, Intel Xeon processor. All processors are
580             // model 00h and manufactured using the 0.18 micron process.
581     case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon
582             // processor MP, and Intel Celeron processor. All processors are
583             // model 01h and manufactured using the 0.18 micron process.
584     case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M,
585             // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron
586             // processor, and Mobile Intel Celeron processor. All processors
587             // are model 02h and manufactured using the 0.13 micron process.
588       *Type =
589           ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);
590       break;
591 
592     case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D
593             // processor. All processors are model 03h and manufactured using
594             // the 90 nm process.
595     case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition,
596             // Pentium D processor, Intel Xeon processor, Intel Xeon
597             // processor MP, Intel Celeron D processor. All processors are
598             // model 04h and manufactured using the 90 nm process.
599     case 6: // Pentium 4 processor, Pentium D processor, Pentium processor
600             // Extreme Edition, Intel Xeon processor, Intel Xeon processor
601             // MP, Intel Celeron D processor. All processors are model 06h
602             // and manufactured using the 65 nm process.
603       *Type =
604           ((Features & (1 << FEATURE_EM64T)) ? INTEL_NOCONA : INTEL_PRESCOTT);
605       break;
606 
607     default:
608       *Type =
609           ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);
610       break;
611     }
612     break;
613   }
614   default:
615     break; /*"generic"*/
616   }
617 }
618 
getAMDProcessorTypeAndSubtype(unsigned int Family,unsigned int Model,unsigned int Features,unsigned * Type,unsigned * Subtype)619 static void getAMDProcessorTypeAndSubtype(unsigned int Family,
620                                           unsigned int Model,
621                                           unsigned int Features,
622                                           unsigned *Type,
623                                           unsigned *Subtype) {
624   // FIXME: this poorly matches the generated SubtargetFeatureKV table.  There
625   // appears to be no way to generate the wide variety of AMD-specific targets
626   // from the information returned from CPUID.
627   switch (Family) {
628   case 4:
629     *Type = AMD_i486;
630     break;
631   case 5:
632     *Type = AMDPENTIUM;
633     switch (Model) {
634     case 6:
635     case 7:
636       *Subtype = AMDPENTIUM_K6;
637       break; // "k6"
638     case 8:
639       *Subtype = AMDPENTIUM_K62;
640       break; // "k6-2"
641     case 9:
642     case 13:
643       *Subtype = AMDPENTIUM_K63;
644       break; // "k6-3"
645     case 10:
646       *Subtype = AMDPENTIUM_GEODE;
647       break; // "geode"
648     }
649     break;
650   case 6:
651     *Type = AMDATHLON;
652     switch (Model) {
653     case 4:
654       *Subtype = AMDATHLON_TBIRD;
655       break; // "athlon-tbird"
656     case 6:
657     case 7:
658     case 8:
659       *Subtype = AMDATHLON_MP;
660       break; // "athlon-mp"
661     case 10:
662       *Subtype = AMDATHLON_XP;
663       break; // "athlon-xp"
664     }
665     break;
666   case 15:
667     *Type = AMDATHLON;
668     if (Features & (1 << FEATURE_SSE3)) {
669       *Subtype = AMDATHLON_K8SSE3;
670       break; // "k8-sse3"
671     }
672     switch (Model) {
673     case 1:
674       *Subtype = AMDATHLON_OPTERON;
675       break; // "opteron"
676     case 5:
677       *Subtype = AMDATHLON_FX;
678       break; // "athlon-fx"; also opteron
679     default:
680       *Subtype = AMDATHLON_64;
681       break; // "athlon64"
682     }
683     break;
684   case 16:
685     *Type = AMDFAM10H; // "amdfam10"
686     switch (Model) {
687     case 2:
688       *Subtype = AMDFAM10H_BARCELONA;
689       break;
690     case 4:
691       *Subtype = AMDFAM10H_SHANGHAI;
692       break;
693     case 8:
694       *Subtype = AMDFAM10H_ISTANBUL;
695       break;
696     }
697     break;
698   case 20:
699     *Type = AMDFAM14H;
700     *Subtype = AMD_BTVER1;
701     break; // "btver1";
702   case 21:
703     *Type = AMDFAM15H;
704     if (!(Features &
705           (1 << FEATURE_AVX))) { // If no AVX support, provide a sane fallback.
706       *Subtype = AMD_BTVER1;
707       break; // "btver1"
708     }
709     if (Model >= 0x50 && Model <= 0x6f) {
710       *Subtype = AMDFAM15H_BDVER4;
711       break; // "bdver4"; 50h-6Fh: Excavator
712     }
713     if (Model >= 0x30 && Model <= 0x3f) {
714       *Subtype = AMDFAM15H_BDVER3;
715       break; // "bdver3"; 30h-3Fh: Steamroller
716     }
717     if (Model >= 0x10 && Model <= 0x1f) {
718       *Subtype = AMDFAM15H_BDVER2;
719       break; // "bdver2"; 10h-1Fh: Piledriver
720     }
721     if (Model <= 0x0f) {
722       *Subtype = AMDFAM15H_BDVER1;
723       break; // "bdver1"; 00h-0Fh: Bulldozer
724     }
725     break;
726   case 22:
727     *Type = AMDFAM16H;
728     if (!(Features &
729           (1 << FEATURE_AVX))) { // If no AVX support provide a sane fallback.
730       *Subtype = AMD_BTVER1;
731       break; // "btver1";
732     }
733     *Subtype = AMD_BTVER2;
734     break; // "btver2"
735   default:
736     break; // "generic"
737   }
738 }
739 
getAvailableFeatures(unsigned int ECX,unsigned int EDX,unsigned MaxLeaf)740 static unsigned getAvailableFeatures(unsigned int ECX, unsigned int EDX,
741                                      unsigned MaxLeaf) {
742   unsigned Features = 0;
743   unsigned int EAX, EBX;
744   Features |= (((EDX >> 23) & 1) << FEATURE_MMX);
745   Features |= (((EDX >> 25) & 1) << FEATURE_SSE);
746   Features |= (((EDX >> 26) & 1) << FEATURE_SSE2);
747   Features |= (((ECX >> 0) & 1) << FEATURE_SSE3);
748   Features |= (((ECX >> 9) & 1) << FEATURE_SSSE3);
749   Features |= (((ECX >> 19) & 1) << FEATURE_SSE4_1);
750   Features |= (((ECX >> 20) & 1) << FEATURE_SSE4_2);
751   Features |= (((ECX >> 22) & 1) << FEATURE_MOVBE);
752 
753   // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
754   // indicates that the AVX registers will be saved and restored on context
755   // switch, then we have full AVX support.
756   const unsigned AVXBits = (1 << 27) | (1 << 28);
757   bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
758                 ((EAX & 0x6) == 0x6);
759   bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
760   bool HasLeaf7 =
761       MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
762   bool HasADX = HasLeaf7 && ((EBX >> 19) & 1);
763   bool HasAVX2 = HasAVX && HasLeaf7 && (EBX & 0x20);
764   bool HasAVX512 = HasLeaf7 && HasAVX512Save && ((EBX >> 16) & 1);
765   Features |= (HasAVX << FEATURE_AVX);
766   Features |= (HasAVX2 << FEATURE_AVX2);
767   Features |= (HasAVX512 << FEATURE_AVX512);
768   Features |= (HasAVX512Save << FEATURE_AVX512SAVE);
769   Features |= (HasADX << FEATURE_ADX);
770 
771   getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
772   Features |= (((EDX >> 29) & 0x1) << FEATURE_EM64T);
773   return Features;
774 }
775 
getHostCPUName()776 StringRef sys::getHostCPUName() {
777   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
778   unsigned MaxLeaf, Vendor;
779 
780 #if defined(__GNUC__) || defined(__clang__)
781   //FIXME: include cpuid.h from clang or copy __get_cpuid_max here
782   // and simplify it to not invoke __cpuid (like cpu_model.c in
783   // compiler-rt/lib/builtins/cpu_model.c?
784   // Opting for the second option.
785   if(!isCpuIdSupported())
786     return "generic";
787 #endif
788   if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX))
789     return "generic";
790   if (getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
791     return "generic";
792 
793   unsigned Brand_id = EBX & 0xff;
794   unsigned Family = 0, Model = 0;
795   unsigned Features = 0;
796   detectX86FamilyModel(EAX, &Family, &Model);
797   Features = getAvailableFeatures(ECX, EDX, MaxLeaf);
798 
799   unsigned Type;
800   unsigned Subtype;
801 
802   if (Vendor == SIG_INTEL) {
803     getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features, &Type,
804                                     &Subtype);
805     switch (Type) {
806     case INTEL_i386:
807       return "i386";
808     case INTEL_i486:
809       return "i486";
810     case INTEL_PENTIUM:
811       if (Subtype == INTEL_PENTIUM_MMX)
812         return "pentium-mmx";
813       return "pentium";
814     case INTEL_PENTIUM_PRO:
815       return "pentiumpro";
816     case INTEL_PENTIUM_II:
817       return "pentium2";
818     case INTEL_PENTIUM_III:
819       return "pentium3";
820     case INTEL_PENTIUM_IV:
821       return "pentium4";
822     case INTEL_PENTIUM_M:
823       return "pentium-m";
824     case INTEL_CORE_DUO:
825       return "yonah";
826     case INTEL_CORE2:
827       switch (Subtype) {
828       case INTEL_CORE2_65:
829         return "core2";
830       case INTEL_CORE2_45:
831         return "penryn";
832       default:
833         return "core2";
834       }
835     case INTEL_COREI7:
836       switch (Subtype) {
837       case INTEL_COREI7_NEHALEM:
838         return "nehalem";
839       case INTEL_COREI7_WESTMERE:
840         return "westmere";
841       case INTEL_COREI7_SANDYBRIDGE:
842         return "sandybridge";
843       case INTEL_COREI7_IVYBRIDGE:
844         return "ivybridge";
845       case INTEL_COREI7_HASWELL:
846         return "haswell";
847       case INTEL_COREI7_BROADWELL:
848         return "broadwell";
849       case INTEL_COREI7_SKYLAKE:
850         return "skylake";
851       case INTEL_COREI7_SKYLAKE_AVX512:
852         return "skylake-avx512";
853       default:
854         return "corei7";
855       }
856     case INTEL_ATOM:
857       switch (Subtype) {
858       case INTEL_ATOM_BONNELL:
859         return "bonnell";
860       case INTEL_ATOM_SILVERMONT:
861         return "silvermont";
862       default:
863         return "atom";
864       }
865     case INTEL_XEONPHI:
866       return "knl"; /*update for more variants added*/
867     case INTEL_X86_64:
868       return "x86-64";
869     case INTEL_NOCONA:
870       return "nocona";
871     case INTEL_PRESCOTT:
872       return "prescott";
873     default:
874       return "generic";
875     }
876   } else if (Vendor == SIG_AMD) {
877     getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype);
878     switch (Type) {
879     case AMD_i486:
880       return "i486";
881     case AMDPENTIUM:
882       switch (Subtype) {
883       case AMDPENTIUM_K6:
884         return "k6";
885       case AMDPENTIUM_K62:
886         return "k6-2";
887       case AMDPENTIUM_K63:
888         return "k6-3";
889       case AMDPENTIUM_GEODE:
890         return "geode";
891       default:
892         return "pentium";
893       }
894     case AMDATHLON:
895       switch (Subtype) {
896       case AMDATHLON_TBIRD:
897         return "athlon-tbird";
898       case AMDATHLON_MP:
899         return "athlon-mp";
900       case AMDATHLON_XP:
901         return "athlon-xp";
902       case AMDATHLON_K8SSE3:
903         return "k8-sse3";
904       case AMDATHLON_OPTERON:
905         return "opteron";
906       case AMDATHLON_FX:
907         return "athlon-fx";
908       case AMDATHLON_64:
909         return "athlon64";
910       default:
911         return "athlon";
912       }
913     case AMDFAM10H:
914       if(Subtype == AMDFAM10H_BARCELONA)
915         return "barcelona";
916       return "amdfam10";
917     case AMDFAM14H:
918       return "btver1";
919     case AMDFAM15H:
920       switch (Subtype) {
921       case AMDFAM15H_BDVER1:
922         return "bdver1";
923       case AMDFAM15H_BDVER2:
924         return "bdver2";
925       case AMDFAM15H_BDVER3:
926         return "bdver3";
927       case AMDFAM15H_BDVER4:
928         return "bdver4";
929       case AMD_BTVER1:
930         return "btver1";
931       default:
932         return "amdfam15";
933       }
934     case AMDFAM16H:
935       switch (Subtype) {
936       case AMD_BTVER1:
937         return "btver1";
938       case AMD_BTVER2:
939         return "btver2";
940       default:
941         return "amdfam16";
942       }
943     default:
944       return "generic";
945     }
946   }
947   return "generic";
948 }
949 
950 #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
getHostCPUName()951 StringRef sys::getHostCPUName() {
952   host_basic_info_data_t hostInfo;
953   mach_msg_type_number_t infoCount;
954 
955   infoCount = HOST_BASIC_INFO_COUNT;
956   host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo,
957             &infoCount);
958 
959   if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
960     return "generic";
961 
962   switch (hostInfo.cpu_subtype) {
963   case CPU_SUBTYPE_POWERPC_601:
964     return "601";
965   case CPU_SUBTYPE_POWERPC_602:
966     return "602";
967   case CPU_SUBTYPE_POWERPC_603:
968     return "603";
969   case CPU_SUBTYPE_POWERPC_603e:
970     return "603e";
971   case CPU_SUBTYPE_POWERPC_603ev:
972     return "603ev";
973   case CPU_SUBTYPE_POWERPC_604:
974     return "604";
975   case CPU_SUBTYPE_POWERPC_604e:
976     return "604e";
977   case CPU_SUBTYPE_POWERPC_620:
978     return "620";
979   case CPU_SUBTYPE_POWERPC_750:
980     return "750";
981   case CPU_SUBTYPE_POWERPC_7400:
982     return "7400";
983   case CPU_SUBTYPE_POWERPC_7450:
984     return "7450";
985   case CPU_SUBTYPE_POWERPC_970:
986     return "970";
987   default:;
988   }
989 
990   return "generic";
991 }
992 #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
getHostCPUName()993 StringRef sys::getHostCPUName() {
994   // Access to the Processor Version Register (PVR) on PowerPC is privileged,
995   // and so we must use an operating-system interface to determine the current
996   // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
997   const char *generic = "generic";
998 
999   // The cpu line is second (after the 'processor: 0' line), so if this
1000   // buffer is too small then something has changed (or is wrong).
1001   char buffer[1024];
1002   ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
1003   if (CPUInfoSize == -1)
1004     return generic;
1005 
1006   const char *CPUInfoStart = buffer;
1007   const char *CPUInfoEnd = buffer + CPUInfoSize;
1008 
1009   const char *CIP = CPUInfoStart;
1010 
1011   const char *CPUStart = 0;
1012   size_t CPULen = 0;
1013 
1014   // We need to find the first line which starts with cpu, spaces, and a colon.
1015   // After the colon, there may be some additional spaces and then the cpu type.
1016   while (CIP < CPUInfoEnd && CPUStart == 0) {
1017     if (CIP < CPUInfoEnd && *CIP == '\n')
1018       ++CIP;
1019 
1020     if (CIP < CPUInfoEnd && *CIP == 'c') {
1021       ++CIP;
1022       if (CIP < CPUInfoEnd && *CIP == 'p') {
1023         ++CIP;
1024         if (CIP < CPUInfoEnd && *CIP == 'u') {
1025           ++CIP;
1026           while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
1027             ++CIP;
1028 
1029           if (CIP < CPUInfoEnd && *CIP == ':') {
1030             ++CIP;
1031             while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
1032               ++CIP;
1033 
1034             if (CIP < CPUInfoEnd) {
1035               CPUStart = CIP;
1036               while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
1037                                           *CIP != ',' && *CIP != '\n'))
1038                 ++CIP;
1039               CPULen = CIP - CPUStart;
1040             }
1041           }
1042         }
1043       }
1044     }
1045 
1046     if (CPUStart == 0)
1047       while (CIP < CPUInfoEnd && *CIP != '\n')
1048         ++CIP;
1049   }
1050 
1051   if (CPUStart == 0)
1052     return generic;
1053 
1054   return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
1055       .Case("604e", "604e")
1056       .Case("604", "604")
1057       .Case("7400", "7400")
1058       .Case("7410", "7400")
1059       .Case("7447", "7400")
1060       .Case("7455", "7450")
1061       .Case("G4", "g4")
1062       .Case("POWER4", "970")
1063       .Case("PPC970FX", "970")
1064       .Case("PPC970MP", "970")
1065       .Case("G5", "g5")
1066       .Case("POWER5", "g5")
1067       .Case("A2", "a2")
1068       .Case("POWER6", "pwr6")
1069       .Case("POWER7", "pwr7")
1070       .Case("POWER8", "pwr8")
1071       .Case("POWER8E", "pwr8")
1072       .Case("POWER9", "pwr9")
1073       .Default(generic);
1074 }
1075 #elif defined(__linux__) && defined(__arm__)
getHostCPUName()1076 StringRef sys::getHostCPUName() {
1077   // The cpuid register on arm is not accessible from user space. On Linux,
1078   // it is exposed through the /proc/cpuinfo file.
1079 
1080   // Read 1024 bytes from /proc/cpuinfo, which should contain the CPU part line
1081   // in all cases.
1082   char buffer[1024];
1083   ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
1084   if (CPUInfoSize == -1)
1085     return "generic";
1086 
1087   StringRef Str(buffer, CPUInfoSize);
1088 
1089   SmallVector<StringRef, 32> Lines;
1090   Str.split(Lines, "\n");
1091 
1092   // Look for the CPU implementer line.
1093   StringRef Implementer;
1094   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
1095     if (Lines[I].startswith("CPU implementer"))
1096       Implementer = Lines[I].substr(15).ltrim("\t :");
1097 
1098   if (Implementer == "0x41") // ARM Ltd.
1099     // Look for the CPU part line.
1100     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
1101       if (Lines[I].startswith("CPU part"))
1102         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
1103         // values correspond to the "Part number" in the CP15/c0 register. The
1104         // contents are specified in the various processor manuals.
1105         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
1106             .Case("0x926", "arm926ej-s")
1107             .Case("0xb02", "mpcore")
1108             .Case("0xb36", "arm1136j-s")
1109             .Case("0xb56", "arm1156t2-s")
1110             .Case("0xb76", "arm1176jz-s")
1111             .Case("0xc08", "cortex-a8")
1112             .Case("0xc09", "cortex-a9")
1113             .Case("0xc0f", "cortex-a15")
1114             .Case("0xc20", "cortex-m0")
1115             .Case("0xc23", "cortex-m3")
1116             .Case("0xc24", "cortex-m4")
1117             .Default("generic");
1118 
1119   if (Implementer == "0x51") // Qualcomm Technologies, Inc.
1120     // Look for the CPU part line.
1121     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
1122       if (Lines[I].startswith("CPU part"))
1123         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
1124         // values correspond to the "Part number" in the CP15/c0 register. The
1125         // contents are specified in the various processor manuals.
1126         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
1127             .Case("0x06f", "krait") // APQ8064
1128             .Default("generic");
1129 
1130   return "generic";
1131 }
1132 #elif defined(__linux__) && defined(__s390x__)
getHostCPUName()1133 StringRef sys::getHostCPUName() {
1134   // STIDP is a privileged operation, so use /proc/cpuinfo instead.
1135 
1136   // The "processor 0:" line comes after a fair amount of other information,
1137   // including a cache breakdown, but this should be plenty.
1138   char buffer[2048];
1139   ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
1140   if (CPUInfoSize == -1)
1141     return "generic";
1142 
1143   StringRef Str(buffer, CPUInfoSize);
1144   SmallVector<StringRef, 32> Lines;
1145   Str.split(Lines, "\n");
1146 
1147   // Look for the CPU features.
1148   SmallVector<StringRef, 32> CPUFeatures;
1149   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
1150     if (Lines[I].startswith("features")) {
1151       size_t Pos = Lines[I].find(":");
1152       if (Pos != StringRef::npos) {
1153         Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
1154         break;
1155       }
1156     }
1157 
1158   // We need to check for the presence of vector support independently of
1159   // the machine type, since we may only use the vector register set when
1160   // supported by the kernel (and hypervisor).
1161   bool HaveVectorSupport = false;
1162   for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
1163     if (CPUFeatures[I] == "vx")
1164       HaveVectorSupport = true;
1165   }
1166 
1167   // Now check the processor machine type.
1168   for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
1169     if (Lines[I].startswith("processor ")) {
1170       size_t Pos = Lines[I].find("machine = ");
1171       if (Pos != StringRef::npos) {
1172         Pos += sizeof("machine = ") - 1;
1173         unsigned int Id;
1174         if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
1175           if (Id >= 2964 && HaveVectorSupport)
1176             return "z13";
1177           if (Id >= 2827)
1178             return "zEC12";
1179           if (Id >= 2817)
1180             return "z196";
1181         }
1182       }
1183       break;
1184     }
1185   }
1186 
1187   return "generic";
1188 }
1189 #else
getHostCPUName()1190 StringRef sys::getHostCPUName() { return "generic"; }
1191 #endif
1192 
1193 #if defined(__linux__) && defined(__x86_64__)
1194 // On Linux, the number of physical cores can be computed from /proc/cpuinfo,
1195 // using the number of unique physical/core id pairs. The following
1196 // implementation reads the /proc/cpuinfo format on an x86_64 system.
computeHostNumPhysicalCores()1197 static int computeHostNumPhysicalCores() {
1198   // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be
1199   // mmapped because it appears to have 0 size.
1200   llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
1201       llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
1202   if (std::error_code EC = Text.getError()) {
1203     llvm::errs() << "Can't read "
1204                  << "/proc/cpuinfo: " << EC.message() << "\n";
1205   }
1206   SmallVector<StringRef, 8> strs;
1207   (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,
1208                              /*KeepEmpty=*/false);
1209   int CurPhysicalId = -1;
1210   int CurCoreId = -1;
1211   SmallSet<std::pair<int, int>, 32> UniqueItems;
1212   for (auto &Line : strs) {
1213     Line = Line.trim();
1214     if (!Line.startswith("physical id") && !Line.startswith("core id"))
1215       continue;
1216     std::pair<StringRef, StringRef> Data = Line.split(':');
1217     auto Name = Data.first.trim();
1218     auto Val = Data.second.trim();
1219     if (Name == "physical id") {
1220       assert(CurPhysicalId == -1 &&
1221              "Expected a core id before seeing another physical id");
1222       Val.getAsInteger(10, CurPhysicalId);
1223     }
1224     if (Name == "core id") {
1225       assert(CurCoreId == -1 &&
1226              "Expected a physical id before seeing another core id");
1227       Val.getAsInteger(10, CurCoreId);
1228     }
1229     if (CurPhysicalId != -1 && CurCoreId != -1) {
1230       UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId));
1231       CurPhysicalId = -1;
1232       CurCoreId = -1;
1233     }
1234   }
1235   return UniqueItems.size();
1236 }
1237 #elif defined(__APPLE__) && defined(__x86_64__)
1238 #include <sys/param.h>
1239 #include <sys/sysctl.h>
1240 
1241 // Gets the number of *physical cores* on the machine.
computeHostNumPhysicalCores()1242 static int computeHostNumPhysicalCores() {
1243   uint32_t count;
1244   size_t len = sizeof(count);
1245   sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0);
1246   if (count < 1) {
1247     int nm[2];
1248     nm[0] = CTL_HW;
1249     nm[1] = HW_AVAILCPU;
1250     sysctl(nm, 2, &count, &len, NULL, 0);
1251     if (count < 1)
1252       return -1;
1253   }
1254   return count;
1255 }
1256 #else
1257 // On other systems, return -1 to indicate unknown.
computeHostNumPhysicalCores()1258 static int computeHostNumPhysicalCores() { return -1; }
1259 #endif
1260 
getHostNumPhysicalCores()1261 int sys::getHostNumPhysicalCores() {
1262   static int NumCores = computeHostNumPhysicalCores();
1263   return NumCores;
1264 }
1265 
1266 #if defined(__i386__) || defined(_M_IX86) || \
1267     defined(__x86_64__) || defined(_M_X64)
getHostCPUFeatures(StringMap<bool> & Features)1268 bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
1269   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
1270   unsigned MaxLevel;
1271   union {
1272     unsigned u[3];
1273     char c[12];
1274   } text;
1275 
1276   if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) ||
1277       MaxLevel < 1)
1278     return false;
1279 
1280   getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
1281 
1282   Features["cmov"] = (EDX >> 15) & 1;
1283   Features["mmx"] = (EDX >> 23) & 1;
1284   Features["sse"] = (EDX >> 25) & 1;
1285   Features["sse2"] = (EDX >> 26) & 1;
1286   Features["sse3"] = (ECX >> 0) & 1;
1287   Features["ssse3"] = (ECX >> 9) & 1;
1288   Features["sse4.1"] = (ECX >> 19) & 1;
1289   Features["sse4.2"] = (ECX >> 20) & 1;
1290 
1291   Features["pclmul"] = (ECX >> 1) & 1;
1292   Features["cx16"] = (ECX >> 13) & 1;
1293   Features["movbe"] = (ECX >> 22) & 1;
1294   Features["popcnt"] = (ECX >> 23) & 1;
1295   Features["aes"] = (ECX >> 25) & 1;
1296   Features["rdrnd"] = (ECX >> 30) & 1;
1297 
1298   // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
1299   // indicates that the AVX registers will be saved and restored on context
1300   // switch, then we have full AVX support.
1301   bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&
1302                     !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);
1303   Features["avx"] = HasAVXSave;
1304   Features["fma"] = HasAVXSave && (ECX >> 12) & 1;
1305   Features["f16c"] = HasAVXSave && (ECX >> 29) & 1;
1306 
1307   // Only enable XSAVE if OS has enabled support for saving YMM state.
1308   Features["xsave"] = HasAVXSave && (ECX >> 26) & 1;
1309 
1310   // AVX512 requires additional context to be saved by the OS.
1311   bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
1312 
1313   unsigned MaxExtLevel;
1314   getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
1315 
1316   bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
1317                      !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
1318   Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1);
1319   Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1);
1320   Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1);
1321   Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
1322   Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
1323   Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1);
1324   Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);
1325 
1326   bool HasLeaf7 =
1327       MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
1328 
1329   // AVX2 is only supported if we have the OS save support from AVX.
1330   Features["avx2"] = HasAVXSave && HasLeaf7 && ((EBX >> 5) & 1);
1331 
1332   Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1);
1333   Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1);
1334   Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1);
1335   Features["hle"] = HasLeaf7 && ((EBX >> 4) & 1);
1336   Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1);
1337   Features["invpcid"] = HasLeaf7 && ((EBX >> 10) & 1);
1338   Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1);
1339   Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1);
1340   Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1);
1341   Features["smap"] = HasLeaf7 && ((EBX >> 20) & 1);
1342   Features["pcommit"] = HasLeaf7 && ((EBX >> 22) & 1);
1343   Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
1344   Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1);
1345   Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1);
1346 
1347   // AVX512 is only supported if the OS supports the context save for it.
1348   Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
1349   Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
1350   Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
1351   Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
1352   Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
1353   Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
1354   Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
1355   Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
1356 
1357   Features["prefetchwt1"] = HasLeaf7 && (ECX & 1);
1358   Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save;
1359   // Enable protection keys
1360   Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1);
1361 
1362   bool HasLeafD = MaxLevel >= 0xd &&
1363                   !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
1364 
1365   // Only enable XSAVE if OS has enabled support for saving YMM state.
1366   Features["xsaveopt"] = HasAVXSave && HasLeafD && ((EAX >> 0) & 1);
1367   Features["xsavec"] = HasAVXSave && HasLeafD && ((EAX >> 1) & 1);
1368   Features["xsaves"] = HasAVXSave && HasLeafD && ((EAX >> 3) & 1);
1369 
1370   return true;
1371 }
1372 #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
getHostCPUFeatures(StringMap<bool> & Features)1373 bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
1374   // Read 1024 bytes from /proc/cpuinfo, which should contain the Features line
1375   // in all cases.
1376   char buffer[1024];
1377   ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
1378   if (CPUInfoSize == -1)
1379     return false;
1380 
1381   StringRef Str(buffer, CPUInfoSize);
1382 
1383   SmallVector<StringRef, 32> Lines;
1384   Str.split(Lines, "\n");
1385 
1386   SmallVector<StringRef, 32> CPUFeatures;
1387 
1388   // Look for the CPU features.
1389   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
1390     if (Lines[I].startswith("Features")) {
1391       Lines[I].split(CPUFeatures, ' ');
1392       break;
1393     }
1394 
1395 #if defined(__aarch64__)
1396   // Keep track of which crypto features we have seen
1397   enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
1398   uint32_t crypto = 0;
1399 #endif
1400 
1401   for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
1402     StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
1403 #if defined(__aarch64__)
1404                                    .Case("asimd", "neon")
1405                                    .Case("fp", "fp-armv8")
1406                                    .Case("crc32", "crc")
1407 #else
1408                                    .Case("half", "fp16")
1409                                    .Case("neon", "neon")
1410                                    .Case("vfpv3", "vfp3")
1411                                    .Case("vfpv3d16", "d16")
1412                                    .Case("vfpv4", "vfp4")
1413                                    .Case("idiva", "hwdiv-arm")
1414                                    .Case("idivt", "hwdiv")
1415 #endif
1416                                    .Default("");
1417 
1418 #if defined(__aarch64__)
1419     // We need to check crypto separately since we need all of the crypto
1420     // extensions to enable the subtarget feature
1421     if (CPUFeatures[I] == "aes")
1422       crypto |= CAP_AES;
1423     else if (CPUFeatures[I] == "pmull")
1424       crypto |= CAP_PMULL;
1425     else if (CPUFeatures[I] == "sha1")
1426       crypto |= CAP_SHA1;
1427     else if (CPUFeatures[I] == "sha2")
1428       crypto |= CAP_SHA2;
1429 #endif
1430 
1431     if (LLVMFeatureStr != "")
1432       Features[LLVMFeatureStr] = true;
1433   }
1434 
1435 #if defined(__aarch64__)
1436   // If we have all crypto bits we can add the feature
1437   if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
1438     Features["crypto"] = true;
1439 #endif
1440 
1441   return true;
1442 }
1443 #else
getHostCPUFeatures(StringMap<bool> & Features)1444 bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }
1445 #endif
1446 
getProcessTriple()1447 std::string sys::getProcessTriple() {
1448   Triple PT(Triple::normalize(LLVM_HOST_TRIPLE));
1449 
1450   if (sizeof(void *) == 8 && PT.isArch32Bit())
1451     PT = PT.get64BitArchVariant();
1452   if (sizeof(void *) == 4 && PT.isArch64Bit())
1453     PT = PT.get32BitArchVariant();
1454 
1455   return PT.str();
1456 }
1457