1 //===- subzero/src/IceCfgNode.cpp - Basic block (node) implementation -----===//
2 //
3 //                        The Subzero Code Generator
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Implements the CfgNode class, including the complexities of
12 /// instruction insertion and in-edge calculation.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #include "IceCfgNode.h"
17 
18 #include "IceAssembler.h"
19 #include "IceCfg.h"
20 #include "IceGlobalInits.h"
21 #include "IceInst.h"
22 #include "IceInstVarIter.h"
23 #include "IceLiveness.h"
24 #include "IceOperand.h"
25 #include "IceTargetLowering.h"
26 
27 namespace Ice {
28 
29 // Adds an instruction to either the Phi list or the regular instruction list.
30 // Validates that all Phis are added before all regular instructions.
appendInst(Inst * Instr)31 void CfgNode::appendInst(Inst *Instr) {
32   ++InstCountEstimate;
33 
34   if (BuildDefs::wasm()) {
35     if (llvm::isa<InstSwitch>(Instr) || llvm::isa<InstBr>(Instr)) {
36       for (auto *N : Instr->getTerminatorEdges()) {
37         N->addInEdge(this);
38         addOutEdge(N);
39       }
40     }
41   }
42 
43   if (auto *Phi = llvm::dyn_cast<InstPhi>(Instr)) {
44     if (!Insts.empty()) {
45       Func->setError("Phi instruction added to the middle of a block");
46       return;
47     }
48     Phis.push_back(Phi);
49   } else {
50     Insts.push_back(Instr);
51   }
52 }
53 
replaceInEdge(CfgNode * Old,CfgNode * New)54 void CfgNode::replaceInEdge(CfgNode *Old, CfgNode *New) {
55   for (SizeT i = 0; i < InEdges.size(); ++i) {
56     if (InEdges[i] == Old) {
57       InEdges[i] = New;
58     }
59   }
60   for (auto &Inst : getPhis()) {
61     auto &Phi = llvm::cast<InstPhi>(Inst);
62     for (SizeT i = 0; i < Phi.getSrcSize(); ++i) {
63       if (Phi.getLabel(i) == Old) {
64         Phi.setLabel(i, New);
65       }
66     }
67   }
68 }
69 
70 namespace {
removeDeletedAndRenumber(List * L,Cfg * Func)71 template <typename List> void removeDeletedAndRenumber(List *L, Cfg *Func) {
72   const bool DoDelete =
73       BuildDefs::minimal() || !getFlags().getKeepDeletedInsts();
74   auto I = L->begin(), E = L->end(), Next = I;
75   for (++Next; I != E; I = Next++) {
76     if (DoDelete && I->isDeleted()) {
77       L->remove(I);
78     } else {
79       I->renumber(Func);
80     }
81   }
82 }
83 } // end of anonymous namespace
84 
renumberInstructions()85 void CfgNode::renumberInstructions() {
86   InstNumberT FirstNumber = Func->getNextInstNumber();
87   removeDeletedAndRenumber(&Phis, Func);
88   removeDeletedAndRenumber(&Insts, Func);
89   InstCountEstimate = Func->getNextInstNumber() - FirstNumber;
90 }
91 
92 // When a node is created, the OutEdges are immediately known, but the InEdges
93 // have to be built up incrementally. After the CFG has been constructed, the
94 // computePredecessors() pass finalizes it by creating the InEdges list.
computePredecessors()95 void CfgNode::computePredecessors() {
96   for (CfgNode *Succ : OutEdges)
97     Succ->InEdges.push_back(this);
98 }
99 
computeSuccessors()100 void CfgNode::computeSuccessors() {
101   OutEdges.clear();
102   InEdges.clear();
103   assert(!Insts.empty());
104   OutEdges = Insts.rbegin()->getTerminatorEdges();
105 }
106 
107 // Ensure each Phi instruction in the node is consistent with respect to control
108 // flow.  For each predecessor, there must be a phi argument with that label.
109 // If a phi argument's label doesn't appear in the predecessor list (which can
110 // happen as a result of e.g. unreachable node elimination), its value is
111 // modified to be zero, to maintain consistency in liveness analysis.  This
112 // allows us to remove some dead control flow without a major rework of the phi
113 // instructions.  We don't check that phi arguments with the same label have the
114 // same value.
enforcePhiConsistency()115 void CfgNode::enforcePhiConsistency() {
116   for (Inst &Instr : Phis) {
117     auto *Phi = llvm::cast<InstPhi>(&Instr);
118     // We do a simple O(N^2) algorithm to check for consistency. Even so, it
119     // shows up as only about 0.2% of the total translation time. But if
120     // necessary, we could improve the complexity by using a hash table to
121     // count how many times each node is referenced in the Phi instruction, and
122     // how many times each node is referenced in the incoming edge list, and
123     // compare the two for equality.
124     for (SizeT i = 0; i < Phi->getSrcSize(); ++i) {
125       CfgNode *Label = Phi->getLabel(i);
126       bool Found = false;
127       for (CfgNode *InNode : getInEdges()) {
128         if (InNode == Label) {
129           Found = true;
130           break;
131         }
132       }
133       if (!Found) {
134         // Predecessor was unreachable, so if (impossibly) the control flow
135         // enters from that predecessor, the value should be zero.
136         Phi->clearOperandForTarget(Label);
137       }
138     }
139     for (CfgNode *InNode : getInEdges()) {
140       bool Found = false;
141       for (SizeT i = 0; i < Phi->getSrcSize(); ++i) {
142         CfgNode *Label = Phi->getLabel(i);
143         if (InNode == Label) {
144           Found = true;
145           break;
146         }
147       }
148       if (!Found)
149         llvm::report_fatal_error("Phi error: missing label for incoming edge");
150     }
151   }
152 }
153 
154 // This does part 1 of Phi lowering, by creating a new dest variable for each
155 // Phi instruction, replacing the Phi instruction's dest with that variable,
156 // and adding an explicit assignment of the old dest to the new dest. For
157 // example,
158 //   a=phi(...)
159 // changes to
160 //   "a_phi=phi(...); a=a_phi".
161 //
162 // This is in preparation for part 2 which deletes the Phi instructions and
163 // appends assignment instructions to predecessor blocks. Note that this
164 // transformation preserves SSA form.
placePhiLoads()165 void CfgNode::placePhiLoads() {
166   for (Inst &I : Phis) {
167     auto *Phi = llvm::dyn_cast<InstPhi>(&I);
168     Insts.insert(Insts.begin(), Phi->lower(Func));
169   }
170 }
171 
172 // This does part 2 of Phi lowering. For each Phi instruction at each out-edge,
173 // create a corresponding assignment instruction, and add all the assignments
174 // near the end of this block. They need to be added before any branch
175 // instruction, and also if the block ends with a compare instruction followed
176 // by a branch instruction that we may want to fuse, it's better to insert the
177 // new assignments before the compare instruction. The
178 // tryOptimizedCmpxchgCmpBr() method assumes this ordering of instructions.
179 //
180 // Note that this transformation takes the Phi dest variables out of SSA form,
181 // as there may be assignments to the dest variable in multiple blocks.
placePhiStores()182 void CfgNode::placePhiStores() {
183   // Find the insertion point.
184   InstList::iterator InsertionPoint = Insts.end();
185   // Every block must end in a terminator instruction, and therefore must have
186   // at least one instruction, so it's valid to decrement InsertionPoint (but
187   // assert just in case).
188   assert(InsertionPoint != Insts.begin());
189   --InsertionPoint;
190   // Confirm that InsertionPoint is a terminator instruction. Calling
191   // getTerminatorEdges() on a non-terminator instruction will cause an
192   // llvm_unreachable().
193   (void)InsertionPoint->getTerminatorEdges();
194   // SafeInsertionPoint is always immediately before the terminator
195   // instruction. If the block ends in a compare and conditional branch, it's
196   // better to place the Phi store before the compare so as not to interfere
197   // with compare/branch fusing. However, if the compare instruction's dest
198   // operand is the same as the new assignment statement's source operand, this
199   // can't be done due to data dependences, so we need to fall back to the
200   // SafeInsertionPoint. To illustrate:
201   //   ; <label>:95
202   //   %97 = load i8* %96, align 1
203   //   %98 = icmp ne i8 %97, 0
204   //   br i1 %98, label %99, label %2132
205   //   ; <label>:99
206   //   %100 = phi i8 [ %97, %95 ], [ %110, %108 ]
207   //   %101 = phi i1 [ %98, %95 ], [ %111, %108 ]
208   // would be Phi-lowered as:
209   //   ; <label>:95
210   //   %97 = load i8* %96, align 1
211   //   %100_phi = %97 ; can be at InsertionPoint
212   //   %98 = icmp ne i8 %97, 0
213   //   %101_phi = %98 ; must be at SafeInsertionPoint
214   //   br i1 %98, label %99, label %2132
215   //   ; <label>:99
216   //   %100 = %100_phi
217   //   %101 = %101_phi
218   //
219   // TODO(stichnot): It may be possible to bypass this whole SafeInsertionPoint
220   // mechanism. If a source basic block ends in a conditional branch:
221   //   labelSource:
222   //   ...
223   //   br i1 %foo, label %labelTrue, label %labelFalse
224   // and a branch target has a Phi involving the branch operand:
225   //   labelTrue:
226   //   %bar = phi i1 [ %foo, %labelSource ], ...
227   // then we actually know the constant i1 value of the Phi operand:
228   //   labelTrue:
229   //   %bar = phi i1 [ true, %labelSource ], ...
230   // It seems that this optimization should be done by clang or opt, but we
231   // could also do it here.
232   InstList::iterator SafeInsertionPoint = InsertionPoint;
233   // Keep track of the dest variable of a compare instruction, so that we
234   // insert the new instruction at the SafeInsertionPoint if the compare's dest
235   // matches the Phi-lowered assignment's source.
236   Variable *CmpInstDest = nullptr;
237   // If the current insertion point is at a conditional branch instruction, and
238   // the previous instruction is a compare instruction, then we move the
239   // insertion point before the compare instruction so as not to interfere with
240   // compare/branch fusing.
241   if (auto *Branch = llvm::dyn_cast<InstBr>(InsertionPoint)) {
242     if (!Branch->isUnconditional()) {
243       if (InsertionPoint != Insts.begin()) {
244         --InsertionPoint;
245         if (llvm::isa<InstIcmp>(InsertionPoint) ||
246             llvm::isa<InstFcmp>(InsertionPoint)) {
247           CmpInstDest = InsertionPoint->getDest();
248         } else {
249           ++InsertionPoint;
250         }
251       }
252     }
253   }
254 
255   // Consider every out-edge.
256   for (CfgNode *Succ : OutEdges) {
257     // Consider every Phi instruction at the out-edge.
258     for (Inst &I : Succ->Phis) {
259       auto *Phi = llvm::dyn_cast<InstPhi>(&I);
260       Operand *Operand = Phi->getOperandForTarget(this);
261       assert(Operand);
262       Variable *Dest = I.getDest();
263       assert(Dest);
264       auto *NewInst = InstAssign::create(Func, Dest, Operand);
265       if (CmpInstDest == Operand)
266         Insts.insert(SafeInsertionPoint, NewInst);
267       else
268         Insts.insert(InsertionPoint, NewInst);
269     }
270   }
271 }
272 
273 // Deletes the phi instructions after the loads and stores are placed.
deletePhis()274 void CfgNode::deletePhis() {
275   for (Inst &I : Phis)
276     I.setDeleted();
277 }
278 
279 // Splits the edge from Pred to this node by creating a new node and hooking up
280 // the in and out edges appropriately. (The EdgeIndex parameter is only used to
281 // make the new node's name unique when there are multiple edges between the
282 // same pair of nodes.) The new node's instruction list is initialized to the
283 // empty list, with no terminator instruction. There must not be multiple edges
284 // from Pred to this node so all Inst::getTerminatorEdges implementations must
285 // not contain duplicates.
splitIncomingEdge(CfgNode * Pred,SizeT EdgeIndex)286 CfgNode *CfgNode::splitIncomingEdge(CfgNode *Pred, SizeT EdgeIndex) {
287   CfgNode *NewNode = Func->makeNode();
288   // Depth is the minimum as it works if both are the same, but if one is
289   // outside the loop and the other is inside, the new node should be placed
290   // outside and not be executed multiple times within the loop.
291   NewNode->setLoopNestDepth(
292       std::min(getLoopNestDepth(), Pred->getLoopNestDepth()));
293   if (BuildDefs::dump())
294     NewNode->setName("split_" + Pred->getName() + "_" + getName() + "_" +
295                      std::to_string(EdgeIndex));
296   // The new node is added to the end of the node list, and will later need to
297   // be sorted into a reasonable topological order.
298   NewNode->setNeedsPlacement(true);
299   // Repoint Pred's out-edge.
300   bool Found = false;
301   for (CfgNode *&I : Pred->OutEdges) {
302     if (I == this) {
303       I = NewNode;
304       NewNode->InEdges.push_back(Pred);
305       Found = true;
306       break;
307     }
308   }
309   assert(Found);
310   (void)Found;
311   // Repoint this node's in-edge.
312   Found = false;
313   for (CfgNode *&I : InEdges) {
314     if (I == Pred) {
315       I = NewNode;
316       NewNode->OutEdges.push_back(this);
317       Found = true;
318       break;
319     }
320   }
321   assert(Found);
322   (void)Found;
323   // Repoint all suitable branch instructions' target and return.
324   Found = false;
325   for (Inst &I : Pred->getInsts())
326     if (!I.isDeleted() && I.repointEdges(this, NewNode))
327       Found = true;
328   assert(Found);
329   (void)Found;
330   return NewNode;
331 }
332 
333 namespace {
334 
335 // Helpers for advancedPhiLowering().
336 
337 class PhiDesc {
338   PhiDesc() = delete;
339   PhiDesc(const PhiDesc &) = delete;
340   PhiDesc &operator=(const PhiDesc &) = delete;
341 
342 public:
PhiDesc(InstPhi * Phi,Variable * Dest)343   PhiDesc(InstPhi *Phi, Variable *Dest) : Phi(Phi), Dest(Dest) {}
344   PhiDesc(PhiDesc &&) = default;
345   InstPhi *Phi = nullptr;
346   Variable *Dest = nullptr;
347   Operand *Src = nullptr;
348   bool Processed = false;
349   size_t NumPred = 0; // number of entries whose Src is this Dest
350   int32_t Weight = 0; // preference for topological order
351 };
352 using PhiDescList = llvm::SmallVector<PhiDesc, 32>;
353 
354 // Always pick NumPred=0 over NumPred>0.
355 constexpr int32_t WeightNoPreds = 8;
356 // Prefer Src as a register because the register might free up.
357 constexpr int32_t WeightSrcIsReg = 4;
358 // Prefer Dest not as a register because the register stays free longer.
359 constexpr int32_t WeightDestNotReg = 2;
360 // Prefer NumPred=1 over NumPred>1.  This is used as a tiebreaker when a
361 // dependency cycle must be broken so that hopefully only one temporary
362 // assignment has to be added to break the cycle.
363 constexpr int32_t WeightOnePred = 1;
364 
sameVarOrReg(TargetLowering * Target,const Variable * Var1,const Operand * Opnd)365 bool sameVarOrReg(TargetLowering *Target, const Variable *Var1,
366                   const Operand *Opnd) {
367   if (Var1 == Opnd)
368     return true;
369   const auto *Var2 = llvm::dyn_cast<Variable>(Opnd);
370   if (Var2 == nullptr)
371     return false;
372 
373   // If either operand lacks a register, they cannot be the same.
374   if (!Var1->hasReg())
375     return false;
376   if (!Var2->hasReg())
377     return false;
378 
379   const auto RegNum1 = Var1->getRegNum();
380   const auto RegNum2 = Var2->getRegNum();
381   // Quick common-case check.
382   if (RegNum1 == RegNum2)
383     return true;
384 
385   assert(Target->getAliasesForRegister(RegNum1)[RegNum2] ==
386          Target->getAliasesForRegister(RegNum2)[RegNum1]);
387   return Target->getAliasesForRegister(RegNum1)[RegNum2];
388 }
389 
390 // Update NumPred for all Phi assignments using Var as their Dest variable.
391 // Also update Weight if NumPred dropped from 2 to 1, or 1 to 0.
updatePreds(PhiDescList & Desc,TargetLowering * Target,Variable * Var)392 void updatePreds(PhiDescList &Desc, TargetLowering *Target, Variable *Var) {
393   for (PhiDesc &Item : Desc) {
394     if (!Item.Processed && sameVarOrReg(Target, Var, Item.Dest)) {
395       --Item.NumPred;
396       if (Item.NumPred == 1) {
397         // If NumPred changed from 2 to 1, add in WeightOnePred.
398         Item.Weight += WeightOnePred;
399       } else if (Item.NumPred == 0) {
400         // If NumPred changed from 1 to 0, subtract WeightOnePred and add in
401         // WeightNoPreds.
402         Item.Weight += (WeightNoPreds - WeightOnePred);
403       }
404     }
405   }
406 }
407 
408 } // end of anonymous namespace
409 
410 // This the "advanced" version of Phi lowering for a basic block, in contrast
411 // to the simple version that lowers through assignments involving temporaries.
412 //
413 // All Phi instructions in a basic block are conceptually executed in parallel.
414 // However, if we lower Phis early and commit to a sequential ordering, we may
415 // end up creating unnecessary interferences which lead to worse register
416 // allocation. Delaying Phi scheduling until after register allocation can help
417 // unless there are no free registers for shuffling registers or stack slots
418 // and spilling becomes necessary.
419 //
420 // The advanced Phi lowering starts by finding a topological sort of the Phi
421 // instructions, where "A=B" comes before "B=C" due to the anti-dependence on
422 // B. Preexisting register assignments are considered in the topological sort.
423 // If a topological sort is not possible due to a cycle, the cycle is broken by
424 // introducing a non-parallel temporary. For example, a cycle arising from a
425 // permutation like "A=B;B=C;C=A" can become "T=A;A=B;B=C;C=T". All else being
426 // equal, prefer to schedule assignments with register-allocated Src operands
427 // earlier, in case that register becomes free afterwards, and prefer to
428 // schedule assignments with register-allocated Dest variables later, to keep
429 // that register free for longer.
430 //
431 // Once the ordering is determined, the Cfg edge is split and the assignment
432 // list is lowered by the target lowering layer. Since the assignment lowering
433 // may create new infinite-weight temporaries, a follow-on register allocation
434 // pass will be needed. To prepare for this, liveness (including live range
435 // calculation) of the split nodes needs to be calculated, and liveness of the
436 // original node need to be updated to "undo" the effects of the phi
437 // assignments.
438 
439 // The specific placement of the new node within the Cfg node list is deferred
440 // until later, including after empty node contraction.
441 //
442 // After phi assignments are lowered across all blocks, another register
443 // allocation pass is run, focusing only on pre-colored and infinite-weight
444 // variables, similar to Om1 register allocation (except without the need to
445 // specially compute these variables' live ranges, since they have already been
446 // precisely calculated). The register allocator in this mode needs the ability
447 // to forcibly spill and reload registers in case none are naturally available.
advancedPhiLowering()448 void CfgNode::advancedPhiLowering() {
449   if (getPhis().empty())
450     return;
451 
452   PhiDescList Desc;
453 
454   for (Inst &I : Phis) {
455     auto *Phi = llvm::dyn_cast<InstPhi>(&I);
456     if (!Phi->isDeleted()) {
457       Variable *Dest = Phi->getDest();
458       Desc.emplace_back(Phi, Dest);
459       // Undo the effect of the phi instruction on this node's live-in set by
460       // marking the phi dest variable as live on entry.
461       SizeT VarNum = Func->getLiveness()->getLiveIndex(Dest->getIndex());
462       auto &LiveIn = Func->getLiveness()->getLiveIn(this);
463       if (VarNum < LiveIn.size()) {
464         assert(!LiveIn[VarNum]);
465         LiveIn[VarNum] = true;
466       }
467       Phi->setDeleted();
468     }
469   }
470   if (Desc.empty())
471     return;
472 
473   TargetLowering *Target = Func->getTarget();
474   SizeT InEdgeIndex = 0;
475   for (CfgNode *Pred : InEdges) {
476     CfgNode *Split = splitIncomingEdge(Pred, InEdgeIndex++);
477     SizeT Remaining = Desc.size();
478 
479     // First pass computes Src and initializes NumPred.
480     for (PhiDesc &Item : Desc) {
481       Variable *Dest = Item.Dest;
482       Operand *Src = Item.Phi->getOperandForTarget(Pred);
483       Item.Src = Src;
484       Item.Processed = false;
485       Item.NumPred = 0;
486       // Cherry-pick any trivial assignments, so that they don't contribute to
487       // the running complexity of the topological sort.
488       if (sameVarOrReg(Target, Dest, Src)) {
489         Item.Processed = true;
490         --Remaining;
491         if (Dest != Src)
492           // If Dest and Src are syntactically the same, don't bother adding
493           // the assignment, because in all respects it would be redundant, and
494           // if Dest/Src are on the stack, the target lowering may naively
495           // decide to lower it using a temporary register.
496           Split->appendInst(InstAssign::create(Func, Dest, Src));
497       }
498     }
499     // Second pass computes NumPred by comparing every pair of Phi instructions.
500     for (PhiDesc &Item : Desc) {
501       if (Item.Processed)
502         continue;
503       const Variable *Dest = Item.Dest;
504       for (PhiDesc &Item2 : Desc) {
505         if (Item2.Processed)
506           continue;
507         // There shouldn't be two different Phis with the same Dest variable or
508         // register.
509         assert((&Item == &Item2) || !sameVarOrReg(Target, Dest, Item2.Dest));
510         if (sameVarOrReg(Target, Dest, Item2.Src))
511           ++Item.NumPred;
512       }
513     }
514 
515     // Another pass to compute initial Weight values.
516     for (PhiDesc &Item : Desc) {
517       if (Item.Processed)
518         continue;
519       int32_t Weight = 0;
520       if (Item.NumPred == 0)
521         Weight += WeightNoPreds;
522       if (Item.NumPred == 1)
523         Weight += WeightOnePred;
524       if (auto *Var = llvm::dyn_cast<Variable>(Item.Src))
525         if (Var->hasReg())
526           Weight += WeightSrcIsReg;
527       if (!Item.Dest->hasReg())
528         Weight += WeightDestNotReg;
529       Item.Weight = Weight;
530     }
531 
532     // Repeatedly choose and process the best candidate in the topological sort,
533     // until no candidates remain. This implementation is O(N^2) where N is the
534     // number of Phi instructions, but with a small constant factor compared to
535     // a likely implementation of O(N) topological sort.
536     for (; Remaining; --Remaining) {
537       int32_t BestWeight = -1;
538       PhiDesc *BestItem = nullptr;
539       // Find the best candidate.
540       for (PhiDesc &Item : Desc) {
541         if (Item.Processed)
542           continue;
543         const int32_t Weight = Item.Weight;
544         if (Weight > BestWeight) {
545           BestItem = &Item;
546           BestWeight = Weight;
547         }
548       }
549       assert(BestWeight >= 0);
550       Variable *Dest = BestItem->Dest;
551       Operand *Src = BestItem->Src;
552       assert(!sameVarOrReg(Target, Dest, Src));
553       // Break a cycle by introducing a temporary.
554       while (BestItem->NumPred > 0) {
555         bool Found = false;
556         // If the target instruction "A=B" is part of a cycle, find the "X=A"
557         // assignment in the cycle because it will have to be rewritten as
558         // "X=tmp".
559         for (PhiDesc &Item : Desc) {
560           if (Item.Processed)
561             continue;
562           Operand *OtherSrc = Item.Src;
563           if (Item.NumPred && sameVarOrReg(Target, Dest, OtherSrc)) {
564             SizeT VarNum = Func->getNumVariables();
565             Variable *Tmp = Func->makeVariable(OtherSrc->getType());
566             if (BuildDefs::dump())
567               Tmp->setName(Func, "__split_" + std::to_string(VarNum));
568             Split->appendInst(InstAssign::create(Func, Tmp, OtherSrc));
569             Item.Src = Tmp;
570             updatePreds(Desc, Target, llvm::cast<Variable>(OtherSrc));
571             Found = true;
572             break;
573           }
574         }
575         assert(Found);
576         (void)Found;
577       }
578       // Now that a cycle (if any) has been broken, create the actual
579       // assignment.
580       Split->appendInst(InstAssign::create(Func, Dest, Src));
581       if (auto *Var = llvm::dyn_cast<Variable>(Src))
582         updatePreds(Desc, Target, Var);
583       BestItem->Processed = true;
584     }
585     Split->appendInst(InstBr::create(Func, this));
586 
587     Split->genCode();
588     Func->getVMetadata()->addNode(Split);
589     // Validate to be safe.  All items should be marked as processed, and have
590     // no predecessors.
591     if (BuildDefs::asserts()) {
592       for (PhiDesc &Item : Desc) {
593         (void)Item;
594         assert(Item.Processed);
595         assert(Item.NumPred == 0);
596       }
597     }
598   }
599 }
600 
601 // Does address mode optimization. Pass each instruction to the TargetLowering
602 // object. If it returns a new instruction (representing the optimized address
603 // mode), then insert the new instruction and delete the old.
doAddressOpt()604 void CfgNode::doAddressOpt() {
605   TargetLowering *Target = Func->getTarget();
606   LoweringContext &Context = Target->getContext();
607   Context.init(this);
608   while (!Context.atEnd()) {
609     Target->doAddressOpt();
610   }
611 }
612 
doNopInsertion(RandomNumberGenerator & RNG)613 void CfgNode::doNopInsertion(RandomNumberGenerator &RNG) {
614   TargetLowering *Target = Func->getTarget();
615   LoweringContext &Context = Target->getContext();
616   Context.init(this);
617   Context.setInsertPoint(Context.getCur());
618   // Do not insert nop in bundle locked instructions.
619   bool PauseNopInsertion = false;
620   while (!Context.atEnd()) {
621     if (llvm::isa<InstBundleLock>(Context.getCur())) {
622       PauseNopInsertion = true;
623     } else if (llvm::isa<InstBundleUnlock>(Context.getCur())) {
624       PauseNopInsertion = false;
625     }
626     if (!PauseNopInsertion)
627       Target->doNopInsertion(RNG);
628     // Ensure Cur=Next, so that the nops are inserted before the current
629     // instruction rather than after.
630     Context.advanceCur();
631     Context.advanceNext();
632   }
633 }
634 
635 // Drives the target lowering. Passes the current instruction and the next
636 // non-deleted instruction for target lowering.
genCode()637 void CfgNode::genCode() {
638   TargetLowering *Target = Func->getTarget();
639   LoweringContext &Context = Target->getContext();
640   // Lower the regular instructions.
641   Context.init(this);
642   Target->initNodeForLowering(this);
643   while (!Context.atEnd()) {
644     InstList::iterator Orig = Context.getCur();
645     if (llvm::isa<InstRet>(*Orig))
646       setHasReturn();
647     Target->lower();
648     // Ensure target lowering actually moved the cursor.
649     assert(Context.getCur() != Orig);
650   }
651   Context.availabilityReset();
652   // Do preliminary lowering of the Phi instructions.
653   Target->prelowerPhis();
654 }
655 
livenessLightweight()656 void CfgNode::livenessLightweight() {
657   SizeT NumVars = Func->getNumVariables();
658   LivenessBV Live(NumVars);
659   // Process regular instructions in reverse order.
660   for (Inst &I : reverse_range(Insts)) {
661     if (I.isDeleted())
662       continue;
663     I.livenessLightweight(Func, Live);
664   }
665   for (Inst &I : Phis) {
666     if (I.isDeleted())
667       continue;
668     I.livenessLightweight(Func, Live);
669   }
670 }
671 
672 // Performs liveness analysis on the block. Returns true if the incoming
673 // liveness changed from before, false if it stayed the same. (If it changes,
674 // the node's predecessors need to be processed again.)
liveness(Liveness * Liveness)675 bool CfgNode::liveness(Liveness *Liveness) {
676   const SizeT NumVars = Liveness->getNumVarsInNode(this);
677   const SizeT NumGlobalVars = Liveness->getNumGlobalVars();
678   LivenessBV &Live = Liveness->getScratchBV();
679   Live.clear();
680 
681   LiveBeginEndMap *LiveBegin = nullptr;
682   LiveBeginEndMap *LiveEnd = nullptr;
683   // Mark the beginning and ending of each variable's live range with the
684   // sentinel instruction number 0.
685   if (Liveness->getMode() == Liveness_Intervals) {
686     LiveBegin = Liveness->getLiveBegin(this);
687     LiveEnd = Liveness->getLiveEnd(this);
688     LiveBegin->clear();
689     LiveEnd->clear();
690     // Guess that the number of live ranges beginning is roughly the number of
691     // instructions, and same for live ranges ending.
692     LiveBegin->reserve(getInstCountEstimate());
693     LiveEnd->reserve(getInstCountEstimate());
694   }
695 
696   // Initialize Live to be the union of all successors' LiveIn.
697   for (CfgNode *Succ : OutEdges) {
698     const LivenessBV &LiveIn = Liveness->getLiveIn(Succ);
699     assert(LiveIn.empty() || LiveIn.size() == NumGlobalVars);
700     Live |= LiveIn;
701     // Mark corresponding argument of phis in successor as live.
702     for (Inst &I : Succ->Phis) {
703       if (I.isDeleted())
704         continue;
705       auto *Phi = llvm::cast<InstPhi>(&I);
706       Phi->livenessPhiOperand(Live, this, Liveness);
707     }
708   }
709   assert(Live.empty() || Live.size() == NumGlobalVars);
710   Liveness->getLiveOut(this) = Live;
711 
712   // Expand Live so it can hold locals in addition to globals.
713   Live.resize(NumVars);
714   // Process regular instructions in reverse order.
715   for (Inst &I : reverse_range(Insts)) {
716     if (I.isDeleted())
717       continue;
718     I.liveness(I.getNumber(), Live, Liveness, LiveBegin, LiveEnd);
719   }
720   // Process phis in forward order so that we can override the instruction
721   // number to be that of the earliest phi instruction in the block.
722   SizeT NumNonDeadPhis = 0;
723   InstNumberT FirstPhiNumber = Inst::NumberSentinel;
724   for (Inst &I : Phis) {
725     if (I.isDeleted())
726       continue;
727     if (FirstPhiNumber == Inst::NumberSentinel)
728       FirstPhiNumber = I.getNumber();
729     if (I.liveness(FirstPhiNumber, Live, Liveness, LiveBegin, LiveEnd))
730       ++NumNonDeadPhis;
731   }
732 
733   // When using the sparse representation, after traversing the instructions in
734   // the block, the Live bitvector should only contain set bits for global
735   // variables upon block entry.  We validate this by testing the upper bits of
736   // the Live bitvector.
737   if (Live.find_next(NumGlobalVars) != -1) {
738     if (BuildDefs::dump()) {
739       // This is a fatal liveness consistency error. Print some diagnostics and
740       // abort.
741       Ostream &Str = Func->getContext()->getStrDump();
742       Func->resetCurrentNode();
743       Str << "Invalid Live =";
744       for (SizeT i = NumGlobalVars; i < Live.size(); ++i) {
745         if (Live.test(i)) {
746           Str << " ";
747           Liveness->getVariable(i, this)->dump(Func);
748         }
749       }
750       Str << "\n";
751     }
752     llvm::report_fatal_error("Fatal inconsistency in liveness analysis");
753   }
754   // Now truncate Live to prevent LiveIn from growing.
755   Live.resize(NumGlobalVars);
756 
757   bool Changed = false;
758   LivenessBV &LiveIn = Liveness->getLiveIn(this);
759   assert(LiveIn.empty() || LiveIn.size() == NumGlobalVars);
760   // Add in current LiveIn
761   Live |= LiveIn;
762   // Check result, set LiveIn=Live
763   SizeT &PrevNumNonDeadPhis = Liveness->getNumNonDeadPhis(this);
764   bool LiveInChanged = (Live != LiveIn);
765   Changed = (NumNonDeadPhis != PrevNumNonDeadPhis || LiveInChanged);
766   if (LiveInChanged)
767     LiveIn = Live;
768   PrevNumNonDeadPhis = NumNonDeadPhis;
769   return Changed;
770 }
771 
772 // Validate the integrity of the live ranges in this block.  If there are any
773 // errors, it prints details and returns false.  On success, it returns true.
livenessValidateIntervals(Liveness * Liveness) const774 bool CfgNode::livenessValidateIntervals(Liveness *Liveness) const {
775   if (!BuildDefs::asserts())
776     return true;
777 
778   // Verify there are no duplicates.
779   auto ComparePair =
780       [](const LiveBeginEndMapEntry &A, const LiveBeginEndMapEntry &B) {
781         return A.first == B.first;
782       };
783   LiveBeginEndMap &MapBegin = *Liveness->getLiveBegin(this);
784   LiveBeginEndMap &MapEnd = *Liveness->getLiveEnd(this);
785   if (std::adjacent_find(MapBegin.begin(), MapBegin.end(), ComparePair) ==
786           MapBegin.end() &&
787       std::adjacent_find(MapEnd.begin(), MapEnd.end(), ComparePair) ==
788           MapEnd.end())
789     return true;
790 
791   // There is definitely a liveness error.  All paths from here return false.
792   if (!BuildDefs::dump())
793     return false;
794 
795   // Print all the errors.
796   if (BuildDefs::dump()) {
797     GlobalContext *Ctx = Func->getContext();
798     OstreamLocker L(Ctx);
799     Ostream &Str = Ctx->getStrDump();
800     if (Func->isVerbose()) {
801       Str << "Live range errors in the following block:\n";
802       dump(Func);
803     }
804     for (auto Start = MapBegin.begin();
805          (Start = std::adjacent_find(Start, MapBegin.end(), ComparePair)) !=
806          MapBegin.end();
807          ++Start) {
808       auto Next = Start + 1;
809       Str << "Duplicate LR begin, block " << getName() << ", instructions "
810           << Start->second << " & " << Next->second << ", variable "
811           << Liveness->getVariable(Start->first, this)->getName() << "\n";
812     }
813     for (auto Start = MapEnd.begin();
814          (Start = std::adjacent_find(Start, MapEnd.end(), ComparePair)) !=
815          MapEnd.end();
816          ++Start) {
817       auto Next = Start + 1;
818       Str << "Duplicate LR end,   block " << getName() << ", instructions "
819           << Start->second << " & " << Next->second << ", variable "
820           << Liveness->getVariable(Start->first, this)->getName() << "\n";
821     }
822   }
823 
824   return false;
825 }
826 
827 // Once basic liveness is complete, compute actual live ranges. It is assumed
828 // that within a single basic block, a live range begins at most once and ends
829 // at most once. This is certainly true for pure SSA form. It is also true once
830 // phis are lowered, since each assignment to the phi-based temporary is in a
831 // different basic block, and there is a single read that ends the live in the
832 // basic block that contained the actual phi instruction.
livenessAddIntervals(Liveness * Liveness,InstNumberT FirstInstNum,InstNumberT LastInstNum)833 void CfgNode::livenessAddIntervals(Liveness *Liveness, InstNumberT FirstInstNum,
834                                    InstNumberT LastInstNum) {
835   TimerMarker T1(TimerStack::TT_liveRange, Func);
836 
837   const SizeT NumVars = Liveness->getNumVarsInNode(this);
838   const LivenessBV &LiveIn = Liveness->getLiveIn(this);
839   const LivenessBV &LiveOut = Liveness->getLiveOut(this);
840   LiveBeginEndMap &MapBegin = *Liveness->getLiveBegin(this);
841   LiveBeginEndMap &MapEnd = *Liveness->getLiveEnd(this);
842   std::sort(MapBegin.begin(), MapBegin.end());
843   std::sort(MapEnd.begin(), MapEnd.end());
844 
845   if (!livenessValidateIntervals(Liveness)) {
846     llvm::report_fatal_error("livenessAddIntervals: Liveness error");
847     return;
848   }
849 
850   LivenessBV &LiveInAndOut = Liveness->getScratchBV();
851   LiveInAndOut = LiveIn;
852   LiveInAndOut &= LiveOut;
853 
854   // Iterate in parallel across the sorted MapBegin[] and MapEnd[].
855   auto IBB = MapBegin.begin(), IEB = MapEnd.begin();
856   auto IBE = MapBegin.end(), IEE = MapEnd.end();
857   while (IBB != IBE || IEB != IEE) {
858     SizeT i1 = IBB == IBE ? NumVars : IBB->first;
859     SizeT i2 = IEB == IEE ? NumVars : IEB->first;
860     SizeT i = std::min(i1, i2);
861     // i1 is the Variable number of the next MapBegin entry, and i2 is the
862     // Variable number of the next MapEnd entry. If i1==i2, then the Variable's
863     // live range begins and ends in this block. If i1<i2, then i1's live range
864     // begins at instruction IBB->second and extends through the end of the
865     // block. If i1>i2, then i2's live range begins at the first instruction of
866     // the block and ends at IEB->second. In any case, we choose the lesser of
867     // i1 and i2 and proceed accordingly.
868     InstNumberT LB = i == i1 ? IBB->second : FirstInstNum;
869     InstNumberT LE = i == i2 ? IEB->second : LastInstNum + 1;
870 
871     Variable *Var = Liveness->getVariable(i, this);
872     if (LB > LE) {
873       Var->addLiveRange(FirstInstNum, LE, this);
874       Var->addLiveRange(LB, LastInstNum + 1, this);
875       // Assert that Var is a global variable by checking that its liveness
876       // index is less than the number of globals. This ensures that the
877       // LiveInAndOut[] access is valid.
878       assert(i < Liveness->getNumGlobalVars());
879       LiveInAndOut[i] = false;
880     } else {
881       Var->addLiveRange(LB, LE, this);
882     }
883     if (i == i1)
884       ++IBB;
885     if (i == i2)
886       ++IEB;
887   }
888   // Process the variables that are live across the entire block.
889   for (int i = LiveInAndOut.find_first(); i != -1;
890        i = LiveInAndOut.find_next(i)) {
891     Variable *Var = Liveness->getVariable(i, this);
892     if (Liveness->getRangeMask(Var->getIndex()))
893       Var->addLiveRange(FirstInstNum, LastInstNum + 1, this);
894   }
895 }
896 
897 // If this node contains only deleted instructions, and ends in an
898 // unconditional branch, contract the node by repointing all its in-edges to
899 // its successor.
contractIfEmpty()900 void CfgNode::contractIfEmpty() {
901   if (InEdges.empty())
902     return;
903   Inst *Branch = nullptr;
904   for (Inst &I : Insts) {
905     if (I.isDeleted())
906       continue;
907     if (I.isUnconditionalBranch())
908       Branch = &I;
909     else if (!I.isRedundantAssign())
910       return;
911   }
912   // Make sure there is actually a successor to repoint in-edges to.
913   if (OutEdges.empty())
914     return;
915   assert(hasSingleOutEdge());
916   // Don't try to delete a self-loop.
917   if (OutEdges[0] == this)
918     return;
919   // Make sure the node actually contains (ends with) an unconditional branch.
920   if (Branch == nullptr)
921     return;
922 
923   Branch->setDeleted();
924   CfgNode *Successor = OutEdges.front();
925   // Repoint all this node's in-edges to this node's successor, unless this
926   // node's successor is actually itself (in which case the statement
927   // "OutEdges.front()->InEdges.push_back(Pred)" could invalidate the iterator
928   // over this->InEdges).
929   if (Successor != this) {
930     for (CfgNode *Pred : InEdges) {
931       for (CfgNode *&I : Pred->OutEdges) {
932         if (I == this) {
933           I = Successor;
934           Successor->InEdges.push_back(Pred);
935         }
936       }
937       for (Inst &I : Pred->getInsts()) {
938         if (!I.isDeleted())
939           I.repointEdges(this, Successor);
940       }
941     }
942 
943     // Remove the in-edge to the successor to allow node reordering to make
944     // better decisions. For example it's more helpful to place a node after a
945     // reachable predecessor than an unreachable one (like the one we just
946     // contracted).
947     Successor->InEdges.erase(
948         std::find(Successor->InEdges.begin(), Successor->InEdges.end(), this));
949   }
950   InEdges.clear();
951 }
952 
doBranchOpt(const CfgNode * NextNode)953 void CfgNode::doBranchOpt(const CfgNode *NextNode) {
954   TargetLowering *Target = Func->getTarget();
955   // Find the first opportunity for branch optimization (which will be the last
956   // instruction in the block) and stop. This is sufficient unless there is
957   // some target lowering where we have the possibility of multiple
958   // optimizations per block. Take care with switch lowering as there are
959   // multiple unconditional branches and only the last can be deleted.
960   for (Inst &I : reverse_range(Insts)) {
961     if (!I.isDeleted()) {
962       Target->doBranchOpt(&I, NextNode);
963       return;
964     }
965   }
966 }
967 
968 // ======================== Dump routines ======================== //
969 
970 namespace {
971 
972 // Helper functions for emit().
973 
emitRegisterUsage(Ostream & Str,const Cfg * Func,const CfgNode * Node,bool IsLiveIn,CfgVector<SizeT> & LiveRegCount)974 void emitRegisterUsage(Ostream &Str, const Cfg *Func, const CfgNode *Node,
975                        bool IsLiveIn, CfgVector<SizeT> &LiveRegCount) {
976   if (!BuildDefs::dump())
977     return;
978   Liveness *Liveness = Func->getLiveness();
979   const LivenessBV *Live;
980   const auto StackReg = Func->getTarget()->getStackReg();
981   const auto FrameOrStackReg = Func->getTarget()->getFrameOrStackReg();
982   if (IsLiveIn) {
983     Live = &Liveness->getLiveIn(Node);
984     Str << "\t\t\t\t/* LiveIn=";
985   } else {
986     Live = &Liveness->getLiveOut(Node);
987     Str << "\t\t\t\t/* LiveOut=";
988   }
989   if (!Live->empty()) {
990     CfgVector<Variable *> LiveRegs;
991     for (SizeT i = 0; i < Live->size(); ++i) {
992       if (!(*Live)[i])
993         continue;
994       Variable *Var = Liveness->getVariable(i, Node);
995       if (!Var->hasReg())
996         continue;
997       const auto RegNum = Var->getRegNum();
998       if (RegNum == StackReg || RegNum == FrameOrStackReg)
999         continue;
1000       if (IsLiveIn)
1001         ++LiveRegCount[RegNum];
1002       LiveRegs.push_back(Var);
1003     }
1004     // Sort the variables by regnum so they are always printed in a familiar
1005     // order.
1006     std::sort(LiveRegs.begin(), LiveRegs.end(),
1007               [](const Variable *V1, const Variable *V2) {
1008                 return unsigned(V1->getRegNum()) < unsigned(V2->getRegNum());
1009               });
1010     bool First = true;
1011     for (Variable *Var : LiveRegs) {
1012       if (!First)
1013         Str << ",";
1014       First = false;
1015       Var->emit(Func);
1016     }
1017   }
1018   Str << " */\n";
1019 }
1020 
1021 /// Returns true if some text was emitted - in which case the caller definitely
1022 /// needs to emit a newline character.
emitLiveRangesEnded(Ostream & Str,const Cfg * Func,const Inst * Instr,CfgVector<SizeT> & LiveRegCount)1023 bool emitLiveRangesEnded(Ostream &Str, const Cfg *Func, const Inst *Instr,
1024                          CfgVector<SizeT> &LiveRegCount) {
1025   bool Printed = false;
1026   if (!BuildDefs::dump())
1027     return Printed;
1028   Variable *Dest = Instr->getDest();
1029   // Normally we increment the live count for the dest register. But we
1030   // shouldn't if the instruction's IsDestRedefined flag is set, because this
1031   // means that the target lowering created this instruction as a non-SSA
1032   // assignment; i.e., a different, previous instruction started the dest
1033   // variable's live range.
1034   if (!Instr->isDestRedefined() && Dest && Dest->hasReg())
1035     ++LiveRegCount[Dest->getRegNum()];
1036   FOREACH_VAR_IN_INST(Var, *Instr) {
1037     bool ShouldReport = Instr->isLastUse(Var);
1038     if (ShouldReport && Var->hasReg()) {
1039       // Don't report end of live range until the live count reaches 0.
1040       SizeT NewCount = --LiveRegCount[Var->getRegNum()];
1041       if (NewCount)
1042         ShouldReport = false;
1043     }
1044     if (ShouldReport) {
1045       if (Printed)
1046         Str << ",";
1047       else
1048         Str << " \t/* END=";
1049       Var->emit(Func);
1050       Printed = true;
1051     }
1052   }
1053   if (Printed)
1054     Str << " */";
1055   return Printed;
1056 }
1057 
updateStats(Cfg * Func,const Inst * I)1058 void updateStats(Cfg *Func, const Inst *I) {
1059   if (!BuildDefs::dump())
1060     return;
1061   // Update emitted instruction count, plus fill/spill count for Variable
1062   // operands without a physical register.
1063   if (uint32_t Count = I->getEmitInstCount()) {
1064     Func->getContext()->statsUpdateEmitted(Count);
1065     if (Variable *Dest = I->getDest()) {
1066       if (!Dest->hasReg())
1067         Func->getContext()->statsUpdateFills();
1068     }
1069     for (SizeT S = 0; S < I->getSrcSize(); ++S) {
1070       if (auto *Src = llvm::dyn_cast<Variable>(I->getSrc(S))) {
1071         if (!Src->hasReg())
1072           Func->getContext()->statsUpdateSpills();
1073       }
1074     }
1075   }
1076 }
1077 
1078 } // end of anonymous namespace
1079 
emit(Cfg * Func) const1080 void CfgNode::emit(Cfg *Func) const {
1081   if (!BuildDefs::dump())
1082     return;
1083   Func->setCurrentNode(this);
1084   Ostream &Str = Func->getContext()->getStrEmit();
1085   Liveness *Liveness = Func->getLiveness();
1086   const bool DecorateAsm = Liveness && getFlags().getDecorateAsm();
1087   Str << getAsmName() << ":\n";
1088   // LiveRegCount keeps track of the number of currently live variables that
1089   // each register is assigned to. Normally that would be only 0 or 1, but the
1090   // register allocator's AllowOverlap inference allows it to be greater than 1
1091   // for short periods.
1092   CfgVector<SizeT> LiveRegCount(Func->getTarget()->getNumRegisters());
1093   if (DecorateAsm) {
1094     constexpr bool IsLiveIn = true;
1095     emitRegisterUsage(Str, Func, this, IsLiveIn, LiveRegCount);
1096     if (getInEdges().size()) {
1097       Str << "\t\t\t\t/* preds=";
1098       bool First = true;
1099       for (CfgNode *I : getInEdges()) {
1100         if (!First)
1101           Str << ",";
1102         First = false;
1103         Str << "$" << I->getName();
1104       }
1105       Str << " */\n";
1106     }
1107     if (getLoopNestDepth()) {
1108       Str << "\t\t\t\t/* loop depth=" << getLoopNestDepth() << " */\n";
1109     }
1110   }
1111 
1112   for (const Inst &I : Phis) {
1113     if (I.isDeleted())
1114       continue;
1115     // Emitting a Phi instruction should cause an error.
1116     I.emit(Func);
1117   }
1118   for (const Inst &I : Insts) {
1119     if (I.isDeleted())
1120       continue;
1121     if (I.isRedundantAssign()) {
1122       // Usually, redundant assignments end the live range of the src variable
1123       // and begin the live range of the dest variable, with no net effect on
1124       // the liveness of their register. However, if the register allocator
1125       // infers the AllowOverlap condition, then this may be a redundant
1126       // assignment that does not end the src variable's live range, in which
1127       // case the active variable count for that register needs to be bumped.
1128       // That normally would have happened as part of emitLiveRangesEnded(),
1129       // but that isn't called for redundant assignments.
1130       Variable *Dest = I.getDest();
1131       if (DecorateAsm && Dest->hasReg()) {
1132         ++LiveRegCount[Dest->getRegNum()];
1133         if (I.isLastUse(I.getSrc(0)))
1134           --LiveRegCount[llvm::cast<Variable>(I.getSrc(0))->getRegNum()];
1135       }
1136       continue;
1137     }
1138     I.emit(Func);
1139     bool Printed = false;
1140     if (DecorateAsm)
1141       Printed = emitLiveRangesEnded(Str, Func, &I, LiveRegCount);
1142     if (Printed || llvm::isa<InstTarget>(&I))
1143       Str << "\n";
1144     updateStats(Func, &I);
1145   }
1146   if (DecorateAsm) {
1147     constexpr bool IsLiveIn = false;
1148     emitRegisterUsage(Str, Func, this, IsLiveIn, LiveRegCount);
1149   }
1150 }
1151 
1152 // Helper class for emitIAS().
1153 namespace {
1154 class BundleEmitHelper {
1155   BundleEmitHelper() = delete;
1156   BundleEmitHelper(const BundleEmitHelper &) = delete;
1157   BundleEmitHelper &operator=(const BundleEmitHelper &) = delete;
1158 
1159 public:
BundleEmitHelper(Assembler * Asm,const InstList & Insts)1160   BundleEmitHelper(Assembler *Asm, const InstList &Insts)
1161       : Asm(Asm), End(Insts.end()), BundleLockStart(End),
1162         BundleSize(1 << Asm->getBundleAlignLog2Bytes()),
1163         BundleMaskLo(BundleSize - 1), BundleMaskHi(~BundleMaskLo) {}
1164   // Check whether we're currently within a bundle_lock region.
isInBundleLockRegion() const1165   bool isInBundleLockRegion() const { return BundleLockStart != End; }
1166   // Check whether the current bundle_lock region has the align_to_end option.
isAlignToEnd() const1167   bool isAlignToEnd() const {
1168     assert(isInBundleLockRegion());
1169     return llvm::cast<InstBundleLock>(getBundleLockStart())->getOption() ==
1170            InstBundleLock::Opt_AlignToEnd;
1171   }
isPadToEnd() const1172   bool isPadToEnd() const {
1173     assert(isInBundleLockRegion());
1174     return llvm::cast<InstBundleLock>(getBundleLockStart())->getOption() ==
1175            InstBundleLock::Opt_PadToEnd;
1176   }
1177   // Check whether the entire bundle_lock region falls within the same bundle.
isSameBundle() const1178   bool isSameBundle() const {
1179     assert(isInBundleLockRegion());
1180     return SizeSnapshotPre == SizeSnapshotPost ||
1181            (SizeSnapshotPre & BundleMaskHi) ==
1182                ((SizeSnapshotPost - 1) & BundleMaskHi);
1183   }
1184   // Get the bundle alignment of the first instruction of the bundle_lock
1185   // region.
getPreAlignment() const1186   intptr_t getPreAlignment() const {
1187     assert(isInBundleLockRegion());
1188     return SizeSnapshotPre & BundleMaskLo;
1189   }
1190   // Get the bundle alignment of the first instruction past the bundle_lock
1191   // region.
getPostAlignment() const1192   intptr_t getPostAlignment() const {
1193     assert(isInBundleLockRegion());
1194     return SizeSnapshotPost & BundleMaskLo;
1195   }
1196   // Get the iterator pointing to the bundle_lock instruction, e.g. to roll
1197   // back the instruction iteration to that point.
getBundleLockStart() const1198   InstList::const_iterator getBundleLockStart() const {
1199     assert(isInBundleLockRegion());
1200     return BundleLockStart;
1201   }
1202   // Set up bookkeeping when the bundle_lock instruction is first processed.
enterBundleLock(InstList::const_iterator I)1203   void enterBundleLock(InstList::const_iterator I) {
1204     assert(!isInBundleLockRegion());
1205     BundleLockStart = I;
1206     SizeSnapshotPre = Asm->getBufferSize();
1207     Asm->setPreliminary(true);
1208     assert(isInBundleLockRegion());
1209   }
1210   // Update bookkeeping when the bundle_unlock instruction is processed.
enterBundleUnlock()1211   void enterBundleUnlock() {
1212     assert(isInBundleLockRegion());
1213     SizeSnapshotPost = Asm->getBufferSize();
1214   }
1215   // Update bookkeeping when we are completely finished with the bundle_lock
1216   // region.
leaveBundleLockRegion()1217   void leaveBundleLockRegion() { BundleLockStart = End; }
1218   // Check whether the instruction sequence fits within the current bundle, and
1219   // if not, add nop padding to the end of the current bundle.
padToNextBundle()1220   void padToNextBundle() {
1221     assert(isInBundleLockRegion());
1222     if (!isSameBundle()) {
1223       intptr_t PadToNextBundle = BundleSize - getPreAlignment();
1224       Asm->padWithNop(PadToNextBundle);
1225       SizeSnapshotPre += PadToNextBundle;
1226       SizeSnapshotPost += PadToNextBundle;
1227       assert((Asm->getBufferSize() & BundleMaskLo) == 0);
1228       assert(Asm->getBufferSize() == SizeSnapshotPre);
1229     }
1230   }
1231   // If align_to_end is specified, add padding such that the instruction
1232   // sequences ends precisely at a bundle boundary.
padForAlignToEnd()1233   void padForAlignToEnd() {
1234     assert(isInBundleLockRegion());
1235     if (isAlignToEnd()) {
1236       if (intptr_t Offset = getPostAlignment()) {
1237         Asm->padWithNop(BundleSize - Offset);
1238         SizeSnapshotPre = Asm->getBufferSize();
1239       }
1240     }
1241   }
1242   // If pad_to_end is specified, add padding such that the first instruction
1243   // after the instruction sequence starts at a bundle boundary.
padForPadToEnd()1244   void padForPadToEnd() {
1245     assert(isInBundleLockRegion());
1246     if (isPadToEnd()) {
1247       if (intptr_t Offset = getPostAlignment()) {
1248         Asm->padWithNop(BundleSize - Offset);
1249         SizeSnapshotPre = Asm->getBufferSize();
1250       }
1251     }
1252   } // Update bookkeeping when rolling back for the second pass.
rollback()1253   void rollback() {
1254     assert(isInBundleLockRegion());
1255     Asm->setBufferSize(SizeSnapshotPre);
1256     Asm->setPreliminary(false);
1257   }
1258 
1259 private:
1260   Assembler *const Asm;
1261   // End is a sentinel value such that BundleLockStart==End implies that we are
1262   // not in a bundle_lock region.
1263   const InstList::const_iterator End;
1264   InstList::const_iterator BundleLockStart;
1265   const intptr_t BundleSize;
1266   // Masking with BundleMaskLo identifies an address's bundle offset.
1267   const intptr_t BundleMaskLo;
1268   // Masking with BundleMaskHi identifies an address's bundle.
1269   const intptr_t BundleMaskHi;
1270   intptr_t SizeSnapshotPre = 0;
1271   intptr_t SizeSnapshotPost = 0;
1272 };
1273 
1274 } // end of anonymous namespace
1275 
emitIAS(Cfg * Func) const1276 void CfgNode::emitIAS(Cfg *Func) const {
1277   Func->setCurrentNode(this);
1278   Assembler *Asm = Func->getAssembler<>();
1279   // TODO(stichnot): When sandboxing, defer binding the node label until just
1280   // before the first instruction is emitted, to reduce the chance that a
1281   // padding nop is a branch target.
1282   Asm->bindCfgNodeLabel(this);
1283   for (const Inst &I : Phis) {
1284     if (I.isDeleted())
1285       continue;
1286     // Emitting a Phi instruction should cause an error.
1287     I.emitIAS(Func);
1288   }
1289 
1290   // Do the simple emission if not sandboxed.
1291   if (!getFlags().getUseSandboxing()) {
1292     for (const Inst &I : Insts) {
1293       if (!I.isDeleted() && !I.isRedundantAssign()) {
1294         I.emitIAS(Func);
1295         updateStats(Func, &I);
1296       }
1297     }
1298     return;
1299   }
1300 
1301   // The remainder of the function handles emission with sandboxing. There are
1302   // explicit bundle_lock regions delimited by bundle_lock and bundle_unlock
1303   // instructions. All other instructions are treated as an implicit
1304   // one-instruction bundle_lock region. Emission is done twice for each
1305   // bundle_lock region. The first pass is a preliminary pass, after which we
1306   // can figure out what nop padding is needed, then roll back, and make the
1307   // final pass.
1308   //
1309   // Ideally, the first pass would be speculative and the second pass would
1310   // only be done if nop padding were needed, but the structure of the
1311   // integrated assembler makes it hard to roll back the state of label
1312   // bindings, label links, and relocation fixups. Instead, the first pass just
1313   // disables all mutation of that state.
1314 
1315   BundleEmitHelper Helper(Asm, Insts);
1316   InstList::const_iterator End = Insts.end();
1317   // Retrying indicates that we had to roll back to the bundle_lock instruction
1318   // to apply padding before the bundle_lock sequence.
1319   bool Retrying = false;
1320   for (InstList::const_iterator I = Insts.begin(); I != End; ++I) {
1321     if (I->isDeleted() || I->isRedundantAssign())
1322       continue;
1323 
1324     if (llvm::isa<InstBundleLock>(I)) {
1325       // Set up the initial bundle_lock state. This should not happen while
1326       // retrying, because the retry rolls back to the instruction following
1327       // the bundle_lock instruction.
1328       assert(!Retrying);
1329       Helper.enterBundleLock(I);
1330       continue;
1331     }
1332 
1333     if (llvm::isa<InstBundleUnlock>(I)) {
1334       Helper.enterBundleUnlock();
1335       if (Retrying) {
1336         // Make sure all instructions are in the same bundle.
1337         assert(Helper.isSameBundle());
1338         // If align_to_end is specified, make sure the next instruction begins
1339         // the bundle.
1340         assert(!Helper.isAlignToEnd() || Helper.getPostAlignment() == 0);
1341         Helper.padForPadToEnd();
1342         Helper.leaveBundleLockRegion();
1343         Retrying = false;
1344       } else {
1345         // This is the first pass, so roll back for the retry pass.
1346         Helper.rollback();
1347         // Pad to the next bundle if the instruction sequence crossed a bundle
1348         // boundary.
1349         Helper.padToNextBundle();
1350         // Insert additional padding to make AlignToEnd work.
1351         Helper.padForAlignToEnd();
1352         // Prepare for the retry pass after padding is done.
1353         Retrying = true;
1354         I = Helper.getBundleLockStart();
1355       }
1356       continue;
1357     }
1358 
1359     // I points to a non bundle_lock/bundle_unlock instruction.
1360     if (Helper.isInBundleLockRegion()) {
1361       I->emitIAS(Func);
1362       // Only update stats during the final pass.
1363       if (Retrying)
1364         updateStats(Func, iteratorToInst(I));
1365     } else {
1366       // Treat it as though there were an implicit bundle_lock and
1367       // bundle_unlock wrapping the instruction.
1368       Helper.enterBundleLock(I);
1369       I->emitIAS(Func);
1370       Helper.enterBundleUnlock();
1371       Helper.rollback();
1372       Helper.padToNextBundle();
1373       I->emitIAS(Func);
1374       updateStats(Func, iteratorToInst(I));
1375       Helper.leaveBundleLockRegion();
1376     }
1377   }
1378 
1379   // Don't allow bundle locking across basic blocks, to keep the backtracking
1380   // mechanism simple.
1381   assert(!Helper.isInBundleLockRegion());
1382   assert(!Retrying);
1383 }
1384 
dump(Cfg * Func) const1385 void CfgNode::dump(Cfg *Func) const {
1386   if (!BuildDefs::dump())
1387     return;
1388   Func->setCurrentNode(this);
1389   Ostream &Str = Func->getContext()->getStrDump();
1390   Liveness *Liveness = Func->getLiveness();
1391   if (Func->isVerbose(IceV_Instructions) || Func->isVerbose(IceV_Loop))
1392     Str << getName() << ":\n";
1393   // Dump the loop nest depth
1394   if (Func->isVerbose(IceV_Loop))
1395     Str << "    // LoopNestDepth = " << getLoopNestDepth() << "\n";
1396   // Dump list of predecessor nodes.
1397   if (Func->isVerbose(IceV_Preds) && !InEdges.empty()) {
1398     Str << "    // preds = ";
1399     bool First = true;
1400     for (CfgNode *I : InEdges) {
1401       if (!First)
1402         Str << ", ";
1403       First = false;
1404       Str << "%" << I->getName();
1405     }
1406     Str << "\n";
1407   }
1408   // Dump the live-in variables.
1409   if (Func->isVerbose(IceV_Liveness)) {
1410     if (Liveness != nullptr && !Liveness->getLiveIn(this).empty()) {
1411       const LivenessBV &LiveIn = Liveness->getLiveIn(this);
1412       Str << "    // LiveIn:";
1413       for (SizeT i = 0; i < LiveIn.size(); ++i) {
1414         if (LiveIn[i]) {
1415           Variable *Var = Liveness->getVariable(i, this);
1416           Str << " %" << Var->getName();
1417           if (Func->isVerbose(IceV_RegOrigins) && Var->hasReg()) {
1418             Str << ":"
1419                 << Func->getTarget()->getRegName(Var->getRegNum(),
1420                                                  Var->getType());
1421           }
1422         }
1423       }
1424       Str << "\n";
1425     }
1426   }
1427   // Dump each instruction.
1428   if (Func->isVerbose(IceV_Instructions)) {
1429     for (const Inst &I : Phis)
1430       I.dumpDecorated(Func);
1431     for (const Inst &I : Insts)
1432       I.dumpDecorated(Func);
1433   }
1434   // Dump the live-out variables.
1435   if (Func->isVerbose(IceV_Liveness)) {
1436     if (Liveness != nullptr && !Liveness->getLiveOut(this).empty()) {
1437       const LivenessBV &LiveOut = Liveness->getLiveOut(this);
1438       Str << "    // LiveOut:";
1439       for (SizeT i = 0; i < LiveOut.size(); ++i) {
1440         if (LiveOut[i]) {
1441           Variable *Var = Liveness->getVariable(i, this);
1442           Str << " %" << Var->getName();
1443           if (Func->isVerbose(IceV_RegOrigins) && Var->hasReg()) {
1444             Str << ":"
1445                 << Func->getTarget()->getRegName(Var->getRegNum(),
1446                                                  Var->getType());
1447           }
1448         }
1449       }
1450       Str << "\n";
1451     }
1452   }
1453   // Dump list of successor nodes.
1454   if (Func->isVerbose(IceV_Succs)) {
1455     Str << "    // succs = ";
1456     bool First = true;
1457     for (CfgNode *I : OutEdges) {
1458       if (!First)
1459         Str << ", ";
1460       First = false;
1461       Str << "%" << I->getName();
1462     }
1463     Str << "\n";
1464   }
1465 }
1466 
profileExecutionCount(VariableDeclaration * Var)1467 void CfgNode::profileExecutionCount(VariableDeclaration *Var) {
1468   GlobalContext *Ctx = Func->getContext();
1469   GlobalString RMW_I64 = Ctx->getGlobalString("llvm.nacl.atomic.rmw.i64");
1470 
1471   bool BadIntrinsic = false;
1472   const Intrinsics::FullIntrinsicInfo *Info =
1473       Ctx->getIntrinsicsInfo().find(RMW_I64, BadIntrinsic);
1474   assert(!BadIntrinsic);
1475   assert(Info != nullptr);
1476 
1477   Operand *RMWI64Name = Ctx->getConstantExternSym(RMW_I64);
1478   constexpr RelocOffsetT Offset = 0;
1479   Constant *Counter = Ctx->getConstantSym(Offset, Var->getName());
1480   Constant *AtomicRMWOp = Ctx->getConstantInt32(Intrinsics::AtomicAdd);
1481   Constant *One = Ctx->getConstantInt64(1);
1482   Constant *OrderAcquireRelease =
1483       Ctx->getConstantInt32(Intrinsics::MemoryOrderAcquireRelease);
1484 
1485   auto *Instr = InstIntrinsicCall::create(
1486       Func, 5, Func->makeVariable(IceType_i64), RMWI64Name, Info->Info);
1487   Instr->addArg(AtomicRMWOp);
1488   Instr->addArg(Counter);
1489   Instr->addArg(One);
1490   Instr->addArg(OrderAcquireRelease);
1491   Insts.push_front(Instr);
1492 }
1493 
removeInEdge(CfgNode * In)1494 void CfgNode::removeInEdge(CfgNode *In) {
1495   InEdges.erase(std::find(InEdges.begin(), InEdges.end(), In));
1496 }
1497 
shortCircuit()1498 CfgNode *CfgNode::shortCircuit() {
1499   auto *Func = getCfg();
1500   auto *Last = &getInsts().back();
1501   Variable *Condition = nullptr;
1502   InstBr *Br = nullptr;
1503   if ((Br = llvm::dyn_cast<InstBr>(Last))) {
1504     if (!Br->isUnconditional()) {
1505       Condition = llvm::dyn_cast<Variable>(Br->getCondition());
1506     }
1507   }
1508   if (Condition == nullptr)
1509     return nullptr;
1510 
1511   auto *JumpOnTrue = Br->getTargetTrue();
1512   auto *JumpOnFalse = Br->getTargetFalse();
1513 
1514   bool FoundOr = false;
1515   bool FoundAnd = false;
1516 
1517   InstArithmetic *TopLevelBoolOp = nullptr;
1518 
1519   for (auto &Inst : reverse_range(getInsts())) {
1520     if (Inst.isDeleted())
1521       continue;
1522     if (Inst.getDest() == Condition) {
1523       if (auto *Arith = llvm::dyn_cast<InstArithmetic>(&Inst)) {
1524 
1525         FoundOr = (Arith->getOp() == InstArithmetic::OpKind::Or);
1526         FoundAnd = (Arith->getOp() == InstArithmetic::OpKind::And);
1527 
1528         if (FoundOr || FoundAnd) {
1529           TopLevelBoolOp = Arith;
1530           break;
1531         }
1532       }
1533     }
1534   }
1535 
1536   if (!TopLevelBoolOp)
1537     return nullptr;
1538 
1539   auto IsOperand = [](Inst *Instr, Operand *Opr) -> bool {
1540     for (SizeT i = 0; i < Instr->getSrcSize(); ++i) {
1541       if (Instr->getSrc(i) == Opr)
1542         return true;
1543     }
1544     return false;
1545   };
1546   Inst *FirstOperandDef = nullptr;
1547   for (auto &Inst : getInsts()) {
1548     if (IsOperand(TopLevelBoolOp, Inst.getDest())) {
1549       FirstOperandDef = &Inst;
1550       break;
1551     }
1552   }
1553 
1554   if (FirstOperandDef == nullptr) {
1555     return nullptr;
1556   }
1557 
1558   // Check for side effects
1559   auto It = Ice::instToIterator(FirstOperandDef);
1560   while (It != getInsts().end()) {
1561     if (It->isDeleted()) {
1562       ++It;
1563       continue;
1564     }
1565     if (llvm::isa<InstBr>(It) || llvm::isa<InstRet>(It)) {
1566       break;
1567     }
1568     auto *Dest = It->getDest();
1569     if (It->getDest() == nullptr || It->hasSideEffects() ||
1570         !Func->getVMetadata()->isSingleBlock(Dest)) {
1571       // Relying on short cicuit eval here.
1572       // getVMetadata()->isSingleBlock(Dest)
1573       // will segfault if It->getDest() == nullptr
1574       return nullptr;
1575     }
1576     It++;
1577   }
1578 
1579   auto *NewNode = Func->makeNode();
1580   NewNode->setLoopNestDepth(getLoopNestDepth());
1581   It = Ice::instToIterator(FirstOperandDef);
1582   It++; // Have to split after the def
1583 
1584   NewNode->getInsts().splice(NewNode->getInsts().begin(), getInsts(), It,
1585                              getInsts().end());
1586 
1587   if (BuildDefs::dump()) {
1588     NewNode->setName(getName().append("_2"));
1589     setName(getName().append("_1"));
1590   }
1591 
1592   // Point edges properly
1593   NewNode->addInEdge(this);
1594   for (auto *Out : getOutEdges()) {
1595     NewNode->addOutEdge(Out);
1596     Out->addInEdge(NewNode);
1597   }
1598   removeAllOutEdges();
1599   addOutEdge(NewNode);
1600 
1601   // Manage Phi instructions of successors
1602   for (auto *Succ : NewNode->getOutEdges()) {
1603     for (auto &Inst : Succ->getPhis()) {
1604       auto *Phi = llvm::cast<InstPhi>(&Inst);
1605       for (SizeT i = 0; i < Phi->getSrcSize(); ++i) {
1606         if (Phi->getLabel(i) == this) {
1607           Phi->addArgument(Phi->getSrc(i), NewNode);
1608         }
1609       }
1610     }
1611   }
1612 
1613   // Create new Br instruction
1614   InstBr *NewInst = nullptr;
1615   if (FoundOr) {
1616     addOutEdge(JumpOnTrue);
1617     JumpOnFalse->removeInEdge(this);
1618     NewInst =
1619         InstBr::create(Func, FirstOperandDef->getDest(), JumpOnTrue, NewNode);
1620   } else if (FoundAnd) {
1621     addOutEdge(JumpOnFalse);
1622     JumpOnTrue->removeInEdge(this);
1623     NewInst =
1624         InstBr::create(Func, FirstOperandDef->getDest(), NewNode, JumpOnFalse);
1625   } else {
1626     return nullptr;
1627   }
1628 
1629   assert(NewInst != nullptr);
1630   appendInst(NewInst);
1631 
1632   Operand *UnusedOperand = nullptr;
1633   assert(TopLevelBoolOp->getSrcSize() == 2);
1634   if (TopLevelBoolOp->getSrc(0) == FirstOperandDef->getDest())
1635     UnusedOperand = TopLevelBoolOp->getSrc(1);
1636   else if (TopLevelBoolOp->getSrc(1) == FirstOperandDef->getDest())
1637     UnusedOperand = TopLevelBoolOp->getSrc(0);
1638   assert(UnusedOperand);
1639 
1640   Br->replaceSource(0, UnusedOperand); // Index 0 has the condition of the Br
1641 
1642   TopLevelBoolOp->setDeleted();
1643   return NewNode;
1644 }
1645 
1646 } // end of namespace Ice
1647