1 //===- subzero/src/IceTargetLoweringX8632.cpp - x86-32 lowering -----------===//
2 //
3 // The Subzero Code Generator
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Implements the TargetLoweringX8632 class, which consists almost
12 /// entirely of the lowering sequence for each high-level instruction.
13 ///
14 //===----------------------------------------------------------------------===//
15
16 #include "IceTargetLoweringX8632.h"
17
18 #include "IceTargetLoweringX8632Traits.h"
19
20 namespace X8632 {
createTargetLowering(::Ice::Cfg * Func)21 std::unique_ptr<::Ice::TargetLowering> createTargetLowering(::Ice::Cfg *Func) {
22 return ::Ice::X8632::TargetX8632::create(Func);
23 }
24
25 std::unique_ptr<::Ice::TargetDataLowering>
createTargetDataLowering(::Ice::GlobalContext * Ctx)26 createTargetDataLowering(::Ice::GlobalContext *Ctx) {
27 return ::Ice::X8632::TargetDataX86<::Ice::X8632::TargetX8632Traits>::create(
28 Ctx);
29 }
30
31 std::unique_ptr<::Ice::TargetHeaderLowering>
createTargetHeaderLowering(::Ice::GlobalContext * Ctx)32 createTargetHeaderLowering(::Ice::GlobalContext *Ctx) {
33 return ::Ice::X8632::TargetHeaderX86::create(Ctx);
34 }
35
staticInit(::Ice::GlobalContext * Ctx)36 void staticInit(::Ice::GlobalContext *Ctx) {
37 ::Ice::X8632::TargetX8632::staticInit(Ctx);
38 if (Ice::getFlags().getUseNonsfi()) {
39 // In nonsfi, we need to reference the _GLOBAL_OFFSET_TABLE_ for accessing
40 // globals. The GOT is an external symbol (i.e., it is not defined in the
41 // pexe) so we need to register it as such so that ELF emission won't barf
42 // on an "unknown" symbol. The GOT is added to the External symbols list
43 // here because staticInit() is invoked in a single-thread context.
44 Ctx->getConstantExternSym(Ctx->getGlobalString(::Ice::GlobalOffsetTable));
45 }
46 }
47
shouldBePooled(const class::Ice::Constant * C)48 bool shouldBePooled(const class ::Ice::Constant *C) {
49 return ::Ice::X8632::TargetX8632::shouldBePooled(C);
50 }
51
getPointerType()52 ::Ice::Type getPointerType() {
53 return ::Ice::X8632::TargetX8632::getPointerType();
54 }
55
56 } // end of namespace X8632
57
58 namespace Ice {
59 namespace X8632 {
60
61 //------------------------------------------------------------------------------
62 // ______ ______ ______ __ ______ ______
63 // /\__ _\ /\ == \ /\ __ \ /\ \ /\__ _\ /\ ___\
64 // \/_/\ \/ \ \ __< \ \ __ \ \ \ \ \/_/\ \/ \ \___ \
65 // \ \_\ \ \_\ \_\ \ \_\ \_\ \ \_\ \ \_\ \/\_____\
66 // \/_/ \/_/ /_/ \/_/\/_/ \/_/ \/_/ \/_____/
67 //
68 //------------------------------------------------------------------------------
69 const TargetX8632Traits::TableFcmpType TargetX8632Traits::TableFcmp[] = {
70 #define X(val, dflt, swapS, C1, C2, swapV, pred) \
71 { \
72 dflt, swapS, X8632::Traits::Cond::C1, X8632::Traits::Cond::C2, swapV, \
73 X8632::Traits::Cond::pred \
74 } \
75 ,
76 FCMPX8632_TABLE
77 #undef X
78 };
79
80 const size_t TargetX8632Traits::TableFcmpSize = llvm::array_lengthof(TableFcmp);
81
82 const TargetX8632Traits::TableIcmp32Type TargetX8632Traits::TableIcmp32[] = {
83 #define X(val, C_32, C1_64, C2_64, C3_64) \
84 { X8632::Traits::Cond::C_32 } \
85 ,
86 ICMPX8632_TABLE
87 #undef X
88 };
89
90 const size_t TargetX8632Traits::TableIcmp32Size =
91 llvm::array_lengthof(TableIcmp32);
92
93 const TargetX8632Traits::TableIcmp64Type TargetX8632Traits::TableIcmp64[] = {
94 #define X(val, C_32, C1_64, C2_64, C3_64) \
95 { \
96 X8632::Traits::Cond::C1_64, X8632::Traits::Cond::C2_64, \
97 X8632::Traits::Cond::C3_64 \
98 } \
99 ,
100 ICMPX8632_TABLE
101 #undef X
102 };
103
104 const size_t TargetX8632Traits::TableIcmp64Size =
105 llvm::array_lengthof(TableIcmp64);
106
107 const TargetX8632Traits::TableTypeX8632AttributesType
108 TargetX8632Traits::TableTypeX8632Attributes[] = {
109 #define X(tag, elty, cvt, sdss, pdps, spsd, int_, unpack, pack, width, fld) \
110 { IceType_##elty } \
111 ,
112 ICETYPEX8632_TABLE
113 #undef X
114 };
115
116 const size_t TargetX8632Traits::TableTypeX8632AttributesSize =
117 llvm::array_lengthof(TableTypeX8632Attributes);
118
119 #if defined(SUBZERO_USE_MICROSOFT_ABI)
120 // Windows 32-bit only guarantees 4 byte stack alignment
121 const uint32_t TargetX8632Traits::X86_STACK_ALIGNMENT_BYTES = 4;
122 #else
123 const uint32_t TargetX8632Traits::X86_STACK_ALIGNMENT_BYTES = 16;
124 #endif
125 const char *TargetX8632Traits::TargetName = "X8632";
126
127 template <>
128 std::array<SmallBitVector, RCX86_NUM>
129 TargetX86Base<X8632::Traits>::TypeToRegisterSet = {{}};
130
131 template <>
132 std::array<SmallBitVector, RCX86_NUM>
133 TargetX86Base<X8632::Traits>::TypeToRegisterSetUnfiltered = {{}};
134
135 template <>
136 std::array<SmallBitVector,
137 TargetX86Base<X8632::Traits>::Traits::RegisterSet::Reg_NUM>
138 TargetX86Base<X8632::Traits>::RegisterAliases = {{}};
139
140 template <>
141 FixupKind TargetX86Base<X8632::Traits>::PcRelFixup =
142 TargetX86Base<X8632::Traits>::Traits::FK_PcRel;
143
144 template <>
145 FixupKind TargetX86Base<X8632::Traits>::AbsFixup =
146 TargetX86Base<X8632::Traits>::Traits::FK_Abs;
147
148 //------------------------------------------------------------------------------
149 // __ ______ __ __ ______ ______ __ __ __ ______
150 // /\ \ /\ __ \/\ \ _ \ \/\ ___\/\ == \/\ \/\ "-.\ \/\ ___\
151 // \ \ \___\ \ \/\ \ \ \/ ".\ \ \ __\\ \ __<\ \ \ \ \-. \ \ \__ \
152 // \ \_____\ \_____\ \__/".~\_\ \_____\ \_\ \_\ \_\ \_\\"\_\ \_____\
153 // \/_____/\/_____/\/_/ \/_/\/_____/\/_/ /_/\/_/\/_/ \/_/\/_____/
154 //
155 //------------------------------------------------------------------------------
_add_sp(Operand * Adjustment)156 void TargetX8632::_add_sp(Operand *Adjustment) {
157 Variable *esp = getPhysicalRegister(Traits::RegisterSet::Reg_esp);
158 _add(esp, Adjustment);
159 }
160
_mov_sp(Operand * NewValue)161 void TargetX8632::_mov_sp(Operand *NewValue) {
162 Variable *esp = getPhysicalRegister(Traits::RegisterSet::Reg_esp);
163 _redefined(_mov(esp, NewValue));
164 }
165
_sandbox_mem_reference(X86OperandMem * Mem)166 Traits::X86OperandMem *TargetX8632::_sandbox_mem_reference(X86OperandMem *Mem) {
167 switch (SandboxingType) {
168 case ST_None:
169 case ST_NaCl:
170 return Mem;
171 case ST_Nonsfi: {
172 if (Mem->getIsRebased()) {
173 return Mem;
174 }
175 // For Non-SFI mode, if the Offset field is a ConstantRelocatable, we
176 // replace either Base or Index with a legalized RebasePtr. At emission
177 // time, the ConstantRelocatable will be emitted with the @GOTOFF
178 // relocation.
179 if (llvm::dyn_cast_or_null<ConstantRelocatable>(Mem->getOffset()) ==
180 nullptr) {
181 return Mem;
182 }
183 Variable *T;
184 uint16_t Shift = 0;
185 if (Mem->getIndex() == nullptr) {
186 T = Mem->getBase();
187 } else if (Mem->getBase() == nullptr) {
188 T = Mem->getIndex();
189 Shift = Mem->getShift();
190 } else {
191 llvm::report_fatal_error(
192 "Either Base or Index must be unused in Non-SFI mode");
193 }
194 Variable *RebasePtrR = legalizeToReg(RebasePtr);
195 static constexpr bool IsRebased = true;
196 return Traits::X86OperandMem::create(
197 Func, Mem->getType(), RebasePtrR, Mem->getOffset(), T, Shift,
198 Traits::X86OperandMem::DefaultSegment, IsRebased);
199 }
200 }
201 llvm::report_fatal_error("Unhandled sandboxing type: " +
202 std::to_string(SandboxingType));
203 }
204
_sub_sp(Operand * Adjustment)205 void TargetX8632::_sub_sp(Operand *Adjustment) {
206 Variable *esp = getPhysicalRegister(Traits::RegisterSet::Reg_esp);
207 _sub(esp, Adjustment);
208 // Add a fake use of the stack pointer, to prevent the stack pointer adustment
209 // from being dead-code eliminated in a function that doesn't return.
210 Context.insert<InstFakeUse>(esp);
211 }
212
_link_bp()213 void TargetX8632::_link_bp() {
214 Variable *ebp = getPhysicalRegister(Traits::RegisterSet::Reg_ebp);
215 Variable *esp = getPhysicalRegister(Traits::RegisterSet::Reg_esp);
216 _push(ebp);
217 _mov(ebp, esp);
218 // Keep ebp live for late-stage liveness analysis (e.g. asm-verbose mode).
219 Context.insert<InstFakeUse>(ebp);
220 }
221
_unlink_bp()222 void TargetX8632::_unlink_bp() {
223 Variable *esp = getPhysicalRegister(Traits::RegisterSet::Reg_esp);
224 Variable *ebp = getPhysicalRegister(Traits::RegisterSet::Reg_ebp);
225 // For late-stage liveness analysis (e.g. asm-verbose mode), adding a fake
226 // use of esp before the assignment of esp=ebp keeps previous esp
227 // adjustments from being dead-code eliminated.
228 Context.insert<InstFakeUse>(esp);
229 _mov(esp, ebp);
230 _pop(ebp);
231 }
232
_push_reg(Variable * Reg)233 void TargetX8632::_push_reg(Variable *Reg) { _push(Reg); }
234
emitGetIP(CfgNode * Node)235 void TargetX8632::emitGetIP(CfgNode *Node) {
236 // If there is a non-deleted InstX86GetIP instruction, we need to move it to
237 // the point after the stack frame has stabilized but before
238 // register-allocated in-args are copied into their home registers. It would
239 // be slightly faster to search for the GetIP instruction before other prolog
240 // instructions are inserted, but it's more clear to do the whole
241 // transformation in a single place.
242 Traits::Insts::GetIP *GetIPInst = nullptr;
243 if (getFlags().getUseNonsfi()) {
244 for (Inst &Instr : Node->getInsts()) {
245 if (auto *GetIP = llvm::dyn_cast<Traits::Insts::GetIP>(&Instr)) {
246 if (!Instr.isDeleted())
247 GetIPInst = GetIP;
248 break;
249 }
250 }
251 }
252 // Delete any existing InstX86GetIP instruction and reinsert it here. Also,
253 // insert the call to the helper function and the spill to the stack, to
254 // simplify emission.
255 if (GetIPInst) {
256 GetIPInst->setDeleted();
257 Variable *Dest = GetIPInst->getDest();
258 Variable *CallDest =
259 Dest->hasReg() ? Dest
260 : getPhysicalRegister(Traits::RegisterSet::Reg_eax);
261 auto *BeforeAddReloc = RelocOffset::create(Ctx);
262 BeforeAddReloc->setSubtract(true);
263 auto *BeforeAdd = InstX86Label::create(Func, this);
264 BeforeAdd->setRelocOffset(BeforeAddReloc);
265
266 auto *AfterAddReloc = RelocOffset::create(Ctx);
267 auto *AfterAdd = InstX86Label::create(Func, this);
268 AfterAdd->setRelocOffset(AfterAddReloc);
269
270 const RelocOffsetT ImmSize = -typeWidthInBytes(IceType_i32);
271
272 auto *GotFromPc =
273 llvm::cast<ConstantRelocatable>(Ctx->getConstantSymWithEmitString(
274 ImmSize, {AfterAddReloc, BeforeAddReloc},
275 Ctx->getGlobalString(GlobalOffsetTable), GlobalOffsetTable));
276
277 // Insert a new version of InstX86GetIP.
278 Context.insert<Traits::Insts::GetIP>(CallDest);
279
280 Context.insert(BeforeAdd);
281 _add(CallDest, GotFromPc);
282 Context.insert(AfterAdd);
283
284 // Spill the register to its home stack location if necessary.
285 if (Dest != CallDest) {
286 _mov(Dest, CallDest);
287 }
288 }
289 }
290
lowerIndirectJump(Variable * JumpTarget)291 void TargetX8632::lowerIndirectJump(Variable *JumpTarget) {
292 AutoBundle _(this);
293
294 if (NeedSandboxing) {
295 const SizeT BundleSize =
296 1 << Func->getAssembler<>()->getBundleAlignLog2Bytes();
297 _and(JumpTarget, Ctx->getConstantInt32(~(BundleSize - 1)));
298 }
299
300 _jmp(JumpTarget);
301 }
302
initRebasePtr()303 void TargetX8632::initRebasePtr() {
304 if (SandboxingType == ST_Nonsfi) {
305 RebasePtr = Func->makeVariable(IceType_i32);
306 }
307 }
308
initSandbox()309 void TargetX8632::initSandbox() {
310 if (SandboxingType != ST_Nonsfi) {
311 return;
312 }
313 // Insert the RebasePtr assignment as the very first lowered instruction.
314 // Later, it will be moved into the right place - after the stack frame is set
315 // up but before in-args are copied into registers.
316 Context.init(Func->getEntryNode());
317 Context.setInsertPoint(Context.getCur());
318 Context.insert<Traits::Insts::GetIP>(RebasePtr);
319 }
320
legalizeOptAddrForSandbox(OptAddr * Addr)321 bool TargetX8632::legalizeOptAddrForSandbox(OptAddr *Addr) {
322 if (Addr->Relocatable == nullptr || SandboxingType != ST_Nonsfi) {
323 return true;
324 }
325
326 if (Addr->Base == RebasePtr || Addr->Index == RebasePtr) {
327 return true;
328 }
329
330 if (Addr->Base == nullptr) {
331 Addr->Base = RebasePtr;
332 return true;
333 }
334
335 if (Addr->Index == nullptr) {
336 Addr->Index = RebasePtr;
337 Addr->Shift = 0;
338 return true;
339 }
340
341 return false;
342 }
343
emitCallToTarget(Operand * CallTarget,Variable * ReturnReg)344 Inst *TargetX8632::emitCallToTarget(Operand *CallTarget, Variable *ReturnReg) {
345 std::unique_ptr<AutoBundle> Bundle;
346 if (NeedSandboxing) {
347 if (llvm::isa<Constant>(CallTarget)) {
348 Bundle = makeUnique<AutoBundle>(this, InstBundleLock::Opt_AlignToEnd);
349 } else {
350 Variable *CallTargetVar = nullptr;
351 _mov(CallTargetVar, CallTarget);
352 Bundle = makeUnique<AutoBundle>(this, InstBundleLock::Opt_AlignToEnd);
353 const SizeT BundleSize =
354 1 << Func->getAssembler<>()->getBundleAlignLog2Bytes();
355 _and(CallTargetVar, Ctx->getConstantInt32(~(BundleSize - 1)));
356 CallTarget = CallTargetVar;
357 }
358 }
359 return Context.insert<Traits::Insts::Call>(ReturnReg, CallTarget);
360 }
361
moveReturnValueToRegister(Operand * Value,Type ReturnType)362 Variable *TargetX8632::moveReturnValueToRegister(Operand *Value,
363 Type ReturnType) {
364 if (isVectorType(ReturnType)) {
365 return legalizeToReg(Value, Traits::RegisterSet::Reg_xmm0);
366 } else if (isScalarFloatingType(ReturnType)) {
367 _fld(Value);
368 return nullptr;
369 } else {
370 assert(ReturnType == IceType_i32 || ReturnType == IceType_i64);
371 if (ReturnType == IceType_i64) {
372 Variable *eax =
373 legalizeToReg(loOperand(Value), Traits::RegisterSet::Reg_eax);
374 Variable *edx =
375 legalizeToReg(hiOperand(Value), Traits::RegisterSet::Reg_edx);
376 Context.insert<InstFakeUse>(edx);
377 return eax;
378 } else {
379 Variable *Reg = nullptr;
380 _mov(Reg, Value, Traits::RegisterSet::Reg_eax);
381 return Reg;
382 }
383 }
384 }
385
emitSandboxedReturn()386 void TargetX8632::emitSandboxedReturn() {
387 // Change the original ret instruction into a sandboxed return sequence.
388 // t:ecx = pop
389 // bundle_lock
390 // and t, ~31
391 // jmp *t
392 // bundle_unlock
393 // FakeUse <original_ret_operand>
394 Variable *T_ecx = makeReg(IceType_i32, Traits::RegisterSet::Reg_ecx);
395 _pop(T_ecx);
396 lowerIndirectJump(T_ecx);
397 }
398
399 // In some cases, there are x-macros tables for both high-level and low-level
400 // instructions/operands that use the same enum key value. The tables are kept
401 // separate to maintain a proper separation between abstraction layers. There
402 // is a risk that the tables could get out of sync if enum values are reordered
403 // or if entries are added or deleted. The following dummy namespaces use
404 // static_asserts to ensure everything is kept in sync.
405
406 namespace {
407 // Validate the enum values in FCMPX8632_TABLE.
408 namespace dummy1 {
409 // Define a temporary set of enum values based on low-level table entries.
410 enum _tmp_enum {
411 #define X(val, dflt, swapS, C1, C2, swapV, pred) _tmp_##val,
412 FCMPX8632_TABLE
413 #undef X
414 _num
415 };
416 // Define a set of constants based on high-level table entries.
417 #define X(tag, str) static const int _table1_##tag = InstFcmp::tag;
418 ICEINSTFCMP_TABLE
419 #undef X
420 // Define a set of constants based on low-level table entries, and ensure the
421 // table entry keys are consistent.
422 #define X(val, dflt, swapS, C1, C2, swapV, pred) \
423 static const int _table2_##val = _tmp_##val; \
424 static_assert( \
425 _table1_##val == _table2_##val, \
426 "Inconsistency between FCMPX8632_TABLE and ICEINSTFCMP_TABLE");
427 FCMPX8632_TABLE
428 #undef X
429 // Repeat the static asserts with respect to the high-level table entries in
430 // case the high-level table has extra entries.
431 #define X(tag, str) \
432 static_assert( \
433 _table1_##tag == _table2_##tag, \
434 "Inconsistency between FCMPX8632_TABLE and ICEINSTFCMP_TABLE");
435 ICEINSTFCMP_TABLE
436 #undef X
437 } // end of namespace dummy1
438
439 // Validate the enum values in ICMPX8632_TABLE.
440 namespace dummy2 {
441 // Define a temporary set of enum values based on low-level table entries.
442 enum _tmp_enum {
443 #define X(val, C_32, C1_64, C2_64, C3_64) _tmp_##val,
444 ICMPX8632_TABLE
445 #undef X
446 _num
447 };
448 // Define a set of constants based on high-level table entries.
449 #define X(tag, reverse, str) static const int _table1_##tag = InstIcmp::tag;
450 ICEINSTICMP_TABLE
451 #undef X
452 // Define a set of constants based on low-level table entries, and ensure the
453 // table entry keys are consistent.
454 #define X(val, C_32, C1_64, C2_64, C3_64) \
455 static const int _table2_##val = _tmp_##val; \
456 static_assert( \
457 _table1_##val == _table2_##val, \
458 "Inconsistency between ICMPX8632_TABLE and ICEINSTICMP_TABLE");
459 ICMPX8632_TABLE
460 #undef X
461 // Repeat the static asserts with respect to the high-level table entries in
462 // case the high-level table has extra entries.
463 #define X(tag, reverse, str) \
464 static_assert( \
465 _table1_##tag == _table2_##tag, \
466 "Inconsistency between ICMPX8632_TABLE and ICEINSTICMP_TABLE");
467 ICEINSTICMP_TABLE
468 #undef X
469 } // end of namespace dummy2
470
471 // Validate the enum values in ICETYPEX8632_TABLE.
472 namespace dummy3 {
473 // Define a temporary set of enum values based on low-level table entries.
474 enum _tmp_enum {
475 #define X(tag, elty, cvt, sdss, pdps, spsd, int_, unpack, pack, width, fld) \
476 _tmp_##tag,
477 ICETYPEX8632_TABLE
478 #undef X
479 _num
480 };
481 // Define a set of constants based on high-level table entries.
482 #define X(tag, sizeLog2, align, elts, elty, str, rcstr) \
483 static const int _table1_##tag = IceType_##tag;
484 ICETYPE_TABLE
485 #undef X
486 // Define a set of constants based on low-level table entries, and ensure the
487 // table entry keys are consistent.
488 #define X(tag, elty, cvt, sdss, pdps, spsd, int_, unpack, pack, width, fld) \
489 static const int _table2_##tag = _tmp_##tag; \
490 static_assert(_table1_##tag == _table2_##tag, \
491 "Inconsistency between ICETYPEX8632_TABLE and ICETYPE_TABLE");
492 ICETYPEX8632_TABLE
493 #undef X
494 // Repeat the static asserts with respect to the high-level table entries in
495 // case the high-level table has extra entries.
496 #define X(tag, sizeLog2, align, elts, elty, str, rcstr) \
497 static_assert(_table1_##tag == _table2_##tag, \
498 "Inconsistency between ICETYPEX8632_TABLE and ICETYPE_TABLE");
499 ICETYPE_TABLE
500 #undef X
501 } // end of namespace dummy3
502 } // end of anonymous namespace
503
504 } // end of namespace X8632
505 } // end of namespace Ice
506